US20010055928A1 - Water-permeable adhesive tape - Google Patents

Water-permeable adhesive tape Download PDF

Info

Publication number
US20010055928A1
US20010055928A1 US09/818,936 US81893601A US2001055928A1 US 20010055928 A1 US20010055928 A1 US 20010055928A1 US 81893601 A US81893601 A US 81893601A US 2001055928 A1 US2001055928 A1 US 2001055928A1
Authority
US
United States
Prior art keywords
adhesive
water
adhesive tape
base film
tape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/818,936
Inventor
Walter Eevers
Ann Issaris
Yoshiaki Mitsuoka
Edwin Thys
Yuuzou Akada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Belgium NV
Nitto Denko Corp
Original Assignee
Nitto Europe NV
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Europe NV, Nitto Denko Corp filed Critical Nitto Europe NV
Assigned to NITTO DENKO CORPORATION, NITTO EUROPE N.V. reassignment NITTO DENKO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AKADA, YUUZOU, EEVERS, WALTER, ISSARIS, ANN, MITSUOKA, YOSHIAKI, THYS, EDWIN
Publication of US20010055928A1 publication Critical patent/US20010055928A1/en
Priority to US11/650,450 priority Critical patent/US7608328B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L21/6836Wafer tapes, e.g. grinding or dicing support tapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/15Sheet, web, or layer weakened to permit separation through thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24273Structurally defined web or sheet [e.g., overall dimension, etc.] including aperture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249955Void-containing component partially impregnated with adjacent component
    • Y10T428/249958Void-containing component is synthetic resin or natural rubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent
    • Y10T428/249984Adhesive or bonding component contains voids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2813Heat or solvent activated or sealable
    • Y10T428/2817Heat sealable
    • Y10T428/2826Synthetic resin or polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2852Adhesive compositions
    • Y10T428/2857Adhesive compositions including metal or compound thereof or natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection
    • Y10T442/2713Halogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2738Coating or impregnation intended to function as an adhesive to solid surfaces subsequently associated therewith
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2738Coating or impregnation intended to function as an adhesive to solid surfaces subsequently associated therewith
    • Y10T442/2746Heat-activatable adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2738Coating or impregnation intended to function as an adhesive to solid surfaces subsequently associated therewith
    • Y10T442/2754Pressure-sensitive adhesive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/674Nonwoven fabric with a preformed polymeric film or sheet
    • Y10T442/679Natural or synthetic rubber sheet or film

Definitions

  • the present invention relates to a water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials. More particularly, the present invention is concerned with a water-permeable adhesive tape which can be used to fix a semiconductor wafer when cutting and separating the semiconductor wafer into IC element chips.
  • semiconductor wafers and semiconductor related materials are separated into chips and IC parts by cutting the wafers or the material with a rotary diamond blade which is also known as a dicing blade.
  • Semiconductor related materials as described in the present invention include a BGA package, printed circuits, ceramic boards and glass parts for liquid crystal equipment.
  • the semiconductor wafers and semiconductor related materials are cut into IC element chips by means of diamond particles in the blade.
  • the semiconductor wafer or semiconductor related material is usually bonded to an adhesive tape which is also known as a dicing tape.
  • the adhesive tape used for such a process possesses generally a layer made up of a synthetic resin, e.g. PVC, which is adhered to the wafer by means of an adhesive layer.
  • a synthetic resin e.g. PVC
  • an object of the present invention to provide an adhesive tape for processing semiconductor wafers and/or semiconductor related materials, in particular for dicing said wafers or materials, which tape enables the processing of very thin semiconductor wafers or materials without leading to any processing problems, such as chipping or other defects of the chips or IC parts, and which tape simultaneously ensures good adherence of the wafer or material thereon and prevents delamination of the chips or parts therefrom during the dicing step.
  • a water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials comprising at least one base film and an adhesive, wherein said at least one base film possesses holes with a cavity ratio of 3.0 to 90%.
  • the aforementioned water-permeable adhesive tape can efficiently avoid the aforementioned problems and is generally suitable for processing semiconductor wafers and/or semiconductor related materials, in particular for dicing said wafers or materials. Therefore, such a water-permeable adhesive tape can be used for processing semiconductor wafers and/or semiconductor related materials by laser technology, in particular, by a laser microjet process.
  • FIG. 1 is a schematic representation showing a regular pattern pitch of the perforations in the base film of the adhesive tape in accordance with Example 3 of the present invention.
  • FIG. 2 is a schematic representation showing a staggered arrangement pitch of the perforations in the base film of the adhesive tape in accordance with Example 4 of the present invention.
  • FIG. 3 is a schematic representation showing a staggered arrangement pitch of the perforations in the base film of the adhesive tape in accordance with Example 5 of the present invention.
  • the water-permeable adhesive tape in accordance with the present invention comprises at least one base film.
  • the material suitable for the base film include synthetic resins such as films of polyolefins, e.g. polyethylene and polypropylene, polyethylene terephthalate, polyurethane, EVA, polytetrafluoroethylene, polyvinylchloride, polyvinylidene chloride, polyamide, acetal resin, polystyrene and polycarbonate, but also non-woven fabrics comprising polymeric fibers such as PP, PVC, PE, PU, PS, PO or PET, synthetic fibers such as rayon or cellulose acetate, natural fibers such as cotton, silk or wool and inorganic fibers such as glass fibers or carbon fibers and also woven fabrics comprising polymeric fibers such as PP, PVC, PU, PS, PE, PO or PET, synthetic fibers such as rayon or cellulose acetate, natural fibers such as cotton, silk or wool.
  • the base film possesses holes or perforations, respectively, which are throughholes in the thickness direction of the base film.
  • the perforations may be regularly or irregularly provided on the base film. If the material of the base film comprises fibers, the perforations may be obtained naturally as a result of the fiber-fiber interstices, thus, rendering the base film porous. On the other hand, if the base film comprises polymeric resins, the perforations may be artificially introduced.
  • the aforementioned porous non-woven material comprising fibers may further comprise artificial perforations in addition to the natural pores or holes. Such an arrangement is of advantage in order to increase the water-permeability of the water-permeable adhesive tape of the present invention.
  • the base film can be perforated by conventional methods of making throughholes. Examples of such methods include mechanical, chemical and/or thermal methods generally known in the art. As mechanical methods of perforating the base film, punching by using a press machine or a rotary roll, laser treatment and water jet treatment may be mentioned. Moreover, inorganic particles can be formulated into the base film upon production of the base film. When the film is expanded, some of the particles are broken resulting in holes in the film. As chemical methods of perforation, the following may be mentioned. A blowing agent can be formulated into the base film material and upon production of the base film, blowing occurs resulting in the desired holes. In another chemical method, a base polymer and a compound which is easily soluble in a solvent are used to prepare the base film. After the film sheeting the base film is then dipped into said solvent followed by drying and expansion, resulting again in perforations.
  • the water-permeable adhesive tape of the present invention has sufficient perforations in order to ensure good water-permeability and to prevent delamination of the water-permeable adhesive tape during the dicing process.
  • the shape of the perforations is not limited as long as it ensures water-permeability.
  • the hole shape may be irregular as in the case of the fiber-fiber interstices of fiber-containing base materials.
  • the perforations may also be circular, square, triangular, rhombic or star-like in shape.
  • the size of the perforations (hole size) as measured by microscope is usually ⁇ 3.2 mm 2 , preferably 0.001 to 3.2 mm 2 , more preferably 0.1 to 2.0 mm 2 , most preferably 0.2 to 1.1 mm 2 .
  • the hole size may be expressed with respect to the diameter which is preferably 0.17 to 0.80 mm, more preferably 0.25 to 0.59 mm. If the perforations are square, triangular or rhombic in shape, the hole size may be given as the length of one side of the square, triangle or rhombus and is preferably 0.30 to 1.40 mm, more preferably 0.45 to 1.00 mm.
  • the hole density is preferably more than 100,000 holes/m 2 , more preferably 300,000 to 700,000 holes/m 2 . The hole density is calculated from the pitch distance in length direction and transverse direction.
  • the water-permeable adhesive tape of the present invention has a cavity ratio of 3 to 90%. If the cavity ratio is less than 3%, the water-permeability is poor and delamination of the chip from the adhesive tape and/or contamination emerging between the tape and the chip can occur. On the other hand, a cavity ratio of more than 90% can result in a poor mechanical strength of the tape, smoothness deterioration of the tape and poor anchoring between the base film and the adhesive.
  • the cavity ratio describes the proportion of cavities or perforations in the base film. When the base film contains artificial perforations, the cavity ratio is preferably 3 to 60%, more preferably, 10 to 55%, most preferably 20 to 50%. In this case, the cavity ratio is decided from the hole size and the hole density, i.e.
  • cavity ratio (hole size) ⁇ (hole density) ⁇ 100%.
  • the cavity ratio is preferably 10 to 80%, more preferably 20 to 70%.
  • the cavity ratio is decided from the weight of the non-woven material per unit area, the material density and the thickness of the non-woven material so that
  • cavity ratio (weight of non-woven material per unit area)/(material density)/(thickness of non-woven material) ⁇ 100%.
  • the thickness of the non-woven material is measured by thickness gauge.
  • the base film may be subjected to surface treatment for the enhancement of the adhesiveness to the adhesive film, such as corona discharge treatment, flame treatment, plasma treatment, sputter etching treatment or undercoating (e.g., primer) fluor treatment, on the surface thereof on which the adhesive film is formed.
  • surface treatment for the enhancement of the adhesiveness to the adhesive film, such as corona discharge treatment, flame treatment, plasma treatment, sputter etching treatment or undercoating (e.g., primer) fluor treatment, on the surface thereof on which the adhesive film is formed.
  • the thickness of the base film is generally 10 to 400 ⁇ m, preferably 30 to 250 ⁇ m. If the thickness is less than 10 ⁇ m, the tape may be easily broken or may be cut during the processing of the semiconductor wafers and/or semiconductor related materials. If the thickness is more than 400 ⁇ m, the preparation of the water-permeable adhesive tape of the present invention becomes rather expensive.
  • the water-permeable adhesive tape of the present invention further contains an adhesive which is typically applied on one surface of the base film.
  • the adhesive can be prepared by using a general adhesive composition, preferably a rubber- or acrylic-based adhesive.
  • the rubber- or acrylic-based adhesive may comprise as a base polymer rubbers such as natural rubber and various synthetic rubbers or acrylic-based polymers such as a acrylonitrile polyalkyl acrylates or methacrylates having linear or branched alkyl groups with less than 30 carbon atoms, preferably 1 to 18 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, amyl, isoamyl, hexyl, cyclohexyl, 2-ethylhexyl, octyl, isooctyl, nonyl, isononyl, decyl, isodecyl, lauryl, tridecyl, tetradecyl or stearyl groups. It is possible to use a mixture of the above groups.
  • Other adhesives e.g. polybutene- or polybutadiene
  • a multifunctional monomer can be added into the adhesive as a crosslinking agent.
  • the crosslinking agent include hexan-diol-di(meth)acrylate, (poly)ethylene glycol-di(meth)acrylate, (poly)propylene glycol-di(meth)acrylate, tri(meth)acrylate and urethane acrylate.
  • the crosslinking agent can be used alone or as a mixture of more than two compounds.
  • the amount of the crosslinking agent is preferably less than 30 wt. % based on the total monomer weight in order to control the total adhesive properties.
  • the adhesive may be pressure-sensitive, light-sensitive or heat-sensitive (thermally sensitive) or a combination of these.
  • the adhesive can be cured by light irradiation, in particular, UV-light irradiation.
  • the adhesion strength can be reduced due to the formation of a three-dimensional network structure within the adhesive.
  • the adhesion strength is reduced when the adhesive is subjected to heating.
  • a monomer or oligomer which can react by light irradiation a so-called photopolymerizable compound
  • a so-called photopolymerizable compound examples include urethane, methacrylate, trimethyl propane trimethacrylate, tetramethylol methane tetramethacrylate and 4-butylene glycol dimethacrylate.
  • the amount of the photopolymerizable compound is generally in the range of from 5 to 500 parts by weight, preferably 70 to 150 parts per 100 parts by weight of the base polymer.
  • a photopolymerization initiator is also included.
  • the initiator examples include acetophenone compounds such as 4-(4-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, methoxy acetophenone and 1-hydroxycyclohexyl phenyl ketone, benzoine ether compounds such as benzoine ethyl ether and benzoine isopropyl ether, ketal compounds, aromatic sulfonyl chloride compounds, light-active oxime compounds and benzophenone compounds. Again, these compounds can be used alone or as mixtures thereof. More details regarding a light-sensitive adhesive are, e.g. provided in EP-A-157 508.
  • the adhesive is a heat-sensitive adhesive
  • the adhesive can contain a so-called heat blowing component.
  • the blowing occurs as a result of heating the tape.
  • the bonding surface between the adhesive tape and the semiconductor wafer or semiconductor related material is decreased due to a process referred to as pebbling resulting from the blowing.
  • the adhesion strength is reduced.
  • the blowing agent include a blowing agent from the decomposing type and the microcapsule type. Further information concerning a heat-sensitive adhesive are, e.g. provided in EP-A-0 523 505.
  • the adhesive properties of the adhesive can be controlled by, for example, blending any appropriate tackifler such as terpene resins (e.g., ⁇ -pinene polymer, ⁇ -pinene polymer, diterpene polymer, ⁇ -pinene-phenol copolymer), hydrocarbon resins (e.g., aliphatic resin, aromatic resin, aliphatic-aromatic copolymer), rosins, cumarone-indene resins, (alkyl)phenol resins, xylene resins or alkyd resins in the adhesive.
  • terpene resins e.g., ⁇ -pinene polymer, ⁇ -pinene polymer, diterpene polymer, ⁇ -pinene-phenol copolymer
  • hydrocarbon resins e.g., aliphatic resin, aromatic resin, aliphatic-aromatic copolymer
  • rosins e.g., aliphatic resin, aromatic resin, ali
  • the adhesive properties of the adhesive can further be controlled by blending any appropriate softening agent such as a low molecular weight polyisobutylene as a blending component corresponding to a polyisobutylene and a paraffin-based oil as a blending component corresponding to an A-B-A type block polymer, if necessary.
  • any appropriate softening agent such as a low molecular weight polyisobutylene as a blending component corresponding to a polyisobutylene and a paraffin-based oil as a blending component corresponding to an A-B-A type block polymer, if necessary.
  • the adhesive may further comprise any appropriate additive such as fillers, pigments, anti-aging agents or stabilizers, incorporated therein, if necessary.
  • the adhesive may also contain perforations in order to further enhance the water-permeability.
  • the perforations can be provided by any of the methods described above for the base film.
  • the perforations may be provided simultaneously with the perforations of the base film or in a separate process. It is, however, not necessary that the adhesive possesses perforations since the adhesive can be cut completely during the processing by the laser beam or the water jet so that the water-permeability of the adhesive will be of no importance.
  • the adhesive has generally a thickness of less than 300 ⁇ m, preferably from 3 to 200 ⁇ m, more preferably 3 to 100 ⁇ m, even more preferably 5 to 100 ⁇ m, most preferably 5 to 70 ⁇ m. If the thickness is less than 3 ⁇ m, sufficient adhesion strength may not be obtained. On the other hand, if the thickness is greater than 300 ⁇ m, it is possible that an undesirable adhesive residue can be formed on the backside of the semiconductor wafer or semiconductor related material after removing the tape from the wafer or material and the water beam may not be able to cut the adhesive layer in order to let the water go through.
  • the 100% modulus (20° C.) of the adhesive is generally 10 kg/cm 2 or less, and preferably from 0.5 to 8 kg/cm 2 .
  • the gel content therein as determined by immersing in toluene (20° C.) for 24 hours is usually less than 55% by weight, preferably from 0.5 to less than 55% by weight, and more preferably from 35 to less than 55% by weight, and the degree of gel swelling is generally at least 20 times and preferably from 25 to 80 times.
  • the water-permeable adhesive tape of the present invention can be prepared by any conventional tape manufacturing method known in the art.
  • the base film possessing perforations and having a cavity ratio of 3.0 to 90% is provided first. It is, however, also possible to provide the perforations after the step of coating the base film with the adhesive.
  • the adhesive can be coated directly onto the base film material.
  • the adhesive coating can be performed by a transfer coating process whereby the adhesive is firstly coated onto a release coated process material. After a possible carrier solvent has been removed by drying, the adhesive is then laminated onto the base film.
  • the coating process can be performed by any existing coating method. For example, reverse roll coating, gravure coating, curtain spray coating, die coating, extrusion and other industrially applied coating methods may be used.
  • adhesive calendaring can also be employed in order to coat the adhesive onto the base film.
  • the water-permeable adhesive tape of the present invention it is possible to elongate the water-permeable adhesive tape of the present invention although elongation is not always required in the processing of semiconductor wafers and/or semiconductor related materials.
  • the elongation value is more than 10%, more preferably 20% of the original tape length.
  • the elongation of the tape may be useful for the process of picking up the chips from the adhesive tape after the dicing process.
  • the tensile strength of the water-permeable adhesive tape of the present invention is generally more than 0.1 N/20 mm, preferably more than 0.3 N/20 mm. If the tensile strength is too small, the water-permeable adhesive tape of the present invention may be easily broken and/or cut when processing semiconductor wafers and/or semiconductor related materials.
  • the tensile strength and the elongation are measured by using a dynamometer using samples being 5.0 cm long and 20 mm wide. The speed at which the tests are performed is 300 mm/min at room temperature and 50% relative humidity. The elongation percentage is calculated as follows:
  • the water-permeable adhesive tape of the present invention has generally an adhesive strength of less than 20 N/20 mm, preferably 0.15 to 10 N/20 mm on an Si-wafer under the conditions of room temperature and 50% relative humidity, 180° peeling adhesion and a peeling speed of 300 mm/min (according to ASTM D1000). If the adhesive is light-sensitive, i.e. it can be cured by light irradiation, or if it is heat-sensitive, i.e. it can be released by heat, the adhesion strength is generally less than 20 N/20 mm, preferably 0.15 to 10 N/20 mm before the light or heat treatment and typically less than 2 N/20 mm after said treatment.
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of a 50 ⁇ m thick process liner in a thickness of 15 ⁇ m and was then dried for 3 minutes at 100° C.
  • a 200 ⁇ m thick non-woven sheet composed of polypropylene fibers having holes, the sheet being further perforated with a cavity ratio of 30% of perforations of 0.1 to 0.3 mm in size was laminated onto this coating to obtain a thin adhesive tape for processing semiconductor wafers.
  • This tape showed a tensile strength of 22 N/20 mm and an elongation of 55% in machine direction (length direction) and a tensile strength of 16 N/20 mm and an elongation of 70% in cross direction (transverse direction).
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of a 50 ⁇ m thick process liner in a thickness of 15 ⁇ m and was then dried for 3 minutes at 100° C.
  • a 200 ⁇ m thick non-woven sheet composed of polypropylene fibers and having holes, the sheet being further perforated with cavity ratio of 50% of perforations of 0.1 to 0.3 mm in size, was laminated onto this coating to obtain a thin adhesive tape for processing semiconductor wafers.
  • This tape showed a tensile strength of 18 N/20 mm and an elongation of 110% in machine direction and a tensile strength of 15 N/20 mm and an elongation of 125% in cross direction.
  • the prepared adhesive tape was perforated with square holes of 0.04 mm 2 in area in a regular pattern pitch distance of 1 mm in both machine and cross directions to obtain an adhesive tape for processing semiconductor wafers (see FIG. 1).
  • This tape showed a tensile strength of 20 N/20 mm and an elongation of 60% in machine direction and a tensile strength of 17 N/20 mm and an elongation of 70% in cross direction.
  • the prepared adhesive tape was perforated with circular holes of 0.2 mm 2 in area in a staggered arrangement pitch distance of 1 mm between each hole to obtain an adhesive tape for processing semiconductor wafers (see FIG. 2).
  • This tape showed a tensile strength of 15 N/20 mm and an elongation of 50% in machine direction and a tensile strength of 12 N/20 mm and an elongation of 60% in cross direction.
  • Comparative Example a standard PVC film having a thickness of 70 ⁇ m and acrylic adhesive (thickness 10 ⁇ m) which is generally used for processing silicone wafers using rotary diamond blade technology was prepared.
  • a semiconductor wafer having a diameter of 12.7 cm (5 inches) was bonded to each thin adhesive tape of Examples 1 to 5 and the Comparative Example and was then cut into element chips using a laser beam combined with the water microjet, with a diameter of the water jet of 50 ⁇ m.
  • Chip size 3 mm ⁇ 3 mm
  • Wafer size 13.7 cm (5 inch)
  • the base film itself was not damaged by the laser beam in Examples 1 to 5 in accordance with the present invention when the tapes were directly irradiated. Furthermore, the thin adhesive sheets in accordance with Examples 1 to 5 were not deteriorated by the water jet even at a pressure of 40 MPa (400 bar).
  • the fibers of the non-woven base film (Examples 1 and 2) do not represent an obstacle to the water jet because the fiber diameter (20 ⁇ m) is much smaller than the water jet.
  • the heat of the molten silicon did not cut the adhesive tapes in accordance with the present invention. Furthermore, all water was drained through the perforations of the base film and the semiconductor wafer was not at all detached from the adhesive tape.
  • the backside of the semiconductor wafer was not contaminated with silicon particles after the cutting.
  • a clean cut of the wafer could be observed from the top side as well as from the backside thereof with no chipping and no silicon particles attached to the cut.
  • no chip-fly was observed, and a very straight cut could be obtained.
  • the processed semiconductor wafer bonded to the adhesive tape was evaluated in terms of its stretchability. The elongation performed homogenous and the processed chips could be properly removed from the adhesive tape.

Abstract

The present invention relates to a water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials comprising at least one base film and an adhesive, wherein said at least one base film possesses perforations and has a cavity ratio of 3.0 to 90%. The water-permeable adhesive tape is in particular suitable for dicing semiconductor wafers and/or semiconductor related materials using laser technology.

Description

  • The present invention relates to a water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials. More particularly, the present invention is concerned with a water-permeable adhesive tape which can be used to fix a semiconductor wafer when cutting and separating the semiconductor wafer into IC element chips. [0001]
  • Conventionally, semiconductor wafers and semiconductor related materials are separated into chips and IC parts by cutting the wafers or the material with a rotary diamond blade which is also known as a dicing blade. Semiconductor related materials as described in the present invention include a BGA package, printed circuits, ceramic boards and glass parts for liquid crystal equipment. In the aforementioned method, the semiconductor wafers and semiconductor related materials are cut into IC element chips by means of diamond particles in the blade. In order to fix the semiconductor wafer or semiconductor related material during this dicing process, the semiconductor wafer or semiconductor related material is usually bonded to an adhesive tape which is also known as a dicing tape. After the semiconductor wafer or semiconductor related material has been cut into IC element chips, the IC element chips can be picked up from the adhesive tape. The adhesive tape used for such a process possesses generally a layer made up of a synthetic resin, e.g. PVC, which is adhered to the wafer by means of an adhesive layer. [0002]
  • Recently, one drawback of this method has evolved in that cracking, chipping or defects of the IC chips and parts which are cut by this method have become a major problem resulting in poor quality of the chips and parts and a reduced productivity of this cutting method. This problem has developed as a result of down-sizing electronic equipment and the growing demand to provide wafers having a more and more reduced thickness. However, as the thickness of the semiconductor materials decreases, the tendency of this material to crack upon dicing increases. Also, some hardly separated and, thus, more brittle and harder semiconductor related materials have appeared which are more susceptible to chipping. The principle cause of this cracking or chipping problem is the cutting mechanism of the rotary diamond blade. [0003]
  • In order to overcome this problem, other cutting techniques have become the focus of attention and in particular laser technology appears to be advantageous since dicing using a laser beam is much more accurate and this accuracy is not greatly influenced by the thickness of the material which is to be cut. Specifically, a laser technology which may be useful for the above purpose has been described in WO 95/32834 and discloses the use of a laser beam to process material by cutting, drilling, welding, marking and material stripping whereby the laser beam is guided by a liquid jet. Specifically, a laser beam which is guided by a water stream is used to process various materials. However, one problem which may occur during the separation process using this laser technology is that chips and IC parts can delaminate from an adhesive tape bonded thereto. Due to the high pressure applied to the adhesive surface by, e.g. the water stream, these chips and IC parts cannot be fixed perfectly on the adhesive tape. Conventional adhesive tapes for processing semiconductor wafers and semiconductor related materials are therefore not suitable for laser dicing technology since chips and IC parts may fly off from the wafer or material during the dicing step or may be destructed by contamination with molten particles from the dicing. [0004]
  • Therefore, it is an object of the present invention to provide an adhesive tape for processing semiconductor wafers and/or semiconductor related materials, in particular for dicing said wafers or materials, which tape enables the processing of very thin semiconductor wafers or materials without leading to any processing problems, such as chipping or other defects of the chips or IC parts, and which tape simultaneously ensures good adherence of the wafer or material thereon and prevents delamination of the chips or parts therefrom during the dicing step. [0005]
  • This object has been achieved by a water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials, comprising at least one base film and an adhesive, wherein said at least one base film possesses holes with a cavity ratio of 3.0 to 90%. [0006]
  • It was surprisingly found that the aforementioned water-permeable adhesive tape can efficiently avoid the aforementioned problems and is generally suitable for processing semiconductor wafers and/or semiconductor related materials, in particular for dicing said wafers or materials. Therefore, such a water-permeable adhesive tape can be used for processing semiconductor wafers and/or semiconductor related materials by laser technology, in particular, by a laser microjet process.[0007]
  • FIG. 1 is a schematic representation showing a regular pattern pitch of the perforations in the base film of the adhesive tape in accordance with Example 3 of the present invention. [0008]
  • FIG. 2 is a schematic representation showing a staggered arrangement pitch of the perforations in the base film of the adhesive tape in accordance with Example 4 of the present invention. [0009]
  • FIG. 3 is a schematic representation showing a staggered arrangement pitch of the perforations in the base film of the adhesive tape in accordance with Example 5 of the present invention.[0010]
  • The water-permeable adhesive tape in accordance with the present invention comprises at least one base film. Examples of the material suitable for the base film include synthetic resins such as films of polyolefins, e.g. polyethylene and polypropylene, polyethylene terephthalate, polyurethane, EVA, polytetrafluoroethylene, polyvinylchloride, polyvinylidene chloride, polyamide, acetal resin, polystyrene and polycarbonate, but also non-woven fabrics comprising polymeric fibers such as PP, PVC, PE, PU, PS, PO or PET, synthetic fibers such as rayon or cellulose acetate, natural fibers such as cotton, silk or wool and inorganic fibers such as glass fibers or carbon fibers and also woven fabrics comprising polymeric fibers such as PP, PVC, PU, PS, PE, PO or PET, synthetic fibers such as rayon or cellulose acetate, natural fibers such as cotton, silk or wool. [0011]
  • The base film possesses holes or perforations, respectively, which are throughholes in the thickness direction of the base film. The perforations may be regularly or irregularly provided on the base film. If the material of the base film comprises fibers, the perforations may be obtained naturally as a result of the fiber-fiber interstices, thus, rendering the base film porous. On the other hand, if the base film comprises polymeric resins, the perforations may be artificially introduced. The aforementioned porous non-woven material comprising fibers may further comprise artificial perforations in addition to the natural pores or holes. Such an arrangement is of advantage in order to increase the water-permeability of the water-permeable adhesive tape of the present invention. [0012]
  • The base film can be perforated by conventional methods of making throughholes. Examples of such methods include mechanical, chemical and/or thermal methods generally known in the art. As mechanical methods of perforating the base film, punching by using a press machine or a rotary roll, laser treatment and water jet treatment may be mentioned. Moreover, inorganic particles can be formulated into the base film upon production of the base film. When the film is expanded, some of the particles are broken resulting in holes in the film. As chemical methods of perforation, the following may be mentioned. A blowing agent can be formulated into the base film material and upon production of the base film, blowing occurs resulting in the desired holes. In another chemical method, a base polymer and a compound which is easily soluble in a solvent are used to prepare the base film. After the film sheeting the base film is then dipped into said solvent followed by drying and expansion, resulting again in perforations. [0013]
  • The water-permeable adhesive tape of the present invention has sufficient perforations in order to ensure good water-permeability and to prevent delamination of the water-permeable adhesive tape during the dicing process. The shape of the perforations is not limited as long as it ensures water-permeability. For example, the hole shape may be irregular as in the case of the fiber-fiber interstices of fiber-containing base materials. The perforations may also be circular, square, triangular, rhombic or star-like in shape. The size of the perforations (hole size) as measured by microscope is usually <3.2 mm[0014] 2, preferably 0.001 to 3.2 mm2, more preferably 0.1 to 2.0 mm2, most preferably 0.2 to 1.1 mm2. If the holes are circular in shape, the hole size may be expressed with respect to the diameter which is preferably 0.17 to 0.80 mm, more preferably 0.25 to 0.59 mm. If the perforations are square, triangular or rhombic in shape, the hole size may be given as the length of one side of the square, triangle or rhombus and is preferably 0.30 to 1.40 mm, more preferably 0.45 to 1.00 mm. The hole density is preferably more than 100,000 holes/m2, more preferably 300,000 to 700,000 holes/m2. The hole density is calculated from the pitch distance in length direction and transverse direction.
  • The water-permeable adhesive tape of the present invention has a cavity ratio of 3 to 90%. If the cavity ratio is less than 3%, the water-permeability is poor and delamination of the chip from the adhesive tape and/or contamination emerging between the tape and the chip can occur. On the other hand, a cavity ratio of more than 90% can result in a poor mechanical strength of the tape, smoothness deterioration of the tape and poor anchoring between the base film and the adhesive. The cavity ratio describes the proportion of cavities or perforations in the base film. When the base film contains artificial perforations, the cavity ratio is preferably 3 to 60%, more preferably, 10 to 55%, most preferably 20 to 50%. In this case, the cavity ratio is decided from the hole size and the hole density, i.e. [0015]
  • cavity ratio=(hole size)×(hole density)×100%.
  • If a porous non-woven material comprising fibers is employed as the base material, the cavity ratio is preferably 10 to 80%, more preferably 20 to 70%. In this case, the cavity ratio is decided from the weight of the non-woven material per unit area, the material density and the thickness of the non-woven material so that [0016]
  • cavity ratio=(weight of non-woven material per unit area)/(material density)/(thickness of non-woven material)×100%.
  • The thickness of the non-woven material is measured by thickness gauge. [0017]
  • If necessary, the base film may be subjected to surface treatment for the enhancement of the adhesiveness to the adhesive film, such as corona discharge treatment, flame treatment, plasma treatment, sputter etching treatment or undercoating (e.g., primer) fluor treatment, on the surface thereof on which the adhesive film is formed. [0018]
  • The thickness of the base film is generally 10 to 400 μm, preferably 30 to 250 μm. If the thickness is less than 10 μm, the tape may be easily broken or may be cut during the processing of the semiconductor wafers and/or semiconductor related materials. If the thickness is more than 400 μm, the preparation of the water-permeable adhesive tape of the present invention becomes rather expensive. [0019]
  • It is possible to use one of the aforementioned base films singly or two or more of said base films as a multilayered structure. Such a multilayer film can be prepared by conventional methods. [0020]
  • The water-permeable adhesive tape of the present invention further contains an adhesive which is typically applied on one surface of the base film. The adhesive can be prepared by using a general adhesive composition, preferably a rubber- or acrylic-based adhesive. [0021]
  • The rubber- or acrylic-based adhesive may comprise as a base polymer rubbers such as natural rubber and various synthetic rubbers or acrylic-based polymers such as a acrylonitrile polyalkyl acrylates or methacrylates having linear or branched alkyl groups with less than 30 carbon atoms, preferably 1 to 18 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, t-butyl, isobutyl, amyl, isoamyl, hexyl, cyclohexyl, 2-ethylhexyl, octyl, isooctyl, nonyl, isononyl, decyl, isodecyl, lauryl, tridecyl, tetradecyl or stearyl groups. It is possible to use a mixture of the above groups. Other adhesives, e.g. polybutene- or polybutadiene-based adhesives, are also possible. The above adhesive is generally present in an amount of 50 to 100 wt. %. [0022]
  • If necessary, a multifunctional monomer can be added into the adhesive as a crosslinking agent. Examples of the crosslinking agent include hexan-diol-di(meth)acrylate, (poly)ethylene glycol-di(meth)acrylate, (poly)propylene glycol-di(meth)acrylate, tri(meth)acrylate and urethane acrylate. The crosslinking agent can be used alone or as a mixture of more than two compounds. The amount of the crosslinking agent is preferably less than 30 wt. % based on the total monomer weight in order to control the total adhesive properties. [0023]
  • The adhesive may be pressure-sensitive, light-sensitive or heat-sensitive (thermally sensitive) or a combination of these. In the case of a light-sensitive adhesive, the adhesive can be cured by light irradiation, in particular, UV-light irradiation. Upon irradiation with light, the adhesion strength can be reduced due to the formation of a three-dimensional network structure within the adhesive. In the case of a heat-sensitive adhesive, the adhesion strength is reduced when the adhesive is subjected to heating. [0024]
  • If a light-sensitive adhesive is used, a monomer or oligomer which can react by light irradiation, a so-called photopolymerizable compound, can be incorporated into the adhesive. Examples of such a monomer include urethane, methacrylate, trimethyl propane trimethacrylate, tetramethylol methane tetramethacrylate and 4-butylene glycol dimethacrylate. The amount of the photopolymerizable compound is generally in the range of from 5 to 500 parts by weight, preferably 70 to 150 parts per 100 parts by weight of the base polymer. Moreover, in this case, a photopolymerization initiator is also included. Examples of the initiator include acetophenone compounds such as 4-(4-hydroxyethoxy)phenyl(2-hydroxy-2-propyl)ketone, methoxy acetophenone and 1-hydroxycyclohexyl phenyl ketone, benzoine ether compounds such as benzoine ethyl ether and benzoine isopropyl ether, ketal compounds, aromatic sulfonyl chloride compounds, light-active oxime compounds and benzophenone compounds. Again, these compounds can be used alone or as mixtures thereof. More details regarding a light-sensitive adhesive are, e.g. provided in EP-A-157 508. [0025]
  • If the adhesive is a heat-sensitive adhesive, the adhesive can contain a so-called heat blowing component. The blowing occurs as a result of heating the tape. The bonding surface between the adhesive tape and the semiconductor wafer or semiconductor related material is decreased due to a process referred to as pebbling resulting from the blowing. Thus, the adhesion strength is reduced. Examples of the blowing agent include a blowing agent from the decomposing type and the microcapsule type. Further information concerning a heat-sensitive adhesive are, e.g. provided in EP-A-0 523 505. [0026]
  • If necessary, the adhesive properties of the adhesive can be controlled by, for example, blending any appropriate tackifler such as terpene resins (e.g., α-pinene polymer, β-pinene polymer, diterpene polymer, α-pinene-phenol copolymer), hydrocarbon resins (e.g., aliphatic resin, aromatic resin, aliphatic-aromatic copolymer), rosins, cumarone-indene resins, (alkyl)phenol resins, xylene resins or alkyd resins in the adhesive. [0027]
  • The adhesive properties of the adhesive can further be controlled by blending any appropriate softening agent such as a low molecular weight polyisobutylene as a blending component corresponding to a polyisobutylene and a paraffin-based oil as a blending component corresponding to an A-B-A type block polymer, if necessary. [0028]
  • The adhesive may further comprise any appropriate additive such as fillers, pigments, anti-aging agents or stabilizers, incorporated therein, if necessary. [0029]
  • The adhesive may also contain perforations in order to further enhance the water-permeability. The perforations can be provided by any of the methods described above for the base film. The perforations may be provided simultaneously with the perforations of the base film or in a separate process. It is, however, not necessary that the adhesive possesses perforations since the adhesive can be cut completely during the processing by the laser beam or the water jet so that the water-permeability of the adhesive will be of no importance. [0030]
  • The adhesive has generally a thickness of less than 300 μm, preferably from 3 to 200 μm, more preferably 3 to 100 μm, even more preferably 5 to 100 μm, most preferably 5 to 70 μm. If the thickness is less than 3 μm, sufficient adhesion strength may not be obtained. On the other hand, if the thickness is greater than 300 μm, it is possible that an undesirable adhesive residue can be formed on the backside of the semiconductor wafer or semiconductor related material after removing the tape from the wafer or material and the water beam may not be able to cut the adhesive layer in order to let the water go through. [0031]
  • The 100% modulus (20° C.) of the adhesive is generally 10 kg/cm[0032] 2 or less, and preferably from 0.5 to 8 kg/cm2. The gel content therein as determined by immersing in toluene (20° C.) for 24 hours is usually less than 55% by weight, preferably from 0.5 to less than 55% by weight, and more preferably from 35 to less than 55% by weight, and the degree of gel swelling is generally at least 20 times and preferably from 25 to 80 times.
  • The water-permeable adhesive tape of the present invention can be prepared by any conventional tape manufacturing method known in the art. In general, the base film possessing perforations and having a cavity ratio of 3.0 to 90% is provided first. It is, however, also possible to provide the perforations after the step of coating the base film with the adhesive. The adhesive can be coated directly onto the base film material. Alternatively, the adhesive coating can be performed by a transfer coating process whereby the adhesive is firstly coated onto a release coated process material. After a possible carrier solvent has been removed by drying, the adhesive is then laminated onto the base film. The coating process can be performed by any existing coating method. For example, reverse roll coating, gravure coating, curtain spray coating, die coating, extrusion and other industrially applied coating methods may be used. Furthermore, adhesive calendaring can also be employed in order to coat the adhesive onto the base film. [0033]
  • Preferably, it is possible to elongate the water-permeable adhesive tape of the present invention although elongation is not always required in the processing of semiconductor wafers and/or semiconductor related materials. Preferably, the elongation value is more than 10%, more preferably 20% of the original tape length. The elongation of the tape may be useful for the process of picking up the chips from the adhesive tape after the dicing process. [0034]
  • The tensile strength of the water-permeable adhesive tape of the present invention is generally more than 0.1 N/20 mm, preferably more than 0.3 N/20 mm. If the tensile strength is too small, the water-permeable adhesive tape of the present invention may be easily broken and/or cut when processing semiconductor wafers and/or semiconductor related materials. [0035]
  • The tensile strength and the elongation are measured by using a dynamometer using samples being 5.0 cm long and 20 mm wide. The speed at which the tests are performed is 300 mm/min at room temperature and 50% relative humidity. The elongation percentage is calculated as follows: [0036]
  • elongation=(length at time of breaking−original length)/(original length)×100%.
  • The force measurement at this point is described as the tensile strength of the tape. Thus, the test methods for the tensile strength and the elongation are based on ASTM D1000. [0037]
  • The water-permeable adhesive tape of the present invention has generally an adhesive strength of less than 20 N/20 mm, preferably 0.15 to 10 N/20 mm on an Si-wafer under the conditions of room temperature and 50% relative humidity, 180° peeling adhesion and a peeling speed of 300 mm/min (according to ASTM D1000). If the adhesive is light-sensitive, i.e. it can be cured by light irradiation, or if it is heat-sensitive, i.e. it can be released by heat, the adhesion strength is generally less than 20 N/20 mm, preferably 0.15 to 10 N/20 mm before the light or heat treatment and typically less than 2 N/20 mm after said treatment. [0038]
  • The present invention is described in more detail with reference to the following examples. All parts are parts by weight. [0039]
  • EXAMPLE 1
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of a 50 μm thick process liner in a thickness of 15 μm and was then dried for 3 minutes at 100° C. Immediately after drying, a 200 μm thick non-woven sheet composed of polypropylene fibers having holes, the sheet being further perforated with a cavity ratio of 30% of perforations of 0.1 to 0.3 mm in size, was laminated onto this coating to obtain a thin adhesive tape for processing semiconductor wafers. This tape showed a tensile strength of 22 N/20 mm and an elongation of 55% in machine direction (length direction) and a tensile strength of 16 N/20 mm and an elongation of 70% in cross direction (transverse direction). [0040]
  • EXAMPLE 2
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of a 50 μm thick process liner in a thickness of 15 μm and was then dried for 3 minutes at 100° C. Immediately after drying, a 200 μm thick non-woven sheet composed of polypropylene fibers and having holes, the sheet being further perforated with cavity ratio of 50% of perforations of 0.1 to 0.3 mm in size, was laminated onto this coating to obtain a thin adhesive tape for processing semiconductor wafers. This tape showed a tensile strength of 18 N/20 mm and an elongation of 110% in machine direction and a tensile strength of 15 N/20 mm and an elongation of 125% in cross direction. [0041]
  • EXAMPLE 3
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of an EVA (9% vinyl content)/polyethylene=30/70 wt. % film in a thickness of 15 μm and was then dried for 3 minutes at 100° C. Immediately after coating, the prepared adhesive tape was perforated with square holes of 0.04 mm[0042] 2 in area in a regular pattern pitch distance of 1 mm in both machine and cross directions to obtain an adhesive tape for processing semiconductor wafers (see FIG. 1). This tape showed a tensile strength of 20 N/20 mm and an elongation of 60% in machine direction and a tensile strength of 17 N/20 mm and an elongation of 70% in cross direction.
  • EXAMPLE 4
  • An acrylic adhesive comprising 100 parts of an acrylic copolymer, 30 parts of a plasticizer and 10 parts of a crosslinking agent was coated on one surface of an EVA (9%vinyl content)/polyethylene=30/70 wt. % film in a thickness of 15 μm and was then dried for 3 minutes at 100° C. Immediately after coating, the prepared adhesive tape was perforated with circular holes of 0.2 mm[0043] 2 in area in a staggered arrangement pitch distance of 1 mm between each hole to obtain an adhesive tape for processing semiconductor wafers (see FIG. 2). This tape showed a tensile strength of 15 N/20 mm and an elongation of 50% in machine direction and a tensile strength of 12 N/20 mm and an elongation of 60% in cross direction.
  • EXAMPLE 5
  • An acrylic copolymer, a urethane oligomer as a photopolymerizable compound and a photopolymerization initiator were coated on one surface of an EVA (9% vinyl content)/polyethylene=30/70 wt. % film in a thickness of 10 μm and was then dried for 3 minutes at 100° C. (see EP-A-0 157 508). Immediately after coating, the prepared adhesive tape was perforated with circular holes of 0.13 mm[0044] 2 in area in a staggered arrangement pitch distance of 1 mm between each hole to obtain an adhesive tape for processing semiconductor wafers (see FIG. 3). This tape showed a tensile strength of 15 N/20 mm and an elongation of 55% in machine direction and tensile strength of 14 N/20 mm and an elongation of 70% in cross direction.
  • COMPARATIVE EXAMPLE 1
  • As the Comparative Example a standard PVC film having a thickness of 70 μm and acrylic adhesive (thickness 10 μm) which is generally used for processing silicone wafers using rotary diamond blade technology was prepared. [0045]
  • The results are summarized in Table I below. [0046]
    TABLE I
    Comp-
    arative
    Ex- Ex- Ex-
    ample ample Example Example Example ample
    1 2 3 4 5 1
    Film PP non- PP non- PE/ PE/ PE/ PVC
    woven woven EVA EVA EVA 70 μm
    200 μm 200 μm film with film with film with
    holes of holes of holes of
    200 μm 150 μm 200 μm
    Adhe- Acrylic Acrylic Acrylic Acrylic Acrylic Acrylic
    sive 15 μm 15 μm 15 μm 15 μm (UV- 10 μm
    curable)
    10 μm
    Cavity 30%  50%  4% 40% 24%  0%
    ratio
    tensile
    strength
    MD 22 N/ 18 N/ 20 N/ 15 N/ 15 N/ 45 N/
    20 mm 20 mm 20 mm 20 mm 20 mm 20 mm
    CD 16 N/ 15 N/ 17 N/ 12 N/ 14 N/ 35 N/
    20 mm 20 mm 20 mm 20 mm 20 mm 20 mm
    Elong-
    ation
    MD 55% 110% 60% 50% 55% 250%
    CD 70% 125% 70% 60% 70% 280%
    ad- 5 N/ 5 N/ 5 N/ 5 N/ 8 N/ 2 N/
    hesive 20 mm 20 mm 20 mm 20 mm 20 mm 20 mm
    strength (before)*
    0.2 N/
    20 mm
    (after)*
  • A semiconductor wafer having a diameter of 12.7 cm (5 inches) was bonded to each thin adhesive tape of Examples 1 to 5 and the Comparative Example and was then cut into element chips using a laser beam combined with the water microjet, with a diameter of the water jet of 50 μm. [0047]
  • After cutting, each example was tested in view of film damage, cutting surface condition of the chip, chip damage, detachment between the tape and the wafer and contamination. [0048]
  • Dicing Conditions: [0049]
  • Dicing equipment: made by Synova [0050]
  • Dicing speed: 50 mm/s [0051]
  • Laser diameter: 50 μm [0052]
  • Laser wavelength: 1064 nm [0053]
  • Water jet pressure: 40 MPa (400 bar) [0054]
  • Chip size: 3 mm×3 mm [0055]
  • Wafer size: 13.7 cm (5 inch) [0056]
  • The base film itself was not damaged by the laser beam in Examples 1 to 5 in accordance with the present invention when the tapes were directly irradiated. Furthermore, the thin adhesive sheets in accordance with Examples 1 to 5 were not deteriorated by the water jet even at a pressure of 40 MPa (400 bar). The fibers of the non-woven base film (Examples 1 and 2) do not represent an obstacle to the water jet because the fiber diameter (20 μm) is much smaller than the water jet. Moreover, the heat of the molten silicon did not cut the adhesive tapes in accordance with the present invention. Furthermore, all water was drained through the perforations of the base film and the semiconductor wafer was not at all detached from the adhesive tape. Moreover, the backside of the semiconductor wafer was not contaminated with silicon particles after the cutting. As a result, a clean cut of the wafer could be observed from the top side as well as from the backside thereof with no chipping and no silicon particles attached to the cut. During the processing no chip-fly was observed, and a very straight cut could be obtained. In a consecutive step, the processed semiconductor wafer bonded to the adhesive tape was evaluated in terms of its stretchability. The elongation performed homogenous and the processed chips could be properly removed from the adhesive tape. [0057]
  • However, when the adhesive tape according to Comparative Example 1 was used in the dicing process using the laser beam combined with the water microjet, it was observed that the adhesive tape detached itself from around the cut between 0.5 to 1 mm at either side of the cut even at a low pressure of the water jet. This detachment was caused by the fact that the water jet pushed down the wafer even at low pressures. As a consequence, the backside of the element chips were contaminated with molten silicon particles. Furthermore, if a flat support was adhered below the adhesive tape in order to support the wafer and the tape during the dicing process, a detachment was still observed causing contamination and eventually also further damaging of the chip sides (chipping). [0058]

Claims (8)

1. A water-permeable adhesive tape for processing semiconductor wafers and/or semiconductor related materials, comprising at least one base film and an adhesive, wherein said at least one base film possesses perforations and has a cavity ratio of 3.0 to 90%.
2. The water-permeable adhesive tape according to
claim 1
, wherein the base film comprises a synthetic resin or a non-woven fabric.
3. The water-permeable adhesive tape according to
claim 1
or
2
, wherein the size of the perforations is from 0.001 to 3.0 mm2.
4. The water-permeable adhesive tape according to any of
claims 1
to
3
, wherein the adhesive comprises a rubber- or acrylic-based adhesive.
5. The water-permeable adhesive tape according to any of
claims 1
to
4
, wherein the adhesive is pressure-sensitive, light-sensitive and/or heat-sensitive.
6. The water-permeable adhesive tape according to any of
claims 1
to
5
, having an elongation of more than 10%.
7. The water-permeable adhesive tape according to any of
claims 1
to
6
, having a tensile strength of more than 0.1 N/20 mm.
8. The water-permeable adhesive tape according to any of
claims 1
to
7
, having an adhesive strength of 0.15 to 10 N/20 mm.
US09/818,936 2000-03-30 2001-03-28 Water-permeable adhesive tape Abandoned US20010055928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/650,450 US7608328B2 (en) 2000-03-30 2007-01-08 Water-permeable adhesive tape

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00106824.6 2000-03-30
EP00106824A EP1139415B1 (en) 2000-03-30 2000-03-30 Water-permeable adhesive tape for semiconductor processing

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/650,450 Continuation US7608328B2 (en) 2000-03-30 2007-01-08 Water-permeable adhesive tape

Publications (1)

Publication Number Publication Date
US20010055928A1 true US20010055928A1 (en) 2001-12-27

Family

ID=8168289

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/818,936 Abandoned US20010055928A1 (en) 2000-03-30 2001-03-28 Water-permeable adhesive tape
US11/650,450 Expired - Fee Related US7608328B2 (en) 2000-03-30 2007-01-08 Water-permeable adhesive tape

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/650,450 Expired - Fee Related US7608328B2 (en) 2000-03-30 2007-01-08 Water-permeable adhesive tape

Country Status (8)

Country Link
US (2) US20010055928A1 (en)
EP (1) EP1139415B1 (en)
JP (1) JP3824874B2 (en)
KR (1) KR100427566B1 (en)
AT (1) ATE424040T1 (en)
DE (1) DE60041632D1 (en)
SG (1) SG100662A1 (en)
TW (1) TW576861B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070166510A1 (en) * 2004-02-27 2007-07-19 Lintec Corporation Pressure-sensitive adhesive sheet
US20070216000A1 (en) * 2006-03-16 2007-09-20 Fujitsu Limited Cover tape for packaging semiconductor device and package for semiconductor device
US20070254136A1 (en) * 2004-02-27 2007-11-01 Lintec Corporation Pressure-Sensitive Adhesive Sheet
US20080090049A1 (en) * 2004-06-14 2008-04-17 Kiichiro Kato Pressure-Sensitive Adhesive Sheet and Method of Producing the Same
US20080108262A1 (en) * 2006-11-06 2008-05-08 Nitto Denko Corporation Adhesive sheet for water jet laser dicing
US20090311474A1 (en) * 2007-04-20 2009-12-17 Tomokazu Takahashi Adhesive sheet for water jet laser dicing
US20110111660A1 (en) * 2007-09-07 2011-05-12 Dic Corporation Double-sided adhesive tape
US20110197528A1 (en) * 2010-02-15 2011-08-18 Construction Research & Technology Gmbh Exterior Finish System
US20130295763A1 (en) * 2011-09-29 2013-11-07 Eric J. Li Low temperature thin wafer backside vacuum process with backgrinding tape
US10147630B2 (en) * 2014-06-11 2018-12-04 John Cleaon Moore Sectional porous carrier forming a temporary impervious support
US11791212B2 (en) * 2019-12-13 2023-10-17 Micron Technology, Inc. Thin die release for semiconductor device assembly

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1269535B1 (en) * 2000-04-04 2007-10-10 Synova S.A. Method for cutting an object and for further processing the cut material and a carrier for holding the object or the cut material
JP3484396B2 (en) 2000-05-09 2004-01-06 新光電気工業株式会社 Wafer cutting method
US6720522B2 (en) * 2000-10-26 2004-04-13 Kabushiki Kaisha Toshiba Apparatus and method for laser beam machining, and method for manufacturing semiconductor devices using laser beam machining
DE10054159A1 (en) * 2000-11-02 2002-05-16 Wacker Siltronic Halbleitermat Method of assembling semiconductor wafers
US6765174B2 (en) 2001-02-05 2004-07-20 Denso Corporation Method for machining grooves by a laser and honeycomb structure forming die and method for producing the same die
JP4087144B2 (en) * 2001-04-23 2008-05-21 古河電気工業株式会社 Laser dicing adhesive tape
JP2003173988A (en) * 2001-12-04 2003-06-20 Furukawa Electric Co Ltd:The Method for dicing semiconductor wafer
US6777647B1 (en) * 2003-04-16 2004-08-17 Scimed Life Systems, Inc. Combination laser cutter and cleaner
KR100557875B1 (en) * 2003-08-21 2006-03-10 주식회사 애드텍 Method for preparing of pressure sensitive adhesive tape for dicing comprising pvc support and adhesive tape
JP4018096B2 (en) 2004-10-05 2007-12-05 松下電器産業株式会社 Semiconductor wafer dividing method and semiconductor element manufacturing method
JP2008060170A (en) * 2006-08-29 2008-03-13 Nitto Denko Corp Adhesive sheet for use in water jet laser dicing
JP2008085303A (en) * 2006-08-29 2008-04-10 Nitto Denko Corp Adhesive sheet for water jet laser dicing
US9216850B2 (en) 2006-09-26 2015-12-22 Intercontinental Great Brands Llc Rupturable substrate
MX2009002954A (en) * 2006-09-26 2009-03-31 Cadbury Adams Usa Llc Rupturable blister package.
JP2008117943A (en) * 2006-11-06 2008-05-22 Nitto Denko Corp Adhesive sheet for water jet laser dicing
JP2008270505A (en) * 2007-04-20 2008-11-06 Nitto Denko Corp Adhesive sheet for water jet laser dicing
JP5217557B2 (en) * 2008-03-27 2013-06-19 パナソニック株式会社 Manufacturing method of electronic parts
KR101035353B1 (en) * 2010-09-15 2011-05-20 주식회사 애니 테이프 Ventilation uv hotmelt tape and the manufacturing method
JP2012184324A (en) * 2011-03-04 2012-09-27 Nitto Denko Corp Tacky adhesive sheet for fixation of thin-film substrate
TWI409886B (en) * 2011-08-05 2013-09-21 Powertech Technology Inc Die picking-up method and apparatus for preventing from die crack
KR101393895B1 (en) * 2011-11-02 2014-05-13 (주)엘지하우시스 Adhesive film for protecting surfase of semiconductorwafer which has excellent cutting property
JP5950669B2 (en) * 2012-04-16 2016-07-13 日東電工株式会社 Adhesive sheet and adhesive composition
JP6301243B2 (en) * 2014-12-11 2018-03-28 三菱電機株式会社 Semiconductor evaluation apparatus and semiconductor evaluation method
CN110475909B (en) * 2017-03-30 2021-12-24 古河电气工业株式会社 Surface-treated copper foil and copper-clad laminate using same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702788A (en) * 1983-02-28 1987-10-27 Uzo Tomii Method of receiving small-sized electronic parts
US5229185A (en) * 1990-10-31 1993-07-20 Matsushita Electric Industrial Co., Ltd. Speaker front sheet
US6114753A (en) * 1996-05-30 2000-09-05 Hitachi, Ltd. Circuit tape having adhesive film, semiconductor device, and a method for manufacturing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616524B2 (en) * 1984-03-12 1994-03-02 日東電工株式会社 Adhesive thin plate for fixing semiconductor wafers
JPS63136527A (en) * 1986-11-27 1988-06-08 Nec Corp Pressure-sensitive adhesive sheet for treating semiconductor substrate
JPH02112258A (en) * 1988-10-21 1990-04-24 Seiko Epson Corp Adhesive tape for semiconductor device
JPH0621220A (en) * 1992-07-03 1994-01-28 Seiko Epson Corp Wafer pasting apparatus
DE4418845C5 (en) * 1994-05-30 2012-01-05 Synova S.A. Method and device for material processing using a laser beam
JP3647546B2 (en) * 1996-04-05 2005-05-11 日東電工株式会社 Double-sided adhesive tape
JP3755617B2 (en) 1996-08-30 2006-03-15 日立化成工業株式会社 Wafer holding film for dicing
JPH11151661A (en) * 1997-11-20 1999-06-08 Speedfam Co Ltd Polishing pad with bonding tape and polishing pad bonding method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4702788A (en) * 1983-02-28 1987-10-27 Uzo Tomii Method of receiving small-sized electronic parts
US5229185A (en) * 1990-10-31 1993-07-20 Matsushita Electric Industrial Co., Ltd. Speaker front sheet
US6114753A (en) * 1996-05-30 2000-09-05 Hitachi, Ltd. Circuit tape having adhesive film, semiconductor device, and a method for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070254136A1 (en) * 2004-02-27 2007-11-01 Lintec Corporation Pressure-Sensitive Adhesive Sheet
US20070166510A1 (en) * 2004-02-27 2007-07-19 Lintec Corporation Pressure-sensitive adhesive sheet
US20080090049A1 (en) * 2004-06-14 2008-04-17 Kiichiro Kato Pressure-Sensitive Adhesive Sheet and Method of Producing the Same
US7727615B2 (en) 2004-06-14 2010-06-01 Lintec Corporation Pressure-sensitive adhesive sheet
US8033397B2 (en) * 2006-03-16 2011-10-11 Fujitsu Semiconductor Limited Cover tape for packaging semiconductor device and package for semiconductor device
US20070216000A1 (en) * 2006-03-16 2007-09-20 Fujitsu Limited Cover tape for packaging semiconductor device and package for semiconductor device
US20080108262A1 (en) * 2006-11-06 2008-05-08 Nitto Denko Corporation Adhesive sheet for water jet laser dicing
US20090311474A1 (en) * 2007-04-20 2009-12-17 Tomokazu Takahashi Adhesive sheet for water jet laser dicing
US20110111660A1 (en) * 2007-09-07 2011-05-12 Dic Corporation Double-sided adhesive tape
US9194131B2 (en) 2010-02-15 2015-11-24 Construction Research & Technology Gmbh Exterior finish system
US8806825B2 (en) * 2010-02-15 2014-08-19 Construction Research & Technology Gmbh Exterior finish system
US8898981B2 (en) 2010-02-15 2014-12-02 Construction Research & Technology Gmbh Exterior finish system
US20140373474A1 (en) * 2010-02-15 2014-12-25 Constr Res & Tech Gmbh Exterior finish system
US9091072B2 (en) * 2010-02-15 2015-07-28 Construction Research & Technology Gmbh Exterior finish system
US20110197528A1 (en) * 2010-02-15 2011-08-18 Construction Research & Technology Gmbh Exterior Finish System
US20130295763A1 (en) * 2011-09-29 2013-11-07 Eric J. Li Low temperature thin wafer backside vacuum process with backgrinding tape
US9390968B2 (en) * 2011-09-29 2016-07-12 Intel Corporation Low temperature thin wafer backside vacuum process with backgrinding tape
US10224223B2 (en) 2011-09-29 2019-03-05 Intel Corporation Low temperature thin wafer backside vacuum process with backgrinding tape
US10147630B2 (en) * 2014-06-11 2018-12-04 John Cleaon Moore Sectional porous carrier forming a temporary impervious support
US11791212B2 (en) * 2019-12-13 2023-10-17 Micron Technology, Inc. Thin die release for semiconductor device assembly

Also Published As

Publication number Publication date
SG100662A1 (en) 2003-12-26
EP1139415B1 (en) 2009-02-25
US20070110955A1 (en) 2007-05-17
KR100427566B1 (en) 2004-04-27
EP1139415A1 (en) 2001-10-04
US7608328B2 (en) 2009-10-27
JP3824874B2 (en) 2006-09-20
DE60041632D1 (en) 2009-04-09
ATE424040T1 (en) 2009-03-15
TW576861B (en) 2004-02-21
JP2001316648A (en) 2001-11-16
KR20010095140A (en) 2001-11-03

Similar Documents

Publication Publication Date Title
US7608328B2 (en) Water-permeable adhesive tape
EP1918345B1 (en) Adhesive sheet for water jet laser dicing
KR100718365B1 (en) Energy-beam-curable thermal-releasable pressure-sensitive adhesive sheet and method for producing cut pieces using the same
KR100718364B1 (en) Energy-beam-curable thermal-releasable pressure-sensitive adhesive sheet and method for producing cut pieces using the same
EP1070347B1 (en) Semiconductor wafer processing tapes
JP5000370B2 (en) Adhesive sheet for water jet laser dicing
US20080108262A1 (en) Adhesive sheet for water jet laser dicing
US20080057270A1 (en) Adhesive sheet for water jet laser dicing
US20080057253A1 (en) Adhesive sheet for water jet laser dicing
CN102031072A (en) Pressure-sensitive adhesive sheet for retaining elements and method of producing elements
JP2008270505A (en) Adhesive sheet for water jet laser dicing
JP2008085303A (en) Adhesive sheet for water jet laser dicing

Legal Events

Date Code Title Description
AS Assignment

Owner name: NITTO EUROPE N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EEVERS, WALTER;ISSARIS, ANN;MITSUOKA, YOSHIAKI;AND OTHERS;REEL/FRAME:011961/0786

Effective date: 20010702

Owner name: NITTO DENKO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EEVERS, WALTER;ISSARIS, ANN;MITSUOKA, YOSHIAKI;AND OTHERS;REEL/FRAME:011961/0786

Effective date: 20010702

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION