JPH06319594A - Determination of bio-activity - Google Patents

Determination of bio-activity

Info

Publication number
JPH06319594A
JPH06319594A JP10665793A JP10665793A JPH06319594A JP H06319594 A JPH06319594 A JP H06319594A JP 10665793 A JP10665793 A JP 10665793A JP 10665793 A JP10665793 A JP 10665793A JP H06319594 A JPH06319594 A JP H06319594A
Authority
JP
Japan
Prior art keywords
activity
specimen
living
determination
living body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10665793A
Other languages
Japanese (ja)
Inventor
Takashi Onishi
巍 大西
Tetsuo Takahashi
哲郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10665793A priority Critical patent/JPH06319594A/en
Publication of JPH06319594A publication Critical patent/JPH06319594A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for the determination of bio-activity to enable the estimation of the activity of living cell and the determination of the concentration in a short time. CONSTITUTION:A specimen solution and a maleimide derivative are charged to a reaction tank 3 and mixed. The mixed specimen liquid containing a component emitting light with organism is retained for a prescribed period in the reaction tank 3 and transferred to a flow cell 5. Light having a definite wavelength is transmitted through a filter 9 and a condenser lens 10 and applied to the specimen in the flow cell 5. Light emitted from the specimen is passed through a condenser lens 11 and a filter 12, detected with a photomultiplier 13 and counted with a counter 14 to determine the number of living cells and the activity of each organism in the specimen solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、食品工業や排水処理等
に用いられる生体(微生物)や飲料水等に含まれる生体
(微生物)の活性を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the activity of living organisms (microorganisms) used in the food industry, wastewater treatment, etc. and living organisms (microorganisms) contained in drinking water and the like.

【0002】[0002]

【従来の技術】従来は生体の活性を測定するのに生体の
増殖速度や、生体がA物質からB物質に変換する速度等
を捉えていたが、その測定には数時間から数日と長時間
を要した。
2. Description of the Related Art Hitherto, in order to measure the activity of a living body, the growth rate of the living body, the rate at which the living body converts from substance A to substance B, etc. have been grasped. It took time.

【0003】従って、生体(微生物)の活性を測定する
従来の方法には次の欠点がある。生体の増殖速度から活
性を捉えるには生体濃度(個/ml)の経時変化を捉える
必要があるが、生体の増殖は一般的に遅いので生体濃度
の変化を知るには半日から数日を要する。
Therefore, the conventional methods for measuring the activity of a living body (microorganism) have the following drawbacks. It is necessary to grasp the change over time in the biological concentration (cells / ml) in order to capture the activity from the growth rate of the biological body, but since the growth of the biological body is generally slow, it takes half a day to several days to know the change in the biological concentration. .

【0004】また、生体がA物質からB物質に変化する
速度を求めるには、やはりA物質からB物質への変化を
経時的に捉える必要があり、その測定には数時間から数
日を要する。
Further, in order to obtain the rate at which a living body changes from substance A to substance B, it is necessary to grasp the change from substance A to substance B over time, and the measurement requires several hours to several days. .

【0005】本発明は、生体と反応した後の蛍光物質の
蛍光強度を測定する事で少なくとも1時間以内の短時間
に、生体の活性が測定出来る。
In the present invention, the activity of a living body can be measured within a short time of at least 1 hour by measuring the fluorescence intensity of the fluorescent substance after reacting with the living body.

【0006】[0006]

【発明が解決しようとする課題】本発明は、短時間で生
体細胞の活性評価とその濃度計測が可能な測定方法を提
供することを課題としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a measuring method capable of evaluating the activity of living cells and measuring the concentration thereof in a short time.

【0007】また、本発明は、簡単な操作で、かつ、熟
練を要せずに生体活性を測定できる方法を提供すること
をも課題としている。
Another object of the present invention is to provide a method capable of measuring biological activity with a simple operation and without requiring skill.

【0008】[0008]

【課題を解決するための手段】本発明では、生体細胞と
直接的に反応して非蛍光物質が、蛍光物質に変換するマ
レイミド誘導体を検体に添加して、生体に結合したマレ
イミド誘導体からの蛍光強度を光電子増倍管等で検出
し、迅速に活性を評価出来る手段を採用した。
In the present invention, a non-fluorescent substance reacts directly with living cells to convert a non-fluorescent substance into a fluorescent substance, and a maleimide derivative is added to a sample to give fluorescence from a maleimide derivative bound to a living body. We adopted a method to detect the intensity with a photomultiplier tube and to evaluate the activity quickly.

【0009】発光プローブとしてはマレイミド誘導体の
一種であるN-(Pyrene)マレイミド(maleimide) 等を用い
る。
N- (Pyrene) maleimide, which is a type of maleimide derivative, is used as the luminescent probe.

【0010】[0010]

【作用】マレイミド誘導体は一般には非蛍光性であり、
生体細胞のSH基と反応し結合して蛍光物質となる。マ
レイミド誘導体を生体に作用させた際に前記したように
蛍光物質に変換される反応機構を図1に示してある。本
発明は、マレイミド誘導体の一種であるN-(Pyrene)マレ
イミド(maleimide) を活性の異なる菌に作用させその蛍
光強度を測定したところ、活性の高い菌からの蛍光強度
は高く、菌活性が低下するにつれて蛍光強度が低下する
事を見い出し、この作用を用いたものである。
[Function] Maleimide derivatives are generally non-fluorescent,
It reacts with SH groups of living cells and binds to form fluorescent substances. FIG. 1 shows a reaction mechanism in which a maleimide derivative is converted into a fluorescent substance as described above when the maleimide derivative is allowed to act on a living body. The present invention, N- (Pyrene) maleimide, which is one of the maleimide derivatives, is applied to bacteria with different activities and its fluorescence intensity is measured, and the fluorescence intensity from the highly active bacteria is high, and the bacterial activity is reduced. It was found that the fluorescence intensity decreased as the temperature increased, and this effect was used.

【0011】[0011]

【実施例】本発明による測定方法の実施態様を図2によ
って説明する。反応槽3に被検体である検体溶液を流入
ライン1から流入させて、薬品注入ライン2を介して蛍
光プローブとしてN-(Pyrene)マレイミド(maleimide) 等
のマレイミド誘導体を添加し混合させる。薬品量は概略
0.01〜25mg/ml とする。混合して生体による発光
体を含んだ試料液は、反応槽3で一定の滞留時間を経た
後に、連続的にフローセル5に送る。
EXAMPLE An embodiment of the measuring method according to the present invention will be described with reference to FIG. A sample solution as a sample is flown into the reaction tank 3 through the inflow line 1, and a maleimide derivative such as N- (Pyrene) maleimide is added as a fluorescent probe through the chemical injection line 2 and mixed. The amount of chemicals is approximately 0.01 to 25 mg / ml. The sample solution containing the luminous body by the living body mixed therein is continuously sent to the flow cell 5 after a certain residence time in the reaction tank 3.

【0012】ここで、光源7よりの励起光を光の幅を制
限するスリット8、一定波長の光を得るフィルター9お
よび集光レンズ10を介してフローセル5内の試料に照
射すると、生体による発光体は特定波長の光を発生す
る。この光を集光レンズ11と特定の発光波長を検出す
るフィルター12を介して光電子増倍管13で検出し、
この数をカウンタ14でカウントする事により検体液中
の生体個数と各生体の活性が計測できる。
When the sample in the flow cell 5 is irradiated with the excitation light from the light source 7 through the slit 8 for limiting the width of the light, the filter 9 for obtaining light of a constant wavelength, and the condenser lens 10, the light emitted by the living body is emitted. The body emits light of a specific wavelength. This light is detected by a photomultiplier tube 13 through a condenser lens 11 and a filter 12 for detecting a specific emission wavelength,
By counting this number with the counter 14, the number of living bodies in the sample liquid and the activity of each living body can be measured.

【0013】次に、前記実施態様に従って実施した本発
明による測定方法の一実施例について説明する。本実施
例では蛍光プローブとしてN-(Pyrene)マレイミド(malei
mide) を用いた。図4に励起蛍光スペクトルを示した。
励起波長として300〜350nmの間の波長または、こ
の波長範囲の一部を用い、蛍光波長360〜450nm又
は、この波長範囲の一部分を検出すれば各生体(微生
物)を識別できる。図3にN-(Pyrene)マレイミド(malei
mide) を用いた大腸菌の測定例を示す。図中で生菌0hr
の検体は培養液中で培養した大腸菌を集菌して生理的食
塩水に懸濁した直後、即ち0時間後のものである。この
様にして得た生菌0hr検体を冷蔵保管した24時間後、
90時間後のものが、それぞれ、生菌24hr、生菌90
hrである。死菌は生菌0hrをオートクレーブで加熱殺菌
したものである。
Next, an example of the measuring method according to the present invention carried out according to the above-mentioned embodiment will be described. In this example, N- (Pyrene) maleimide (malei) was used as a fluorescent probe.
mide) was used. The excitation fluorescence spectrum is shown in FIG.
Each living body (microorganism) can be identified by using a wavelength between 300 and 350 nm as an excitation wavelength or a part of this wavelength range and detecting a fluorescence wavelength of 360 to 450 nm or a part of this wavelength range. Figure 3 shows N- (Pyrene) maleimide (malei
An example of measuring E. coli using mide) is shown. Live bacteria 0hr in the figure
The sample is a sample immediately after collecting Escherichia coli cultured in a culture medium and suspending it in physiological saline, that is, after 0 hour. After 24 hours of refrigerating and storing the 0 hr sample of live cells thus obtained,
90 hours later, live bacteria 24hr, live bacteria 90, respectively
hr. The dead cells are those obtained by sterilizing live cells for 0 hr in an autoclave.

【0014】各検体にN-(Pyrene)マレイミド(maleimid
e) を作用させた結果を図3に示した。生理的食塩水中
には大腸菌が生命活動を維持できる栄養分が無いので、
保管中に次第に生理活性を失っていく。この活性の低下
に伴って蛍光強度も低くなっており、蛍光強度の変化か
ら生体(菌体)の活性をとらえる事が出来た。
N- (Pyrene) maleimide (maleimid) was added to each sample.
The result of applying e) is shown in FIG. Since there are no nutrients that E. coli can sustain life activity in physiological saline,
It gradually loses its bioactivity during storage. The fluorescence intensity also decreased with this decrease in activity, and the activity of the living body (bacteria) could be detected from the change in fluorescence intensity.

【0015】[0015]

【発明の効果】以上具体的に説明したように、本発明に
より、従来数時間から数日の長時間を要していた生体細
胞の活性評価が1時間以内で実施可能となり、活性評価
と同時に検体中の生体細胞の濃度(個/ml)を同時に計
測出来る。従って、本発明により食品製造や排水処理の
工程から得られた検体中に含まれる生体(微生物)の活
性と濃度の測定が速やかにおこなえるので、工程管理や
品質管理を今までよりも迅速におこなう事が可能とな
り、測定の省力化や品質管理の向上など経済的,技術的
効果が得られる。
As described in detail above, according to the present invention, it is possible to evaluate the activity of living cells within 1 hour, which conventionally required a long time of several hours to several days. The concentration of living cells in a sample (cells / ml) can be measured simultaneously. Therefore, according to the present invention, the activity and concentration of the living body (microorganism) contained in the sample obtained from the steps of food production and wastewater treatment can be measured quickly, so that process control and quality control can be performed more quickly than ever. It is possible to obtain economical and technical effects such as labor saving of measurement and improvement of quality control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明により生体活性の測定方法に使うマレイ
ミド誘導体と生体との反応機構を示す化学式。
FIG. 1 is a chemical formula showing a reaction mechanism between a maleimide derivative used in a method for measuring biological activity according to the present invention and a living body.

【図2】本発明による生体活性の測定方法の実施の態様
を説明するための機器配置図。
FIG. 2 is a device layout view for explaining an embodiment of the method for measuring bioactivity according to the present invention.

【図3】本発明の一実施例による測定方法で得られた菌
体活性と蛍光強度の関係を示すグラフ。
FIG. 3 is a graph showing the relationship between cell activity and fluorescence intensity obtained by the measurement method according to one example of the present invention.

【図4】本発明の一実施例による測定方法で採用した励
起光の蛍光スペクトルを示すグラフ。
FIG. 4 is a graph showing a fluorescence spectrum of excitation light used in the measurement method according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 検体溶液流入ライン 2 蛍光薬品注入ライン 3 反応槽 4 検体液流入ライン 5 フローセル 6 検体液排出ライン 7 励起光源 8 スリット 9 フィルター 10 集光レンズ 11 集光レンズ 12 フィルター 13 光電子増倍管 14 カウンタ 1 sample solution inflow line 2 fluorescent chemical injection line 3 reaction vessel 4 sample solution inflow line 5 flow cell 6 sample solution discharge line 7 excitation light source 8 slit 9 filter 10 condenser lens 11 condenser lens 12 filter 13 photomultiplier tube 14 counter

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検体中の生体細胞と反応して非蛍光物質
を蛍光物質に変換するマレイミド誘導体を検体に添加し
たのち同検体に励起光を照射し生体に結合した前記マレ
イミド誘導体から発生する蛍光強度を検出することを特
徴とする生体活性の測定方法。
1. Fluorescence generated from the maleimide derivative bound to a living body by adding a maleimide derivative that reacts with living cells in the specimen to convert a non-fluorescent substance into a fluorescent substance, and then irradiating the specimen with excitation light A method for measuring bioactivity, which comprises detecting intensity.
JP10665793A 1993-05-07 1993-05-07 Determination of bio-activity Pending JPH06319594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10665793A JPH06319594A (en) 1993-05-07 1993-05-07 Determination of bio-activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10665793A JPH06319594A (en) 1993-05-07 1993-05-07 Determination of bio-activity

Publications (1)

Publication Number Publication Date
JPH06319594A true JPH06319594A (en) 1994-11-22

Family

ID=14439175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10665793A Pending JPH06319594A (en) 1993-05-07 1993-05-07 Determination of bio-activity

Country Status (1)

Country Link
JP (1) JPH06319594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145429A (en) * 2011-01-12 2012-08-02 Toshiba Corp Analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145429A (en) * 2011-01-12 2012-08-02 Toshiba Corp Analyzer

Similar Documents

Publication Publication Date Title
US5292644A (en) Rapid process for detection coliform bacteria
US5366873A (en) Device and method for use in detecting microorganisms in a sample
US9068976B2 (en) Integrated filtration bioanalyzer
US8557539B2 (en) Optical method and device for the detection and enumeration of microorganisms
CN1122147A (en) Rapid coliform detection system
US5550032A (en) Biological assay for microbial contamination
US9448170B2 (en) Harmful substance evaluating method and harmful substance evaluation kit
JPH06319594A (en) Determination of bio-activity
US20100330601A1 (en) Control system for uv lamps, and check system for determining the viability of microorganisms
US9207180B2 (en) Detection of microorganisms with a fluorescence-based device
JP2948405B2 (en) Quick method for measuring microorganisms
JP2637561B2 (en) Method for measuring live cells of microbial cells
SU1515105A1 (en) Method of assessing toxicity of liquid
JPH0440654B2 (en)
JP2005102645A (en) Method for determining sterilization effect on microorganism
JP2680713B2 (en) Method for counting live microbial cells
JP2808493B2 (en) How to measure the number of living organisms in a sample
JP4278936B2 (en) Microorganism measurement method
RU2028383C1 (en) Method of quantitative estimation of methane-producing bacteria
RU2708164C1 (en) Method for determining toxicity of materials
JP2004279276A (en) Test method and device for physiological activity
JPS61247376A (en) Automated analyzer
EP3615923A1 (en) Ph indicator systems
JP2001153864A (en) Luminescent bod measuring method
JPH04346780A (en) Selective culture medium for escherichia coli and salmonella

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19991221