US20010026936A1 - Apparatus for automatic measuring of water toxicity - Google Patents

Apparatus for automatic measuring of water toxicity Download PDF

Info

Publication number
US20010026936A1
US20010026936A1 US09/761,654 US76165401A US2001026936A1 US 20010026936 A1 US20010026936 A1 US 20010026936A1 US 76165401 A US76165401 A US 76165401A US 2001026936 A1 US2001026936 A1 US 2001026936A1
Authority
US
United States
Prior art keywords
well
luminescent
luminescent microorganisms
sample
well plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/761,654
Other versions
US6436698B2 (en
Inventor
Han Park
Hanee Park
II Choi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bioneer Corp
Original Assignee
Bioneer Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioneer Corp filed Critical Bioneer Corp
Assigned to BIONEER CORPORATION reassignment BIONEER CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOI, IL KYU, PARK, HAN OH, PARK, HANEE
Publication of US20010026936A1 publication Critical patent/US20010026936A1/en
Application granted granted Critical
Publication of US6436698B2 publication Critical patent/US6436698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1826Organic contamination in water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/186Water using one or more living organisms, e.g. a fish
    • G01N33/1866Water using one or more living organisms, e.g. a fish using microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2520/00Use of whole organisms as detectors of pollution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the present invention relates to an apparatus for automatic measuring for water toxicity. More specifically, the present invention provides an apparatus measuring water toxicity and/or contamination continuously and automatically using luminescent microorganisms living in freshwater.
  • a method using luminescent microorganisms is known to measure water toxicity and/or contamination.
  • the luminescent mechanism of the luminescent microorganism is affected by activation of biochemical environmental conditions of the luciferase that controls the emission of light, resulting in changing luminosity of the microorganism.
  • the Microtox Assay System (hereinafter, MAS) commercialized by the MICROBICS Co. is an apparatus measuring water toxicity and/or contamination using luminescent microorganisms.
  • the MAS method measures the luminosity of light emitted by luminescent microorganism under toxic conditions on the basis of the luminosity of the luminescent microorganism living non-toxic conditions.
  • the measuring value of MAS is EC 5O that represents concentration of toxic chemicals causing 50% reduction of luminosity.
  • an environmental monitoring system is mainly limited to air pollution field.
  • water field only monthly monitoring has been done in each water system, and continuous and automatic system for measuring and monitoring water pollution has not yet been commercialized.
  • the present invention provides an apparatus for automatic and continuous measuring of water toxicity, comprising
  • a sample supplier for gathering test samples from water system at regular intervals and continuously, and for supplying test samples to luminescent microorganisms
  • a storage unit for multi-well plate which sequentially supplies multi-well plates, wherein each well contains, lyophilized luminescent microorganisms;
  • an injection needle for providing test samples and reagents in an accurate amount into luminescent microorganism contained said multi-well plate
  • a control unit for electrical or mechanical control or regulation of an automatic operation of said each unit.
  • the apparatus of the present invention may further comprises a temperature control unit that controls and/or maintains constant temperature inside of the apparatus.
  • one aspect of the present invention is to provide an apparatus capable of measuring water toxicity continuously without an operator.
  • Another aspect of the present invention is to provide a multi-well plate containing luminescent microorganisms, wherein top of the well is sealed with gas-impermeable film.
  • FIG. 1 is a front view of an apparatus for automatic measuring water toxicity.
  • FIG. 2 is a plane view of an apparatus for automatic measuring water toxicity.
  • FIG. 3 is a right-side view of an apparatus for automatic measuring water toxicity.
  • FIG. 4 is a left-side view of an apparatus for automatic measuring water toxicity.
  • An apparatus of the present invention for automatic measuring of water toxicity comprises:
  • a sample supplier for gathering test samples from water system at regular intervals and continuously, and for supplying test samples to luminescent microorganisms
  • a storage unit for multi-well plate which sequentially supplies multi-well plates, wherein each well contains, lyophilized luminescent microorganisms;
  • an injection needle for providing test samples and reagents in an accurate amount into luminescent microorganism contained said multi-well plate
  • a control unit for electrical or mechanical control or regulation of an automatic operation of said each unit.
  • the apparatus of the present invention may further comprises a temperature control unit that preferably employs Peltier device and heat radiation board as a temperature controls means.
  • the said sample supplier comprises a circulation pump, a sample-collecting block to collect aqueous samples from water system such as river, brook, lake, marshes, and etc., and a sample supplying tube.
  • the said control unit initiates the circulation pump operation at preset-time intervals. Then the said circulation pump takes in the sample from water system through the sample supply tube.
  • the aqueous sample collected by the said sample supplier is transferred into the injection needle by the operation of the said circulation pump through the sample supply tube.
  • At the end of the sample supplying tube of the sample supplier there is a filter that prevents entering of non-liquid substances and also, is an apparatus for creating reverse stream to prevent clogging of the said filter with the non-liquid substances.
  • the said storage unit for multi-well plate that stores and supplies the multi-well plates that contain lyophilized luminescent microorganism, comprises a rack which stores numerous multi-well plates in layers, an operation means which moves the said rack in up/down directions, and a transportation means that transport the multi-well plate in front/back directions in order to take out the multi-well plates.
  • the luminescent microorganism of the present invention may be the freshwater luminescent microorganism obtained preferably from freshwater or prepared by gene manipulation.
  • the luminescent microorganisms are placed in each well of the multi-well plate and then lyophilized.
  • the said well is purged with nitrogen, then the front of the plate is sealed with gas-impermeable film thereby securing the long-term preservation of the microorganism.
  • the rack of the present invention can store numerous multi-well plates.
  • the operation means for rack comprises a stepping motor and a ball screw. The rack is driven by the stepping motor to transport the multi-well plate in up/down directions thus desired plate can be selected.
  • the transportation means for the multi-well plate is to bring out the plate from inside the rack and mounting the multi-well plate on the stage by moving the plate in front/back directions to desired positions. That is, the said transportation means adjusts the position of the multi-well plate wherein the reagent and test sample can be precisely injected on the desired well through the injection needle and wherein the sensor can precisely measure the luminosity of light emitted by the microorganism contained in desired well.
  • the said transportation means comprises a pulley and belt mounted thereon, and a stepping motor connected with pulley through the belt, and by the operation of the belt driven by the stepping motor, the transportation means take out the multi-well plate from the rack.
  • the said injection needle comprises a syringe which takes in aqueous test sample and reagent from the sample supplier and reagent storage unit, and a piston operation means that control the amounts of test sample and reagents discharged.
  • the said piston operation means comprises a stepping motor and a ball screw, a pulley and a belt to control the movement of piston through the operation of stepping motor. Therefore, the injected amount through the syringe of the present invention can be quantitatively controlled by the stepping motor to an extent of below ⁇ l.
  • the position of the said syringe can be adjusted in up/down directions by means of pulley and the belt mounted thereon, ball spline and stepping motor, and thereby the movement of the syringe is driven by the operation of stepping motor.
  • the transportation means for moving syringe and sensor in left/right directions comprises a pulley, a stepping motor, and a linear motion (LM) guide, and the syringe and the sensor unit move along with the LM guide by the operation of stepping motor.
  • the syringe and the sensor of the present invention are formed in one body and set. Thus, the syringe and the sensor move in left/right directions at the same time.
  • the said reagent storage unit comprises some bottles containing various reagents and dilution buffer required for luminescence of microorganisms.
  • the said sensor unit comprises a sensor and an operation means thereof required for measuring light reduction and luminosity of the luminescent microorganisms.
  • PMT photon multiplier tube
  • the control unit cut off the PMT operation power to secure the PMT safety.
  • the apparatus of the present invention may further comprise a temperature control unit.
  • the temperature control unit of the present invention preferably employs a Peltier device and a heat radiation board as a temperature control means.
  • the internal temperature of the apparatus of the present invention should be maintained in a certain level to secure luminescent reaction and appropriate storage of microorganism and reagents. Since the internal temperature of the apparatus of the present invention should be constant continuously throughout the four (4) seasons, cooling during the summer season and heating during the winter season are required. Therefore, the apparatus of the present invention employs the Peltier device that can cool and/or heat as one device the interior of the apparatus, together with air circulation devices, to control the internal temperature of the apparatus.
  • a thermostatic system of the apparatus that ensure uniform temperature inside the apparatus, can minimize measuring error, which may be caused by temperature change, and also can secures long-term storage of microorganism.
  • the control unit of the apparatus of the present invention controls the operation of the stepping motors that control precise positions of each units, the analog-digital converter that converts the output data of sensor into digital data that can be acknowledged by the computer, various solenoid valve that convert electric signal into mechanical signal, the power supplier that supplies required DC power, the temperature sensor that measures the interior temperature of the apparatus and/or the power controller that controls the heat generated from Peltier device.
  • the control unit of the present invention comprises ⁇ -COM, SRAM, EEPROM, RS232C serial port, exterior sensor, and SRAM and EEPROM constitute memory unit.
  • the analog-digital converter of the present invention converts the analog output data of the sensor(PMT) into digital data, which can be acknowledged by the computer.
  • An automatic gain adjustment device is installed between the PMT sensor and the analog-digital converter in order to increase the applicability of the apparatus. That is, when the PMT output is weak, degree of gain is automatically increased, and contrarily when PMT output is strong, degree of gain is automatically reduced to maintain appropriate degree of gain.
  • solenoid valves controlled by electronic signals generated from the said control unit is used for selective operation of the circulation pump, PMT device, and the apparatus for creating reverse stream to prevent clogging of filter located at the end of the said sample supply tube.
  • the stepping motors of the apparatus rotate in accordance with the number of pulse inputted for purpose of the precise position control of each unit, and also are controlled by the control unit.
  • GUI graphic user interface
  • the apparatus of the present invention can be controlled remotely and/or automatically operates to measures toxicity of aqueous sample and processes the data obtained therefrom for a prescribed period, without the operator's manipulation by using reagents and luminescent microorganism stored in this apparatus.
  • the test sample supplier comprises a circulation pump( 10 ), a sample-collecting block( 11 ) to collect aqueous samples from water system such as river, brook, lake, marshes, and etc., and a sample supplying tube( 12 ).
  • the control unit initiates the circulation pump( 10 ) operation at preset-time intervals. Then the said circulation pump takes in test samples from water system.
  • the aqueous sample collected by the said test sample supplier is transferred into an injection needle by the operation of the said circulation pump( 10 ) through the sample supplying tube( 12 ).
  • At the end of the sample supply tube of the said sample supplier there is a filter that prevents entering of non-liquid substances and also, is an apparatus for creating reverse stream to prevent clogging of the said filter with the non-liquid substances.
  • the said storage unit for multi-well plate( 17 that stores and supplies the multi-well plates that contain lyophilized luminescent microorganism comprises a rack( 18 ) which stores numerous multi-well plates( 17 ) in layers, an operation means( 19 ) which moves the said rack in up/down directions, and a transportation means( 20 ) that transport the multi-well plate( 17 ) in front/back directions in order to take out the multi-well plates.
  • the luminescent microorganisms of the present invention may be the freshwater luminescent microorganisms obtained preferably from freshwater or prepared by gene manipulation.
  • the luminescent microorganisms are set in each well of the multi-well plate and then lyophilized.
  • the said well is purged with nitrogen then the top of the plate is sealed with gas-impermeable film thereby securing the long-term preservation of the microorganism.
  • the rack of the present invention can store numerous multi-well plates.
  • the operation means of rack comprises a stepping motor and a ball screw. The rack is driven by the stepping motor to transport the multi-well plate in up/down directions thus desired plate can be selected.
  • the transportation means for the multi-well plate is to bring out the plate from inside the rack and mounting the multi-well plate on the stage by moving the plate in front/back directions to desired positions. That is, the said transportation means adjusts the position of the multi-well plate wherein the reagent and test sample can be precisely injected on the desired well through the injection needle and wherein the sensor can precisely measure the luminosity of light emitted by the microorganism contained in desired well.
  • the said transportation means comprises a pulley and belt mounted thereon, and a stepping motor connected with pulley through the belt, and by the operation of the belt driven by the stepping motor, the transportation means take out the multi-well plate from the rack.
  • the said injection needle comprises a syringe( 13 ) which takes in aqueous test sample and reagent from sample supplier and reagent storage unit, a piston operation means( 14 ) that control the amounts of test sample and reagents discharged, and a syringe transportation means( 15 , 16 ).
  • the said piston operation means( 14 ) comprises a stepping motor and ball screw, a pulley and belt to control the movement of piston through the operation of stepping motor. Therefore, the injected amount through the syringe of the present invention can be quantitatively controlled by the control of the stepping motor to an extent of below ⁇ l.
  • the position of the said syringe can be adjusted in up/down directions by the means( 15 ) comprises a pulley and the belt mounted thereon, ball spline and a stepping motor, and thereby the movement of the syringe is driven by the operation of stepping motor.
  • the transportation means( 16 ) for moving syringe and sensor in left/right directions comprises a pulley, a stepping motor, and a linear motion(LM) guide, and the syringe and the sensor unit move along with the LM guide by the operation of stepping motor.
  • the syringe and the sensor of the present invention are formed in one body and set. Thus, the syringe and the sensor move in left/right directions at the same time.
  • the luminescent microorganism used in the present invention may be freshwater luminescent microorganism separated from freshwater is desirable (Kim, E. -C., T. -S. Byun, K. -J. Park, and K. -H. Lee, 1998, Toxicity Test Using a Luminescently Transformed Bacterium with an highly Increased Sensitivity, The 38 th Korea Microorganism Scholarly Symposium and Spring Plenary Session; Park, K. -J., S. -J. Chun and K. -H. Lee, (1997), Development of toxicity test system using a Luminescently transformed freshwater bacterium 52 nd Korean As. Biol. Sci., Chunbuk Univ.).
  • the luminescent microorganisms used in the apparatus of the present invention all luminescent microorganisms that can be luminous on contact with chemical substances, can be used. These luminescent microorganisms are natural or prepared by gene manipulation. Various luminescent microorganisms may be employed in the apparatus of the present invention can be obtainable from microorganism depository throughout the world. Especially, YH9-RC unit of which accession number is KCTC 0730BP is preferable. The appropriate luminescent microorganisms used in the apparatus of the present invention and the proliferation method thereof are described in detail in Korea Patent Application No. 2000-010763. Also, the method of lyophilizing luminescent microorganism used in the apparatus of the present invention is described in the Korea Patent Application No. 2000-37709.
  • the rack stores numerous multi-well plates as like 384 well plate.
  • the preferred embodiment of the present invention employs rack structure wherein six(6) or more 384 well plates can be layered in two(2) row.
  • 24 wells can be used as control well per each 384 well plate.
  • twelve(12) or more of 384 well are set in the apparatus. Therefore, upon measuring aqueous sample every 10 minutes, automatic operation of the apparatus for one(1) month is possible. By supplying multi-well plates every one(1) month, automatic continuous water toxicity monitoring can be achieved.
  • the solution storage unit of the apparatus of the present invention stores bottles( 21 ) that are containing reagents, dilution solution required for the activation of the luminescent microorganisms.
  • the sensor unit includes sensor( 22 ) and operation means thereof, and the light reduction degree and luminosity of light emitted from luminescent microorganism is measured.
  • Photon Multiplier Tube(PMT) is appropriately employed as the sensor device.
  • the temperature control means of the present invention employs two(2) Peltier devices( 23 ) and heat radiation board( 24 ).
  • the apparatus for automatic measuring of water toxicity of the present invention comprises a test sample supplier for gathering test samples from water system at regular intervals and continuously and for supplying test sample to luminescent microorganism, a multi-well plate storage that keep and provide sequentially multi-well plate in which each well contains lyophilized luminescent microorganism, a transportation means for moving said numerous multi-well plates sequentially, an injection needle for providing test samples and reagents in an accurate dose into luminescent microorganism contained in said multi-well plate and a sensor for detecting luminosity after the lapse of some times from injection of test sample and reagent into luminescent microorganism, and a control unit that controls or regulates electrically or mechanically the operation of said each unit automatically.
  • toxicity and contamination of water system can be measured continuously without operator's manipulation until the reagents and luminescent microorganism stored in this apparatus are consumed.
  • the automatic water toxicity measuring apparatus of the present invention is appropriate to be employed as a terminal for remote monitoring of the water toxicity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Measurement Of Radiation (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to an apparatus for automatic measuring of water toxicity. More specifically, the present invention provides an apparatus for automatic and continuous measuring of water toxicity and/or contamination using luminescent microorganisms living in freshwater.

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to an apparatus for automatic measuring for water toxicity. More specifically, the present invention provides an apparatus measuring water toxicity and/or contamination continuously and automatically using luminescent microorganisms living in freshwater. [0001]
  • BACKGROUND OF THE INVENTION
  • A method using luminescent microorganisms is known to measure water toxicity and/or contamination. The luminescent mechanism of the luminescent microorganism is affected by activation of biochemical environmental conditions of the luciferase that controls the emission of light, resulting in changing luminosity of the microorganism. The Microtox Assay System (hereinafter, MAS) commercialized by the MICROBICS Co. is an apparatus measuring water toxicity and/or contamination using luminescent microorganisms. The MAS method measures the luminosity of light emitted by luminescent microorganism under toxic conditions on the basis of the luminosity of the luminescent microorganism living non-toxic conditions. The measuring value of MAS is EC[0002] 5O that represents concentration of toxic chemicals causing 50% reduction of luminosity.
  • However, because seawater microorganisms are used in MAS system, a separate addition of salts into a test sample in an amount equivalent to that of seawater is required to show physiological function of luminescent microorganisms. In this case, toxicity of chemicals may be offset due to the reaction of chemicals with metals and salts. As a result while most parts of the MAS data show similar results with those obtained from measurements using other microorganisms, the MAS toxicity data do not align with those obtained from measurements using other microorganism, for toxic chemicals such as ammonia or cyanide. [0003]
  • In addition, in order to measure toxicity of samples using MAS, lyophilized microorganisms contained in each ampoule need to be rehydrated one by one, and then are mixed with aqueous sample before their luminescence is measured by luminometer. Furthermore, MAS requires a batch operation system, wherein an operator measures luminescence of each individual sample manually. Therefore, in order to measure and observe the water toxicity continuously and continuously using a MAS method, an ampoule containing luminescent microorganisms needs each measuring time, which necessitate an operator for an apparatus measuring toxicity. Due to these problems, it has been a very laborious work to measure water toxicity continuously using the currently available apparatuses. Therefore, continuous monitor of water toxicity was almost impossible with any methods that have been developed up to now for the purpose of measuring water toxicity. Until the present invention, an automatic apparatus for measuring and monitoring water toxicity has never been developed. Despite of necessity and importance of continuous and automatic monitoring of water toxicity, automatic measurements are limited for pH, DO, water level, flow rate, and the like. Automatic measuring and monitoring of COD and SS is reported to be partially available for several limited samples. [0004]
  • Moreover, an environmental monitoring system is mainly limited to air pollution field. Thus, in water field, only monthly monitoring has been done in each water system, and continuous and automatic system for measuring and monitoring water pollution has not yet been commercialized. [0005]
  • SUMMARY OF THE INVENTION
  • Therefore, the present invention provides an apparatus for automatic and continuous measuring of water toxicity, comprising [0006]
  • A sample supplier for gathering test samples from water system at regular intervals and continuously, and for supplying test samples to luminescent microorganisms; [0007]
  • a multi-well plate containing luminescent microorganisms, wherein the top of the well is sealed with gas-impermeable film; [0008]
  • a storage unit for multi-well plate, which sequentially supplies multi-well plates, wherein each well contains, lyophilized luminescent microorganisms; [0009]
  • a transportation means for said multi-well plates; [0010]
  • an injection needle for providing test samples and reagents in an accurate amount into luminescent microorganism contained said multi-well plate; [0011]
  • a sensor for detecting luminosity after a lapse of certain times from injection of samples and reagents into luminescent microorganisms; and [0012]
  • a control unit for electrical or mechanical control or regulation of an automatic operation of said each unit. [0013]
  • In addition, the apparatus of the present invention may further comprises a temperature control unit that controls and/or maintains constant temperature inside of the apparatus. [0014]
  • Therefore, one aspect of the present invention is to provide an apparatus capable of measuring water toxicity continuously without an operator. [0015]
  • Another aspect of the present invention is to provide a multi-well plate containing luminescent microorganisms, wherein top of the well is sealed with gas-impermeable film.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above aspects and other advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings, in which: [0017]
  • FIG. 1 is a front view of an apparatus for automatic measuring water toxicity. [0018]
  • FIG. 2 is a plane view of an apparatus for automatic measuring water toxicity. [0019]
  • FIG. 3 is a right-side view of an apparatus for automatic measuring water toxicity. [0020]
  • FIG. 4 is a left-side view of an apparatus for automatic measuring water toxicity.[0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, an apparatus of the present invention will be described in more detail. However, the automatic water toxicity measuring apparatus explained in below is given only for the explanation of embodiment of the present invention and not intended to limit the scope of the present invention. [0022]
  • An apparatus of the present invention for automatic measuring of water toxicity comprises: [0023]
  • a sample supplier for gathering test samples from water system at regular intervals and continuously, and for supplying test samples to luminescent microorganisms; [0024]
  • a multi-well plate containing luminescent microorganisms, wherein the top of the well is sealed with gas-impermeable film; [0025]
  • a storage unit for multi-well plate, which sequentially supplies multi-well plates, wherein each well contains, lyophilized luminescent microorganisms; [0026]
  • a transportation means for said multi-well plates; [0027]
  • an injection needle for providing test samples and reagents in an accurate amount into luminescent microorganism contained said multi-well plate; [0028]
  • a sensor for detecting luminosity after a lapse of certain times from injection of samples and reagents into luminescent microorganisms; and [0029]
  • a control unit for electrical or mechanical control or regulation of an automatic operation of said each unit. [0030]
  • In addition, the apparatus of the present invention may further comprises a temperature control unit that preferably employs Peltier device and heat radiation board as a temperature controls means. [0031]
  • The said sample supplier comprises a circulation pump, a sample-collecting block to collect aqueous samples from water system such as river, brook, lake, marshes, and etc., and a sample supplying tube. The said control unit initiates the circulation pump operation at preset-time intervals. Then the said circulation pump takes in the sample from water system through the sample supply tube. The aqueous sample collected by the said sample supplier is transferred into the injection needle by the operation of the said circulation pump through the sample supply tube. At the end of the sample supplying tube of the sample supplier, there is a filter that prevents entering of non-liquid substances and also, is an apparatus for creating reverse stream to prevent clogging of the said filter with the non-liquid substances. [0032]
  • The said storage unit for multi-well plate that stores and supplies the multi-well plates that contain lyophilized luminescent microorganism, comprises a rack which stores numerous multi-well plates in layers, an operation means which moves the said rack in up/down directions, and a transportation means that transport the multi-well plate in front/back directions in order to take out the multi-well plates. [0033]
  • The luminescent microorganism of the present invention may be the freshwater luminescent microorganism obtained preferably from freshwater or prepared by gene manipulation. The luminescent microorganisms are placed in each well of the multi-well plate and then lyophilized. The said well is purged with nitrogen, then the front of the plate is sealed with gas-impermeable film thereby securing the long-term preservation of the microorganism. The rack of the present invention can store numerous multi-well plates. The operation means for rack comprises a stepping motor and a ball screw. The rack is driven by the stepping motor to transport the multi-well plate in up/down directions thus desired plate can be selected. The transportation means for the multi-well plate is to bring out the plate from inside the rack and mounting the multi-well plate on the stage by moving the plate in front/back directions to desired positions. That is, the said transportation means adjusts the position of the multi-well plate wherein the reagent and test sample can be precisely injected on the desired well through the injection needle and wherein the sensor can precisely measure the luminosity of light emitted by the microorganism contained in desired well. The said transportation means comprises a pulley and belt mounted thereon, and a stepping motor connected with pulley through the belt, and by the operation of the belt driven by the stepping motor, the transportation means take out the multi-well plate from the rack. [0034]
  • The said injection needle comprises a syringe which takes in aqueous test sample and reagent from the sample supplier and reagent storage unit, and a piston operation means that control the amounts of test sample and reagents discharged. The said piston operation means comprises a stepping motor and a ball screw, a pulley and a belt to control the movement of piston through the operation of stepping motor. Therefore, the injected amount through the syringe of the present invention can be quantitatively controlled by the stepping motor to an extent of below μl. The position of the said syringe can be adjusted in up/down directions by means of pulley and the belt mounted thereon, ball spline and stepping motor, and thereby the movement of the syringe is driven by the operation of stepping motor. The transportation means for moving syringe and sensor in left/right directions comprises a pulley, a stepping motor, and a linear motion (LM) guide, and the syringe and the sensor unit move along with the LM guide by the operation of stepping motor. The syringe and the sensor of the present invention are formed in one body and set. Thus, the syringe and the sensor move in left/right directions at the same time. [0035]
  • The said reagent storage unit comprises some bottles containing various reagents and dilution buffer required for luminescence of microorganisms. [0036]
  • The said sensor unit comprises a sensor and an operation means thereof required for measuring light reduction and luminosity of the luminescent microorganisms. Preferably, photon multiplier tube (PMT) is employed as a sensor of the apparatus of the present invention. When the apparatus is open, the control unit cut off the PMT operation power to secure the PMT safety. [0037]
  • The apparatus of the present invention may further comprise a temperature control unit. The temperature control unit of the present invention preferably employs a Peltier device and a heat radiation board as a temperature control means. The internal temperature of the apparatus of the present invention should be maintained in a certain level to secure luminescent reaction and appropriate storage of microorganism and reagents. Since the internal temperature of the apparatus of the present invention should be constant continuously throughout the four (4) seasons, cooling during the summer season and heating during the winter season are required. Therefore, the apparatus of the present invention employs the Peltier device that can cool and/or heat as one device the interior of the apparatus, together with air circulation devices, to control the internal temperature of the apparatus. [0038]
  • A thermostatic system of the apparatus that ensure uniform temperature inside the apparatus, can minimize measuring error, which may be caused by temperature change, and also can secures long-term storage of microorganism. [0039]
  • The control unit of the apparatus of the present invention controls the operation of the stepping motors that control precise positions of each units, the analog-digital converter that converts the output data of sensor into digital data that can be acknowledged by the computer, various solenoid valve that convert electric signal into mechanical signal, the power supplier that supplies required DC power, the temperature sensor that measures the interior temperature of the apparatus and/or the power controller that controls the heat generated from Peltier device. [0040]
  • The control unit of the present invention comprises μ-COM, SRAM, EEPROM, RS232C serial port, exterior sensor, and SRAM and EEPROM constitute memory unit. [0041]
  • The analog-digital converter of the present invention converts the analog output data of the sensor(PMT) into digital data, which can be acknowledged by the computer. An automatic gain adjustment device is installed between the PMT sensor and the analog-digital converter in order to increase the applicability of the apparatus. That is, when the PMT output is weak, degree of gain is automatically increased, and contrarily when PMT output is strong, degree of gain is automatically reduced to maintain appropriate degree of gain. In the present invention, solenoid valves controlled by electronic signals generated from the said control unit, is used for selective operation of the circulation pump, PMT device, and the apparatus for creating reverse stream to prevent clogging of filter located at the end of the said sample supply tube. [0042]
  • The stepping motors of the apparatus rotate in accordance with the number of pulse inputted for purpose of the precise position control of each unit, and also are controlled by the control unit. [0043]
  • In the apparatus of the present invention, a graphic user interface(GUI) commercialized for a personal computer is employed. Thus, all information regarding to the operation status of the apparatus can be processed through the monitor screen of the computer. In addition, through the control unit, self-diagnosis, and detection of exterior environment change and respond thereto are processed automatically to secure the safety of the apparatus. [0044]
  • The apparatus of the present invention can be controlled remotely and/or automatically operates to measures toxicity of aqueous sample and processes the data obtained therefrom for a prescribed period, without the operator's manipulation by using reagents and luminescent microorganism stored in this apparatus. [0045]
  • Hereinafter, an embodiment of the apparatus of the present invention will be described in greater detail with reference to the following Figures. The Figures are given only for the illustrations of the invention and are not intended to limiting the scope of the present invention. [0046]
  • In a preferable embodiment of the apparatus of the present invention, the test sample supplier comprises a circulation pump([0047] 10), a sample-collecting block(11) to collect aqueous samples from water system such as river, brook, lake, marshes, and etc., and a sample supplying tube(12). The control unit initiates the circulation pump(10) operation at preset-time intervals. Then the said circulation pump takes in test samples from water system. The aqueous sample collected by the said test sample supplier is transferred into an injection needle by the operation of the said circulation pump(10) through the sample supplying tube(12). At the end of the sample supply tube of the said sample supplier, there is a filter that prevents entering of non-liquid substances and also, is an apparatus for creating reverse stream to prevent clogging of the said filter with the non-liquid substances.
  • The said storage unit for multi-well plate([0048] 17 that stores and supplies the multi-well plates that contain lyophilized luminescent microorganism, comprises a rack(18) which stores numerous multi-well plates(17) in layers, an operation means(19) which moves the said rack in up/down directions, and a transportation means(20) that transport the multi-well plate(17) in front/back directions in order to take out the multi-well plates.
  • The luminescent microorganisms of the present invention may be the freshwater luminescent microorganisms obtained preferably from freshwater or prepared by gene manipulation. The luminescent microorganisms are set in each well of the multi-well plate and then lyophilized. The said well is purged with nitrogen then the top of the plate is sealed with gas-impermeable film thereby securing the long-term preservation of the microorganism. The rack of the present invention can store numerous multi-well plates. The operation means of rack comprises a stepping motor and a ball screw. The rack is driven by the stepping motor to transport the multi-well plate in up/down directions thus desired plate can be selected. The transportation means for the multi-well plate is to bring out the plate from inside the rack and mounting the multi-well plate on the stage by moving the plate in front/back directions to desired positions. That is, the said transportation means adjusts the position of the multi-well plate wherein the reagent and test sample can be precisely injected on the desired well through the injection needle and wherein the sensor can precisely measure the luminosity of light emitted by the microorganism contained in desired well. The said transportation means comprises a pulley and belt mounted thereon, and a stepping motor connected with pulley through the belt, and by the operation of the belt driven by the stepping motor, the transportation means take out the multi-well plate from the rack. [0049]
  • The said injection needle comprises a syringe([0050] 13) which takes in aqueous test sample and reagent from sample supplier and reagent storage unit, a piston operation means(14) that control the amounts of test sample and reagents discharged, and a syringe transportation means(15, 16). The said piston operation means(14) comprises a stepping motor and ball screw, a pulley and belt to control the movement of piston through the operation of stepping motor. Therefore, the injected amount through the syringe of the present invention can be quantitatively controlled by the control of the stepping motor to an extent of below μl. The position of the said syringe can be adjusted in up/down directions by the means(15) comprises a pulley and the belt mounted thereon, ball spline and a stepping motor, and thereby the movement of the syringe is driven by the operation of stepping motor. The transportation means(16) for moving syringe and sensor in left/right directions comprises a pulley, a stepping motor, and a linear motion(LM) guide, and the syringe and the sensor unit move along with the LM guide by the operation of stepping motor. The syringe and the sensor of the present invention are formed in one body and set. Thus, the syringe and the sensor move in left/right directions at the same time.
  • The luminescent microorganism used in the present invention may be freshwater luminescent microorganism separated from freshwater is desirable (Kim, E. -C., T. -S. Byun, K. -J. Park, and K. -H. Lee, 1998, Toxicity Test Using a Luminescently Transformed Bacterium with an highly Increased Sensitivity, The 38[0051] th Korea Microorganism Scholarly Symposium and Spring Plenary Session; Park, K. -J., S. -J. Chun and K. -H. Lee, (1997), Development of toxicity test system using a Luminescently transformed freshwater bacterium 52nd Korean As. Biol. Sci., Chunbuk Univ.).
  • In addition, the luminescent microorganisms used in the apparatus of the present invention, all luminescent microorganisms that can be luminous on contact with chemical substances, can be used. These luminescent microorganisms are natural or prepared by gene manipulation. Various luminescent microorganisms may be employed in the apparatus of the present invention can be obtainable from microorganism depository throughout the world. Especially, YH9-RC unit of which accession number is KCTC 0730BP is preferable. The appropriate luminescent microorganisms used in the apparatus of the present invention and the proliferation method thereof are described in detail in Korea Patent Application No. 2000-010763. Also, the method of lyophilizing luminescent microorganism used in the apparatus of the present invention is described in the Korea Patent Application No. 2000-37709. [0052]
  • In order to operate the apparatus of the present invention as long term-automated system, the rack stores numerous multi-well plates as like 384 well plate. [0053]
  • In order to arrange numerous plates efficiently, and to minimize the size of the apparatus, the preferred embodiment of the present invention employs rack structure wherein six(6) or more 384 well plates can be layered in two(2) row. [0054]
  • In case that the aqueous sample is tested every 10 minutes, 4,320 [6×24(hours)×30(days)] of wells which contains luminescent microorganism are required to measure and monitor water toxicity for one(1) month. Since the apparatus of the present invention can store twelve(12) or more of 384 well plates, 4,608 [384×12] or more of aqueous samples can be measured. The rest of well[4,608−4,320=288] can be used as control. [0055]
  • Thus, 24 wells can be used as control well per each 384 well plate. In preferred embodiment of the present invention, twelve(12) or more of 384 well are set in the apparatus. Therefore, upon measuring aqueous sample every 10 minutes, automatic operation of the apparatus for one(1) month is possible. By supplying multi-well plates every one(1) month, automatic continuous water toxicity monitoring can be achieved. [0056]
  • The solution storage unit of the apparatus of the present invention stores bottles([0057] 21) that are containing reagents, dilution solution required for the activation of the luminescent microorganisms.
  • The sensor unit includes sensor([0058] 22) and operation means thereof, and the light reduction degree and luminosity of light emitted from luminescent microorganism is measured. Photon Multiplier Tube(PMT) is appropriately employed as the sensor device. The temperature control means of the present invention employs two(2) Peltier devices(23) and heat radiation board(24).
  • Industrial Applicability
  • The apparatus for automatic measuring of water toxicity of the present invention comprises a test sample supplier for gathering test samples from water system at regular intervals and continuously and for supplying test sample to luminescent microorganism, a multi-well plate storage that keep and provide sequentially multi-well plate in which each well contains lyophilized luminescent microorganism, a transportation means for moving said numerous multi-well plates sequentially, an injection needle for providing test samples and reagents in an accurate dose into luminescent microorganism contained in said multi-well plate and a sensor for detecting luminosity after the lapse of some times from injection of test sample and reagent into luminescent microorganism, and a control unit that controls or regulates electrically or mechanically the operation of said each unit automatically. [0059]
  • By using the apparatus of the present invention, toxicity and contamination of water system can be measured continuously without operator's manipulation until the reagents and luminescent microorganism stored in this apparatus are consumed. [0060]
  • In addition, by supplying multi-well plates periodically, automatic and continuous water toxicity monitoring can be achieved. [0061]
  • In conclusion, the automatic water toxicity measuring apparatus of the present invention is appropriate to be employed as a terminal for remote monitoring of the water toxicity. [0062]
  • While the present invention has been particularly shown and described with reference to particular embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be effected therein without departing from the spirit and scope of the invention as defined by the appended claims. [0063]
  • This application claims priority from the Korean Patent Application No. 10-2000-0002114, the contents of which are hereby incorporated by reference in their entirety, including the specification, drawings and claims. [0064]

Claims (14)

What is claimed is:
1. An apparatus for automatic and continuous measuring of water toxicity, comprising
a sample supplier for gathering test samples from water system at regular intervals and continuously, and for supplying test samples to luminescent microorganisms;
a multi-well plate containing luminescent microorganisms, wherein the top of the well is sealed with gas-impermeable film;
a storage unit for multi-well plates, which sequentially supplies multi-well plates, wherein each well contains lyophilized luminescent microorganisms;
a transportation means for said multi-well plates;
an injection needle for providing test samples and reagents in an accurate amount into luminescent microorganism contained said multi-well plate;
a sensor for detecting luminosity after a lapse of certain times from injection of samples and reagents into luminescent microorganisms; and
a control unit for electrical or mechanical control or regulation of an automatic operation of said each unit.
2. The apparatus according to
claim 1
, wherein said sample supplier comprises a circulation pump, a sample collecting block for collecting aqueous samples, and a sample supplying tube.
3. The apparatus according to
claim 1
, wherein said luminescent microorganisms are freshwater luminescent microorganisms obtained from freshwater.
4. The apparatus according to
claim 1
, wherein said luminescent microorganisms are freshwater luminescent microorganisms prepared by gene manipulation.
5. The apparatus according to
claim 1
, wherein said storage unit for multi-well plates comprises a rack that stores multi-well plates in layers, an operation means that moves the said multi-well plates in up/down directions, and a transportation means that transport the said multi-well plates in front/back directions from the rack.
6. The apparatus according to
claim 1
, wherein said injection needle comprises a syringe which takes in an aqueous test sample and reagent from a sample supplier and a reagent storage unit, a piston operation means that control the amounts output by the said syringe, a transportation means for moving syringe.
7. The apparatus according to
claim 1
, further comprising a temperature control means for maintaining constant temperature inside the apparatus.
8. The apparatus according to
claim 1
or
claim 2
, wherein the end of the sample supplying tube in the sample supplier comprises a filter that prevents entering of non-liquid substances and an apparatus that creates reverse stream to prevent clogging.
9. A multi-well plate comprising luminescent microorganisms, wherein the top of the well is sealed with gas-impermeable film.
10. The multi-well plate according to claims 9, wherein said luminescent microorganisms are freshwater luminescent microorganisms.
11. The multi-well plate according to claims 10, wherein said luminescent microorganisms are separated from freshwater.
12. The multi-well plate according to claims 9, wherein said luminescent microorganisms are prepared by gene manipulation.
13. The multi-well plate according to claims 9, wherein said luminescent microorganisms are lyophilized.
14. The multi-well plate according to claims 9, wherein said well is purged with Nitrogen.
US09/761,654 2000-01-18 2001-01-18 Apparatus for automatic measuring of water toxicity Expired - Fee Related US6436698B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR2000-2114 2000-01-18
KR20000002114 2000-01-18
KR2001-2101 2001-01-15
KR10-2001-0002101A KR100414784B1 (en) 2000-01-18 2001-01-15 Automatic Water Toxicity Measuring Apparatus
KR10-2000-0002114 2001-01-15

Publications (2)

Publication Number Publication Date
US20010026936A1 true US20010026936A1 (en) 2001-10-04
US6436698B2 US6436698B2 (en) 2002-08-20

Family

ID=26636764

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/761,654 Expired - Fee Related US6436698B2 (en) 2000-01-18 2001-01-18 Apparatus for automatic measuring of water toxicity

Country Status (9)

Country Link
US (1) US6436698B2 (en)
EP (1) EP1159442B1 (en)
JP (1) JP2001242159A (en)
KR (1) KR100414784B1 (en)
CN (1) CN1218045C (en)
AT (1) ATE347611T1 (en)
AU (1) AU2889201A (en)
DE (1) DE60124975T2 (en)
WO (1) WO2001053517A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164331A1 (en) * 2002-04-27 2005-07-28 Korea Biosystems Corp. Method and device for detecting toxic material in water using microbial fuel cell
CN103308659A (en) * 2013-07-05 2013-09-18 中国科学院合肥物质科学研究院 Water body organic pollution toxicity assessment method based on human-mouse hybridoma cell
ITRM20120218A1 (en) * 2012-05-15 2013-11-16 Pompeo Moscetta DEVICE AND METHOD FOR ANALYSIS AND MONITORING OF TOXICITY IN WATERS.
CN113267488A (en) * 2021-06-02 2021-08-17 上海泽安实业有限公司 Automatic detection equipment and detection method for toxicity of water sample

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100357756B1 (en) * 2000-03-03 2002-10-18 김상종 Bioluminescent organism using in detecting toxic substances
IL162842A0 (en) * 2004-07-04 2005-11-20 Blue I Technologies Ltd Indictor strip and a device for automatic testing of liquids
US20070292844A1 (en) * 2006-03-22 2007-12-20 Northrop Grumman Corporation Enhanced biohazard detection system
DE102007012970A1 (en) * 2007-03-14 2008-09-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for online control of drinking water
AT505306B1 (en) * 2007-07-09 2008-12-15 Mbonline Gmbh DEVICE FOR MONITORING WATER TO MICROBIAL CASES
CN102175828B (en) * 2011-01-20 2014-06-11 济南市供排水监测中心 Method for evaluating water quality health risk with chromium ion as standard toxic substance
CN102636545B (en) * 2012-03-16 2013-11-06 北京航空航天大学 Early warning device for biomass with comprehensive toxicity in water
KR101399453B1 (en) 2012-08-20 2014-05-28 한국건설기술연구원 Ecology Toxicity Monitoring Device and Method Thereof
CN103018419B (en) * 2012-12-18 2015-04-08 南京大学 Method for determining risk of toxic pollutants in river water of high content of sand
DE102014118138A1 (en) * 2014-12-08 2016-06-09 Lar Process Analysers Ag Analysis arrangement for water and wastewater analysis
ES2637236B2 (en) * 2016-04-11 2018-02-05 Universidad De Cádiz Mobile unit for the evaluation and control of the impact of effluents from wastewater treatment plants in marine ecosystems.
US11604146B2 (en) 2017-09-19 2023-03-14 Beckman Coulter, Inc. Analog light measuring and photon counting with a luminometer system for assay reactions in chemiluminescence measurements
KR101951330B1 (en) * 2018-03-27 2019-02-22 주식회사 켐토피아 Device for monitoring quality of water
CN108982889B (en) * 2018-06-25 2022-03-25 中国科学院重庆绿色智能技术研究院 Water quality comprehensive biotoxicity on-line monitoring automatic analysis instrument
CN108776206A (en) * 2018-07-26 2018-11-09 俞怡蒙 A kind of portable smart water quality detector and its detection method
CN109839289B (en) * 2019-02-20 2021-07-09 吉林师范大学 Early warning device based on biological population chunk discernment and water pollution
CN111189782A (en) * 2020-02-26 2020-05-22 杭州电子科技大学 Water quality detection equipment for fresh water biotoxicity monitoring system
CN111785117A (en) * 2020-07-17 2020-10-16 盐城工学院 Simulation experiment device and experiment method for attaching biological membrane to multi-material water delivery pipeline

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0025350A3 (en) * 1979-09-05 1981-06-10 Dynatech Ag Apparatus for detecting luminescent reactions
US4772453A (en) * 1985-03-01 1988-09-20 Lisenbee Wayne F Luminiscence measurement arrangement
GB2211607A (en) * 1987-10-29 1989-07-05 Cardiff Energy & Resources Injection systems for luminometers
US5082628A (en) * 1989-09-19 1992-01-21 Park Pharmaceuticals, Inc. Luminometer
US6017722A (en) * 1991-04-04 2000-01-25 Board Of Regents, The University Of Texas System Luminous bacteria and methods for the isolation, identification and quantitation of toxicants
US5380487A (en) * 1992-05-05 1995-01-10 Pasteur Sanofi Diagnostics Device for automatic chemical analysis
IL107815A (en) * 1992-12-04 2003-12-10 Du Pont Genetic constructs comprising a stress-responsive promoter linked to a lux reporter operon and methods of use in environmental testing
GB2303799B (en) * 1995-07-29 1999-03-10 Siemens Plc Improvements in or relating to aqueous sample testing apparatus
GB2303912B (en) * 1995-07-29 1999-06-16 Siemens Plc Improvements in or relating to aqueous sample testing apparatus
JPH09107990A (en) * 1995-10-17 1997-04-28 Meidensha Corp Automatic detection of poison and system therefor
US5798263A (en) * 1996-09-05 1998-08-25 Promega Corporation Apparatus for quantifying dual-luminescent reporter assays
WO1998021347A1 (en) * 1996-11-15 1998-05-22 E.I. Du Pont De Nemours And Company A small volume, highly sensitive method for detecting environmental insults
KR19990069400A (en) * 1998-02-09 1999-09-06 김효근 Bioreactor with optical fiber and toxicity detection method using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050164331A1 (en) * 2002-04-27 2005-07-28 Korea Biosystems Corp. Method and device for detecting toxic material in water using microbial fuel cell
ITRM20120218A1 (en) * 2012-05-15 2013-11-16 Pompeo Moscetta DEVICE AND METHOD FOR ANALYSIS AND MONITORING OF TOXICITY IN WATERS.
WO2013171667A1 (en) * 2012-05-15 2013-11-21 Pompeo Moscetta Device and method for the determination and monitoring of water toxicity
US9927418B2 (en) 2012-05-15 2018-03-27 Pompeo Moscetta Device and method for the determination and monitoring of water toxicity
CN103308659A (en) * 2013-07-05 2013-09-18 中国科学院合肥物质科学研究院 Water body organic pollution toxicity assessment method based on human-mouse hybridoma cell
CN113267488A (en) * 2021-06-02 2021-08-17 上海泽安实业有限公司 Automatic detection equipment and detection method for toxicity of water sample

Also Published As

Publication number Publication date
KR100414784B1 (en) 2004-01-13
KR20010086342A (en) 2001-09-10
CN1218045C (en) 2005-09-07
US6436698B2 (en) 2002-08-20
CN1358231A (en) 2002-07-10
ATE347611T1 (en) 2006-12-15
WO2001053517A1 (en) 2001-07-26
DE60124975D1 (en) 2007-01-18
DE60124975T2 (en) 2007-09-20
JP2001242159A (en) 2001-09-07
AU2889201A (en) 2001-07-31
EP1159442B1 (en) 2006-12-06
EP1159442A1 (en) 2001-12-05

Similar Documents

Publication Publication Date Title
US6436698B2 (en) Apparatus for automatic measuring of water toxicity
US7704457B2 (en) Automatic, field portable analyzer using discrete sample aliquots
US3676679A (en) Apparatus for detecting biological activity
EP2371942A3 (en) Bioreactor and bioprocessing technique
RU2228523C2 (en) METHODS MEASURING RATES OF NITRIFICATION AND DENITRIFICATION AND NOx IN LIQUID
CN111707659A (en) Luminous bacteria-based water quality comprehensive biotoxicity analyzer
KR101810810B1 (en) Method and Apparatus for Determining Microorganisms in a Water Sample
EP1141702B1 (en) Method for measuring nitrification rates in biochemical processes
KR101087721B1 (en) Luminometer
KR100663094B1 (en) Bioluminescence measuring apparatus and the vial holder
GB2605648A (en) Auto-sampler device and method of autosampling
KR100502991B1 (en) A device and method for checking and alarming the quality of water automatically by using microbe
KR20000031934A (en) Automatic water toxicant measuring instrument using immobilized photogenic microorganism
AU2017204090A1 (en) An apparatus and system for investigating properties of substrates and/or water bodies and a method of using same
CN212568486U (en) Luminous bacteria-based water quality comprehensive biotoxicity analyzer
Ghosh et al. System for oxygen measurements in a fish farm
Newman News from the fall ACS national meeting: Analytical chemistry and the Chemical Weapons Convention
Bradley Science: A cellular litmus test
JP2008215885A (en) Water quality inspection device and method
GB2403288A (en) Light emission assay apparatus
Lee et al. Method for measuring NO x in biochemical processes
Kounaves et al. DETECTION OF MICROBIAL LIFE IN SOIL BASED ON MINIMAL ASSUMPTIONS USING MEASUREMENTS OF PHYSICAL AND CHEMICAL CHANGES INDUCED BY GROWTH.
JPH06319594A (en) Determination of bio-activity
JP2002365220A (en) Toxic-substance monitoring apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: BIONEER CORPORATION, KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, HAN OH;PARK, HANEE;CHOI, IL KYU;REEL/FRAME:011847/0575;SIGNING DATES FROM 20010322 TO 20010324

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140820