US20020170464A1 - Process and system for production of a warm foam mix asphalt composition - Google Patents

Process and system for production of a warm foam mix asphalt composition Download PDF

Info

Publication number
US20020170464A1
US20020170464A1 US09/868,346 US86834601A US2002170464A1 US 20020170464 A1 US20020170464 A1 US 20020170464A1 US 86834601 A US86834601 A US 86834601A US 2002170464 A1 US2002170464 A1 US 2002170464A1
Authority
US
United States
Prior art keywords
binder
process according
asphalt composition
asphalt
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/868,346
Other languages
English (en)
Inventor
Olle Larsen
Carl Robertus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kolo Veidekke AS
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to KOLO VEIDEKKE A.S. reassignment KOLO VEIDEKKE A.S. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROBERTUS, CARL C., LARSEN, OLLE R.
Publication of US20020170464A1 publication Critical patent/US20020170464A1/en
Priority to US10/725,200 priority Critical patent/US6846354B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/02Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving for preparing the materials
    • E01C19/10Apparatus or plants for premixing or precoating aggregate or fillers with non-hydraulic binders, e.g. with bitumen, with resins, i.e. producing mixtures or coating aggregates otherwise than by penetrating or surface dressing; Apparatus for premixing non-hydraulic mixtures prior to placing or for reconditioning salvaged non-hydraulic compositions
    • E01C19/1059Controlling the operations; Devices solely for supplying or proportioning the ingredients
    • E01C19/1068Supplying or proportioning the ingredients
    • E01C19/1077Supplying or proportioning the ingredients the liquid ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L95/00Compositions of bituminous materials, e.g. asphalt, tar, pitch
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C7/00Coherent pavings made in situ
    • E01C7/08Coherent pavings made in situ made of road-metal and binders
    • E01C7/18Coherent pavings made in situ made of road-metal and binders of road-metal and bituminous binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/30Adapting or protecting infrastructure or their operation in transportation, e.g. on roads, waterways or railways

Definitions

  • the present invention relates to a process and a system for preparing a warm foam mix asphalt composition.
  • Asphalt mixes used for road building or paving in general consist of mixtures of stone/gravel, sand, filler and binder components.
  • the binder components are referred to as bitumen for the purpose of this specification, but other binder components may be equally applicable.
  • the bitumen components may be naturally occurring bitumen, or derived from a mineral oil.
  • the sand, stone/gravel and filler are referred to as aggregate material or aggregate grain material
  • bitumen acts as glue for the mineral aggregate components. Bitumen is a small fraction of a total asphalt mix, typically between 4 and 7% by mass (or 10 and 15% by volume).
  • Asphalt compositions are normally divided into two main categories, namely ⁇ hot mix>> asphalt and ⁇ cold mix>> asphalt.
  • a third less common “warm mix” asphalt has also been used, as will be described in more detail later.
  • Hot mix asphalt has better overall properties than die cold mix asphalt, and is for this reason used on roads with much traffic.
  • the aggregate material is heated before the hot binder material is added to the aggregate for mixing.
  • Hot mix asphalt production typically takes place at temperatures between 150° C.-190° C. and laying and compaction on the road typically take place at temperatures between 130° C.-160° C. In some cases even higher temperatures are prescribed.
  • the bitumen and mineral aggregates need to be heated due to several reasons.
  • the aggregates need to be dry, the bitumen needs to have a low viscosity to coat and adhere properly to the aggregate components and the asphalt mixture needs to have sufficiently low mix viscosity to enable laying, spreading and compacting on the road.
  • the type of asphalt mix and the grade of bitumen largely govern the production temperature. Hot mix asphalts gains their final strength/stability more or less right away. Therefore a road with a hot mix asphalt can bear traffic more or less immediately.
  • Cold mix asphalt is cheaper, easier to apply, more environmentally friendly, than the hot mix asphalt.
  • the aggregate material is cold and moist when it is mixed with a hot or cold binder material.
  • the binder is often foamed before it is mixed with the cold and moist aggregate material.
  • Cold mix asphalts needs a certain curing time necessary to build up the strength of the mixture.
  • the curing time can typically be from days to months. This in turn results in more rapid deformation, cracking and surface deterioration of an asphalt surface for the above-mentioned reasons, cold mix asphalt arc typically used for roads without much traffic in, for example, the Nordic countries and Australia.
  • WO 97/20890 suggests a ⁇ Process for preparing an asphalt composition>> where asphalt is produced at somewhat lower temperature than in the traditional hot mix process.
  • the use of lower temperatures is made possible by using the bituminous binder in separate parts, namely a hard and a soft component. Together the hard and the soft components form a bitumen which fulfils normal and specifications.
  • the soft component can be mixed with the mineral aggregates at much lower temperatures (60° C.-130° C., preferably 90° C.-110° C.),
  • the hard bitumen component is subsequently dispersed into this mixture in powder or emulsified form.
  • the ‘hard’ bitumen component has a penetration of 50 dmm or less.
  • the temperature of this component may typically be between 20° C. and 70° C. This process yields an asphalt mixture that can be laid, spread and compacted at temperatures between 70° C. and 100° C. Lab and field trials have shown good performance of these asphalt mixtures. Asphalts such as this, with reduced mixing temperature as compared to the hot mix, are for the purpose of this specification called ⁇ warm mix>>.
  • Asphalt compositions prepared from bitumen emulsions require a bitumen/aggregate mixture with a relatively high content of voids to allow the water to escape during the breaking of the emulsion, compaction and service.
  • An emulsion used in this process typically contains 30-50% water.
  • a bitumen emulsion is very expensive to produce both in terms of product costs and equipment costs for the contractor because of the need for an emulsion factory and extra storage tanks at the asphalt mix plant.
  • Transportation of emulsions is less cost-efficient due to the transportation of 30-50% water. Transportation of the increased mass also contributes to an increase of emission of environmentally unfriendly substances.
  • bitumen emulsions require some additional measures because of the chemicals used in production, the frost sensitivity of the end product and the requirement for separate tanks.
  • the present invention provides an asphalt composition that can be produced at lower temperatures than the hot mix, with lower energy input, with equal or better mechanical properties, and at the same or lower costs. This is, achieved with a process for preparing a warm mix asphalt composition comprising mixing a grained aggregate material with a soft binder, and adding a foamed hard binder to said mixture of grained aggregate material and soft binder.
  • FIG. 1 shows a schematic comparison of asphalt mix production routes comparing ⁇ Conventional Hot Asphalt Mix Production>> with the ⁇ Warm Foam Asphalt Mix Production>> of the invention
  • FIG. 2 shows an example of a method to foam a hard hinder.
  • the use of a foamed hard binder has significant economical and environmental advantages over the use of a bitumen powder or emulsified form of bitumen, without being detrimental to the quality of the resulting asphalt mixture and pavement.
  • the water content is only 2-5% as compared to the previously mentioned 30-50% of an emulsion. This has a significant effect in terms of storage, quality, heat requirements and transport. Compared with emulsified binders the lower water content of foamed bitumen enables immediate curing with limited heating.
  • the asphalt made with the process of the invention gives dense asphalt mixes with much lower void contents than the cold mix asphalts produced with foamed binder components.
  • the binders used in cold foam mixes have a soft penetration, between 180 dmm and 700 dmm.
  • the ‘hard’ bitumen component as used in an emulsion has typically a penetration of 50 dmm or less, compared to a maximum penetration value of the foamed hard bitumen in the invention of less than 100 dmm depending on the actual application.
  • both an emulsified and a non-emulsified soft binder component can be used, but the non-emulsified soft binder is preferred. If an emulsified soft binder is used, the emulsified soft binder contains a large amount of water. This water must be expelled from the mixture before full co-hesion and strength of the mixture is achieved.
  • the emulsion may either be a cationic or an anionic emulsion.
  • the hard binder component is added to the mixture as a foam.
  • the soft binder may also be added as a foam if this is found to have advantages in a specific situation.
  • the soft binder component can also be added to the aggregate at a relatively low temperature, i.e. a temperature of less than 120° C.
  • the soft binder will normally be added to the aggregate at a temperature of at least 70° C., preferably at a temperature in the range of from 60 to 130° C., more preferably in the range from 90 to 110° C.
  • a soft binder component is defined as a binder component having a penetration of at least 200 dmm
  • the soft binder component has a penetration of at least 500 dmm, preferably at least 700 dmm and more preferably at least 800 dmm. (measured by ASTM D 5 at 25° C.).
  • binder components are often characterised by their viscosity (determined by ASTM D 2171 at 100° C.)
  • the soft binder component has a viscosity of less than 0.300 Pa.s, preferably less than 0.200 Pa.s.
  • the asphalt prepared in the present invention is mainly intended for road use, but other use should also be considered to be within the scope of the invention.
  • the dense graded asphalt made in the process of the present invention has preferably a void content of less than about 10% and even more preferably a void content in the area between 3 and 10%.
  • the asphalt made in the process of the present invention could also be open graded asphalt with a void content approximately between 15% and 25%.
  • FIG. 1 Schematic comparison of process routes is given in FIG. 1, and a method for foaming the binder, in FIG. 2.
  • FIG. 2 A comparison of quality and costs is given in tables II and I.
  • An asphalt production facility for producing asphalt mixes uses the process of the invention and comprises a drying drum, a mixing mill, a mix to storage silo and bitumen foam production facilities. Stone/sand is introduced to the drying drum and is heated to approx. 130° C. The warm stone/sand is then led to the mixing mill where it is mixed with a soft bitumen at approx. 120 ° C. When the soft bitumen is properly mixed with the stone/sand, the hard bitumen foam is added to the mixture, and mixing continues until finally the filler is added to the mixture at approx. 20° C.
  • the product comprises approx., by mass, 90% stone/sand, 2,5% soft bitumen, 2,5% hard bitumen and 5% filler.
  • the foam is made (FIG. 2) by letting a controlled flow of hot bitumen into a piping system through a first valve (A).
  • the valve first (A) allows circulation to storage, and this ensures a stable temperature, required in the system.
  • the temperature of the tubing system is controlled and maintained by surrounding the piping with hot oil or heater cable, and isolation. The temperature selected is dependent on the quality, hardness and required increase of volume of the bitumen. The temperature is typically in the range from 130° C. to 180° C.
  • B second valve
  • the bitumen expands.
  • the bitumen is homogenised in a static mixer in a mixing chamber. Expanded bitumen, typically with a 10 to 20 times increase of volume, is led out of the mixing chamber through an outlet and is added to the aggregate mixture through one or several nozzles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Architecture (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Road Paving Structures (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Road Paving Machines (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
US09/868,346 2000-02-25 2001-02-05 Process and system for production of a warm foam mix asphalt composition Abandoned US20020170464A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/725,200 US6846354B2 (en) 2000-02-25 2003-12-01 Process and system for production of a warm foam mix asphalt composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20000955 2000-02-25
NO20000955A NO311140B1 (no) 2000-02-25 2000-02-25 Prosess og system for produksjon av en lunken skumblandingsasfalt, samt anvendelse av denne

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2001/000039 A-371-Of-International WO2001062852A1 (en) 2000-02-25 2001-02-05 Process and system for production of a warm foam mix asphalt composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/725,200 Continuation US6846354B2 (en) 2000-02-25 2003-12-01 Process and system for production of a warm foam mix asphalt composition

Publications (1)

Publication Number Publication Date
US20020170464A1 true US20020170464A1 (en) 2002-11-21

Family

ID=19910789

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/868,346 Abandoned US20020170464A1 (en) 2000-02-25 2001-02-05 Process and system for production of a warm foam mix asphalt composition
US10/725,200 Expired - Fee Related US6846354B2 (en) 2000-02-25 2003-12-01 Process and system for production of a warm foam mix asphalt composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/725,200 Expired - Fee Related US6846354B2 (en) 2000-02-25 2003-12-01 Process and system for production of a warm foam mix asphalt composition

Country Status (18)

Country Link
US (2) US20020170464A1 (ja)
EP (1) EP1263885B1 (ja)
JP (1) JP4383706B2 (ja)
KR (1) KR100735112B1 (ja)
CN (1) CN1161422C (ja)
AT (1) ATE269883T1 (ja)
AU (2) AU2001237823B2 (ja)
CA (1) CA2401349C (ja)
CZ (1) CZ298950B6 (ja)
DE (1) DE60103985T2 (ja)
DK (1) DK1263885T3 (ja)
ES (1) ES2222983T3 (ja)
NO (1) NO311140B1 (ja)
NZ (1) NZ521062A (ja)
PL (1) PL194623B1 (ja)
PT (1) PT1263885E (ja)
TR (1) TR200401982T4 (ja)
WO (1) WO2001062852A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048284A1 (en) * 2003-09-02 2005-03-03 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) coating
US20060070695A1 (en) * 2004-08-25 2006-04-06 James Barnat Method of selecting a binder for a chipsealing process based on its adhesion index
US20070039520A1 (en) * 2004-02-18 2007-02-22 Meadwestvaco Corporation Method for producing bituminous compositions
US20070060676A1 (en) * 2005-09-12 2007-03-15 Mathy Construction Bituminous paving composition and process for bituminous paving
US20070082983A1 (en) * 2004-02-18 2007-04-12 Meadwestvaco Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US20070191514A1 (en) * 2005-09-12 2007-08-16 Reinke Gerald H Bituminous paving composition and process for bituminous paving
US20080060551A1 (en) * 2004-02-18 2008-03-13 Everett Crews Method for producing bitumen compositions
US20090068348A1 (en) * 2007-09-07 2009-03-12 Reinke Gerald H Warm asphalt binder compositions containing lubricating agents
US20100319577A1 (en) * 2007-11-14 2010-12-23 Akzo Nobel N.V. Asphalt modifiers for "warm mix" applications including adhesion promoter
US7902277B2 (en) 2008-02-22 2011-03-08 Alm Holding Co. Processing bituminous mixtures for paving at reduced temperatures
US20120273062A1 (en) * 2009-12-10 2012-11-01 Fabremasa S.L. Plant for manufacturing half warm mix asphalts
US8404037B2 (en) 2007-07-26 2013-03-26 Akzo Nobel N.V. Adhesion and cohesion modifiers for asphalt
WO2013060110A1 (zh) * 2011-10-27 2013-05-02 深圳海川工程科技有限公司 一种温拌抗车辙的沥青混合料及其制备方法
WO2014205092A1 (en) * 2013-06-18 2014-12-24 The Trustees Of Columbia University In The City Of New York Methods and systems for producing ethanol based warm foam mix asphalt
US8962071B2 (en) 2008-08-05 2015-02-24 Alm Holding Co. Process for cold-in-place recycling using foamed asphalt and lubrication additive
US20180371709A1 (en) * 2017-06-09 2018-12-27 Qingbin CUI Sustainably constructed pavement, and methods and apparatus for constructing the same

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO311140B1 (no) 2000-02-25 2001-10-15 Kolo Veidekke As Prosess og system for produksjon av en lunken skumblandingsasfalt, samt anvendelse av denne
US7686536B2 (en) 2005-03-01 2010-03-30 Hall David R Pavement degradation piston assembly
US7549821B2 (en) * 2005-03-01 2009-06-23 Hall David R Wireless remote-controlled pavement recycling machine
US7591607B2 (en) * 2005-03-01 2009-09-22 Hall David R Asphalt recycling vehicle
US7740414B2 (en) 2005-03-01 2010-06-22 Hall David R Milling apparatus for a paved surface
FR2883882B1 (fr) * 2005-04-05 2007-05-25 Ceca S A Sa Additifs pour produits bitumineux, produits bitumineux les contenant et leurs utilisations
USRE44070E1 (en) 2005-06-09 2013-03-12 United States Gypsum Company Composite light weight gypsum wallboard
US11338548B2 (en) 2005-06-09 2022-05-24 United States Gypsum Company Light weight gypsum board
US9802866B2 (en) 2005-06-09 2017-10-31 United States Gypsum Company Light weight gypsum board
US9840066B2 (en) 2005-06-09 2017-12-12 United States Gypsum Company Light weight gypsum board
US11306028B2 (en) 2005-06-09 2022-04-19 United States Gypsum Company Light weight gypsum board
US7731794B2 (en) 2005-06-09 2010-06-08 United States Gypsum Company High starch light weight gypsum wallboard
NL1030039C2 (nl) * 2005-09-26 2007-03-27 Konink Bam Groep Nv Verbeterde bereiding van een asfaltspecie en toepassing daarvan.
FR2901801B1 (fr) * 2006-06-06 2009-06-12 Ceca Sa Sa Produits bitumineux et emulsions aqueuses a base de produits bitumineux et leurs utilisations
US7591608B2 (en) * 2006-06-29 2009-09-22 Hall David R Checking density while compacting
US7712996B2 (en) * 2006-07-14 2010-05-11 Hall David R Fogging system for an asphalt recycling machine
US7588388B2 (en) 2006-09-06 2009-09-15 Hall David R Paved surface reconditioning system
US7726905B2 (en) * 2006-09-06 2010-06-01 Hall David R Asphalt reconditioning machine
US8403595B2 (en) 2006-12-01 2013-03-26 David R. Hall Plurality of liquid jet nozzles and a blower mechanism that are directed into a milling chamber
US7976238B2 (en) * 2006-12-01 2011-07-12 Hall David R End of a moldboard positioned proximate a milling drum
US8485756B2 (en) * 2006-12-01 2013-07-16 David R. Hall Heated liquid nozzles incorporated into a moldboard
US7585128B2 (en) * 2007-02-13 2009-09-08 Hall David R Method for adding foaming agents to pavement aggregate
US7927413B2 (en) * 2007-04-17 2011-04-19 Astec, Inc. Method and apparatus for making asphalt concrete using foamed asphalt cement
FR2915485B1 (fr) 2007-04-26 2009-06-12 Ceca Sa Sa Procede de preparation d'enrobes a base de produits bitumineux et leurs utilisations
US7798745B2 (en) 2007-08-20 2010-09-21 Hall David R Nozzle for a pavement reconditioning machine
ITGE20070107A1 (it) * 2007-10-31 2009-05-01 Contech S R L Metodo di fabbricazione di conglomerati bituminosi mediante impiego di fresato stradale e/o polverino di gomma, e conglomerati bituminosi cosi ottenuti.
CA2704982C (en) * 2008-02-06 2012-12-11 Icl Performance Products Lp Polyphosphate modifier for warm asphalt applications
CA2654482C (en) 2008-02-18 2016-09-13 Terex Corporation Warm mix asphalt production system and method
US20090262598A1 (en) * 2008-04-16 2009-10-22 Brashears David F Fluid Mixing Device and Method
SE532658C2 (sv) * 2008-07-21 2010-03-09 Ncc Roads Ab Metod för beredning av en asfaltmassa
PL2307506T3 (pl) 2008-07-30 2018-05-30 Shell Internationale Research Maatschappij B.V. Sposób wytwarzania mieszanki asfaltowej
FR2944811B1 (fr) * 2009-04-22 2015-04-17 Colas Sa Procede de preparation d'un enrobe a chaud permettant d'obtenir des enrobes comprenant une teneur reduite en liant
US20110038668A1 (en) * 2009-08-13 2011-02-17 Road Science, Llc. Crack resistant coating and method of applying crack resistant coating
GB2472995B (en) * 2009-08-26 2013-09-11 Aggregate Ind Uk Ltd Half-warm foamed asphalt process
CN101837603B (zh) * 2010-04-15 2011-09-14 同济大学 低碳沥青混合料的制备方法
US8262168B2 (en) 2010-09-22 2012-09-11 Hall David R Multiple milling drums secured to the underside of a single milling machine
US8894321B2 (en) * 2010-07-15 2014-11-25 Western Emulsions, Inc. Warm mix asphalt
CN102010532B (zh) * 2010-11-29 2012-05-16 广东银禧科技股份有限公司 一种温拌沥青混合料用橡塑合金及其制备方法
US20120189388A1 (en) * 2011-01-20 2012-07-26 Road Science, Llc Foamed bituminous emulsion
CN102505612B (zh) * 2011-09-28 2016-01-20 中联重科股份有限公司 出料口的卸料装置和沥青搅拌设备
CZ303723B6 (cs) * 2012-01-20 2013-04-03 Panská lícha, s.r.o. Zpusob zpracování recyklovaného materiálu z asfaltových vozovek a zarízení pro provádení tohoto zpusobu
CN102849979B (zh) * 2012-09-12 2014-04-02 北京工业大学 农业用的抗旱保水材料作为保水型温拌添加剂的应用
ES2516566B2 (es) * 2013-04-29 2015-05-20 Universidad De Huelva Procedimiento de espumación-modificación conjunta de betunes para su uso en pavimentación
NO337011B1 (no) * 2014-04-03 2015-12-21 Brynjar Aurstad Anordning og prosess for framstilling av asfalt, med tilsetning av vann
US20170190618A1 (en) * 2015-12-31 2017-07-06 Honeywell International Inc. Foamed asphalt compositions, recycled asphalt composition including the same, asphalt pavement including the same, and methods of forming asphalt pavement using the same
JP6633248B2 (ja) * 2016-05-23 2020-01-22 江蘇天諾道路材料科技有限公司 プラントミックス中温化再生アスファルト混合物とその製造方法
WO2018092152A1 (en) * 2016-11-17 2018-05-24 BitChem Asphalt Technologies Limited Process for laying roads using mix design based cold technique
CN106968150A (zh) * 2017-04-11 2017-07-21 中铁五局集团有限公司 一种南方多雨地区sma沥青混凝土路面施工方法
CN107288011A (zh) * 2017-07-24 2017-10-24 广东诚泰投资有限公司 一种沥青发泡方法
CN107805005A (zh) * 2017-09-30 2018-03-16 沧州市市政工程股份有限公司 一种泡沫沥青温拌橡胶改性沥青混合料及制备方法和施工方法
DE102018205817A1 (de) * 2018-04-17 2019-10-17 Benninghoven Gmbh & Co. Kg Anlage zum Herstellen von Bitumengemisch sowie Verfahren zum Herstellen von Bitumengemisch
CN114437555B (zh) * 2020-10-16 2023-10-10 中国石油化工股份有限公司 调和沥青及其制备方法、沥青混合料及其制备方法
CN114436568B (zh) * 2020-10-16 2023-11-10 中国石油化工股份有限公司 沥青混合料及其制备方法和应用

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2917395A (en) * 1957-06-24 1959-12-15 Iowa State College Res Found Method for combining a bituminous binder with an aggregate material
FR2370126A1 (fr) * 1976-11-04 1978-06-02 Mobil Oil France Nouveau procede pour la realisation d'enduits superficiels dans lequel on utilise un liant sous forme de mousse
DE2823388A1 (de) * 1978-05-29 1979-12-13 Vital Troxler Schaumstoff aus asphalt, bitumen, teer oder pech
FR2553125B1 (fr) * 1983-10-06 1986-08-22 Mobil Oil France Procede pour la preparation d'enrobes a l'aide de bitume-mousse
US4692350A (en) * 1984-12-12 1987-09-08 Mobil Oil Corporation Asphalt coating method
GB8510259D0 (en) * 1985-04-23 1985-05-30 Mobil Oil Ltd Treating aggregate
NO854387L (no) 1985-11-04 1987-05-05 Nodest Vei As Fremgangsmaate og anlegg for skumming av bitumen.
US4762565A (en) * 1986-10-31 1988-08-09 Chevron Research Company Open-graded asphalt
US4932785A (en) * 1988-06-21 1990-06-12 Bracegirdle P E Aggregate drying system with improved aggregate dryer and mass flow apparatus
FR2650005B1 (fr) * 1989-07-21 1994-04-15 Screg Routes Travaux Publics Procede et dispositif de realisation d'un enduit superficiel sur une surface telle qu'une chaussee
US5109041A (en) * 1990-03-07 1992-04-28 Saburo Matsuno Producing method for asphalt mixture
AU4524893A (en) * 1992-05-29 1993-12-30 Daniel A. Truax Foamed asphalt with modifiers: method and apparatus
FR2695664B1 (fr) * 1992-09-14 1994-10-14 Ceca Sa Procédé pour la confection d'enrobés bitumineux denses à froid stockables et émulsion bitumineuse correspondante.
DE4308567C1 (de) * 1993-03-18 1994-08-25 Deutag Ag Verfahren zur Herstellung von Asphaltmischgut
FI94884C (fi) * 1994-02-18 1995-11-10 Nesotec Oy Menetelmä ja laite vaahtobitumin valmistamiseksi
US5743950A (en) * 1995-01-12 1998-04-28 Shell Oil Company Process for preparing an asphalt composition
US5605570A (en) * 1995-07-20 1997-02-25 U.S. Army Corps Of Engineers As Represented By The Secretary Of The Army Alkali-activated glassy silicate foamed concrete
US5827360A (en) * 1996-10-09 1998-10-27 Cmi Corporation Method and equipment for producing foam bitumen
US5910212A (en) * 1997-04-21 1999-06-08 Shell Oil Company Process for preparing an open-graded asphalt composition
NO311140B1 (no) 2000-02-25 2001-10-15 Kolo Veidekke As Prosess og system for produksjon av en lunken skumblandingsasfalt, samt anvendelse av denne

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048284A1 (en) * 2003-09-02 2005-03-03 Guardian Industries Corp. Heat treatable coated article with diamond-like carbon (DLC) coating
US20080194738A1 (en) * 2004-02-18 2008-08-14 Meadwestvaco Corporation Water-In-Oil Bitumen Dispersion and Methods for Producing Paving Compositions from Same
US20070039520A1 (en) * 2004-02-18 2007-02-22 Meadwestvaco Corporation Method for producing bituminous compositions
US20070082983A1 (en) * 2004-02-18 2007-04-12 Meadwestvaco Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US20110218274A1 (en) * 2004-02-18 2011-09-08 Everett Crews Bituminous Composition
US7297204B2 (en) * 2004-02-18 2007-11-20 Meadwestvaco Corporation Water-in-oil bituminous dispersions and methods for producing paving compositions from the same
US20080060551A1 (en) * 2004-02-18 2008-03-13 Everett Crews Method for producing bitumen compositions
US8088210B2 (en) 2004-02-18 2012-01-03 Meadwestvaco Corporation Bituminous composition
US7972429B2 (en) 2004-02-18 2011-07-05 Meadwestvaco Corporation Bituminous composition
US7951857B2 (en) 2004-02-18 2011-05-31 Meadwestvaco Corporation Water-in-oil bitumen dispersion and methods for producing paving compositions from same
US7905949B2 (en) 2004-02-18 2011-03-15 Meadwestvaco Corporation Method for producing bituminous compositions
US7833338B2 (en) 2004-02-18 2010-11-16 Meadwestvaco Packaging Systems, Llc Method for producing bitumen compositions
US20060070695A1 (en) * 2004-08-25 2006-04-06 James Barnat Method of selecting a binder for a chipsealing process based on its adhesion index
US7279035B2 (en) 2004-08-25 2007-10-09 Semmaterials, Lp Method of selecting a binder for a chipsealing process based on its adhesion index
US8828135B2 (en) 2005-09-12 2014-09-09 Alm Holding Company Bituminous paving composition and process for bituminous paving
US8454739B2 (en) 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
US8454740B2 (en) 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
US8454741B2 (en) 2005-09-12 2013-06-04 Alm Holding Co. Bituminous paving composition and process for bituminous paving
US20090304915A1 (en) * 2005-09-12 2009-12-10 Alm Holdings Co. Bituminous paving composition and process for bituminous paving
US20070191514A1 (en) * 2005-09-12 2007-08-16 Reinke Gerald H Bituminous paving composition and process for bituminous paving
US20070060676A1 (en) * 2005-09-12 2007-03-15 Mathy Construction Bituminous paving composition and process for bituminous paving
US8404037B2 (en) 2007-07-26 2013-03-26 Akzo Nobel N.V. Adhesion and cohesion modifiers for asphalt
US8741052B2 (en) 2007-07-26 2014-06-03 Akzo Nobel N.V. Adhesion and cohesion modifiers for asphalt
US7981952B2 (en) * 2007-09-07 2011-07-19 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US20110021673A1 (en) * 2007-09-07 2011-01-27 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US7968627B2 (en) * 2007-09-07 2011-06-28 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US20110214589A1 (en) * 2007-09-07 2011-09-08 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US10214646B2 (en) 2007-09-07 2019-02-26 A.L.M. Holding Company Warm mix paving composition w/lubricating antistrip additive
US9394652B2 (en) 2007-09-07 2016-07-19 A.L.M. Holding Co. Warm mix asphalt binder compositions containing lubricating additives
US20090068348A1 (en) * 2007-09-07 2009-03-12 Reinke Gerald H Warm asphalt binder compositions containing lubricating agents
US7815725B2 (en) 2007-09-07 2010-10-19 Alm Holding Co. Warm asphalt binder compositions containing lubricating agents
US8323394B2 (en) 2007-09-07 2012-12-04 Alm Holding Co. Warm mix asphalt binder compositions containing lubricating additives
US20110017096A1 (en) * 2007-09-07 2011-01-27 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US20130074729A1 (en) * 2007-09-07 2013-03-28 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US8679245B2 (en) * 2007-09-07 2014-03-25 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US7981466B2 (en) * 2007-09-07 2011-07-19 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US20110020537A1 (en) * 2007-09-07 2011-01-27 A.L.M. Holding Company Warm mix asphalt binder compositions containing lubricating additives
US20100319577A1 (en) * 2007-11-14 2010-12-23 Akzo Nobel N.V. Asphalt modifiers for "warm mix" applications including adhesion promoter
US8840717B2 (en) 2007-11-14 2014-09-23 Akzo Nobel N.V. Asphalt modifiers for “warm mix” applications including adhesion promoter
US8440011B2 (en) 2007-11-14 2013-05-14 Akzo Nobel N.V. Asphalt modifiers for “warm mix” applications including adhesion promoter
US9175446B2 (en) 2008-02-22 2015-11-03 A.L.M Holding Company Processing bituminous mixtures for paving at reduced temperatures
US20110152410A1 (en) * 2008-02-22 2011-06-23 A.L.M. Holding Company Processing bituminous mixtures for paving at reduced temperatures
US8138242B2 (en) 2008-02-22 2012-03-20 A.L.M. Holding Company Processing bituminous mixtures for paving at reduced temperatures
US8734581B2 (en) 2008-02-22 2014-05-27 A.L.M. Holding Company Processing bituminous mixtures for paving at reduced temperatures
US7902277B2 (en) 2008-02-22 2011-03-08 Alm Holding Co. Processing bituminous mixtures for paving at reduced temperatures
US8962071B2 (en) 2008-08-05 2015-02-24 Alm Holding Co. Process for cold-in-place recycling using foamed asphalt and lubrication additive
US11174603B2 (en) 2008-08-05 2021-11-16 A.L.M. Holding Company Process for cold-in-place recycling using foamed asphalt and lubrication additive
US20120273062A1 (en) * 2009-12-10 2012-11-01 Fabremasa S.L. Plant for manufacturing half warm mix asphalts
US9546457B2 (en) * 2009-12-10 2017-01-17 Antonio Alvarez Alvarez Plant for manufacturing half warm mix asphalts
WO2013060110A1 (zh) * 2011-10-27 2013-05-02 深圳海川工程科技有限公司 一种温拌抗车辙的沥青混合料及其制备方法
WO2014205092A1 (en) * 2013-06-18 2014-12-24 The Trustees Of Columbia University In The City Of New York Methods and systems for producing ethanol based warm foam mix asphalt
US10011722B2 (en) 2013-06-18 2018-07-03 The Trustees Of Columbia University In The City Of New York Methods and systems for producing ethanol based warm foam mix asphalt
US20180371709A1 (en) * 2017-06-09 2018-12-27 Qingbin CUI Sustainably constructed pavement, and methods and apparatus for constructing the same
US10870953B2 (en) * 2017-06-09 2020-12-22 Qingbin CUI Sustainably constructed pavement, and methods and apparatus for constructing the same

Also Published As

Publication number Publication date
NO20000955D0 (no) 2000-02-25
WO2001062852A8 (en) 2002-04-04
CN1161422C (zh) 2004-08-11
NZ521062A (en) 2004-03-26
KR20020097187A (ko) 2002-12-31
AU2001237823B2 (en) 2005-06-09
US20040244646A1 (en) 2004-12-09
CZ298950B6 (cs) 2008-03-19
CA2401349C (en) 2009-04-07
CA2401349A1 (en) 2001-08-30
CZ20022823A3 (cs) 2003-02-12
KR100735112B1 (ko) 2007-07-06
EP1263885B1 (en) 2004-06-23
JP4383706B2 (ja) 2009-12-16
DK1263885T3 (da) 2004-11-01
PT1263885E (pt) 2004-10-29
WO2001062852A1 (en) 2001-08-30
CN1404509A (zh) 2003-03-19
DE60103985D1 (de) 2004-07-29
AU3782301A (en) 2001-09-03
ES2222983T3 (es) 2005-02-16
ATE269883T1 (de) 2004-07-15
EP1263885A1 (en) 2002-12-11
PL194623B1 (pl) 2007-06-29
JP2003524054A (ja) 2003-08-12
PL356327A1 (en) 2004-06-28
NO311140B1 (no) 2001-10-15
TR200401982T4 (tr) 2004-09-21
DE60103985T2 (de) 2005-08-25
NO20000955L (no) 2001-08-27
US6846354B2 (en) 2005-01-25

Similar Documents

Publication Publication Date Title
EP1263885B1 (en) Process and system for production of a warm foam mix asphalt composition
AU2001237823A1 (en) Process and system for production of a warm foam mix asphalt composition
US20100047015A1 (en) Composition and process of using an asphalt emulsion to convert an unpaved surface into a paved surface
CN104724979A (zh) 沥青摊铺组合物和沥青摊铺方法
EP2398859B1 (en) Method for producing bituminous paving compositions
US8075681B2 (en) Process for producing two-phase mixes
CN105801010A (zh) 一种粘土矿物制备的冷补沥青混合料及其制备方法
Saleh et al. Advantages and limitations of using foamed bitumen
CN101287801A (zh) 沥青摊铺组合物和沥青摊铺方法
US8382362B2 (en) Method of making paving composition without adding asphalt content oil or minimizing addition
CN104087003B (zh) 一种sbr改性乳化沥青
Chiu et al. A study on properties of foamed-asphalt-treated mixes
Kumrawat et al. A Research on Foamed Bitumen
CN106517892B (zh) 预破乳微波中温感应型高浓改性乳化沥青稠浆料及其配制方法
US2086581A (en) Method for producing bituminous paving mixtures and product thereof
US20160002465A1 (en) Compositions and methods for hot and warm mix asphalt concrete additives
US20120189388A1 (en) Foamed bituminous emulsion
Santagata et al. Preliminary Study on the Use of Reclaimed Asphalt in Public Works Authority Road Projects in the State of Qatar
CA2684443A1 (en) Method of producing bituminous paving mixes using foamed asphalt

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOLO VEIDEKKE A.S., NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LARSEN, OLLE R.;ROBERTUS, CARL C.;REEL/FRAME:013902/0262;SIGNING DATES FROM 20010731 TO 20010816

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION