US20020117450A1 - Composition and process for removing moisture from hydrogen halides - Google Patents
Composition and process for removing moisture from hydrogen halides Download PDFInfo
- Publication number
- US20020117450A1 US20020117450A1 US10/132,038 US13203802A US2002117450A1 US 20020117450 A1 US20020117450 A1 US 20020117450A1 US 13203802 A US13203802 A US 13203802A US 2002117450 A1 US2002117450 A1 US 2002117450A1
- Authority
- US
- United States
- Prior art keywords
- composition
- halide
- magnesium
- hydrogen
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/263—Drying gases or vapours by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/26—Drying gases or vapours
- B01D53/261—Drying gases or vapours by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/04—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
- B01J20/046—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium containing halogens, e.g. halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3202—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
- B01J20/3204—Inorganic carriers, supports or substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/32—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
- B01J20/3231—Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
- B01J20/3234—Inorganic material layers
- B01J20/3236—Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B7/00—Halogens; Halogen acids
- C01B7/01—Chlorine; Hydrogen chloride
- C01B7/07—Purification ; Separation
- C01B7/0706—Purification ; Separation of hydrogen chloride
- C01B7/0718—Purification ; Separation of hydrogen chloride by adsorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/308—Pore size
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/283—Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/28—Treatment of water, waste water, or sewage by sorption
- C02F1/288—Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
Definitions
- This invention relates to a composition and process for removing moisture from a hydrogen halide.
- gaseous and liquid hydrogen halides are utilized as high purity anhydrous compositions.
- Anhydrous hydrogen halides are commonly used in the semiconductor industry such as for cleaning reactor tubes and susceptors and as an etchant for manufacturing microcircuits.
- Hydrogen chloride has also been treated with sulfuric acid or phosphoric acid to produce dehydrated hydrogen chloride.
- Such dehydration methods have the associated disadvantage that they add sulfur or phosphorous to the hydrogen chloride, and these added elements are highly undesirable contaminants in the aforementioned semiconductor manufacturing applications.
- magnesium chloride on alumina involves multiple reaction steps wherein the alumina is first coated with a solution, e.g., 15% by weight of dibutylmagnesium in hexane solvent. The solvent is removed by evaporation while heating. The dibutylmagnesium is converted to magnesium hydride on alumina by heating to about 250° C. The magnesium hydride then is converted to magnesium chloride on alumina with concentrated hydrogen chloride. This composition then is used to remove moisture from hydrogen halides.
- a solution e.g. 15% by weight of dibutylmagnesium in hexane solvent.
- the solvent is removed by evaporation while heating.
- the dibutylmagnesium is converted to magnesium hydride on alumina by heating to about 250° C.
- the magnesium hydride then is converted to magnesium chloride on alumina with concentrated hydrogen chloride. This composition then is used to remove moisture from hydrogen halides.
- Hydrogen bromide is another example of a hydrogen halide which is required in essentially completely water-free condition in the semiconductor manufacturing field. Hydrogen bromide is used in the electronics industry as an etchant for wafers, and as a cleaning agent for susceptors. In these applications, the presence of water impurity in the hydrogen bromide will result in the same disadvantages noted hereinabove in connection with hydrogen chloride in similar applications. In addition, when hydrogen bromide is used as an etchant for wafers, hazing has been found to result when the hydrogen bromide contains even minute amounts of water vapor.
- compositions and processes for removing moisture from hydrogen halides and which does not produce a contaminating by-product such as particles it would be desirable to provide such a composition and process which has a high capacity for removing moisture from hydrogen halides either in gaseous or liquid form. Furthermore, it would be desirable to provide such a composition which can be formed from a simplified process as compared to presently available processes for forming analogous compositions.
- This invention provides a composition for removing moisture from a hydrogen halide fluid comprising a macroporous carbonaceous support upon which is deposited a magnesium halide which is either magnesium chloride or magnesium bromide.
- the magnesium halide is deposited on the surface of the macroporous carbonaceous support for first admixing the support with a solution of dibutyl magnesium in order to coat the surfaces of the support with dibutyl magnesium.
- the solvent forming the solution then is removed by evaporation in a non-reactive environment. Thereafter, the coated support is contacted with hydrogen halide fluid to convert the dibutylmagnesium to the magnesium halide. This process avoids the need for forming magnesium hydride.
- the support coated with magnesium halide is intimately contacted with a hydrogen halide fluid to effect substantially complete removal of moisture from the hydrogen halide fluid.
- the halide of the hydrogen halide fluid and of the magnesium halide must be the same to prevent contamination of the fluid.
- FIG. 1 illustrates the use of the present invention.
- FIG. 2 is a graph of a Foerier Transform Infra Red spectra illustrating the water removal capacity from nitrogen of the composition of this invention.
- FIG. 3 is a graph of a Foerier Transform Infra Red spectra illustrating the water removal capacity from HCl of the composition of this invention.
- the composition of this invention comprises a macroporous carbonaceous support having an average pore size greater than about 100 Angstroms up to about 100 ⁇ m, preferably between about 20 A and about 1000 A which is coated with magnesium halide.
- Suitable carbonaceous supports are formed, for example, by pyrolyzing polymeric resins. Representative suitable supports are formed by pyrolyzing sulfonated styrene/divinylbenzene macroreticular ion exchange resin and are disclosed, for example, by U.S. Pat. No. 5,094,754, which is incorporated herein by reference.
- Such carbonaceous supports are available from Rohmn and Haas Company, Philadelphia, PA under the registered trademark AMBERSORB®.
- the magnesium halide coating is formed on the particulate macroporous carbonaceous support by first intimately contacting the support with a solution of a dialkyl magnesium compound such as dimethyl, diethyl, dibutyl or dipropyl magnesium, preferably dibutyl magnesium.
- a dialkyl magnesium compound such as dimethyl, diethyl, dibutyl or dipropyl magnesium, preferably dibutyl magnesium.
- suitable solvents for forming the solution include hexane, heptane or the like.
- Contact of the support and the solution typically is effected for a time between about 1 hour and about 4 hours, at a temperature between about 25° C. and about 70° C.
- the resultant coated support is separated from the solution and excess solvent is removed therefrom such as by evaporation. Evaporation can be effected by heating such as to a temperature between about 55° C. and about 65° C. in an inert or nonreactive atmosphere such as nitrogen or an inert gas.
- the coated support is contacted with a hydrogen halide gas either alone or in a non reactive carrier gas such as nitrogen wherein the hydrogen halide comprises between about 5% and 100% volume percent of the gas.
- a hydrogen halide gas either alone or in a non reactive carrier gas such as nitrogen wherein the hydrogen halide comprises between about 5% and 100% volume percent of the gas.
- the dialkyl magnesium is converted to magnesium halide
- Hydrogen chloride is utilized as the hydrogen halide when the coated support is used to dry hydrogen chloride fluid.
- Hydrogen bromide may be utilized as the hydrogen halide when the coated support is used to dry hydrogen bromide fluid.
- Contact with the hydrogen halide fluid is effected for a time and at temperature wherein substantially complete conversion of the dialkyl magnesium to the magnesium halide is effected.
- Typical contact times are between about 1.1 min/m of resin and about 5.5 min/ml of resin, preferably between about 1.6 min/ml and about 5.5 min/ml.
- Typical reaction temperatures are between about 25° C. and about 240° C., preferably between about 40° C. and about 60° C.
- compositions of this invention are capable of removing moisture from a hydrogen halide fluid even at high pressures wherein the fluid is a liquid without formation of reactive products such as particulate reaction products which contaminate the hydrogen halide.
- the compositions of this invention are capable of withstanding high pressure liquid halide up to a pressure of about 1100 psig at 50° C.
- the magnesium halide coating is sufficient to render the composition of this invention useful for removing moisture from a hydrogen halide fluid to less than about 100 ppb, preferably less than about 50 ppb but without significantly blocking the support macropores.
- the compositions of this invention are characterized by a moisture absorption capacity in excess of about 40 liters of water per liter of coated support, preferably in excess of about 60 liters of water per liter of coated support.
- the concentration of magnesium halide exceeds at least about 0.1 moles of magnesium halide per liter of carbonaceous support, preferably in excess of at least about 1.2 moles of magnesium halide per liter of carbonaceous support.
- the composition of this invention is intimately contacted with a fluid hydrogen halide either as a flowing fluid stream or quiescent in a container for the hydrogen halide in a manner so that substantially all of the hydrogen halide contacts the composition.
- hydrogen halide fluid to be dried is introduced into inlet 10 of housing 12 .
- the fluid is passed through a retaining frit 14 and into the bed 18 of the coated carbonaceous particles of this invention wherein moisture is removed from the fluid.
- the fluid then is passed through filter 18 and out outlet 20 to a site of use (not shown).
- This example illustrates a method for making the magnesium chloride coated product of this invention.
- the gas sample cylinder with the carbonaceous adsorbent is connected to a gas manifold capable of flowing both anhydrous HCl and dry nitrogen.
- a two fold excess of 5% HCl in nitrogen and 15 psia and 1000 sccm is passed over the carbonaceous adsorbent at which point pure HCl at 15 psia and 1000 sccm is then passed over the carbonaceous adsorbent for 30 minutes and the vessel is then pressurized to 60 psig with HCl overnight.
- the carbonaceous adsorbent is purged with 1000 sccm N 2 the following morning and the sample cylinder is heated to 240° C. for 52 hours. This purging would be more effective with high pressure CO 2 .
- the final product emits less than 1 ppm total hydrocarbons at 26° C.
- Tests were performed to determine whether the coated carbonaceous adsorbent can dedicate a nitrogen gas stream.
- N 2 or HCl gas at 500 sccm is dried with a conventional hydrogen halide purifier.
- the HCl gas then is either passed through the purifier apparatus illustrated in FIG. 1 or can bypass the purifier.
- the bypass stream is representative of the background water level.
- the resultant gas stream is directed to a 10 meter path length gas cell kept at 130° C. for use with a Fourier Transform Infrared analysis apparatus (FT-IR).
- FT-IR Four (45) PPM water in 100 sccm N 2 is added to the gas stream (for a total flow of 600 sccm) on demand.
- the composition of the FT-IR spectrum exhibits the ability to remove water moisture from N 2 to levels less than 100 ppb.
- FIG. 2 shows three FT-IR spectra at 1772 cm ⁇ 1 to illustrate the water retention ability of the composition of this invention in N 2 .
- N 2 dried by the conventional purifier and which bypasses the composition of this invention is denoted “Dry N 2 ”.
- “Water” refers to the wet (4 PPM) N 2 gas stream which bypasses the composition of this invention and “New purifier+Water” refers to the wet N 2 passed through the composition of Example I. It is evident from the spectra that there is no difference between “Dried N 2 ” and “New purifier+Water” indicating that the conventional purifier and the purifier of this invention are capable of retaining water to the same level in N 2 ( ⁇ 100 ppb).
- the composition of Example I exhibits the ability to remove water moisture from HCl to levels less than 100 ppb.
- FIG. 3 shows three FT-IR spectra at 1772 cm ⁇ 1 to illustrate the water retention ability of the composition of Example I in HCl.
- HCl dried by the conventional purifier and which bypasses the composition of Example I is denoted “Dry HCl”.
- “Water” refers to the wet (4 ppm) HCl gas stream which bypasses the composition of Example I and “New purifier+Water” refers to the wet HCl passed through the composition of Example I. It is evident from the spectra that there is no difference between “Dried N 2 ” and “New purifier+Water” indicating that the conventional purifier and the composition of Example I are capable of retaining water to the same level in HCl ( ⁇ 100 ppb).
- a method of removing water from hydrogen halide by passing the hydrogen halide stream over an adsorbent comprising magnesium halide supported on an activated carbon substrate or activated carbonaceous substrate prepared by a method comprising:
- an adsorbent for removal of water from a hydrogen halide stream comprising magnesium halide on an activated carbon substrate or activated carbonaceous substrate wherein the magnesium halide is deposited on the substrate by providing the substrate in a non-reactive environment or under vacuum conditions and contacting the activated carbon substrate with a solution to form magnesium halide; or
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Drying Of Gases (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Carbon And Carbon Compounds (AREA)
- Drying Of Solid Materials (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/132,038 US20020117450A1 (en) | 1997-07-29 | 2002-04-24 | Composition and process for removing moisture from hydrogen halides |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US90245997A | 1997-07-29 | 1997-07-29 | |
US65321300A | 2000-08-31 | 2000-08-31 | |
US10/132,038 US20020117450A1 (en) | 1997-07-29 | 2002-04-24 | Composition and process for removing moisture from hydrogen halides |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US65321300A Continuation | 1997-07-29 | 2000-08-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020117450A1 true US20020117450A1 (en) | 2002-08-29 |
Family
ID=25415893
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/132,038 Abandoned US20020117450A1 (en) | 1997-07-29 | 2002-04-24 | Composition and process for removing moisture from hydrogen halides |
US10/427,125 Abandoned US20030234222A1 (en) | 1997-07-29 | 2003-05-01 | Composition and process for removing moisture from hydrogen halides |
US10/427,711 Abandoned US20040026327A1 (en) | 1997-07-29 | 2003-05-01 | Composition and process for removing moisture from hydrogen halides |
US10/427,736 Expired - Fee Related US7288201B2 (en) | 1997-07-29 | 2003-05-01 | Methods for removing moisture from hydrogen halides |
US11/524,079 Abandoned US20070138102A1 (en) | 1997-07-29 | 2006-09-20 | Composition for removing moisture from hydrogen halides |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/427,125 Abandoned US20030234222A1 (en) | 1997-07-29 | 2003-05-01 | Composition and process for removing moisture from hydrogen halides |
US10/427,711 Abandoned US20040026327A1 (en) | 1997-07-29 | 2003-05-01 | Composition and process for removing moisture from hydrogen halides |
US10/427,736 Expired - Fee Related US7288201B2 (en) | 1997-07-29 | 2003-05-01 | Methods for removing moisture from hydrogen halides |
US11/524,079 Abandoned US20070138102A1 (en) | 1997-07-29 | 2006-09-20 | Composition for removing moisture from hydrogen halides |
Country Status (8)
Country | Link |
---|---|
US (5) | US20020117450A1 (zh) |
EP (1) | EP0894527B1 (zh) |
JP (1) | JPH11139805A (zh) |
KR (1) | KR100572936B1 (zh) |
CN (1) | CN1126711C (zh) |
DE (1) | DE69800126T2 (zh) |
SG (1) | SG75863A1 (zh) |
TW (1) | TW418111B (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11139805A (ja) * | 1997-07-29 | 1999-05-25 | Millipore Corp | ハロゲン化水素から水分を除去するための組成物とその方法 |
US5958356A (en) * | 1997-11-05 | 1999-09-28 | Air Products And Chemicals, Inc. | Method for removal of moisture from gaseous HCl |
US6221132B1 (en) * | 1999-10-14 | 2001-04-24 | Air Products And Chemicals, Inc. | Vacuum preparation of hydrogen halide drier |
FR2836139B1 (fr) * | 2002-02-18 | 2004-10-22 | Atofina | Procede de sechage de clorure d'hydrogene provenant de solutions aqueuses chlorhydriques |
US20070098624A1 (en) * | 2005-10-27 | 2007-05-03 | Honeywell International Inc. | Andhydrous hydrogen fluoride composition and method of producing the same |
US10159927B2 (en) * | 2014-04-18 | 2018-12-25 | Entegris, Inc. | High purity gas purifier |
US9499880B2 (en) * | 2015-03-06 | 2016-11-22 | Battelle Memorial Institute | System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines |
CN109051340B (zh) * | 2018-06-29 | 2020-10-02 | 上海衡元高分子材料有限公司 | 环境湿度调节物品 |
CN109292736B (zh) * | 2018-11-26 | 2020-04-10 | 浙江博瑞电子科技有限公司 | 一种电子级氯化氢气体中痕量水分的去除的设备和使用方法 |
CN110040686B (zh) * | 2019-05-10 | 2020-07-28 | 浙江博瑞电子科技有限公司 | 一种用于电子级氯化氢深度纯化的方法、所用纯化材料及其制备方法 |
WO2021233930A1 (en) * | 2020-05-20 | 2021-11-25 | Lanxess Organometallics Gmbh | Novel organo-magnesium compounds and their use |
GB2620904A (en) * | 2022-04-21 | 2024-01-31 | Edwards Ltd | Canister |
Family Cites Families (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE215064C (zh) | ||||
US2196246A (en) * | 1937-04-16 | 1940-04-09 | Du Pont | Manufacture of chemically pure hydrochloric acid |
BE431239A (zh) * | 1938-01-22 | |||
FR845760A (fr) * | 1938-05-04 | 1939-09-01 | Procédé de préparation de corps absorbant les gaz et les vapeurs | |
US2348702A (en) * | 1941-09-26 | 1944-05-09 | Universal Oil Prod Co | Hydrogenation of hydrocarbon materials |
BE758222A (fr) * | 1969-10-29 | 1971-04-01 | Norsk Hydro As | Procede de preparation de chlorure de magnesium convenant pour la production du magnesium par electrolyse du sel fondu |
US3773471A (en) * | 1969-12-29 | 1973-11-20 | Prestininzi P | Apparatus for making anhydrous magnesium chloride |
US3647367A (en) * | 1969-12-29 | 1972-03-07 | Pete Prestininni | Method for making anhydrous magnesium chloride |
US3893920A (en) * | 1973-05-03 | 1975-07-08 | Dorr Oliver Inc | Membrane separation equipment |
US4158643A (en) * | 1976-07-15 | 1979-06-19 | Calgon Corporation | Catalytic carbon for oxidation of carbon monoxide in the presence of sulfur dioxide |
US4105747A (en) * | 1977-06-10 | 1978-08-08 | The United States Of America As Represented By The Secretary Of The Interior | Method for dehydrating metal chlorides |
US4301137A (en) * | 1977-12-21 | 1981-11-17 | Occidental Research Corporation | Removal of chlorine from pyrolysis vapors |
JPS5715840A (en) * | 1980-07-01 | 1982-01-27 | Mitsubishi Electric Corp | Hygroscopic agent |
DE3129848A1 (de) * | 1981-07-29 | 1983-02-17 | Bergwerksverband Gmbh, 4300 Essen | Verfahren zum trocknen feuchter gase, insbesondere luft |
US4707299A (en) | 1983-02-28 | 1987-11-17 | Union Oil Company Of California | Solution useful in making carbon-metal phosphate composite |
US4526887A (en) * | 1983-03-16 | 1985-07-02 | Calgon Carbon Corporation | Carbon molecular sieves and a process for their preparation and use |
US4588709A (en) * | 1983-12-19 | 1986-05-13 | Intevep, S.A. | Catalyst for removing sulfur and metal contaminants from heavy crudes and residues |
IT1179552B (it) * | 1984-01-13 | 1987-09-16 | Alessandro Quercetti E C | Procedimento per la fabbricazione di scatole a confanetto scatole che ne risultano ed elementi per la loro formazione |
US4604270A (en) * | 1984-09-28 | 1986-08-05 | Hercules Incorporated | Scavengers for the removal of impurities from inert fluids |
JPH0634904B2 (ja) * | 1985-03-26 | 1994-05-11 | 三機工業株式会社 | 限外▲ろ▼過機 |
JPS62106821A (ja) * | 1985-11-01 | 1987-05-18 | Shin Nisso Kako Co Ltd | 乾燥用組成物および乾燥用包装物 |
CA1291860C (en) | 1986-03-19 | 1991-11-12 | Glenn Mcpherson Tom | Water scavengers for hydrochloric acid streams |
KR870009969A (ko) | 1986-04-14 | 1987-11-30 | 조유형 · 이용범 | 화강암 착색방법 |
US4840637A (en) | 1986-11-21 | 1989-06-20 | Rolffs Philip C | Synthetic ebony and method of producing the same (I) |
US4959076A (en) | 1986-11-21 | 1990-09-25 | Rolffs Philip C | Synthetic rosewood and method of production thereof |
US4867960A (en) | 1987-01-29 | 1989-09-19 | Hercules Incorporated | Water scavengers for hydrochloric acid streams |
US4853148A (en) | 1987-03-24 | 1989-08-01 | Advanced Technology Materials, Inc. | Process and composition for drying of gaseous hydrogen halides |
US5037624A (en) | 1987-03-24 | 1991-08-06 | Advanced Technology Materials Inc. | Composition, apparatus, and process, for sorption of gaseous compounds of group II-VII elements |
US4925646A (en) * | 1987-03-24 | 1990-05-15 | Advanced Technology Materials, Inc. | Process and composition for drying of gaseous hydrogen halides |
US4820672A (en) * | 1987-06-25 | 1989-04-11 | Lithium Corporation Of America | Hydrocarbon soluble and insoluble organo magnesium chloride complexes, processes and uses |
US4831003A (en) * | 1987-09-14 | 1989-05-16 | Exxon Research And Engineering Company | Catalyst composition and process of making |
US4832935A (en) | 1987-11-04 | 1989-05-23 | Gte Laboratories Incorporated | Method for dehydrating hydrogen fluoride |
US5094754A (en) | 1988-01-29 | 1992-03-10 | Rohm And Haas Company | Carbonaceous adsorbents from pyrolyzed polysulfonated polymers |
GB2223505B (en) * | 1988-10-06 | 1992-02-19 | Coal Ind | Briquetting process |
US5202106A (en) * | 1989-12-27 | 1993-04-13 | Solvay S.A. | Purification of hydrochloric acid with ferric chloride pretreated activated carbon |
SU1726368A1 (ru) | 1990-04-06 | 1992-04-15 | Научно-Исследовательский Институт Материаловедения | Способ очистки хлористого водорода |
JPH04156919A (ja) | 1990-10-19 | 1992-05-29 | Ebara Res Co Ltd | ハロゲン系化合物を含有する排ガスの処理方法 |
FR2672513B1 (fr) * | 1991-02-13 | 1994-03-18 | Tech Sep | Procede et module perfectionnes de filtration en milieu liquide sous flux tangentiel instationnaire. |
US5135548A (en) * | 1991-05-08 | 1992-08-04 | Air Products And Chemicals, Inc. | Oxygen selective desiccants |
US5637544A (en) * | 1991-06-06 | 1997-06-10 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Reactive membrane for filtration and purification of gases of impurities and method utilizing the same |
JPH0513695A (ja) | 1991-06-28 | 1993-01-22 | Ricoh Co Ltd | 半導体装置とその製造方法 |
FR2694001B1 (fr) * | 1992-07-23 | 1994-09-02 | Atochem Elf Sa | Procédé de synthèse d'acide chloracétique dans lequel on purifie l'acide chlorhydrique sous produit. |
US5766565A (en) * | 1993-01-21 | 1998-06-16 | Dow Corning Corporation | Purification of hydrochloric acid |
US5827492A (en) | 1993-01-28 | 1998-10-27 | E. I. Du Pont De Nemours And Company | Hydrogen chloride purification process |
US5359787A (en) * | 1993-04-16 | 1994-11-01 | Air Products And Chemicals, Inc. | High purity bulk chemical delivery system |
US5350442B1 (en) * | 1993-08-06 | 1997-01-28 | Pneumatic Products Corp | Gas handling system and adsorbent dryer regeneration apparatus |
US5447557A (en) * | 1994-03-23 | 1995-09-05 | Air Products And Chemicals, Inc. | Oxygen selective adsorbents |
US5597545A (en) | 1994-11-14 | 1997-01-28 | Alliedsignal Inc. | Recovery of HF from aqueous streams |
US5645853A (en) * | 1995-08-08 | 1997-07-08 | Enamelon Inc. | Chewing gum compositions and the use thereof for remineralization of lesions in teeth |
KR0163871B1 (ko) * | 1995-11-25 | 1998-12-01 | 김광호 | 하부에 히트 싱크가 부착된 솔더 볼 어레이 패키지 |
JPH11139805A (ja) * | 1997-07-29 | 1999-05-25 | Millipore Corp | ハロゲン化水素から水分を除去するための組成物とその方法 |
US5910292A (en) | 1997-08-19 | 1999-06-08 | Aeronex, Inc. | Method for water removal from corrosive gas streams |
US5958356A (en) * | 1997-11-05 | 1999-09-28 | Air Products And Chemicals, Inc. | Method for removal of moisture from gaseous HCl |
US6077487A (en) * | 1997-11-05 | 2000-06-20 | Millipore Corporation | Process and apparatus of removing metal carbonyls and moisture from a gas |
US6221132B1 (en) * | 1999-10-14 | 2001-04-24 | Air Products And Chemicals, Inc. | Vacuum preparation of hydrogen halide drier |
-
1998
- 1998-07-24 JP JP10209116A patent/JPH11139805A/ja active Pending
- 1998-07-25 SG SG1998002799A patent/SG75863A1/en unknown
- 1998-07-27 EP EP98114019A patent/EP0894527B1/en not_active Expired - Lifetime
- 1998-07-27 DE DE69800126T patent/DE69800126T2/de not_active Expired - Lifetime
- 1998-07-28 TW TW087112304A patent/TW418111B/zh not_active IP Right Cessation
- 1998-07-28 KR KR1019980030358A patent/KR100572936B1/ko not_active IP Right Cessation
- 1998-07-29 CN CN98103093A patent/CN1126711C/zh not_active Expired - Lifetime
-
2002
- 2002-04-24 US US10/132,038 patent/US20020117450A1/en not_active Abandoned
-
2003
- 2003-05-01 US US10/427,125 patent/US20030234222A1/en not_active Abandoned
- 2003-05-01 US US10/427,711 patent/US20040026327A1/en not_active Abandoned
- 2003-05-01 US US10/427,736 patent/US7288201B2/en not_active Expired - Fee Related
-
2006
- 2006-09-20 US US11/524,079 patent/US20070138102A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JPH11139805A (ja) | 1999-05-25 |
DE69800126T2 (de) | 2000-09-21 |
KR100572936B1 (ko) | 2006-08-31 |
CN1126711C (zh) | 2003-11-05 |
EP0894527B1 (en) | 2000-04-26 |
TW418111B (en) | 2001-01-11 |
KR19990014247A (ko) | 1999-02-25 |
US20030234222A1 (en) | 2003-12-25 |
US20040031758A1 (en) | 2004-02-19 |
CN1206690A (zh) | 1999-02-03 |
EP0894527A1 (en) | 1999-02-03 |
SG75863A1 (en) | 2000-10-24 |
US7288201B2 (en) | 2007-10-30 |
US20040026327A1 (en) | 2004-02-12 |
DE69800126D1 (de) | 2000-05-31 |
US20070138102A1 (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070138102A1 (en) | Composition for removing moisture from hydrogen halides | |
EP0283961B1 (en) | Process and composition for purifying arsine, phosphine, ammonia and inert gases to remove Lewis acid and oxidant impurities therefrom | |
US5051117A (en) | Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds | |
US6733734B2 (en) | Materials and methods for the purification of hydride gases | |
KR100828237B1 (ko) | 수소화물 가스, 불활성 가스 및 비-반응성 가스를정화하는 방법 및 물질 | |
JPH0761416B2 (ja) | ハロゲン化水素ガス中の不純物の水を除去するための方法、装置及び不純物除去剤 | |
US4925646A (en) | Process and composition for drying of gaseous hydrogen halides | |
AU2001255216A1 (en) | Methods for removal of impurity metals from gases using low metal zeolites | |
CA2322730C (en) | Vacuum preparation of hydrogen halide drier | |
EP0914863A1 (en) | Adsorbent and method for removal of moisture from gaseous hydrogen chloride | |
US20040042949A1 (en) | Method for removing aluminum from chlorosilanes | |
US4781900A (en) | Process and composition for purifying arsine, phosphine, ammonia, and inert gases to remove Lewis acid and oxidant impurities therefrom | |
US4797227A (en) | Process and composition for purifying hydrogen selenide and hydrogen telluride, to remove moisture and oxidant impurities therefrom | |
KR20060022708A (ko) | 부식성 기체 스트림의 정제 장치 및 방법 | |
EP1076633B1 (en) | Reactive matrix for removing moisture from a fluorine containing gas and process | |
US5094830A (en) | Process for removal of water and silicon mu-oxides from chlorosilanes | |
US4865822A (en) | Process for purifying hydrogen selenide and hydrogen telluride, to remove moisture and oxidant impurities therefrom | |
US5057242A (en) | Composition, process, and apparatus, for removal of water and silicon mu-oxides from chlorosilanes | |
US4976933A (en) | Hydrogen stream purification | |
JP3001627B2 (ja) | 不活性ガスを精製してそこからルイス酸および酸化剤不純物を除去するための方法、組成物および装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |