US20020048889A1 - Method of manufacturing semiconductor device with sidewall metal layers - Google Patents

Method of manufacturing semiconductor device with sidewall metal layers Download PDF

Info

Publication number
US20020048889A1
US20020048889A1 US09/901,424 US90142401A US2002048889A1 US 20020048889 A1 US20020048889 A1 US 20020048889A1 US 90142401 A US90142401 A US 90142401A US 2002048889 A1 US2002048889 A1 US 2002048889A1
Authority
US
United States
Prior art keywords
substrate
trench
metal layer
surface portion
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/901,424
Other versions
US6440822B1 (en
Inventor
Nobuyuki Hayama
Masaaki Kuzuhara
Kouji Matsunaga
Tatsuo Nakayama
Yuji Takahashi
Yasuo Ohno
Kazuaki Kunihiro
Kensuke Kasahara
Hironobu Miyamoto
Yuji Ando
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Assigned to NEC CORPORATION reassignment NEC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ANDO, YUJI, HAYAMA, NOBUYUKI, KASAHARA, KENSUKE, KUNIHIRO, KAZUAKI, KUZUHARA, MASAAKI, MATSUNAGA, KOUJI, MIYAMOTO, HIRONOBU, NAKAYAMA, TATSUO, OHNO, YASUO, TAKAHASHI, YUJI
Publication of US20020048889A1 publication Critical patent/US20020048889A1/en
Application granted granted Critical
Publication of US6440822B1 publication Critical patent/US6440822B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/568Temporary substrate used as encapsulation process aid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor

Definitions

  • the present invention relates to a method of manufacturing a semiconductor device that has side wall metal layers.
  • MMIC semiconductor devices used for mobile-communication and satellite-communication are available in the form of high-speed, high-performance small MMICs.
  • the MMIC is composed of active elements such as field effect transistors and bipolar transistors and passive elements such as capacitors and inductors.
  • active elements such as field effect transistors and bipolar transistors
  • passive elements such as capacitors and inductors.
  • radiation of heat generated from elements and connection to the ground potential are important for the high circuit performance.
  • a metal ground layer is formed on the back surface of the substrate and the elements are formed on the front surface of the substrate.
  • a surface pattern is connected to a metal ground layer by side wall metal layers provided on the side walls of a chip or via-holes formed to penetrate the substrate.
  • the metal ground layer functions as a so-called “plated heat sinks” (hereinafter, to be referred to as “PHS”) to radiate heat generated by the active elements.
  • PHS plated heat sinks
  • the via-holes and device-separating trenches can be easily formed in the MMIC using such a GaAs substrate by means of reactive ion etching using a sulfuric acid-based etchant or chlorine-based etchant.
  • GaN-based semiconductor nitride-based III-V group compound semiconductor
  • the GaN-based semiconductor are superior to the conventional GaAs-based field effect transistors in saturation electron mobility and a break-down voltage, and the GaN-based semiconductor would be effective for a high frequency field effect transistor and a high power field effect transistor.
  • Such GaN-based semiconductor is usually grown on a sapphire substrate or a SiC substrate by means of chemical vapor deposition (CVD) or molecular beam epitaxy (MBE).
  • trenches are formed by a scriber or a dicing saw in the surface of the substrate which is a chemically stable substrate such as a sapphire substrate or a SiC substrate, and the substrate is broken using the trenches, as disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 11-126923).
  • JP-A-Heisei 11-126923 Japanese Laid Open Patent Application
  • JP-A-Showa 63-276276 a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Showa 63-276276).
  • a semiconductor substrate is adhered to a support plate.
  • the semiconductor substrate has a source electrode, a drain electrode and a gate electrode through an insulating film in a front surface and an electrode layer at a back surface.
  • the insulating film in a scribe region of the semiconductor substrate is selectively removed and then the semiconductor substrate is selectively etched using the remained insulting film as a mask so that the electrode layer is exposed.
  • a metal layer is formed to connect the source electrode and the electrode layer and the semiconductor substrate is separated.
  • a microwave monolithic integrated circuit is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 3-58534).
  • JP-A-Heisei 3-58534 a plurality of microwave monolithic integrated circuits are formed on a main surface of a semi-insulative compound substrate. Via-holes are formed between the adjacent integrated circuits to penetrate the substrate. A ground conductor of the integrated circuit is led to a back surface of the substrate through the via-hole. The substrate is separated into the integrated circuits by breaking the semiconductor along the via-holes.
  • JP-A-Heisei 6-5880 a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 6-5880).
  • a high frequency, large output FET, a gate electrode ( 2 ), a source electrode ( 3 ), and a drain electrode ( 4 ) are formed on the main surface of a semi-insulative GaAs substrate ( 1 ) and covered by an insulating film ( 5 ).
  • the substrate is made thin at the back side to have the thickness of several tens of micrometers.
  • a protection film ( 14 ) is deposited on the back surface of the thinned substrate.
  • Via-holes ( 7 ) are formed using as a mask a protection film pattern ( 14 a ) which has been aligned with the source electrode.
  • the protection film pattern is removed and a metal layer ( 8 ) is formed on the entire back surface of the substrate and then a heat radiation electrode ( 9 ) is formed by a gold (Au) plating method.
  • JP-A-Heisei 6-338522 a method of manufacturing a compound semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 6-338522).
  • a plurality of circuit elements are formed on a main surface of a semi-insulative substrate.
  • the main surface of the substrate is etched so as to form grooves for separating the substrate into chips.
  • the substrate is adhered to a support plate at the side of main surface.
  • the back surface side of the substrate is grinded until the grooves are exposed.
  • a metal layer is deposited on the entire back surface of the substrate so as to allow the chips to be held.
  • the substrate is peeled from the support plate and the metal layer is cut to dice the substrate into the chips.
  • JP-A-Heisei 7-66384 a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 7-66384).
  • an active element is formed on the main surface of a semiconductor substrate.
  • a via-hole opening mask for a ground electrode of the active element and a heat radiation hole opening mask in a region directly below the active element are on the back surface of the substrate such that the via-hole opening mask is larger than the heat radiation hole opening mask in size.
  • the back surface of the substrate is etched using the via-hole opening mask and the heat radiation hole opening mask until the ground electrode of the active element is exposed. At this time, a heat radiation hole does not penetrate the substrate.
  • a metal layer is formed on the back surface of the substrate.
  • an object of the present invention is to provide means for forming side wall metal layers on a semiconductor element made from a substrate that can hardly be processed by chemical reactions, thereby to improve the characteristics of an MMIC and raise the yield thereof.
  • a method of manufacturing a semiconductor device is attained by (a) forming trench sections on a side of one of opposing surface portions of a substrate, wherein at least a part of each of the trench sections is covered by a power supply metal layer which is formed on the one surface portion of the substrate; by (b) fixing the substrate to a support such that the one surface of the substrate fits to the support; by (c) separating a chip from the substrate using the trench sections; by (d) forming a conductive film on side surface portions of the chip and the other surface portion of the chip; and by (e) separating the chip from the support.
  • the (a) forming step may include cutting the surface portion of the substrate to form the trench sections.
  • the (c) separating step may be attained by cutting the substrate from the other surface portion of the substrate to the trench section.
  • the (c) separating step may be attained by grinding the other surface portion of the substrate; and by cutting the grinded substrate from the other surface portion to the trench section.
  • the (a) forming step may be attained by cutting the one surface portion of the substrate to form first trench portions; by forming the power supply metal layer to cover the one surface portion of the substrate and a surface of each of the first trench portions; and by cutting the first trench portions to form second trench sections so that the trench sections are formed.
  • the (c) separating step may be attained by grinding the other surface portion of the substrate such that the second trench portions are exposed
  • the (a) forming step may be attained by forming a peripheral film in a peripheral portion of the chip on the one surface portion of the substrate to form the trench sections.
  • the (c) separating step may be attained by cutting the substrate from the other surface portion of the substrate to the trench sections.
  • the (c) separating step may be attained by grinding the other surface portion of the substrate; and by cutting the grinded substrate from the other surface portion of the substrate to the trench section.
  • the (a) forming step may be attained by forming a peripheral film in a peripheral portion of the chip on the one surface portion of the substrate to form first trench portions; by forming the power supply metal layer to cover the one surface portion of the substrate and a surface of each of the first trench portions; and by cutting the first trench portions to form second trench sections so that the trench sections are formed.
  • the (c) separating step may be attained by grinding the other surface portion of the substrate such that the second trench portions are exposed.
  • the (b) fixing step may further include filling a material soluble to a solvent in the trench section.
  • the (d) forming step may be attained by (f) forming the first conductive film on side surface portions of the chip and the other surface portion of the chip; and by (g) forming the second conductive film on the first conductive film.
  • the first conductive film may be formed by a sputtering method or a vapor deposition method
  • the second conductive film may be formed by a plating method.
  • FIGS. 1A to 1 F are cross-sectional views showing a method of manufacturing a semiconductor device, according to a first embodiment of the present invention
  • FIGS. 2A to 2 E are cross-sectional views showing a method of manufacturing a semiconductor device, according to a second embodiment of the present invention.
  • FIGS. 3A to 3 F are cross-sectional views showing a method of manufacturing a semiconductor device, according to a third embodiment of the present invention.
  • FIGS. 4A to 4 E are cross-sectional views for explaining a method of manufacturing a semiconductor device, according to a fourth embodiment of the present invention.
  • FIGS. 1A to 1 F are cross-sectional views showing a semiconductor device in a manufacturing according to the first embodiment of the present invention.
  • the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • a substrate 1 made of sapphire is prepared.
  • Components such as field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed on the substrate 1 .
  • Device separating trenches 2 are made in the first main surface 1 a of the substrate 1 by use of a mechanical apparatus such as a dicing saw.
  • the trenches 2 have a depth of about 20 to 150 ⁇ m and a width of about 100 to 400 ⁇ m.
  • a metal layer 3 is formed on the region including the trenches 2 by use of a known film-forming method such as sputtering or vapor deposition.
  • the metal layer 3 is made of electrically conductive metal such as Platinum (Pt) or gold (Au) and used for supplying power in a metal plating process.
  • a photoresist layer 4 soluble to organic solvents is applied to cover the metal layer 3 in the trenches 2 so that the substrate surface becomes flat.
  • the substrate 1 is bonded or fixed to a support 5 such as a quartz substrate, a sapphire substrate or an Si substrate by use of wax 6 such that the first main surface 1 a is contact the support 5 .
  • the substrate 1 is subjected to a mechanical polishing process to polish or grind the second main surface of the substrate 1 b , until the substrate becomes thin to the extent shown by the broken line in FIG. 1B, but not exposing the trenches 2 .
  • trenches 7 are cut by a dicing saw from the second main surface 1 b of the thinned substrate 1 .
  • the trenches 7 thus cut reach the trenches 2 at least.
  • the trenches 7 may be deep to reach the photoresist 4 as shown in FIG. 1C.
  • the photoresist 4 exposed in the process of forming the trenches 7 is washed away with an organic solvent. In this way, the surface 3 a of the metal layer 3 in each trench 2 is exposed.
  • a lower metal layer 8 is formed on the second main surface 1 b of the substrate 1 to cover the surfaces of the trenches 7 .
  • the lower metal layer 8 is made of an electrically conductive metal such as Platinum (Pt) or gold (Au). As a result, the metal layer 8 is formed such that the metal layer 8 extends from the second main surface 1 b of the substrate 1 to the exposed surface 3 a of the metal layer 3 .
  • the lower metal layer 8 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily reach the interior of each trench 2 formed in the first main surface 1 a of the substrate 1 . This facilitates the forming of a metal film that continuously extends from the lower metal layer 8 provided on the second main surface 1 b of the substrate 1 to the exposed surface 3 a of the metal layer 3 .
  • a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily reach the interior of each trench 2 formed in the first main surface 1 a of the substrate 1 . This facilitates the forming of a metal film that continuously extends from the lower metal layer 8 provided on the second main surface 1 b of the substrate 1 to the exposed surface 3 a of the metal layer 3 .
  • a gold film of 20 ⁇ m to 50 ⁇ m in thick is plated to reach the metal layer 3 by using the lower metal layer 8 .
  • the side wall metal layers 9 and a PHS layer or ground layer 10 are formed.
  • the trenches 2 are formed in the first main surface 1 a of the substrate 1 , and the trenches 7 in the second main surface 1 b of the substrate 101 .
  • a second trench may be formed in the substrate to extend from the trench formed in the first main surface 1 a of the substrate 1 .
  • FIGS. 2A to 2 E A method of manufacturing a semiconductor device using the alternative method of forming trenches according to the second embodiment of the invention will be described with reference to FIGS. 2A to 2 E.
  • the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • FIG. 2A to 2 E are cross-sectional views showing the semiconductor device in the manufacturing method in the second embodiment of the present invention.
  • a substrate 101 made of sapphire is prepared.
  • the components such as field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed on the first main surface 101 a of the substrate 101 .
  • First device-separating trenches 102 a are formed in the first main surface 101 a of the substrate 101 by use of a mechanical device such as a dicing saw.
  • the first trenches 102 a have a depth of about 20 to 150 ⁇ m and a width of about 100 to 400 ⁇ m.
  • a metal layer 103 is formed on at least the region including the trenches 102 a by use of a known film-forming method such as a sputtering method or a vapor deposition method.
  • the metal layer 103 is made of an electrically conductive metal such as Platinum (Pt) and gold (Au) and used to supply the power in the plating process.
  • second device-separating trenches 102 b are cut in the substrate 101 , to extend from the first trenches 102 a to the inside of the substrate 101 .
  • a photoresist layer 104 soluble to organic solvents is applied to fill the first trenches 102 a and the second trenches 102 b.
  • the substrate 101 is bonded or fixed to a support 105 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 101 a by use of wax 106 .
  • a support 105 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 101 a by use of wax 106 .
  • the substrate 101 is subjected to a mechanical polishing process to polish or grind the second main surface 101 b of the substrate 101 , until the substrate 101 becomes thin to the extent shown by the broken line FIG. 2B.
  • the second trenches 102 b are exposed.
  • the photoresist 104 exposed in the process of rendering the substrate 101 thin is washed away with an organic solvent. In this way, the surface 102 c of the metal layer 103 in each first trench 102 a and the second trench 102 b are exposed.
  • a lower metal layer 108 is formed on the second main surface 101 b of the substrate 101 to cover the second trenches 102 b and the exposed surface 102 c of the metal layer 103 .
  • the lower metal layer 108 is made of an electrically conductive metal such as Platinum (Pt) or gold (Au).
  • the lower metal layer 108 is formed such that the lower metal layer 108 extends from the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103 .
  • the lower metal layer 108 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily move into the trenches 102 a and 102 b made in the first main surface 101 a of the substrate 101 . This facilitates the forming of the lower metal layer 108 that continuously extends from the lower metal layer 108 provided on the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103 .
  • a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily move into the trenches 102 a and 102 b made in the first main surface 101 a of the substrate 101 . This facilitates the forming of the lower metal layer 108 that continuously extends from the lower metal layer 108 provided on the second main surface 101 b of the substrate 101 to the exposed surface
  • a gold film of 20 ⁇ m to 50 ⁇ m in thick is plated to reach the metal layer 103 , by using the lower metal layer 108 .
  • the side wall metal layers 109 and a PHS layer or ground layer 110 as the upper metal layer are formed.
  • the metal layer 103 is formed after the first device-separating trenches 102 a have been made.
  • the metal film 103 may be formed after the second device-separating trenches 102 b have been made.
  • the metal layer 103 is already formed on the side walls of each trench 102 b when the lower metal layer 108 is formed. Therefore, it is possible to form a metal film that continuously extends from the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103 .
  • the side wall metal layers 109 and the PHS layer 110 can be later formed in higher uniformity than otherwise.
  • the substrate 1 or 101 is processed and the device-separating trenches 2 or 102 are formed:
  • projections may be formed on the first main surface of the substrate and the spaces between the projections may be used as device-separating trenches.
  • FIGS. 3A to 3 F are cross-sectional views showing a semiconductor device in the manufacturing method employing this alternative method of making trenches in the third embodiment of the present invention.
  • the third embodiment will be described with reference FIGS. 3A to 3 F.
  • the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • a substrate 201 made of sapphire is prepared.
  • Field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed in the substrate 1 .
  • a thick gold layer is plated on a peripheral region surrounding the chip region (not shown) that is provided in the first main surface 201 a of the substrate 201 .
  • the gold layer is processed to form a plurality of projections 211 .
  • the space between any two adjacent projections 211 is used as a first device-separating trench 212 .
  • the projections 211 are about 20 ⁇ m to 50 ⁇ m in tall.
  • the gap between any two adjacent projections 211 i.e., the width of the trench 212 ) is about 100 ⁇ m to 400 ⁇ m.
  • a metal layer 203 is formed on the region including the first device-separating trenches 212 by use of a known method such as a sputtering method or a vapor deposition method.
  • the metal layer 203 is made of an electrically conductive metal such as platinum or gold and is used to supply the power in the metal plating process.
  • a photoresist layer 204 soluble to organic solvents is applied to fill the first device-separating trenches 212 .
  • the substrate 201 is bonded or fixed to a support 205 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 201 a by use of wax 206 . Subsequently, the substrate 201 is subjected to a mechanical polishing process to polish or grind the back surface or second main surface 201 b of the substrate, until the substrate 201 becomes thin to the extent shown by the broken line in FIG. 3B.
  • a support 205 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 201 a by use of wax 206 .
  • the substrate 201 is subjected to a mechanical polishing process to polish or grind the back surface or second main surface 201 b of the substrate, until the substrate 201 becomes thin to the extent shown by the broken line in FIG. 3B.
  • second device-separating trenches 207 are formed in the second main surface 201 b of the substrate 201 by use of a mechanical device such as a dicing saw.
  • the second trenches 207 are at least so deep as to reach the first device-separating trenches 212 .
  • the second trenches 207 are just as deep, reaching the photoresist 204 , as is shown in FIG. 3C.
  • a lower metal layer 208 is formed on the entire second main surface 201 b including the second trenches 207 of the substrate 201 by a film-forming method.
  • the lower metal layer 208 is made of an electrically conductive metal such as platinum or gold.
  • the lower metal layer 208 covers the surfaces 212 a of the first device-separating trenches 212 of the metal layer 203 .
  • the lower metal layer 208 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily move into the second trenches 207 and to the exposed surface 212 a of the metal layer 203 . This facilitates the forming of a metal film that continuously extends from the second main surface 201 b of the substrate 201 to the metal layer 203 .
  • a gold layer having the thickness of 20 ⁇ m to 50 ⁇ m is plated as an upper metal layer to reach the metal layer 203 , thereby forming side wall metal layers 209 and a PHS layer or ground layer 210
  • the metal layer 203 is formed after the projections 211 have been formed.
  • the metal layer used to supply power in the plating process for forming the projections 211 can be used as the metal layer 203 .
  • the process of forming the metal layer 203 can be omitted to simplify the method of manufacturing a semiconductor device.
  • the projections 211 are provided on the first main surface 201 a of the substrate 201 , and the gap between any two adjacent projections 211 is used as a first device-separating trench 212 .
  • the second device-separating trenches 207 are formed in the second main surface 201 b of the substrate 201 .
  • the second device-separating trenches may be formed in the bottom of one first device-separating trench 212 , i.e., a gap between two projections 211 .
  • FIGS. 4A to 4 E A method of manufacturing a semiconductor device, using this alternative method of making trenches according to the fourth embodiment of the present invention will be described with reference to FIGS. 4A to 4 E.
  • FIGS. 4A to 4 E the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • a substrate 301 made of sapphire is prepared. Components such as field effect transistors (not shown), transmission lines (not shown), capacitors (not shown) and specific patterns are formed in the substrate 1 .
  • a thick gold layer is plated on a peripheral region surrounding the chip region (not shown) that is provided in the first main surface 301 a of the substrate 301 .
  • the gold layer is processed to form a plurality of projections 311 .
  • the space between any two adjacent projections 311 is used as a first device-separating trench 312 .
  • the projections 311 are about 20 ⁇ m to 50 ⁇ m in tall.
  • the gap between any two adjacent projections 311 i.e., the width of the trench 312 ) is about 100 ⁇ m to 400 ⁇ m.
  • a metal layer 303 is formed on the region including the first device-separating trenches 312 by use of a known method such as a sputtering method or a vapor deposition method.
  • the metal layer 303 is made of an electrically conductive metal such as platinum or gold, and used to supply the power in the metal plating process.
  • second device-separating trenches 302 are made in the bottoms of first device-separating trenches 312 .
  • a photoresist layer 304 soluble to organic solvents is applied to fill the first device-separating trenches 312 and the second device-separating trenches 302 .
  • the substrate 301 is bonded or fixed to a support 305 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 301 a by use of wax 306 .
  • the substrate 301 is subjected to a mechanical polishing process to polish or grind the back surface or second main surface of the substrate 301 , until the substrate 301 becomes thin to the extent shown by the broken line in FIG. 4B.
  • a lower metal layer 308 is formed on the entire second main surface 301 b of the substrate 301 by a film-forming method.
  • the lower metal layer 308 is formed of an electrically conductive metal such as platinum or gold.
  • the lower metal layer 308 is continuous to extend from the second main surface 301 b of the substrate 301 to the metal layer 303 .
  • the lower metal layer 308 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering operation is employed, the sputtered particles will easily move into the second trenches 302 and to the exposed surface 312 a of the metal layer 303 . This facilitates the forming of a metal film that continuously extends from the lower metal layer 308 on the second main surface 301 b of the substrate 301 to the metal layer 303 .
  • a gold layer having the thickness of 20 ⁇ m to 50 ⁇ m as an upper metal layer is plated on the second main surface 301 b and side walls of the substrate 301 to reach the metal layer 303 .
  • side wall metal layers 309 and a PHS layer or ground layers 310 are formed.
  • the metal layer used to supply power in the plating process for forming the projections 311 can be used as the metal layer 303 in the same way as in the third embodiment.
  • the process of forming the metal layer 303 can be omitted to simplify the method of manufacturing a semiconductor device.
  • the metal layer 303 is formed after the projections 311 have been formed.
  • the metal layer 303 may be formed after the second trenches 302 have been made in the first trenches 312 . If this is the case, the metal layer 303 is already provided on the surfaces of the second trenches 302 before the lower metal layer 308 is formed.
  • a metal layer extending from the second main surface 301 b of the substrate 301 to the exposed surface 312 a of the metal layer 303 can thus be formed on the second main surface 301 b of the substrate 301 . This enhances the uniformity of the plating that will be performed later.
  • the gaps between the projections 211 or 311 are used as the first device-separating trenches 212 or 312 .
  • the metal layer 203 or 303 which is provided in the first device-separating trenches 212 or 312 , contacts the surface of the substrate 201 or 301 . Therefore, the metal layer 203 or 303 has a better surface condition than in the first and second embodiments in which the device-separating trenches 2 or 102 are made by a mechanical process. It follows that the layer formed by a plating process on the metal layer 203 or 303 has higher uniformity than in the first and second embodiments.
  • trenches are made in, or projections are provided on, the first main surface of a substrate having a semiconductor layer, in the method of manufacturing a semiconductor device according to the present invention.
  • the substrate is bonded to the support at the first main surface, and a gap is provided between the support and the metal layer formed in each trench.
  • the lower metal layer is deposited on the side walls and exposed surface of the metal layer.
  • a uniform layer can therefore be plated and can serve as side walls and a PHS layer or ground layer.
  • a metal layer can be formed directly on that surface of the substrate which is not mechanically processed, particularly in the method in which projections are formed on the main surface of the substrate and a gap between any two adjacent projections is used as a device-separating trench.
  • the metal layer therefore has a good surface condition.
  • the layer plated on the metal layer has higher uniformity than in the case where the metal layer has not good surface condition.
  • the metal layer used for supplying power to form the projections by plating can be used.
  • the process of forming the metal layer can be omitted. This simplifies the method of manufacturing a semiconductor device.

Abstract

In a method of manufacturing a semiconductor device, trench sections are formed on a side of one of opposing surface portions of a substrate. At least a part of each of the trench sections is covered by a power supply metal layer which is formed on the one surface portion of the substrate. The substrate is fixed to a support such that the one surface of the substrate fits to the support. A chip is separated from the substrate using the trench sections. A conductive film is formed on side surface portions of the chip and the other surface portion of the chip. Then, the chip is separated from the support.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a method of manufacturing a semiconductor device that has side wall metal layers. [0002]
  • 2. Description of the Related Art [0003]
  • Most semiconductor devices used for mobile-communication and satellite-communication are available in the form of high-speed, high-performance small MMICs. The MMIC is composed of active elements such as field effect transistors and bipolar transistors and passive elements such as capacitors and inductors. In such an MMIC, radiation of heat generated from elements and connection to the ground potential are important for the high circuit performance. In the MMIC using a GaAs semiconductor substrate, a metal ground layer is formed on the back surface of the substrate and the elements are formed on the front surface of the substrate. [0004]
  • As disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 7-5832), a surface pattern is connected to a metal ground layer by side wall metal layers provided on the side walls of a chip or via-holes formed to penetrate the substrate. The metal ground layer functions as a so-called “plated heat sinks” (hereinafter, to be referred to as “PHS”) to radiate heat generated by the active elements. The via-holes and device-separating trenches can be easily formed in the MMIC using such a GaAs substrate by means of reactive ion etching using a sulfuric acid-based etchant or chlorine-based etchant. [0005]
  • In recent years, researches and development have been conducted to provide electronic devices or light-emitting devices that use nitride-based III-V group compound semiconductor (GaN-based semiconductor) composed mainly of GaN. The GaN-based semiconductor are superior to the conventional GaAs-based field effect transistors in saturation electron mobility and a break-down voltage, and the GaN-based semiconductor would be effective for a high frequency field effect transistor and a high power field effect transistor. Such GaN-based semiconductor is usually grown on a sapphire substrate or a SiC substrate by means of chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). [0006]
  • Conventionally, trenches are formed by a scriber or a dicing saw in the surface of the substrate which is a chemically stable substrate such as a sapphire substrate or a SiC substrate, and the substrate is broken using the trenches, as disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 11-126923). By this method, the sapphire substrate can be separated into chips, but it is difficult to form metal layers on side walls of the chip. [0007]
  • It may be possible to form a metal ground layer on the surface of the substrate and to carry out mechanical dicing from the back of the substrate such that the metal ground layer is exposed. In this case, however, side walls of the metal ground layer are exposed only. For this reason, there would be a case that the power cannot be stably supplied from the metal ground layer due to dirt or scars in a metal plating process. In such a case, side wall metal layers would fail to have a uniform thickness or a desired shape. As a result, the MMIC cannot provide desired characteristics, and the product yield of the MMIC would be inevitably low. [0008]
  • In conjunction with the above description, a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Showa 63-276276). In this reference, a semiconductor substrate is adhered to a support plate. The semiconductor substrate has a source electrode, a drain electrode and a gate electrode through an insulating film in a front surface and an electrode layer at a back surface. The insulating film in a scribe region of the semiconductor substrate is selectively removed and then the semiconductor substrate is selectively etched using the remained insulting film as a mask so that the electrode layer is exposed. A metal layer is formed to connect the source electrode and the electrode layer and the semiconductor substrate is separated. [0009]
  • Also, a microwave monolithic integrated circuit is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 3-58534). In this reference, a plurality of microwave monolithic integrated circuits are formed on a main surface of a semi-insulative compound substrate. Via-holes are formed between the adjacent integrated circuits to penetrate the substrate. A ground conductor of the integrated circuit is led to a back surface of the substrate through the via-hole. The substrate is separated into the integrated circuits by breaking the semiconductor along the via-holes. [0010]
  • Also, a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 6-5880). In this reference, a high frequency, large output FET, a gate electrode ([0011] 2), a source electrode (3), and a drain electrode (4) are formed on the main surface of a semi-insulative GaAs substrate (1) and covered by an insulating film (5). After the main surface of the semi-insulative GaAs substrate (1) is fixed to a support plate 12 by using wax (13), the substrate is made thin at the back side to have the thickness of several tens of micrometers. Next, a protection film (14) is deposited on the back surface of the thinned substrate. Via-holes (7) are formed using as a mask a protection film pattern (14 a) which has been aligned with the source electrode. The protection film pattern is removed and a metal layer (8) is formed on the entire back surface of the substrate and then a heat radiation electrode (9) is formed by a gold (Au) plating method.
  • Also, a method of manufacturing a compound semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 6-338522). In this reference, a plurality of circuit elements are formed on a main surface of a semi-insulative substrate. The main surface of the substrate is etched so as to form grooves for separating the substrate into chips. The substrate is adhered to a support plate at the side of main surface. The back surface side of the substrate is grinded until the grooves are exposed. A metal layer is deposited on the entire back surface of the substrate so as to allow the chips to be held. The substrate is peeled from the support plate and the metal layer is cut to dice the substrate into the chips. [0012]
  • Also, a method of manufacturing a semiconductor device is disclosed in Japanese Laid Open Patent Application (JP-A-Heisei 7-66384). In this reference, an active element is formed on the main surface of a semiconductor substrate. A via-hole opening mask for a ground electrode of the active element and a heat radiation hole opening mask in a region directly below the active element are on the back surface of the substrate such that the via-hole opening mask is larger than the heat radiation hole opening mask in size. The back surface of the substrate is etched using the via-hole opening mask and the heat radiation hole opening mask until the ground electrode of the active element is exposed. At this time, a heat radiation hole does not penetrate the substrate. A metal layer is formed on the back surface of the substrate. [0013]
  • SUMMARY OF THE INVENTION
  • Therefore, an object of the present invention is to provide means for forming side wall metal layers on a semiconductor element made from a substrate that can hardly be processed by chemical reactions, thereby to improve the characteristics of an MMIC and raise the yield thereof. [0014]
  • In an aspect of the present invention, a method of manufacturing a semiconductor device is attained by (a) forming trench sections on a side of one of opposing surface portions of a substrate, wherein at least a part of each of the trench sections is covered by a power supply metal layer which is formed on the one surface portion of the substrate; by (b) fixing the substrate to a support such that the one surface of the substrate fits to the support; by (c) separating a chip from the substrate using the trench sections; by (d) forming a conductive film on side surface portions of the chip and the other surface portion of the chip; and by (e) separating the chip from the support. [0015]
  • Here, the (a) forming step may include cutting the surface portion of the substrate to form the trench sections. In this case, the (c) separating step may be attained by cutting the substrate from the other surface portion of the substrate to the trench section. Alternatively, the (c) separating step may be attained by grinding the other surface portion of the substrate; and by cutting the grinded substrate from the other surface portion to the trench section. [0016]
  • Also, the (a) forming step may be attained by cutting the one surface portion of the substrate to form first trench portions; by forming the power supply metal layer to cover the one surface portion of the substrate and a surface of each of the first trench portions; and by cutting the first trench portions to form second trench sections so that the trench sections are formed. In this case, the (c) separating step may be attained by grinding the other surface portion of the substrate such that the second trench portions are exposed [0017]
  • Also, the (a) forming step may be attained by forming a peripheral film in a peripheral portion of the chip on the one surface portion of the substrate to form the trench sections. In this case, the (c) separating step may be attained by cutting the substrate from the other surface portion of the substrate to the trench sections. Alternatively, the (c) separating step may be attained by grinding the other surface portion of the substrate; and by cutting the grinded substrate from the other surface portion of the substrate to the trench section. [0018]
  • Also, the (a) forming step may be attained by forming a peripheral film in a peripheral portion of the chip on the one surface portion of the substrate to form first trench portions; by forming the power supply metal layer to cover the one surface portion of the substrate and a surface of each of the first trench portions; and by cutting the first trench portions to form second trench sections so that the trench sections are formed. In this case, the (c) separating step may be attained by grinding the other surface portion of the substrate such that the second trench portions are exposed. [0019]
  • Also, the (b) fixing step may further include filling a material soluble to a solvent in the trench section. [0020]
  • Also, when the conductive film includes a first conductive film and a second conductive film, the (d) forming step may be attained by (f) forming the first conductive film on side surface portions of the chip and the other surface portion of the chip; and by (g) forming the second conductive film on the first conductive film. In this case, the first conductive film may be formed by a sputtering method or a vapor deposition method, and the second conductive film may be formed by a plating method.[0021]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A to [0022] 1F are cross-sectional views showing a method of manufacturing a semiconductor device, according to a first embodiment of the present invention;
  • FIGS. 2A to [0023] 2E are cross-sectional views showing a method of manufacturing a semiconductor device, according to a second embodiment of the present invention;
  • FIGS. 3A to [0024] 3F are cross-sectional views showing a method of manufacturing a semiconductor device, according to a third embodiment of the present invention; and
  • FIGS. 4A to [0025] 4E are cross-sectional views for explaining a method of manufacturing a semiconductor device, according to a fourth embodiment of the present invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Hereinafter, a method of manufacturing a semiconductor device of the present invention will be described with reference to the attached drawings. Nonetheless, the present invention is not limited to the embodiments described below. [0026]
  • FIGS. 1A to [0027] 1F are cross-sectional views showing a semiconductor device in a manufacturing according to the first embodiment of the present invention. Referring to FIGS. 1A to 1F, the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • As shown in FIG. 1A, a [0028] substrate 1 made of sapphire is prepared. Components such as field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed on the substrate 1. Device separating trenches 2 are made in the first main surface 1 a of the substrate 1 by use of a mechanical apparatus such as a dicing saw. The trenches 2 have a depth of about 20 to 150 μm and a width of about 100 to 400 μm.
  • Next, a [0029] metal layer 3 is formed on the region including the trenches 2 by use of a known film-forming method such as sputtering or vapor deposition. The metal layer 3 is made of electrically conductive metal such as Platinum (Pt) or gold (Au) and used for supplying power in a metal plating process. Then, a photoresist layer 4 soluble to organic solvents is applied to cover the metal layer 3 in the trenches 2 so that the substrate surface becomes flat.
  • Next, as shown in FIG. 1B, the [0030] substrate 1 is bonded or fixed to a support 5 such as a quartz substrate, a sapphire substrate or an Si substrate by use of wax 6 such that the first main surface 1 a is contact the support 5. Subsequently, the substrate 1 is subjected to a mechanical polishing process to polish or grind the second main surface of the substrate 1 b, until the substrate becomes thin to the extent shown by the broken line in FIG. 1B, but not exposing the trenches 2.
  • Next, as shown in FIG. 1C, [0031] trenches 7 are cut by a dicing saw from the second main surface 1 b of the thinned substrate 1. The trenches 7 thus cut reach the trenches 2 at least. The trenches 7 may be deep to reach the photoresist 4 as shown in FIG. 1C.
  • Thereafter, as shown in FIG. 1D, the [0032] photoresist 4 exposed in the process of forming the trenches 7 is washed away with an organic solvent. In this way, the surface 3 a of the metal layer 3 in each trench 2 is exposed.
  • Next, as shown in FIG. 1E, a lower metal layer [0033] 8 is formed on the second main surface 1 b of the substrate 1 to cover the surfaces of the trenches 7. The lower metal layer 8 is made of an electrically conductive metal such as Platinum (Pt) or gold (Au). As a result, the metal layer 8 is formed such that the metal layer 8 extends from the second main surface 1 b of the substrate 1 to the exposed surface 3 a of the metal layer 3.
  • The lower metal layer [0034] 8 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily reach the interior of each trench 2 formed in the first main surface 1 a of the substrate 1. This facilitates the forming of a metal film that continuously extends from the lower metal layer 8 provided on the second main surface 1 b of the substrate 1 to the exposed surface 3 a of the metal layer 3.
  • Then, a gold film of 20 μm to 50 μm in thick is plated to reach the [0035] metal layer 3 by using the lower metal layer 8. Thus, the side wall metal layers 9 and a PHS layer or ground layer 10 are formed.
  • Finally, as shown in FIG. 1F, the [0036] wax 6 is solved, and the support 5 is removed. Thus, a chip, i.e., a semiconductor device having side wall metal layers and the PHS layer is manufactured.
  • It should be noted that the grinding process is carried out but it is not always necessary. [0037]
  • In the first embodiment described above, the [0038] trenches 2 are formed in the first main surface 1 a of the substrate 1, and the trenches 7 in the second main surface 1 b of the substrate 101. Alternatively, a second trench may be formed in the substrate to extend from the trench formed in the first main surface 1 a of the substrate 1.
  • A method of manufacturing a semiconductor device using the alternative method of forming trenches according to the second embodiment of the invention will be described with reference to FIGS. 2A to [0039] 2E. In FIGS. 2A to 2E, the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • FIG. 2A to [0040] 2E are cross-sectional views showing the semiconductor device in the manufacturing method in the second embodiment of the present invention.
  • As shown in FIG. 2A, a [0041] substrate 101 made of sapphire is prepared. The components such as field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed on the first main surface 101 a of the substrate 101. First device-separating trenches 102 a are formed in the first main surface 101 a of the substrate 101 by use of a mechanical device such as a dicing saw. The first trenches 102 a have a depth of about 20 to 150 μm and a width of about 100 to 400 μm.
  • Subsequently, a [0042] metal layer 103 is formed on at least the region including the trenches 102 a by use of a known film-forming method such as a sputtering method or a vapor deposition method. The metal layer 103 is made of an electrically conductive metal such as Platinum (Pt) and gold (Au) and used to supply the power in the plating process. Subsequently, second device-separating trenches 102 b are cut in the substrate 101, to extend from the first trenches 102 a to the inside of the substrate 101. Then, a photoresist layer 104 soluble to organic solvents is applied to fill the first trenches 102 a and the second trenches 102 b.
  • Next, as shown in FIG. 2B, the [0043] substrate 101 is bonded or fixed to a support 105 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 101 a by use of wax 106. Subsequently, the substrate 101 is subjected to a mechanical polishing process to polish or grind the second main surface 101 b of the substrate 101, until the substrate 101 becomes thin to the extent shown by the broken line FIG. 2B. Thus, the second trenches 102 b are exposed.
  • Next, as shown in FIG. 2C, the [0044] photoresist 104 exposed in the process of rendering the substrate 101 thin is washed away with an organic solvent. In this way, the surface 102 c of the metal layer 103 in each first trench 102 a and the second trench 102 b are exposed.
  • Next, as shown in FIG. 2D, a [0045] lower metal layer 108 is formed on the second main surface 101 b of the substrate 101 to cover the second trenches 102 b and the exposed surface 102 c of the metal layer 103. The lower metal layer 108 is made of an electrically conductive metal such as Platinum (Pt) or gold (Au). The lower metal layer 108 is formed such that the lower metal layer 108 extends from the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103.
  • The [0046] lower metal layer 108 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily move into the trenches 102 a and 102 b made in the first main surface 101 a of the substrate 101. This facilitates the forming of the lower metal layer 108 that continuously extends from the lower metal layer 108 provided on the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103.
  • Then, a gold film of 20 μm to 50 μm in thick is plated to reach the [0047] metal layer 103, by using the lower metal layer 108. The side wall metal layers 109 and a PHS layer or ground layer 110 as the upper metal layer are formed.
  • Finally, as shown in FIG. 2E, the [0048] wax 106 is solved, and the support 105 is removed. Thus, a chip, i.e., a semiconductor device is manufactured.
  • In the second embodiment, the [0049] metal layer 103 is formed after the first device-separating trenches 102 a have been made. Alternatively, the metal film 103 may be formed after the second device-separating trenches 102 b have been made.
  • If this alternative process is employed, the [0050] metal layer 103 is already formed on the side walls of each trench 102 b when the lower metal layer 108 is formed. Therefore, it is possible to form a metal film that continuously extends from the second main surface 101 b of the substrate 101 to the exposed surface 102 c of the metal layer 103. Thus, the side wall metal layers 109 and the PHS layer 110 can be later formed in higher uniformity than otherwise.
  • In the first and second embodiments, the [0051] substrate 1 or 101 is processed and the device-separating trenches 2 or 102 are formed: Alternatively, projections may be formed on the first main surface of the substrate and the spaces between the projections may be used as device-separating trenches.
  • FIGS. 3A to [0052] 3F are cross-sectional views showing a semiconductor device in the manufacturing method employing this alternative method of making trenches in the third embodiment of the present invention. The third embodiment will be described with reference FIGS. 3A to 3F. In FIGS. 3A to 3F, the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • As shown in FIG. 3A, a [0053] substrate 201 made of sapphire is prepared. Field effect transistors (not shown), transmission lines (not shown) and capacitors (not shown) are formed in the substrate 1. A thick gold layer is plated on a peripheral region surrounding the chip region (not shown) that is provided in the first main surface 201 a of the substrate 201. The gold layer is processed to form a plurality of projections 211. The space between any two adjacent projections 211 is used as a first device-separating trench 212. The projections 211 are about 20 μm to 50 μm in tall. The gap between any two adjacent projections 211 (i.e., the width of the trench 212) is about 100 μm to 400 μm. A metal layer 203 is formed on the region including the first device-separating trenches 212 by use of a known method such as a sputtering method or a vapor deposition method. The metal layer 203 is made of an electrically conductive metal such as platinum or gold and is used to supply the power in the metal plating process. Then, a photoresist layer 204 soluble to organic solvents is applied to fill the first device-separating trenches 212.
  • Next, as shown in FIG. 3B, the [0054] substrate 201 is bonded or fixed to a support 205 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 201 a by use of wax 206. Subsequently, the substrate 201 is subjected to a mechanical polishing process to polish or grind the back surface or second main surface 201 b of the substrate, until the substrate 201 becomes thin to the extent shown by the broken line in FIG. 3B.
  • Next, as shown in FIG. 3C, second device-separating [0055] trenches 207 are formed in the second main surface 201 b of the substrate 201 by use of a mechanical device such as a dicing saw. The second trenches 207 are at least so deep as to reach the first device-separating trenches 212. In the third embodiment, the second trenches 207 are just as deep, reaching the photoresist 204, as is shown in FIG. 3C.
  • Next, as shown in FIG. 3D, those parts of the [0056] photoresist layer 204 exposed when the second trenches 207 are formed, are solved with an organic solvent and removed. The surfaces 212 a of the first trenches 212 made of the metal layer 203 are exposed.
  • Next, as shown in FIG. 3E, a [0057] lower metal layer 208 is formed on the entire second main surface 201 b including the second trenches 207 of the substrate 201 by a film-forming method. The lower metal layer 208 is made of an electrically conductive metal such as platinum or gold. The lower metal layer 208 covers the surfaces 212 a of the first device-separating trenches 212 of the metal layer 203.
  • The [0058] lower metal layer 208 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering method is employed, the sputtered particles will easily move into the second trenches 207 and to the exposed surface 212 a of the metal layer 203. This facilitates the forming of a metal film that continuously extends from the second main surface 201 b of the substrate 201 to the metal layer 203.
  • Subsequently, a gold layer having the thickness of 20 μm to 50 μm is plated as an upper metal layer to reach the [0059] metal layer 203, thereby forming side wall metal layers 209 and a PHS layer or ground layer 210
  • Finally, as shown in FIG. 3F, the [0060] wax 206 is solved, and the support 205 is removed. Thus, a chip, i.e., a semiconductor device is manufactured.
  • In the third embodiment, the [0061] metal layer 203 is formed after the projections 211 have been formed. Alternatively, the metal layer used to supply power in the plating process for forming the projections 211 can be used as the metal layer 203. The process of forming the metal layer 203 can be omitted to simplify the method of manufacturing a semiconductor device.
  • In the third embodiment, the [0062] projections 211 are provided on the first main surface 201 a of the substrate 201, and the gap between any two adjacent projections 211 is used as a first device-separating trench 212. Further, the second device-separating trenches 207 are formed in the second main surface 201 b of the substrate 201. Alternatively, the second device-separating trenches may be formed in the bottom of one first device-separating trench 212, i.e., a gap between two projections 211.
  • A method of manufacturing a semiconductor device, using this alternative method of making trenches according to the fourth embodiment of the present invention will be described with reference to FIGS. 4A to [0063] 4E. In FIGS. 4A to 4E, the components identical or similar are designated at the same reference numerals. Once described in detail, each component will not be described again or will be described briefly.
  • As shown in FIG. 4A, a [0064] substrate 301 made of sapphire is prepared. Components such as field effect transistors (not shown), transmission lines (not shown), capacitors (not shown) and specific patterns are formed in the substrate 1. A thick gold layer is plated on a peripheral region surrounding the chip region (not shown) that is provided in the first main surface 301 a of the substrate 301. The gold layer is processed to form a plurality of projections 311. The space between any two adjacent projections 311 is used as a first device-separating trench 312. The projections 311 are about 20 μm to 50 μm in tall. The gap between any two adjacent projections 311 (i.e., the width of the trench 312) is about 100 μm to 400 μm.
  • A [0065] metal layer 303 is formed on the region including the first device-separating trenches 312 by use of a known method such as a sputtering method or a vapor deposition method. The metal layer 303 is made of an electrically conductive metal such as platinum or gold, and used to supply the power in the metal plating process.
  • Then, second device-separating [0066] trenches 302 are made in the bottoms of first device-separating trenches 312. Thereafter, a photoresist layer 304 soluble to organic solvents is applied to fill the first device-separating trenches 312 and the second device-separating trenches 302.
  • Next, as shown in FIG. 4B, the [0067] substrate 301 is bonded or fixed to a support 305 such as a quartz substrate, a sapphire substrate or an Si substrate at the first main surface 301 a by use of wax 306. Subsequently, the substrate 301 is subjected to a mechanical polishing process to polish or grind the back surface or second main surface of the substrate 301, until the substrate 301 becomes thin to the extent shown by the broken line in FIG. 4B.
  • Next, as shown in FIG. 4C, those parts of the [0068] photoresist 304 exposed when the substrate 301 is made thinner is solved with an organic solvent and removed. The surfaces 312 a of the first trenches 312 formed of the metal layer 303 are exposed.
  • Next, as shown in FIG. 4D, a [0069] lower metal layer 308 is formed on the entire second main surface 301 b of the substrate 301 by a film-forming method. The lower metal layer 308 is formed of an electrically conductive metal such as platinum or gold. The lower metal layer 308 is continuous to extend from the second main surface 301 b of the substrate 301 to the metal layer 303. The lower metal layer 308 can be formed by a film-forming method such as a sputtering method or a vapor deposition method. If the sputtering operation is employed, the sputtered particles will easily move into the second trenches 302 and to the exposed surface 312 a of the metal layer 303. This facilitates the forming of a metal film that continuously extends from the lower metal layer 308 on the second main surface 301 b of the substrate 301 to the metal layer 303.
  • Next, as shown in FIG. 4D, a gold layer having the thickness of 20 μm to 50 μm as an upper metal layer is plated on the second [0070] main surface 301 b and side walls of the substrate 301 to reach the metal layer 303. Thus, side wall metal layers 309 and a PHS layer or ground layers 310 are formed.
  • Finally, as shown in FIG. 4E, the [0071] wax 306 is solved, and the support 305 is removed. Thus, a chip, i.e., a semiconductor device is manufactured.
  • In the fourth embodiment, the metal layer used to supply power in the plating process for forming the [0072] projections 311 can be used as the metal layer 303 in the same way as in the third embodiment. The process of forming the metal layer 303 can be omitted to simplify the method of manufacturing a semiconductor device.
  • In this embodiment, the [0073] metal layer 303 is formed after the projections 311 have been formed. Alternatively, the metal layer 303 may be formed after the second trenches 302 have been made in the first trenches 312. If this is the case, the metal layer 303 is already provided on the surfaces of the second trenches 302 before the lower metal layer 308 is formed. A metal layer extending from the second main surface 301 b of the substrate 301 to the exposed surface 312 a of the metal layer 303 can thus be formed on the second main surface 301 b of the substrate 301. This enhances the uniformity of the plating that will be performed later.
  • In the third and fourth embodiments, the gaps between the [0074] projections 211 or 311 are used as the first device-separating trenches 212 or 312. Hence, the metal layer 203 or 303, which is provided in the first device-separating trenches 212 or 312, contacts the surface of the substrate 201 or 301. Therefore, the metal layer 203 or 303 has a better surface condition than in the first and second embodiments in which the device-separating trenches 2 or 102 are made by a mechanical process. It follows that the layer formed by a plating process on the metal layer 203 or 303 has higher uniformity than in the first and second embodiments.
  • As has been described in detail, trenches are made in, or projections are provided on, the first main surface of a substrate having a semiconductor layer, in the method of manufacturing a semiconductor device according to the present invention. Thus, when the substrate is bonded to the support at the first main surface, and a gap is provided between the support and the metal layer formed in each trench. [0075]
  • When the second trenches are made in the second main surface of the substrate and the lower metal layer is formed on the second main surface by a film-forming method such as sputtering, the lower metal layer is deposited on the side walls and exposed surface of the metal layer. A uniform layer can therefore be plated and can serve as side walls and a PHS layer or ground layer. [0076]
  • A metal layer can be formed directly on that surface of the substrate which is not mechanically processed, particularly in the method in which projections are formed on the main surface of the substrate and a gap between any two adjacent projections is used as a device-separating trench. The metal layer therefore has a good surface condition. The layer plated on the metal layer has higher uniformity than in the case where the metal layer has not good surface condition. [0077]
  • In the method in which projections are formed on the main surface of the substrate, the metal layer used for supplying power to form the projections by plating can be used. The process of forming the metal layer can be omitted. This simplifies the method of manufacturing a semiconductor device. [0078]

Claims (15)

What is claimed is:
1. A method of manufacturing a semiconductor device comprising the steps of:
(a) forming trench sections on a side of one of opposing surface portions of a substrate, wherein at least a part of each of said trench sections is covered by a power supply metal layer which is formed on said one surface portion of said substrate;
(b) fixing said substrate to a support such that said one surface of said substrate fits to said support;
(c) separating a chip from said substrate using said trench sections;
(d) forming a conductive film on side surface portions of said chip and the other surface portion of said chip; and
(e) separating said chip from said support.
2. The method according to claim 1, wherein said (a) forming step comprises the step of:
cutting said surface portion of said substrate to form said trench sections.
3. The method according to claim 2, wherein said (c) separating step comprises the step of:
cutting said substrate from the other surface portion of said substrate to said trench section.
4. The method according to claim 2, wherein said (c) separating step comprises the steps of:
grinding the other surface portion of said substrate; and
cutting said grinded substrate from the other surface portion to said trench section.
5. The method according to claim 1, wherein said (a) forming step comprises the step of:
cutting said one surface portion of said substrate to form first trench portions;
forming said power supply metal layer to cover said one surface portion of said substrate and a surface of each of said first trench portions; and
cutting said first trench portions to form second trench sections so that said trench sections are formed.
6. The method according to claim 5, wherein said (c) separating step comprises the step of:
grinding the other surface portion of said substrate such that said second trench portions are exposed.
7. The method according to claim 1, wherein said (a) forming step comprises the step of:
forming a peripheral film in a peripheral portion of said chip on said one surface portion of said substrate to form said trench sections.
8. The method according to claim 7, wherein said (c) separating step comprises the step of:
cutting said substrate from the other surface portion of said substrate to said trench sections.
9. The method according to claim 7, wherein said (c) separating step comprises the steps of:
grinding the other surface portion of said substrate; and
cutting said grinded substrate from the other surface portion of said substrate to said trench section.
10. The method according to claim 1, wherein said (a) forming step comprises the step of:
forming a peripheral film in a peripheral portion of said chip on said one surface portion of said substrate to form first trench portions;
forming said power supply metal layer to cover said one surface portion of said substrate and a surface of each of said first trench portions; and
cutting said first trench portions to form second trench sections so that said trench sections are formed.
11. The method according to claim 10, wherein said (c) separating step comprises the step of:
grinding the other surface portion of said substrate such that said second trench portions are exposed.
12. The method according to claim 1, wherein said (b) fixing step further comprises the step of:
filling a material soluble to a solvent in said trench section.
13. The method according to claim 1, wherein said conductive film includes a first conductive film and a second conductive film, and
said (d) forming step comprises the steps of:
(f) forming said first conductive film on side surface portions of said chip and the other surface portion of said chip; and
(g) forming said second conductive film on said first conductive film.
14. The method according to claim 13, wherein said first conductive film is formed by a sputtering method or a vapor deposition method.
15. The method according to claim 13, wherein said second conductive film is formed by a plating method.
US09/901,424 2000-07-10 2001-07-09 Method of manufacturing semiconductor device with sidewall metal layers Expired - Fee Related US6440822B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000208925A JP2002026270A (en) 2000-07-10 2000-07-10 Method for manufacturing semiconductor device
JP2000-208925 2000-07-10

Publications (2)

Publication Number Publication Date
US20020048889A1 true US20020048889A1 (en) 2002-04-25
US6440822B1 US6440822B1 (en) 2002-08-27

Family

ID=18705420

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/901,424 Expired - Fee Related US6440822B1 (en) 2000-07-10 2001-07-09 Method of manufacturing semiconductor device with sidewall metal layers

Country Status (2)

Country Link
US (1) US6440822B1 (en)
JP (1) JP2002026270A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004090975A1 (en) * 2003-04-08 2004-10-21 Koninklijke Philips Electronics N.V. Method of manufacturing semiconductor devices
US20040235270A1 (en) * 2002-04-23 2004-11-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
EP1804287A2 (en) * 2005-12-28 2007-07-04 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US20070215897A1 (en) * 2006-03-16 2007-09-20 Hong Shen GaAs integrated circuit device and method of attaching same
US20080093708A1 (en) * 2003-08-06 2008-04-24 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
US20080265424A1 (en) * 2002-06-18 2008-10-30 Sanyo Electric Co., Ltd. Semiconductor device
US7662670B2 (en) 2002-10-30 2010-02-16 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device
US20100059791A1 (en) * 2007-04-02 2010-03-11 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same
US20110057254A1 (en) * 2009-09-10 2011-03-10 Niko Semiconductor Co., Ltd. Metal-oxide-semiconductor chip and fabrication method thereof
US8415805B2 (en) 2010-12-17 2013-04-09 Skyworks Solutions, Inc. Etched wafers and methods of forming the same
US8900969B2 (en) 2012-01-27 2014-12-02 Skyworks Solutions, Inc. Methods of stress balancing in gallium arsenide wafer processing
US9093506B2 (en) 2012-05-08 2015-07-28 Skyworks Solutions, Inc. Process for fabricating gallium arsenide devices with copper contact layer
US9530719B2 (en) 2014-06-13 2016-12-27 Skyworks Solutions, Inc. Direct die solder of gallium arsenide integrated circuit dies and methods of manufacturing gallium arsenide wafers
US20170125143A1 (en) * 2011-12-28 2017-05-04 Rohm Co., Ltd. Chip resistor and method of producing the same
US9786643B2 (en) * 2014-07-08 2017-10-10 Micron Technology, Inc. Semiconductor devices comprising protected side surfaces and related methods
US20180018055A1 (en) * 2016-07-12 2018-01-18 Advense Technology Inc. Nanocomposite force sensing material
CN109686701A (en) * 2018-12-27 2019-04-26 广东晶科电子股份有限公司 It is a kind of can grain formula separation ceramic substrate and its separation method
DE102022209804A1 (en) 2022-09-19 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing semiconductor components, and a semiconductor component

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8050345B1 (en) * 1999-08-09 2011-11-01 Kamilo Feher QAM and GMSK systems
US6884717B1 (en) * 2002-01-03 2005-04-26 The United States Of America As Represented By The Secretary Of The Air Force Stiffened backside fabrication for microwave radio frequency wafers
US6709953B2 (en) * 2002-01-31 2004-03-23 Infineon Technologies Ag Method of applying a bottom surface protective coating to a wafer, and wafer dicing method
US6913985B2 (en) * 2003-06-20 2005-07-05 Oki Data Corporation Method of manufacturing a semiconductor device
US6969952B2 (en) * 2003-08-01 2005-11-29 Hewlett-Packard Development Company, L.P. System and method for automatically routing power for an integrated circuit
EP1523043B1 (en) * 2003-10-06 2011-12-28 Semiconductor Energy Laboratory Co., Ltd. Optical sensor and method for manufacturing the same
JP2006278610A (en) * 2005-03-29 2006-10-12 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2007142144A (en) 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Field effect transistor integrated circuit and manufacturing method thereof
US8207589B2 (en) * 2007-02-15 2012-06-26 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and electronic device, and method for manufacturing photoelectric conversion device
JP5590837B2 (en) * 2009-09-15 2014-09-17 キヤノン株式会社 Relocation of functional areas
TWI505433B (en) * 2009-10-01 2015-10-21 Xintec Inc Chip package and fabrication method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63276276A (en) 1987-05-08 1988-11-14 Nec Corp Manufacture of semiconductor device
JPH0215652A (en) * 1988-07-01 1990-01-19 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH0358534A (en) 1989-07-26 1991-03-13 Fujitsu Ltd Clock synchronizing system at loopback
JP2836334B2 (en) * 1992-01-23 1998-12-14 三菱電機株式会社 Method for manufacturing high-power semiconductor device
JPH065880A (en) 1992-06-18 1994-01-14 Matsushita Electric Ind Co Ltd Manufacturing method for semiconductor device
JPH06338522A (en) 1993-05-28 1994-12-06 Sanyo Electric Co Ltd Manufacture of compound semiconductor device
JPH075832A (en) 1993-06-16 1995-01-10 Sony Corp Device for canceling moire
JPH0766384A (en) 1993-08-23 1995-03-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JP3374880B2 (en) * 1994-10-26 2003-02-10 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
US5910687A (en) * 1997-01-24 1999-06-08 Chipscale, Inc. Wafer fabrication of die-bottom contacts for electronic devices
JPH11126923A (en) 1997-10-21 1999-05-11 Toyoda Gosei Co Ltd Method for manufacturing gallium nitride compound semiconductor element
JP3810204B2 (en) * 1998-03-19 2006-08-16 三菱電機株式会社 Semiconductor device manufacturing method and semiconductor device
JP3501959B2 (en) * 1998-09-29 2004-03-02 三菱電機株式会社 Manufacturing method of laser fusing semiconductor device and semiconductor device
JP2001110811A (en) * 1999-10-08 2001-04-20 Oki Electric Ind Co Ltd Manufacturing method of semiconductor device

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040235270A1 (en) * 2002-04-23 2004-11-25 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US8105856B2 (en) 2002-04-23 2012-01-31 Semiconductor Components Industries, Llc Method of manufacturing semiconductor device with wiring on side surface thereof
US20080265424A1 (en) * 2002-06-18 2008-10-30 Sanyo Electric Co., Ltd. Semiconductor device
US7719102B2 (en) 2002-06-18 2010-05-18 Sanyo Electric Co., Ltd. Semiconductor device
US7662670B2 (en) 2002-10-30 2010-02-16 Sanyo Electric Co., Ltd. Manufacturing method of semiconductor device
WO2004090975A1 (en) * 2003-04-08 2004-10-21 Koninklijke Philips Electronics N.V. Method of manufacturing semiconductor devices
US7919875B2 (en) 2003-08-06 2011-04-05 Sanyo Electric Co., Ltd. Semiconductor device with recess portion over pad electrode
US20080093708A1 (en) * 2003-08-06 2008-04-24 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
EP1804287A2 (en) * 2005-12-28 2007-07-04 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US20070166957A1 (en) * 2005-12-28 2007-07-19 Sanyo Electric Co., Ltd Method of manufacturing semiconductor device
EP1804287A3 (en) * 2005-12-28 2009-10-28 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US7795115B2 (en) 2005-12-28 2010-09-14 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
US20070215897A1 (en) * 2006-03-16 2007-09-20 Hong Shen GaAs integrated circuit device and method of attaching same
US7923842B2 (en) * 2006-03-16 2011-04-12 Skyworks Solutions, Inc. GaAs integrated circuit device and method of attaching same
KR101339605B1 (en) * 2006-03-16 2013-12-10 스카이워크스 솔루션즈, 인코포레이티드 GaAs INTEGRATED CIRCUIT DEVICE AND METHOD OF ATTACHING SAME
US20100059791A1 (en) * 2007-04-02 2010-03-11 Kabushiki Kaisha Toshiba Semiconductor device and fabrication method for the same
US8278685B2 (en) * 2007-04-02 2012-10-02 Kabushiki Kaisha Toshiba Semiconductor device used with high frequency band
US20110057254A1 (en) * 2009-09-10 2011-03-10 Niko Semiconductor Co., Ltd. Metal-oxide-semiconductor chip and fabrication method thereof
US8169019B2 (en) * 2009-09-10 2012-05-01 Niko Semiconductor Co., Ltd. Metal-oxide-semiconductor chip and fabrication method thereof
US8415805B2 (en) 2010-12-17 2013-04-09 Skyworks Solutions, Inc. Etched wafers and methods of forming the same
CN108109788A (en) * 2011-12-28 2018-06-01 罗姆股份有限公司 Chip component and its manufacturing method
US20170125143A1 (en) * 2011-12-28 2017-05-04 Rohm Co., Ltd. Chip resistor and method of producing the same
US10446302B2 (en) * 2011-12-28 2019-10-15 Rohm Co., Ltd. Chip resistor and methods of producing the same
US9231068B2 (en) 2012-01-27 2016-01-05 Skyworks Solutions, Inc. Methods of stress balancing in gallium arsenide wafer processing
US8900969B2 (en) 2012-01-27 2014-12-02 Skyworks Solutions, Inc. Methods of stress balancing in gallium arsenide wafer processing
US9093506B2 (en) 2012-05-08 2015-07-28 Skyworks Solutions, Inc. Process for fabricating gallium arsenide devices with copper contact layer
US10340186B2 (en) 2012-05-08 2019-07-02 Skyworks Solutions, Inc. Method for reducing cross contamination in integrated circuit manufacturing
US9530719B2 (en) 2014-06-13 2016-12-27 Skyworks Solutions, Inc. Direct die solder of gallium arsenide integrated circuit dies and methods of manufacturing gallium arsenide wafers
US9666508B2 (en) 2014-06-13 2017-05-30 Skyworks Solutions, Inc. Gallium arsenide devices with copper backside for direct die solder attach
US9786643B2 (en) * 2014-07-08 2017-10-10 Micron Technology, Inc. Semiconductor devices comprising protected side surfaces and related methods
US20180033780A1 (en) * 2014-07-08 2018-02-01 Micron Technology, Inc. Semiconductor devices comprising protected side surfaces and related methods
US10103134B2 (en) 2014-07-08 2018-10-16 Micron Technology, Inc. Methods of manufacturing multi-die semiconductor device packages and related assemblies
US10734370B2 (en) * 2014-07-08 2020-08-04 Micron Technology, Inc. Methods of making semiconductor devices
US10312226B2 (en) * 2014-07-08 2019-06-04 Micron Technology, Inc. Semiconductor devices comprising protected side surfaces and related methods
US9865578B2 (en) 2014-07-08 2018-01-09 Micron Technology, Inc. Methods of manufacturing multi-die semiconductor device packages and related assemblies
US20180018055A1 (en) * 2016-07-12 2018-01-18 Advense Technology Inc. Nanocomposite force sensing material
US10379654B2 (en) * 2016-07-12 2019-08-13 Advense Technology Inc. Nanocomposite sensing material
CN109686701A (en) * 2018-12-27 2019-04-26 广东晶科电子股份有限公司 It is a kind of can grain formula separation ceramic substrate and its separation method
DE102022209804A1 (en) 2022-09-19 2024-03-21 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing semiconductor components, and a semiconductor component

Also Published As

Publication number Publication date
US6440822B1 (en) 2002-08-27
JP2002026270A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
US6440822B1 (en) Method of manufacturing semiconductor device with sidewall metal layers
JP5048230B2 (en) Semiconductor device and manufacturing method thereof
KR100403481B1 (en) Electronic device and its manufacturing method
US6940157B2 (en) High frequency semiconductor module, high frequency semiconductor device and manufacturing method for the same
US9721909B1 (en) Hybrid microwave integrated circuit
US6462419B1 (en) Semiconductor device and method for manufacturing the same
US4596070A (en) Interdigitated IMPATT devices
US7391067B1 (en) Hybrid microwave integrated circuit
US4596069A (en) Three dimensional processing for monolithic IMPATTs
US20230207558A1 (en) Microwave integrated circuits including gallium-nitride devices on silicon
US8426290B1 (en) Suspended-membrane/suspended-substrate monolithic microwave integrated circuit modules
US6787871B2 (en) Integrated schottky barrier diode and manufacturing method thereof
US6048777A (en) Fabrication of high power semiconductor devices with respective heat sinks for integration with planar microstrip circuitry
CN109119415B (en) Monolithically integrated chip comprising active and passive electrical components with chip edge stabilizing structure
JP2629600B2 (en) Semiconductor device and manufacturing method thereof
JPH0777224B2 (en) Method for manufacturing monolithic integrated circuit device
TWI798922B (en) Semiconductor structure and method of fabricating the same
JPS62211962A (en) Manufacture of high-frequency semiconductor device
JP2002217194A (en) Semiconductor device
US20230130654A1 (en) Manufacturing method of semiconductor device
US6642559B1 (en) Structure and process for improving high frequency isolation in semiconductor substrates
KR100811492B1 (en) MANUFACTURING METHOD FOR GaN TYPE ELECTRIC DEVICE
CN115440655A (en) Manufacturing method of high-power radio frequency device
JP2006216672A (en) Semiconductor device and method of manufacturing the same
JPH11150113A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAYAMA, NOBUYUKI;KUZUHARA, MASAAKI;MATSUNAGA, KOUJI;AND OTHERS;REEL/FRAME:011985/0001

Effective date: 20010702

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20100827