US11984313B2 - Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device - Google Patents
Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device Download PDFInfo
- Publication number
- US11984313B2 US11984313B2 US17/706,176 US202217706176A US11984313B2 US 11984313 B2 US11984313 B2 US 11984313B2 US 202217706176 A US202217706176 A US 202217706176A US 11984313 B2 US11984313 B2 US 11984313B2
- Authority
- US
- United States
- Prior art keywords
- region
- semiconductor wafer
- support
- circumferential region
- inner circumferential
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 91
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000005530 etching Methods 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims 2
- 239000000835 fiber Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 description 23
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 238000001179 sorption measurement Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000005452 bending Methods 0.000 description 4
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02035—Shaping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
-
- H01L21/205—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67288—Monitoring of warpage, curvature, damage, defects or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/6875—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/562—Protection against mechanical damage
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
Definitions
- Embodiments of the present invention relate to a semiconductor wafer, a manufacturing method for a semiconductor wafer, and a manufacturing method for a semiconductor device.
- Processes such as exposure, film formation, and etching are performed to a semiconductor wafer when a semiconductor device is manufactured. At this time, the semiconductor wafer is adsorbed in a state of being supported by a support member to keep a horizontal attitude.
- an outside region of the semiconductor wafer positioned on an outer side of the support region bends in some cases.
- FIG. 1 is a plan view of a semiconductor wafer according to a first embodiment
- FIG. 2 is a sectional view along a section line A-A illustrated in FIG. 1 ;
- FIG. 3 is a plan view illustrating a modification of a support member
- FIG. 4 A is an explanatory diagram of a manufacturing method for a semiconductor wafer
- FIG. 4 B is an explanatory diagram of the manufacturing method for a semiconductor wafer
- FIG. 5 is a schematic diagram of a substrate processing apparatus that exposes a semiconductor wafer to light
- FIG. 6 is a plan a view illustrating an exposure pattern region on the semiconductor wafer
- FIG. 7 is a sectional view of a semiconductor wafer according to a modification of the first embodiment
- FIG. 8 is a sectional view of a semiconductor wafer according to another modification of the first embodiment.
- FIG. 9 is a schematic diagram of a substrate processing apparatus that performs film formation or etching of the semiconductor wafer.
- FIG. 10 is a plan view of a semiconductor wafer according to a second embodiment
- FIG. 11 is a sectional view along a section line B-B illustrated in FIG. 10 ;
- FIG. 12 is a sectional view of a semiconductor wafer according to a modification of the second embodiment.
- FIG. 13 is a sectional view of a semiconductor wafer according to another modification of the second embodiment.
- a semiconductor wafer includes a support region facing a support member, an outer circumferential region positioned on an outer side of the support region, and an inner circumferential region positioned on an inner side of the support region.
- the outer circumferential region has a convex portion with a thickness protruded upward with respect to the inner circumferential region or a concave portion with a thickness recessed downward with respect to the inner circumferential region.
- FIG. 1 is a plan view of a semiconductor wafer according to a first embodiment.
- FIG. 2 is a sectional view along a section line A-A illustrated in FIG. 1 .
- FIG. 3 is a plan view illustrating a modification of a support member.
- a semiconductor wafer 1 includes a first surface 10 and a second surface 20 . Processes such as exposure, film formation, and etching are performed to the first surface 10 , The second surface 20 is in contact with a support member 2 as illustrated in FIG. 2 .
- the first surface 10 and the second surface 20 include a support region R 1 , an outer circumferential region R 2 , and an inner circumferential region R 3 .
- the support member 2 has a shape of a ring continuously surrounding the inner circumferential region R 3 along the circumferential direction of the semiconductor wafer 1 .
- the support member 2 may have a shape of pins dotted to intermittently surround the inner circumferential region R 3 along the circumferential direction as illustrated in FIG. 3 .
- the support region R 1 is a region facing the support member 2 in the vertical direction.
- the outer circumferential region R 2 is a region positioned on the outer side of the support region R 1 .
- the inner circumferential region R 3 is a region positioned on the inner side of the support region R 1 and including a center C of the semiconductor wafer 1 .
- the outer circumferential region R 2 of the semiconductor wafer 1 has a convex portion with a thickness protruded upward with respect to the inner circumferential region R 3 as illustrated in FIG. 2 .
- the outer circumferential region R 2 is, for example, a region on an outer side than 0.9R where the radius of the semiconductor wafer 1 is R, in other words, a region where the distance from the outer circumferential end of the semiconductor wafer 1 is 0.1R.
- a semiconductor wafer 1 a is formed as illustrated in FIG. 4 A .
- a thickness t 1 of the semiconductor wafer 1 a is constant in the entire region.
- a region corresponding to the support region R 1 and the inner circumferential region R 3 described above of the semiconductor wafer 1 a is ground by, for example, chemical mechanical polishing (CMP) or etching until the region has a thickness t 2 ( ⁇ t 1 ) as illustrated in FIG. 4 B .
- CMP chemical mechanical polishing
- etching etching until the region has a thickness t 2 ( ⁇ t 1 ) as illustrated in FIG. 4 B .
- the outer circumferential region R 2 becomes a convex portion with the thickness protruded upward with respect to the inner circumferential region R 3 , whereby the semiconductor wafer 1 according to the present embodiment is completed.
- a semiconductor device can be manufactured by performing exposure and film formation to this semiconductor wafer 1 .
- the semiconductor device includes, for example, a three-dimensional semiconductor memory where electrode layers (
- FIG. 5 is a schematic diagram of a substrate processing apparatus that exposes the semiconductor wafer 1 according to the present embodiment to light.
- a substrate processing apparatus 100 illustrated in FIG. 5 includes a substrate stage 101 , a projector 102 , a mask stage 103 , a light source 104 , and a controller 105 ,
- the substrate processing apparatus 100 is, for example, a scanning exposure apparatus that performs projection exposure of a pattern drawn on a mask MK onto the semiconductor wafer 1 being an exposure target while synchronously moving the mask MK and the semiconductor wafer 1 with respect to each other in a scanning direction.
- the substrate stage 101 holds the semiconductor wafer 1 via the support member 2 .
- a chuck part 111 is provided on the substrate stage 101 .
- the chuck part 111 causes the semiconductor wafer 1 to be adsorbed to the substrate stage 101 with, for example, static electricity or vacuum.
- the substrate stage 101 is capable of horizontally moving or rotationally moving on the basis of control of the controller 105 .
- the projector 102 is provided above the substrate stage 101 .
- the mask stage 103 holding the mask MK is provided above the projector 102 .
- the light source 104 is provided above the mask stage 103 .
- exposure light emitted from the light source 104 is diffracted by the pattern drawn on the mask MK and enters the projector 102 .
- the projector 102 performs projection exposure of the first surface 10 of the semiconductor wafer 1 to the incident light. Accordingly, the pattern on the mask MK is transferred to the first surface 10 .
- FIG. 6 is a plan a view illustrating an exposure pattern region on the semiconductor wafer.
- the substrate processing apparatus 100 performs the exposure processing with the semiconductor wafer 1 being divided into a plurality of exposure pattern regions.
- the exposure pattern regions of the substrate processing apparatus 100 include an exposure pattern region E 1 that entirely falls within the semiconductor wafer 1 while including an exposure pattern region E 2 that partially spreads out of the semiconductor wafer 1 as illustrated in FIG. 6 .
- a large part of the exposure pattern region E 2 is occupied by the outer circumferential region R 2 of the semiconductor wafer 1 .
- the semiconductor wafer 1 is adsorbed to the substrate stage 101 by the chuck part 111 in a state of being supported by the support member 2 as described above.
- the outer circumferential region R 2 sometimes bends downward (hangs down) from a boundary portion with the support region R 1 to be a curved surface while the inner circumferential region R 3 is generally a flat surface. In this case, a desired focus accuracy is not obtained on the exposure pattern region E 2 and an exposure failure is likely to occur.
- the outer circumferential region R 2 is processed into a convex portion with the thickness protruded upward with respect to the inner circumferential region R 3 . Accordingly, the outer circumferential region R 2 is thicker than the inner circumferential region R 3 and is therefore less likely to bend.
- the thickness t 1 of the convex portion is set based on a largest bending amount of the outer circumferential region R 2 , which is supposed in a case where the respective thicknesses of the regions are equal. For example, when a radius R of the semiconductor wafer 1 is 150 millimeters (the diameter is 300 millimeters), the largest bending amount is generally not smaller than 10 nm and not larger than 10 ⁇ m. In this case, to suppress bending of the outer circumferential region R 2 , the thickness t 1 of the convex portion is desirably larger than the thickness t 2 by a thickness not smaller than 10 nm and not larger than 10 ⁇ m.
- the semiconductor wafer 1 Due to formation of the convex portion on the outer circumferential region R 2 as described above, the semiconductor wafer 1 has a generally horizontal attitude when adsorbed in the state of being supported by the support member 2 . Therefore, the focus accuracy of the exposure pattern region R 2 is ensured. Accordingly, an exposure failure in the outer circumferential region R 2 can be reduced,
- FIG. 7 is a sectional view of a semiconductor wafer according to a modification of the first embodiment.
- FIG. 8 is a sectional view of a semiconductor wafer according to another modification of the first embodiment.
- the first surface 10 of the outer circumferential region R 2 is protruded assuming a situation in which the outer circumferential region R 2 bends downward from the boundary portion with the support region R 1 at the time of adsorption of the semiconductor wafer 1 .
- a situation in which the outer circumferential region R 2 bends upward (warps upward) at the time of adsorption of the semiconductor wafer 1 is also supposed.
- the second surface 20 of the outer circumferential region R 2 is protruded as illustrated in FIG. 7 , deformation of the outer circumferential region R 2 is suppressed and an exposure failure can be consequently reduced.
- a concave portion having a thickness recessed downward with respect to the inner circumferential region R 3 may be formed on the outer circumferential region R 2 as illustrated in FIG. 8 in anticipation of deformation of the outer circumferential region R 2 , which is expected at the time of adsorption of the semiconductor wafer 1 in a case where the thicknesses of the respective regions are uniform.
- FIG. 9 is a schematic diagram of a substrate processing apparatus that performs film formation or etching of the semiconductor wafer 1 according to the present embodiment.
- a substrate processing apparatus 200 illustrated in FIG. 9 includes an electrostatic chuck part 201 , a focus ring 202 , a lower electrode 203 , and a head 204 .
- the substrate processing apparatus 200 is, for example, a plasma CVD (Chemical Vapor Deposition) apparatus that forms a film on the semiconductor wafer 1 by CVD in a state where plasma is generated, or an etching apparatus that etches a film formed on the semiconductor wafer 1 by dry etching using plasma.
- a plasma CVD Chemical Vapor Deposition
- the electrostatic chuck part 201 holds the semiconductor wafer 1 via the support member 2 .
- the focus ring 202 is placed on the top surface of the electrostatic chuck part 201 .
- the electrostatic chuck part 201 causes the semiconductor wafer 1 and the focus ring 202 to be adsorbed thereto with static electricity.
- the focus ring 202 is formed in an annular shape surrounding the semiconductor wafer 1 .
- the focus ring 202 is placed to uniformly generate plasma between the center of the semiconductor wafer 1 and the outer circumference thereof.
- the lower electrode 203 is provided on the bottom part of the electrostatic chuck part 201 .
- the head 204 is provided above the electrostatic chuck part 201 .
- Plasma is generated when a high-frequency electric field is generated between the lower electrode 203 and the head 204 by supply of power from a high-frequency power source (not illustrated).
- the head 204 ejects a film forming gas or an etching gas toward the first surface 10 of the semiconductor wafer 1 .
- plasma generation on the outer circumferential region R 2 of the semiconductor wafer 1 is particularly adjusted by installation of the focus ring 202 .
- the outer circumferential region R 2 bends at the time of adsorption by the electrostatic chuck part 201 , the horizontal attitude cannot be maintained and thus the controllability of film formation or etching is degraded. As a result, a film formation failure or an etching failure is likely to occur.
- the shape of the outer circumferential region R 2 is optimized to enable the outer circumferential region R 2 to keep the horizontal attitude at the time of adsorption by the electrostatic chuck part 201 . Accordingly, the controllability of film formation or etching is improved and a film formation failure or an etching failure can be reduced.
- FIG. 10 is a plan view of a semiconductor wafer according to a second embodiment.
- FIG. 11 is a sectional view along a section line B-B illustrated in FIG. 10 .
- constituent elements identical to those in the first embodiment described above are denoted by like reference signs, and detailed explanations thereof are omitted.
- a semiconductor wafer 11 according to the present embodiment is supported by the support member 2 having a ring shape continuously doubly surrounding the inner circumferential region R 3 along the circumferential direction.
- the semiconductor wafer 11 has an intermediate region R 4 sandwiched by the support region R 1 in addition to the support region R 1 , the outer circumferential region R 2 , and the inner circumferential region R 3 .
- the intermediate region R 4 has a possibility of bending downward when adsorbed by the substrate processing apparatus 100 and the substrate processing apparatus 200 explained in the first embodiment. In this case, process failures such as an exposure failure, a film formation failure, and an etching failure are likely to occur on the intermediate region R 4 .
- a portion of the intermediate region R 4 on the side of the first surface 10 is processed into a convex portion with the thickness protruded upward with respect to the outer circumferential region R 2 and the inner circumferential region R 3 . Accordingly, the intermediate region R 4 is thicker than the outer circumferential region R 2 and the inner circumferential region R 3 and is thus less likely to bend. As a result, the semiconductor wafer 11 has a generally horizontal attitude when adsorbed by the substrate processing apparatus 100 or the substrate processing apparatus 200 and process failures on the intermediate region R 4 can be reduced.
- FIG. 12 is a sectional view of a semiconductor wafer according to a modification of the second embodiment.
- FIG. 13 is a sectional view of a semiconductor wafer according to another modification of the second embodiment.
- a concave portion recessed downward with respect to the outer circumferential region R 2 and the inner circumferential region R 3 may be formed by grinding the intermediate region R 4 as illustrated in FIG. 13 in anticipation of deformation of the intermediate region R 4 , which is expected at the time of adsorption of the semiconductor wafer 1 in a case where the thicknesses of the respective regions are uniform.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
Description
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/706,176 US11984313B2 (en) | 2019-09-04 | 2022-03-28 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019161278A JP7332398B2 (en) | 2019-09-04 | 2019-09-04 | semiconductor wafer |
JP2019-161278 | 2019-09-04 | ||
JP2019161278 | 2019-09-04 | ||
US16/792,944 US20210066068A1 (en) | 2019-09-04 | 2020-02-18 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
US17/706,176 US11984313B2 (en) | 2019-09-04 | 2022-03-28 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/792,944 Division US20210066068A1 (en) | 2019-09-04 | 2020-02-18 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
US20220216051A1 US20220216051A1 (en) | 2022-07-07 |
US11984313B2 true US11984313B2 (en) | 2024-05-14 |
Family
ID=74681789
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/792,944 Abandoned US20210066068A1 (en) | 2019-09-04 | 2020-02-18 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
US17/706,176 Active US11984313B2 (en) | 2019-09-04 | 2022-03-28 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/792,944 Abandoned US20210066068A1 (en) | 2019-09-04 | 2020-02-18 | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device |
Country Status (4)
Country | Link |
---|---|
US (2) | US20210066068A1 (en) |
JP (1) | JP7332398B2 (en) |
CN (1) | CN112447825B (en) |
TW (1) | TWI757685B (en) |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010001953A1 (en) * | 1997-07-10 | 2001-05-31 | Stewart K. Griffiths | Support apparatus for semiconductor wafer processing |
JP2004022677A (en) | 2002-06-13 | 2004-01-22 | Shin Etsu Handotai Co Ltd | Semiconductor wafer |
JP2004281951A (en) | 2003-03-19 | 2004-10-07 | Hitachi Cable Ltd | Semiconductor wafer |
JP2009277805A (en) | 2008-05-13 | 2009-11-26 | Sumco Corp | Product semiconductor wafer |
US7705430B2 (en) | 2005-04-27 | 2010-04-27 | Disco Corporation | Semiconductor wafer and processing method for same |
US20100212833A1 (en) * | 2009-02-24 | 2010-08-26 | Chong-Kwang Chang | Apparatus for Etching Edge of Wafer |
JP5266869B2 (en) | 2008-05-19 | 2013-08-21 | 富士電機株式会社 | Semiconductor device and manufacturing method of semiconductor device |
US20130217185A1 (en) * | 2012-02-20 | 2013-08-22 | Ixys Corporation | Power device manufacture on the recessed side of a thinned wafer |
JP5569392B2 (en) | 2008-09-29 | 2014-08-13 | 株式会社Sumco | Silicon wafer manufacturing method |
US20150024606A1 (en) * | 2013-07-17 | 2015-01-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and system for thinning wafer thereof |
US20150079701A1 (en) | 2013-09-17 | 2015-03-19 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing method and manufacturing apparatus |
US20160049355A1 (en) | 2014-08-13 | 2016-02-18 | Newport Fab, Llc Dba Jazz Semiconductor | Thinned Processed Wafer Having Devices and Vias and Related Method |
US20180096952A1 (en) | 2016-09-30 | 2018-04-05 | Intel IP Corporation | Methods and structures for dicing integrated circuits from a wafer |
US20190096777A1 (en) | 2016-08-08 | 2019-03-28 | Semiconductor Components Industries, Llc | Semicoductor wafer and method of backside probe testing through opening in film frame |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8422193B2 (en) | 2006-12-19 | 2013-04-16 | Axcelis Technologies, Inc. | Annulus clamping and backside gas cooled electrostatic chuck |
JP5394659B2 (en) * | 2008-06-05 | 2014-01-22 | リンテック株式会社 | Semiconductor wafer |
JP2010016147A (en) * | 2008-07-03 | 2010-01-21 | Disco Abrasive Syst Ltd | Adhesive tape attaching method |
JP2011238787A (en) | 2010-05-11 | 2011-11-24 | Disco Abrasive Syst Ltd | Light emitting element manufacturing method |
JP6510393B2 (en) * | 2015-12-15 | 2019-05-08 | 三菱電機株式会社 | Semiconductor device manufacturing method |
WO2020235373A1 (en) | 2019-05-23 | 2020-11-26 | 東京エレクトロン株式会社 | Substrate processing method and substrate processing system |
-
2019
- 2019-09-04 JP JP2019161278A patent/JP7332398B2/en active Active
-
2020
- 2020-02-03 TW TW109103261A patent/TWI757685B/en active
- 2020-02-12 CN CN202010089072.3A patent/CN112447825B/en active Active
- 2020-02-18 US US16/792,944 patent/US20210066068A1/en not_active Abandoned
-
2022
- 2022-03-28 US US17/706,176 patent/US11984313B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20010001953A1 (en) * | 1997-07-10 | 2001-05-31 | Stewart K. Griffiths | Support apparatus for semiconductor wafer processing |
JP2004022677A (en) | 2002-06-13 | 2004-01-22 | Shin Etsu Handotai Co Ltd | Semiconductor wafer |
US20040195657A1 (en) | 2002-06-13 | 2004-10-07 | Akira Miyashita | Semiconductor wafer |
JP2004281951A (en) | 2003-03-19 | 2004-10-07 | Hitachi Cable Ltd | Semiconductor wafer |
US7705430B2 (en) | 2005-04-27 | 2010-04-27 | Disco Corporation | Semiconductor wafer and processing method for same |
JP2013165287A (en) | 2005-04-27 | 2013-08-22 | Disco Abrasive Syst Ltd | Method for processing wafer |
JP2009277805A (en) | 2008-05-13 | 2009-11-26 | Sumco Corp | Product semiconductor wafer |
JP5266869B2 (en) | 2008-05-19 | 2013-08-21 | 富士電機株式会社 | Semiconductor device and manufacturing method of semiconductor device |
JP5569392B2 (en) | 2008-09-29 | 2014-08-13 | 株式会社Sumco | Silicon wafer manufacturing method |
US20100212833A1 (en) * | 2009-02-24 | 2010-08-26 | Chong-Kwang Chang | Apparatus for Etching Edge of Wafer |
US20130217185A1 (en) * | 2012-02-20 | 2013-08-22 | Ixys Corporation | Power device manufacture on the recessed side of a thinned wafer |
US20150024606A1 (en) * | 2013-07-17 | 2015-01-22 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and system for thinning wafer thereof |
US20150079701A1 (en) | 2013-09-17 | 2015-03-19 | Kabushiki Kaisha Toshiba | Semiconductor device manufacturing method and manufacturing apparatus |
US20160049355A1 (en) | 2014-08-13 | 2016-02-18 | Newport Fab, Llc Dba Jazz Semiconductor | Thinned Processed Wafer Having Devices and Vias and Related Method |
US20190096777A1 (en) | 2016-08-08 | 2019-03-28 | Semiconductor Components Industries, Llc | Semicoductor wafer and method of backside probe testing through opening in film frame |
US20180096952A1 (en) | 2016-09-30 | 2018-04-05 | Intel IP Corporation | Methods and structures for dicing integrated circuits from a wafer |
Also Published As
Publication number | Publication date |
---|---|
JP7332398B2 (en) | 2023-08-23 |
CN112447825A (en) | 2021-03-05 |
JP2021040069A (en) | 2021-03-11 |
US20210066068A1 (en) | 2021-03-04 |
TWI757685B (en) | 2022-03-11 |
TW202123310A (en) | 2021-06-16 |
US20220216051A1 (en) | 2022-07-07 |
CN112447825B (en) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI778133B (en) | In-situ apparatus for semiconductor process module | |
US6797109B2 (en) | Process chamber used in manufacture of semiconductor device, capable of reducing contamination by particulates | |
US5923408A (en) | Substrate holding system and exposure apparatus using the same | |
US6809802B1 (en) | Substrate attracting and holding system for use in exposure apparatus | |
KR102134207B1 (en) | Holder, lithography apparatus, method of manufacturing article, and stage apparatus | |
KR20200026305A (en) | System and method for backside deposition of substrate | |
JP2010166085A (en) | Wafer chuck and exposure apparatus using the same, and method for manufacturing semiconductor device | |
US7425238B2 (en) | Substrate holding device | |
JP2019510339A (en) | Field curvature correction for multi-beam inspection systems | |
JP2001185607A5 (en) | ||
JP4298078B2 (en) | Substrate adsorption holding device, exposure apparatus using the substrate adsorption holding device, and device manufacturing method | |
US11984313B2 (en) | Semiconductor wafer, manufacturing method for semiconductor wafer, and manufacturing method for semiconductor device | |
KR101416789B1 (en) | Lithographic apparatus and substrate handling method | |
US6767170B2 (en) | Wafer handling system and wafer handling method | |
JP3393118B2 (en) | Plasma etching apparatus and method of manufacturing semiconductor device | |
TWI810443B (en) | Substrate holding device, photolithography device and method of manufacturing article | |
US20240021413A1 (en) | Substrate process apparatus and substrate process method using the same | |
US20240079264A1 (en) | Substrate supporting apparatus | |
JP2020140983A (en) | Semiconductor manufacturing device | |
TW202129045A (en) | Multicathode deposition system and methods | |
CN114995064A (en) | Chuck, substrate holding device, substrate processing device, and article manufacturing method | |
KR20200067255A (en) | Lithography apparatus and article manufacturing method | |
US20130148093A1 (en) | Holding apparatus, drawing apparatus, and method of manufacturing article | |
KR20090025805A (en) | Apparatus for fabricating semiconductor and method for forming semiconductor device using the same | |
JP2000100914A (en) | Apparatus of vacuum chucking substrate and aligner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |