JP2680713B2 - Method for counting live microbial cells - Google Patents

Method for counting live microbial cells

Info

Publication number
JP2680713B2
JP2680713B2 JP3837190A JP3837190A JP2680713B2 JP 2680713 B2 JP2680713 B2 JP 2680713B2 JP 3837190 A JP3837190 A JP 3837190A JP 3837190 A JP3837190 A JP 3837190A JP 2680713 B2 JP2680713 B2 JP 2680713B2
Authority
JP
Japan
Prior art keywords
cells
sample
fda
cell
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3837190A
Other languages
Japanese (ja)
Other versions
JPH03244395A (en
Inventor
清 菅田
良平 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3837190A priority Critical patent/JP2680713B2/en
Publication of JPH03244395A publication Critical patent/JPH03244395A/en
Application granted granted Critical
Publication of JP2680713B2 publication Critical patent/JP2680713B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は微生物生細胞の計測方法に関し、特に食品プ
ラント、医薬品製造プラントにおける原料や製品の品質
管理や殺菌性能評価等に適用される生細胞の計数方法に
関する。
TECHNICAL FIELD The present invention relates to a method for measuring living microbial cells, and in particular, living cells applied to quality control and sterilization performance evaluation of raw materials and products in food plants and pharmaceutical manufacturing plants. The present invention relates to a counting method.

〔従来の技術〕[Conventional technology]

食品製造、医薬品製造プラントでは原料や製品の品質
管理、殺菌性能評価のため、微生物検査・計測が行われ
ており、これに多大な労力、時間が費やされている。従
来、微生物検査法として最も広く用いられているのは寒
天培養法であり、この方法は微生物の栄養源を溶かし込
んだ寒天に試料を分散・培養し、寒天にコロニーを形成
させて、このコロニー数を計数して生細胞を測定するも
のである。しかし、この方法は培養操作を伴うため通常
1〜数日と長時間の検査時間が必要であり、品質管理、
殺菌管理に支障をきたす場合が多い。
In food manufacturing and pharmaceutical manufacturing plants, microbial inspection and measurement are performed for quality control of raw materials and products, and sterilization performance evaluation, and a great deal of labor and time are spent on this. Conventionally, the agar culture method has been most widely used as a microorganism inspection method.This method involves dispersing and culturing a sample on agar in which a nutrient source of a microorganism is dissolved, and forming a colony on the agar. The number is counted to measure living cells. However, since this method involves a culture operation, it usually requires a long inspection time of 1 to several days, and quality control,
In many cases, this will interfere with sterilization management.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来法の最も大きな問題点では培養操作を伴うため、
検査・計測に長時間必要とすることである。
The biggest problem with the conventional method is that it involves a culture operation,
It requires a long time for inspection and measurement.

本発明は上記従来法の問題点を解決し、短時間にか
つ、高感度に生細胞を計測できる方法を提供することに
ある。
The present invention is intended to solve the problems of the above-mentioned conventional methods and provide a method capable of measuring live cells with high sensitivity in a short time.

そこで、特別な培養操作を必要とせず、生菌を検知す
る方法について種々検討を行った結果、フルオレセイン
誘導体の一種であるフルオレセインジアセテート(以
下、FDAと略す)を特別な条件で試料に作用させること
により生菌を短時間で高感度に検出する方法を見い出し
た。
Therefore, as a result of various studies on a method for detecting live bacteria without requiring a special culture operation, fluorescein diacetate (hereinafter, abbreviated as FDA), which is a kind of fluorescein derivative, is allowed to act on a sample under special conditions. Therefore, we have found a method for detecting viable bacteria in a short time with high sensitivity.

FDAは酵素の一種であるエステラーゼは反応し、蛍光
物質であるフルオレセインを生成することは従来より知
られており、この性質を利用して動物細胞にFDAを作用
させ、細胞内に生成するフルオレセインの偏光度から細
胞質の流動性を求めて診断に利用されたり、植物細胞の
プロトプラスト細胞壁再生確認にFDAが用いられた例が
ある。しかしながら、微生物細胞生細胞の計測に適用さ
れた例は極めて少なく、FDAの使用条件、効果の有無に
ついてはほとんどわかっていない。
It has been known that FDA reacts with esterase, which is a type of enzyme, to produce fluorescein, which is a fluorescent substance.Using this property, FDA acts on animal cells to produce fluorescein produced intracellularly. There are examples in which the fluidity of the cytoplasm is obtained from the degree of polarization and is used for diagnosis, and FDA is used for confirmation of plant cell protoplast cell wall regeneration. However, it has been rarely applied to the measurement of living cells of microbial cells, and little is known about the FDA usage conditions and the effectiveness of FDA.

本発明者等はFDAを用いた微生物生細胞の計測可能性
を検討するため、FDAの使用条件、蛍光発光特性に関す
る実験を行った結果、試料にFDAを作用させると、細胞
内に生成した蛍光物質(フルオレセイン)が細胞外に徐
々に流動して、バックグラウンドの蛍光も高くなり細胞
の蛍光とバックグラウンドの蛍光との差が小さくなって
正確な計測ができないという問題のあることを知った。
The present inventors, in order to investigate the possibility of measuring living microbial cells using FDA, as a result of conducting experiments on FDA usage conditions and fluorescence emission characteristics, when FDA is allowed to act on a sample, fluorescence generated in cells I learned that there is a problem that the substance (fluorescein) gradually flows out of the cell, the background fluorescence becomes high, and the difference between the cell fluorescence and the background fluorescence becomes small, and accurate measurement cannot be performed.

本発明はこの問題点を解決し、精度よく生細胞を計測
する方法を提供しようとするものである。
The present invention intends to solve this problem and provide a method for accurately measuring living cells.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の第1の発明は、 (1)測定対象試料にフルオレセイン誘導体を作用さ
せ、生細胞中に蓄積する蛍光物質を励起させて生細胞か
ら発する蛍光を検出することにより、微生物生細胞数を
測定する方法において、溶媒で溶解したフルオレセイン
誘導体を試料に添加し、一定温度、一定時間保持した
後、酸を作用させてpHを低下させた後、当該試料に励起
光を照射し、細胞の発する蛍光を検出することを特徴と
する微生物生細胞の計数方法。(以下、第1発明とい
う) また、上記第1発明において、溶媒に溶解したフルオ
レセイン誘導体は一般的には更にリン酸バッファで数十
倍に希釈して試料に所定濃度で作用させているが、この
ようにするとFDAの劣化が著しく早く、調製後1〜2時
間経過した試薬では細胞の蛍光発光量が短時間で低下し
てしまう不具合がある。その解決法として本発明の第2
発明は次構成を採ることにする。
The first invention of the present invention is: (1) The fluorescein derivative is allowed to act on a sample to be measured to excite a fluorescent substance accumulated in living cells to detect fluorescence emitted from the living cells, thereby determining the number of living microorganisms. In the method of measurement, a fluorescein derivative dissolved in a solvent is added to a sample, and the sample is kept at a constant temperature for a predetermined period of time, and then acid is applied to lower the pH, and then the sample is irradiated with excitation light to emit cells. A method for counting live microbial cells, which comprises detecting fluorescence. (Hereinafter, referred to as the first invention) In the first invention, the fluorescein derivative dissolved in the solvent is generally further diluted several tens of times with a phosphate buffer and allowed to act on the sample at a predetermined concentration. If this is done, the FDA will deteriorate significantly, and there will be a problem that the fluorescence emission amount of the cells will decrease in a short time with the reagent that has been prepared for 1-2 hours. Second solution of the present invention as a solution
The invention has the following configuration.

(2)測定対象試料にフルオレセイン誘導体を作用さ
せ、生細胞中に蓄積する蛍光物質を励起させて生細胞か
ら発する蛍光を検出することにより、微生物生細胞数を
測定する方法において、溶媒で溶解し、リン酸バッファ
で希釈しないフルオレセイン誘導体を試料に添加し、一
定温度、一定時間保持した後、酸を作用させてpHを低下
させた後、当該試料に励起光を照射し、細胞の発する蛍
光を検出することを特徴とする微生物生細胞の計数方
法。(以下、第2発明という) 本発明において使用されるフルオレセイン誘導体とし
ては、FDAのほかフルオレセイン−ナトリウム(ウラニ
ン)や、フルオレセイン−(β−D−ガラクトフィラノ
シド)のが使用できる。
(2) In the method for measuring the number of living cells of a microorganism, the fluorescein derivative is allowed to act on the sample to be measured, and the fluorescent substance accumulated in the living cell is excited to detect the fluorescence emitted from the living cell. After adding a fluorescein derivative that is not diluted with phosphate buffer to the sample and holding it at a constant temperature for a certain period of time, acid is applied to lower the pH, and then the sample is irradiated with excitation light to detect the fluorescence emitted by cells. A method for counting viable microbial cells, which comprises detecting. (Hereinafter, referred to as second invention) As the fluorescein derivative used in the present invention, in addition to FDA, fluorescein-sodium (uranin) and fluorescein- (β-D-galactophyranoside) can be used.

〔第1発明の作用〕 微生物生細胞でも動・植物細胞と同様、生細胞には酵
素エステラーゼが存在すると考えられ、死細胞では酵素
が失活しているので酵素は存在しない。従って、微生物
試料にFDAを作用させると生細胞だけがFDAと反応し細胞
中にフルオレセインを生成する。この時、反応を促進さ
せるためには温度、時間といった条件が必須となる。温
度に関しては35〜37℃が最適であり10℃以下、又は45℃
以上では反応は起こらない。
[Operation of the First Invention] Like living and plant cells, it is considered that the enzyme esterase is present in living cells of microbial living cells, and the enzyme is not present in dead cells because the enzyme is inactivated. Therefore, when FDA acts on a microbial sample, only living cells react with FDA to produce fluorescein in the cells. At this time, conditions such as temperature and time are essential to promote the reaction. The optimum temperature is 35-37 ℃, 10 ℃ or less, or 45 ℃
With the above, no reaction occurs.

また、迅速計測の目的からは反応時間は短かいほど望
ましいが細胞内に計測可能となるだけの蛍光物質を生成
させる必要があり、このための反応時間は酵母の場合、
5〜10分、大腸菌、枯草菌などのバクテリアやカビ等の
胞子では10〜20分必要とする。
In addition, for the purpose of rapid measurement, a shorter reaction time is desirable, but it is necessary to generate a fluorescent substance that can be measured in cells, and the reaction time for this is, in the case of yeast,
It takes 5 to 10 minutes, and 10 to 20 minutes for bacteria such as Escherichia coli and Bacillus subtilis and spores such as mold.

そこで、一定の温度、一定時間、FDAと試料を作用さ
せると細胞内に蛍光物質が生成するが、時間と共に細胞
内に生成した蛍光物質が細胞外にも流出を始め、生細胞
の蛍光発光量とバックグラウンドとの蛍光発光量との差
が小さくなり計測を難しくする欠点のあることがわかっ
た。そこで、この対策について種々検討した結果、試料
に酸を添加し、pHを4以下に調整することにより、バッ
クグラウンドの蛍光発光を消滅させるのである。なお細
胞には細胞壁、細胞膜といった防御機能があるため、酸
は細胞内に侵入するのに時間がかかり、細胞の蛍光発光
は消滅しないことがわかった。
Therefore, when FDA is allowed to interact with the sample for a certain period of time, a fluorescent substance is produced inside the cell, but with time, the fluorescent substance produced inside the cell also begins to flow out of the cell, and the fluorescent emission amount of living cells is increased. It was found that there is a defect that the difference between the fluorescence emission amount and the background becomes small and measurement becomes difficult. Therefore, as a result of various studies on this countermeasure, the background fluorescence emission is extinguished by adding an acid to the sample and adjusting the pH to 4 or less. Since cells have protective functions such as cell walls and cell membranes, it took time for the acid to enter the cells, and it was found that the fluorescence emission of the cells did not disappear.

この第1発明の方法により、生細胞とバックグラウン
ドとの蛍光発光量の差は大きくなり、感度よく、生細胞
を計測できるようになる。
According to the method of the first aspect of the present invention, the difference in the fluorescence emission amount between the live cells and the background becomes large, and the live cells can be measured with high sensitivity.

生細胞中に生成する蛍光物質を励起させるためには、
特定波長域を含む光を照射する必要があるが、この励起
スペクトルは第2図に示すように490nm付近にピークを
有する比較的プロードな曲線である。また、490nmの波
長で励起させると、細胞内の蛍光物質は第3図に示すよ
うに510〜515nm付近にピークを有する蛍光スペクトルを
出す。
To excite the fluorescent substance produced in living cells,
It is necessary to irradiate light having a specific wavelength range, but this excitation spectrum is a relatively broad curve having a peak near 490 nm as shown in FIG. When excited at a wavelength of 490 nm, the intracellular fluorescent substance emits a fluorescence spectrum having a peak in the vicinity of 510 to 515 nm as shown in FIG.

従って、このような細胞内に生成した蛍光物質を励起
するに必要な波長を有する光を照射することにより、個
々の細胞は蛍光を発し、これを光の点として計測するこ
とにより、生細胞を精度良く、計測できるわけである。
Therefore, by irradiating with light having a wavelength required to excite the fluorescent substance generated in such cells, individual cells emit fluorescence, and by measuring this as a point of light, living cells are It is possible to measure with high accuracy.

〔第2発明の作用〕 アセトンに溶解したFDAを一旦、リン酸バッファ液で
希釈してしまうと、FDAが変質、分解されやすくなり、
効果が急速に低下してしまうことが実験により判明し
た。そこで、従来、植物細胞等で行われていた方法とは
異なり、アセトンに溶解したFDAをリン酸バッファ液で
希釈することなく、直接、微生物試料に作用させた結
果、FDAの効果はアセトンに溶解後、10時間以上経過し
ても安定して維持できることがわかり、微生物生細胞に
対して大きな効果が得られた。
[Operation of the Second Invention] Once FDA dissolved in acetone is diluted with a phosphate buffer solution, the FDA is easily altered and decomposed,
Experiments have shown that the effect decreases rapidly. Therefore, unlike the method that was conventionally used for plant cells, etc., FDA dissolved in acetone is directly dissolved in acetone as a result of directly acting on the microorganism sample without diluting FDA dissolved in acetone with a phosphate buffer solution. After that, it was found that it could be stably maintained even after 10 hours or more, and a great effect was obtained on living microbial cells.

〔実施例〕〔Example〕

試験に用いた生細胞計測装置の構成を第1図に示す。 The configuration of the living cell measuring device used in the test is shown in FIG.

第1図において、1は励起光源であり出力100Wの水銀
ランプ、2は水銀光を集光するためのコレクターレン
ズ、3は励起フィルタであり生細胞中に生成した蛍光物
質を励起するに必要な波長だけを通過させるフィルタで
ある。この実験では450〜490nmの波長領域を通過する励
起フィルタを用いた。
In FIG. 1, 1 is an excitation light source, a mercury lamp with an output of 100 W, 2 is a collector lens for collecting the mercury light, 3 is an excitation filter, which is necessary to excite the fluorescent substance generated in living cells It is a filter that passes only the wavelength. In this experiment, an excitation filter that passes the wavelength region of 450 to 490 nm was used.

4はミラー、5は対物レンズで倍率が20倍のものを使
用している。FDAと反応させpHを低下させた微生物試料
をスライドグラスの上に滴下し、カバーグラスでおおっ
た後、試料台6にのせ、励起光を照射すると生細胞から
510〜515nmを主波長とする蛍光を発する。7は吸収フィ
ルタで510nm以上の波長の光を通過させ、レンズ8を介
してテレビカメラ9により発光細胞を撮像する。10は任
意に設定可能な輝度レベル内に存在する発光細胞の画像
を出力することができる画像処理装置で、画像処理され
た画像はモニタ12に写し出される。11はパーティクルカ
ウンタで任意の輝度範囲にある細胞数を計測する。13は
データ処理解析装置で、所定の輝度範囲にある細胞数、
細胞の輝度分布がアウトプットされ、生細胞数を正確に
求めることができる。
Reference numeral 4 is a mirror, and 5 is an objective lens having a magnification of 20 times. A microbial sample, which has been lowered in pH by reacting with FDA, is dropped on a slide glass, covered with a cover glass, placed on the sample table 6, and irradiated with excitation light to remove viable cells.
It emits fluorescence whose main wavelength is 510 to 515 nm. Reference numeral 7 denotes an absorption filter which allows light having a wavelength of 510 nm or more to pass therethrough, and the television camera 9 images the luminescent cells through the lens 8. Reference numeral 10 denotes an image processing apparatus capable of outputting an image of a luminescent cell present within an arbitrarily set luminance level. The image processed image is displayed on a monitor 12. A particle counter 11 measures the number of cells in an arbitrary brightness range. 13 is a data processing analysis device, which is the number of cells in a predetermined brightness range,
The brightness distribution of cells is output, and the number of viable cells can be accurately determined.

次に、上記装置を用いた試験実施例を示す。 Next, a test example using the above apparatus will be shown.

(1)試験に用いた細胞 ポテトデキストロース寒天培地で約1週間培養した黒
カビ(Aspergillus nigar)から胞子を回収し、生理食
塩水(pH7.0)に、約107個/mlの濃度に懸濁させたもの
を試料とした。
(1) Cells used in the test Spores were collected from black mold (Aspergillus nigar) cultured on potato dextrose agar for about 1 week and suspended in physiological saline (pH 7.0) at a concentration of about 10 7 cells / ml. The sample was used.

(2)FDA溶液 アセトンにFDAを溶解し1mg/mlの濃度とした。(2) FDA solution FDA was dissolved in acetone to a concentration of 1 mg / ml.

(3)作用温度,pH 温度、pHは各々37℃、7.0に設定し、細胞懸濁液1mlを
試験管にとりFDA溶液を添加した後、一定時間反応を行
わせた。
(3) Working temperature, pH Temperature and pH were set at 37 ° C. and 7.0, 1 ml of cell suspension was taken in a test tube, and FDA solution was added, and then the reaction was carried out for a certain period of time.

(4)実験 アセトンにFDAに溶解し1mg/mlの濃度としたものを、p
H7.0のリン酸バッファで5倍に希釈し、細胞懸濁液に対
し1:1(FDA濃度として0.1mg/ml)の割合で添加したもの
と、希釈することなく細胞懸濁液に直接0.1mg/mlになる
ように添加した試料について、所定時間毎に20分間反応
を行わせ細胞の輝度計測を行った。
(4) Experiment A solution prepared by dissolving FDA in acetone to a concentration of 1 mg / ml was
Diluted 5 times with H7.0 phosphate buffer and added at a ratio of 1: 1 (0.1 mg / ml as FDA concentration) to the cell suspension, and directly to the cell suspension without dilution With respect to the sample added so as to have a concentration of 0.1 mg / ml, the reaction was performed at predetermined intervals for 20 minutes to measure the brightness of the cells.

第4図に、細胞の平均輝度と時間の関係を示す。これ
からわかるように、リン酸バッファで希釈したものは時
間が経過すると細胞輝度が急速に低下するのに対し、FD
Aを溶解したアセトン液を直接添加した場合には長時間
にわたり安定した発光が得られることがわかる。
FIG. 4 shows the relationship between the average brightness of cells and time. As can be seen, the cell brightness of the one diluted with phosphate buffer decreases rapidly with the passage of time.
It can be seen that when the acetone solution in which A is dissolved is added directly, stable light emission can be obtained for a long time.

このことは、第2発明によれば頻繁にFDA溶液を作り
変えることなく信頼性のあるデータが得られることを意
味し、作業効率上、極めて好都合であることがわかる。
This means that according to the second aspect of the invention, reliable data can be obtained without frequently changing the FDA solution, which is extremely convenient in terms of work efficiency.

次に、細胞懸濁液1mlに0.1mg/mlの濃度になるよう
に、FDA溶解アセトン液を直接添加し、反応時間を変化
させて細胞の輝度、バックグラウンドを計測した結果を
第5図に示す。横軸は細胞の発光量(輝度)、縦軸は所
定輝度範囲にある全細胞数Noに対する計測された発光細
胞数の割合を示す。
Next, FDA-dissolved acetone solution was directly added to 1 ml of cell suspension to a concentration of 0.1 mg / ml, and the reaction time was changed to measure the cell brightness and background. Show. The abscissa represents the luminescence amount (brightness) of cells, and the ordinate represents the ratio of the measured luminescent cell number to the total cell number No within a predetermined brightness range.

この結果から、反応時間5分では細胞の発光量も全体
的に低いレベルにあり、バックグラウンド以下の細胞も
全体の約40%存在するが、反応時間10分では発光量が全
体的に高くなるもののまだ、約10%がバックグラウンド
以下の発光量で計測されない。
From these results, the luminescence of cells was at a low level overall at a reaction time of 5 minutes, and about 40% of the cells below the background were present, but the luminescence quantity became high at a reaction time of 10 minutes. However, about 10% is still not measured below the background.

反応時間20分、30分と時間が長くなるに従って、細胞
内の生成された蛍光物質が細胞外に流出し、バックグラ
ウンドの値が高くなると共に、バックグラウンド以下の
細胞数も全体の25%、40%と増加する。
As the reaction time increases to 20 minutes and 30 minutes, the fluorescent substances produced inside the cells flow out to the outside of the cell, the background value increases, and the number of cells below the background is 25% of the total, It will increase to 40%.

第6図は本発明法であり、同様に各時間毎に試料を試
験管から一定量取り出した後1N塩酸によりpHを3〜4に
調整した後発光細胞の計測を行ったものである。この結
果から明らかなように、反応時間10分以上ではいづれの
条件もバックグラウンドの値が低下し、全細胞数の100
%が計測されていることがわかる。ただし、本発明法で
は酸を添加した後長時間をおくと添加した酸が細胞内に
まで侵入し、細胞内の蛍光物質の発光を阻害するので注
意を要する。本発明法は黒カビ胞子のほか、酵母、枯草
菌胞子、大腸菌に対しても適用される。
FIG. 6 shows the method of the present invention. Similarly, a certain amount of a sample was taken out from the test tube at each time, the pH was adjusted to 3 to 4 with 1N hydrochloric acid, and then the number of luminescent cells was measured. As is clear from these results, the background value decreased under all conditions when the reaction time was 10 minutes or more, and the total cell number was 100%.
You can see that% is measured. However, in the method of the present invention, if a long time is added after the addition of the acid, the added acid will penetrate into the cells and inhibit the emission of the fluorescent substance in the cells, so caution is required. The method of the present invention is applicable to yeast, Bacillus subtilis spores, and Escherichia coli as well as black mold spores.

〔発明の効果〕〔The invention's effect〕

従来法では、微生物生細胞の計測時間が1〜数日と長
時間必要であったが、本発明方法では約10分と格段に早
く、かつ感度よく計測できることから、食品、医薬品分
野における原料、製品の迅速な品質管理、殺菌性能評価
が可能となり、生産コストの低減に対し著大な効果を奏
する。
In the conventional method, the measurement time of living microbial cells required a long time of 1 to several days, but in the method of the present invention, it is significantly quicker with about 10 minutes, and since it can be measured with high sensitivity, foods, raw materials in the pharmaceutical field, It enables rapid quality control of products and evaluation of sterilization performance, and has a great effect on reduction of production cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を行うに際して使用した装置
の概略図、第2図は生細胞の蛍光発光に必要な励起波長
スペクトルのグラフ、第3図は生細胞の発する蛍光スペ
クトルのグラフ、第4図は本発明の実施例に係るFDA溶
液作成時からの時間経過に伴う細胞輝度の変化を示すグ
ラフ、第5図は従来法に係る輝度と細胞数比の関係グラ
フ、第6図は本発明の実施例に係る輝度と細胞数比の関
係グラフである。
FIG. 1 is a schematic diagram of an apparatus used for carrying out an embodiment of the present invention, FIG. 2 is a graph of an excitation wavelength spectrum required for fluorescence emission of living cells, and FIG. 3 is a graph of a fluorescence spectrum emitted by living cells. FIG. 4 is a graph showing a change in cell brightness with the passage of time since the FDA solution was prepared according to the example of the present invention, FIG. 5 is a graph showing the relationship between the brightness and the cell number ratio according to the conventional method, and FIG. 3 is a graph showing the relationship between the brightness and the cell number ratio according to the embodiment of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】測定対象試料にフルオレセイン誘導体を作
用させ、生細胞中に蓄積する蛍光物質を励起させて生細
胞から発する蛍光を検出することにより微生物生細胞数
を測定する方法において、溶媒で溶解したフルオレセイ
ン誘導体を試料に添加し、一定温度、一定時間保持した
後、酸を作用させてpHを低下させた後、当該試料に励起
光を照射し、細胞の発する蛍光を検出することを特徴と
する微生物生細胞の計数方法。
1. A method for measuring the number of viable cells of a microorganism by allowing a fluorescein derivative to act on a sample to be measured, exciting a fluorescent substance that accumulates in the viable cell, and detecting fluorescence emitted from the viable cell. The fluorescein derivative was added to the sample, kept at a constant temperature for a fixed period of time, and then acid was applied to lower the pH, and then the sample was irradiated with excitation light to detect fluorescence emitted by cells. A method for counting living microbial cells.
【請求項2】測定対象試料にフルオレセイン誘導体を作
用させ、生細胞中に蓄積する蛍光物質を励起させて生細
胞から発する蛍光を検出することにより微生物生細胞数
を測定する方法において、溶媒で溶解しリン酸バッファ
で希釈してないフルオレセイン誘導体を試料に添加し、
一定温度、一定時間保持した後、酸を作用させてpHを低
下させた後、当該試料に励起光を照射し、細胞の発する
蛍光を検出することを特徴とする微生物生細胞の計数方
法。
2. A method for measuring the number of viable cells of a microorganism by allowing a fluorescein derivative to act on a sample to be measured, exciting a fluorescent substance that accumulates in the viable cell, and detecting fluorescence emitted from the viable cell. Add fluorescein derivative not diluted with phosphate buffer to the sample,
A method for counting viable microbial cells, which comprises holding a certain temperature and a certain period of time, then applying an acid to lower the pH, irradiating the sample with excitation light, and detecting the fluorescence emitted by the cells.
JP3837190A 1990-02-21 1990-02-21 Method for counting live microbial cells Expired - Fee Related JP2680713B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3837190A JP2680713B2 (en) 1990-02-21 1990-02-21 Method for counting live microbial cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3837190A JP2680713B2 (en) 1990-02-21 1990-02-21 Method for counting live microbial cells

Publications (2)

Publication Number Publication Date
JPH03244395A JPH03244395A (en) 1991-10-31
JP2680713B2 true JP2680713B2 (en) 1997-11-19

Family

ID=12523425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3837190A Expired - Fee Related JP2680713B2 (en) 1990-02-21 1990-02-21 Method for counting live microbial cells

Country Status (1)

Country Link
JP (1) JP2680713B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431544A (en) * 2013-05-29 2016-03-23 株式会社佐竹 Microorganism testing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4555232B2 (en) * 2006-01-25 2010-09-29 Hoya株式会社 Fluorescence staining method of tissue
JP2007332073A (en) 2006-06-15 2007-12-27 Pentax Corp Contrast enhancer of fluorescent staining image of digestive tract lumen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105431544A (en) * 2013-05-29 2016-03-23 株式会社佐竹 Microorganism testing method

Also Published As

Publication number Publication date
JPH03244395A (en) 1991-10-31

Similar Documents

Publication Publication Date Title
US10435733B2 (en) Method and system for detection and/or characterization of a biological particle in a sample
JP4033754B2 (en) Method and apparatus for detection of the presence of microorganisms and determination of their physiological state
JP4999900B2 (en) Method and apparatus for detecting microparticles in a fluid sample
EP0443700A2 (en) Method for counting living cells of microbes and apparatus therefor
JP2680713B2 (en) Method for counting live microbial cells
JP4911423B2 (en) Microorganism measurement method
JP4477173B2 (en) Microorganism measuring method and apparatus
JP2637561B2 (en) Method for measuring live cells of microbial cells
JP2734489B2 (en) Method and apparatus for counting microbial living cells
JPH02281131A (en) Apparatus for judging alive or dead state of microorganism cell
JP6223844B2 (en) Microorganism measurement system and control method thereof
JP2735901B2 (en) Method for measuring the number of living cells, dead cells, and particles other than microorganism cells of microorganisms
JP2592114B2 (en) Microbial cell viability discrimination method
KR102118533B1 (en) Apparatus for determining survival rate of cells
JP2948405B2 (en) Quick method for measuring microorganisms
JP2010246442A (en) Method and apparatus for measuring number of lactic bacteria
Pinder et al. Fluorescence cytometry for the rapid analysis of food microorganisms
JPH04293497A (en) Method and system for measuring number of live bacteria and identifying kind of bacterium
CN115266542A (en) Method for quantitatively detecting specificity of apoptosis
JPH0923896A (en) Counting apparatus of minute cell and counting method therefor
JPH06319594A (en) Determination of bio-activity
Basile Monitoring and identifying genetically-engineered microorganisms in the environment by time-resolved laser fluorometry
JPH05268994A (en) Discrimination of protein-containing algae
JP2003144194A (en) Method for measuring specified microorganism

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees