US11926688B2 - Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes - Google Patents

Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes Download PDF

Info

Publication number
US11926688B2
US11926688B2 US17/683,135 US202217683135A US11926688B2 US 11926688 B2 US11926688 B2 US 11926688B2 US 202217683135 A US202217683135 A US 202217683135A US 11926688 B2 US11926688 B2 US 11926688B2
Authority
US
United States
Prior art keywords
actinic radiation
meth
acrylate
polymeric mixture
radiation curable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US17/683,135
Other versions
US20220185936A1 (en
Inventor
Joshua P. ABELL
Michael R. Beaulieu
Douglas B. Costlow
Andrew V. Haidet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Americas Tire Operations LLC
Original Assignee
Bridgestone Americas Tire Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Americas Tire Operations LLC filed Critical Bridgestone Americas Tire Operations LLC
Priority to US17/683,135 priority Critical patent/US11926688B2/en
Publication of US20220185936A1 publication Critical patent/US20220185936A1/en
Assigned to BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC reassignment BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEAULIEU, MICHAEL R., COSTLOW, Douglas B., ABELL, JOSHUA P., HAIDET, Andrew V.
Application granted granted Critical
Publication of US11926688B2 publication Critical patent/US11926688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/04Polymers provided for in subclasses C08C or C08F
    • C08F290/048Polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2009/00Use of rubber derived from conjugated dienes, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0002Condition, form or state of moulded material or of the material to be shaped monomers or prepolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2030/00Pneumatic or solid tyres or parts thereof
    • B29L2030/002Treads

Definitions

  • the present application is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
  • Additive manufacturing (which encompasses processes such as “3D Printing”) is a process whereby a three-dimensional article is manufactured (such as by printing) layer by layer from raw material.
  • Certain additive manufacturing processes manufacture an article by building up cross-sectional layers of the article as compared to other so-called subtractive manufacturing processes which require that certain portions of a manufactured article be removed in order to produce the article in its final shape or form.
  • various additive manufacturing methods have existed since the 1980s, certain of them have been focused upon the use of various plastic polymers such as acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high density polyethylene (HDPE), and high impact polystyrene (HIPS).
  • ABS acrylonitrile butadiene styrene
  • PC polycarbonate
  • HDPE high density polyethylene
  • HIPS high impact polystyrene
  • Another type of additive manufacturing process is roll-to-roll UV-NIL (UV-assisted nanoimprint lithography) which has
  • the present disclosure is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
  • an actinic radiation curable polymeric mixture comprises: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally, a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
  • a cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone P, multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
  • a process for producing a cured polymeric product comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of the first embodiment to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
  • a kit for producing an elastomeric cured product by additive printing comprises at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F; at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F.
  • a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
  • a rubber good comprising the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
  • FIG. 1 shows exemplary closed hollow voids in treads, in cut-away profile with the top being the road-contacting surface.
  • FIG. 2 shows exemplary overhung voids in treads, in cut-away profile with the top being the road-contacting surface.
  • FIG. 3 shows exemplary undercut voids in treads, in cut-away profile with the top being the road-contacting surface.
  • the present disclosure is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
  • an actinic radiation curable polymeric mixture comprises: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally, a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
  • a cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone P, multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
  • a process for producing a cured polymeric product comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of the first embodiment to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
  • a kit for producing an elastomeric cured product by additive printing comprises at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F; at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F.
  • a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
  • a rubber good comprising the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
  • actinic radiation refers to electromagnetic radiation capable of producing photochemical reactions.
  • additive manufacturing refers to the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies.
  • carrier refers to a container that is adapted for or configured for use in an additive manufacturing device.
  • chain extender refers to a monofunctionalized hydrocarbon or hydrocarbon derivative containing a functional group that reacts with a functional end group of the diene polymer chain and adds to the polymer chain, thereby increasing its molecular weight.
  • polyfunctional crosslinker refers to a hydrocarbon or hydrocarbon derivative containing two or more functional groups which are capable of undergoing a reaction to provide cross-linking between two diene polymer chains or within a diene polymer chain.
  • hydrocarbon refers to a compound consisting entirely of carbon and hydrogen atoms.
  • hydrocarbon derivative refers to a hydrocarbon containing at least one heteroatom (e.g., N, O, S).
  • mer or “mer unit” means that portion of a polymer derived from a single reactant molecule (e.g., ethylene mer has the general formula —CH2CH2-).
  • (meth)acrylate encompasses both acrylate and methacrylate.
  • photoinitiator refers to a compound that generates free radicals.
  • photoinitiator is used interchangeably herein with the phrase “actinic radiation sensitive photoinitiator.”
  • photosensitizer refers to a light absorbing compound used to enhance the reaction of a photoinitiator. Upon photoexcitation, a photosensitizer leads to energy or electron transfer to a photoinitiator.
  • polyfunctionalized refers to more than one functionalization and includes polymers that have been di-functionalized, tri-functionalized, etc. Generally, functionalization of a polymer may occur at one or both ends of a polymer chain, along the backbone of the polymer chain, in a side chain, and combinations thereof.
  • polymer refers to the polymerization product of two or more monomers and is inclusive of homo-, co-, ter-, tetra-polymers, etc. Unless indicated to the contrary herein, the term polymer includes oligomers.
  • void refers to a portion of a tire tread that is devoid of material (other than air); the term can include grooves or channels extending around all or a portion of the circumference of the tire as well as a pocket or cavity that does not extend around the circumference of the tire.
  • the first embodiment disclosed herein relates to an actinic radiation curable polymeric mixture
  • an actinic radiation curable polymeric mixture comprising (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
  • the actinic radiation curable polymeric mixture is suitable for use in additive manufacturing processes which utilize various additive manufacturing devices.
  • the actinic radiation curable polymeric mixture is curable by light having a wavelength in the UV to Visible range.
  • the actinic radiation (light) has a wavelength of about 320 to less than 500 nm, including about 350 to about 450 nm, and about 365 to about 405 nm.
  • free radical curing involves cross-linking through double bonds, most usually (meth)acrylate double bonds.
  • Cationic curing involves cross-linking through other functional groups, most usually epoxy groups.
  • the actinic radiation curable polymeric mixture comprises a polyfunctionalized diene monomer-containing polymer which comprises a diene polymer chain [P].
  • the actinic radiation curable polymeric mixture comprises one type of polyfunctionalized diene monomer-containing polymer and in other embodiments, the mixture comprises more than one type of polyfunctionalized diene monomer-containing polymer.
  • Polyfunctionalized diene monomer-containing polymers can be categorized into different types based upon one or more of: molecular weight, monomer type(s), relative amount of monomer(s), types of functional group(s) (e.g., free radical polymerizable or cationic polymerizable), identity of functional group(s) (as discussed in more detail below), and amount of functional group(s).
  • the polyfunctionalized diene monomer-containing polymer(s) can be referred to as a pre-polymer since they will react with each other and with a chain extender (when a chain extender is present) to form a higher molecular weight polymer.
  • the diene polymer chain comprises (is based upon) at least one diene monomer.
  • a diene monomer is a monomer having two carbon-carbon double bonds.
  • Various diene monomers exist and are generally suitable for use in preparing the diene polymer chain of the polyfunctionalized diene monomer-containing polymer.
  • the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms.
  • the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-hexadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, and 1,3-cyclooctadiene, farnescene, and substituted derivatives of each of the forescene, and substituted derivatives of each of the forescene, and substituted derivatives of each of the forescene, and substituted derivatives of each of the forescene, and substituted derivatives of each of the forescene, and substitute
  • the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises 1,3-butadiene monomer, isoprene monomer, or a combination thereof.
  • the diene polymer chain of the polyfunctionalized diene-monomer-containing polymer further comprises at least one vinyl aromatic monomer.
  • suitable vinyl aromatic monomers include, but are not limited to, styrene, ⁇ -methyl styrene, p-methylstyrene, o-methylstyrene, p-butylstyrene, vinylnaphthalene, p-tertbutylstyrene, vinyl catechol-based, and combinations thereof.
  • the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises a combination of 1,3-butadiene monomer and styrene monomer.
  • polyfunctionalized is used herein to refer to more than one functionalization and includes polymers that have been di-functionalized, tri-functionalized, etc.
  • functionalization of a polymer may occur at one or both ends of a polymer chain, along the backbone of the polymer chain, and combinations thereof.
  • each F functional group present in the polyfunctionalized diene monomer-containing polymer may be same or different.
  • the polyfunctionalized diene monomer-containing polymer comprises a di-functionalized polymer having an F functional group at each terminal end of the polymer chain; each F functional group may be the same or different.
  • the polyfunctionalized diene monomer-containing polymer comprises a di-functionalized polymer having a F functional group at one terminal end of the polymer chain and at least one additional F functional group along the backbone of the polymer chain; each F functional group may be the same or different.
  • the polyfunctionalized diene monomer-containing polymer comprises a functionalized polymer having at least three F functional groups, with one at each terminal end of the polymer chain, and at least one along the backbone of the polymer chain; each F functional group may be the same or different.
  • Various polyfunctionalized diene monomer-containing polymers are commercially available and may be suitable for use in various embodiments of the first-fifth embodiments disclosed herein.
  • Non-limiting examples of these include, but are not limited to, Sartomer CN307 polybutadiene dimethacrylate, Sartomer CN301 polybutadiene dimethacrylate and Sartomer CN303 hydrophobic acrylate ester, all available from Sartomer Americas (Exton, Pennsylvania); Ricacryl® 3500 methacrylated polybutadiene, Ricacryl® 3801 methacrylated polybutadiene, Ricacryl® 3100 methacrylated polybutadiene, all available from Cray Valley USA LLC (Exton, Pennsylvania); BAC-45 polybutadiene diacrylate and BAC-15 polybutadiene diacrylate, available from San Esters Corp.
  • the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises: polybutadiene, styrene-butadiene copolymer, polyisoprene, ethylene-propylene-diene rubber (EPDM), styrene-isoprene rubber, or butyl rubber (halogenated or non-halogenated).
  • the molecular weight of the polyfunctionalized diene monomer-containing polymer may vary widely depending upon various factors, including, but not limited to the amount and type of chain extender (if any) that is utilized in the actinic radiation curable polymeric mixture. Generally, higher molecular weight polymers will lead to better properties in the cured article or product, but will also lead to higher viscosities in the overall actinic radiation curable polymeric mixture. Thus, preferred polyfunctionalized diene monomer-containing polymers for use in the mixture will balance molecular weight with its effect on viscosity. In certain embodiments, the polyfunctionalized diene monomer-containing polymer has a Mn of about 3,000 to about 135,000 grams/mole (polystyrene standard).
  • the polyfunctionalized diene monomer-containing polymer has a Mn of 3,000 to 135,000 grams/mole (polystyrene standard); including about 5,000 to about 100,000 grams/mole (polystyrene standard); 5,000 to 100,000 grams/mole (polystyrene standard); about 10,000 to about 75,000 grams/mole (polystyrene standard); and 10,000 to 75,000 grams/mole (polystyrene standard).
  • the number average molecular weights (M n ) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F).
  • the cured elastomeric mixture comprises crosslinked polyfunctionalized diene monomer-containing polymer has a Mc (molecular weight between crosslinks) of about 500 to about 150,000 grams/mole, including 500 to 150,000 grams/mole (e.g., 1000, 2500, 5000, 10000, 20000, 25000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 115000, 120000, 130000, 140000 or 150000).
  • the crosslinked molecular weight (M c ) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F). M c can be determined in accordance with previously published procedures such as those disclosed in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986), herein incorporated by reference in its entirety.
  • the molecular weight of the crosslinked polyfunctionalized diene monomer-containing polymer of the cured elastomeric mixture can be quantified in terms of M r or molecular weight between chain restrictions.
  • the cured elastomeric mixture comprises crosslinked polyfunctionalized diene monomer-containing polymer has a Mc (molecular weight between crosslinks) of about 500 to about 150,000 grams/mole, including 500 to 150,000 grams/mole (e.g., 1000, 2500, 5000, 10000, 20000, 25000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 115000, 120000, 130000, 140000 or 150000).
  • M c The crosslinked molecular weight (M c ) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F).
  • F the weight contributed by the functional groups
  • M r can be determined according to the procedure described in U.S. Patent Application Publication No. 2012/0174661, herein incorporated by reference in its entirely. More specifically, M r can be determined according to the following equation:
  • M r ⁇ ⁇ ⁇ RT ⁇ ( ⁇ - ⁇ - 2 ) ⁇
  • is the compound density
  • stress
  • R is the gas constant
  • T temperature
  • A is 1+X ⁇
  • X is the strain amplification factor from the Guth-Gold equation
  • the strain ( ⁇ ) is (1 ⁇ l set )/l set
  • l is the specimen length at a point on the retraction curve and l set is the specimen length after retraction to zero stress.
  • a TR or tensile retraction test set consists of at least two tensile retraction tests, each to a progressively higher target extension ratio, ⁇ max, followed immediately by a retraction to a zero stress.
  • each tensile pull and subsequent retraction are performed at the same testing rate such that a series of extension and retraction curve pairs are obtained.
  • the stress, ⁇ is measured as a function of extension ratio, A, defining the tensile retraction curve. Testing may be performed in accordance with the procedures outlined in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986), herein incorporated by reference in its entirety.
  • Normalized strain is defined as the strain at any point on the subsequent extension or retraction curves divided by the maximum strain of the initial extension. For retraction curves in particular, and for maximum strains of natural rubber gum compounds up to and including near breaking strain, this could be applied to a number of filled compounds.
  • the result can be interpreted as evidence of strain amplification of the polymer matrix by the filler, where the average strain the polymer matrix of a filled compound is the same as that in the corresponding gum (non-filled) compound, when the filled and gum compounds are compared at the same stress.
  • Strain amplification X can be determined by the Guth-Gold equation as discussed in Mullins et al., J. Appl. Polym. Sci., vol. 9, pp.
  • Tensile retraction testing can be measured using a special ribbed TR mold to prevent slippage when stretched in tension between clamps of an Instron 1122 tester controlled by a computer (for testing, data acquisition and calculations), as described in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986). Specimens for testing may be nominally 12 mm wide by 50 mm long by 1.8 mm thick. M r can be calculated at each of 25 ( ⁇ , ⁇ ) pairs, collected from about the middle one-third of the particular retraction curve. M r values as disclosed herein may be the average of the 25 calculated values.
  • a master TR curve can be obtained by shifting the different test speeds to a standardized testing rate of 5%/minute.
  • the fit to strain region at less than 80% elongation may deviate steadily from the M r line as strains are progressively reduced.
  • the logarithim of such difference between the calculated and observed ye can be plotted versus the lower level of strain to give a linear fit to ⁇ ve as a function of ( ⁇ max ⁇ 1).
  • the antilog of the reciprocal of the intercept, m can be denoted as B (expressed in kg/mole) and relates to the micro-dispersion of the filler. See, U.S. Pat. No. 6,384,117, herein incorporated by reference in its entirety.
  • the lowest strain deviation can be treated to give a plot of ⁇ ve as a function of ( ⁇ max ⁇ 1).
  • the antilog of the reciprocal of the intercept for the process that occurs at strains of less than 6% elongation can be denoted as ⁇ (expressed in kg/mole).
  • F represents a functional group associated with the polyfunctionalized diene monomer-containing polymer.
  • Various types of functional groups F may be suitable for use in certain embodiments of the first-fifth embodiments disclosed herein.
  • these functional groups F can be described as either free radical polymerizable or cationic polymerizable, which is a general description of how the groups react upon exposure to actinic radiation (light) to result in cross-linking or curing.
  • functional groups that improve curability (cross-linking) by actinic radiation are useful as the functional group F.
  • the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a free radical polymerizable functionalizing group. In certain embodiments, the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a cationic polymerizable functionalizing group. In certain embodiments, the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a combination of cationic polymerizable and free radical polymerizable functional groups either on the same diene polymer chain or on separate diene polymer chains. Generally, functional groups that are free radical polymerizable have the advantage of reacting faster than cationic polymerizable functionalizing groups, but the disadvantage is being prone to inhibition by oxygen exposure.
  • cationic polymerizable have the advantage of being resistant to oxygen exposure (i.e., they are not inhibited), but have the disadvantages of being prone to inhibition by water exposure and having a generally slower rate of reaction.
  • the combination of cationic polymerizable and free radical polymerizable functional groups can be advantageous as providing the advantages of each type and minimizing the disadvantages of each alone; an additional advantage of such a combination is to allow for a double network system wherein a crosslink of a first type occurs at a first wavelength and a crosslink of a second type occurs at a second wavelength or a single wavelength is used to activate both types of photoinitators which will create a double network.
  • each functional group F in the polyfunctionalized diene monomer-containing polymer comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide.
  • each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an acrylate or methacrylate.
  • Suitable acrylates or methacrylates may be linear, branched, cyclic, or aromatic.
  • the term acrylate should be understood to include both acrylic acid and esters thereof.
  • methacrylate should be understood to include both methacrylic acid and esters thereof.
  • the function group F comprises at least one of: acrylic acid, methacrylic acid, ethyl (meth)acrylate, methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, cyclobutyl (meth)acrylate, (cyano)acrylate, 2-ethylhexyl(meth)acrylate, isostearyl (meth)acrylate, isobornyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, cyclopropyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, cyclopentyl (meth)acrylate, hexyl (meth)acrylate, isohexyl
  • each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an epoxide or a thioepoxide.
  • each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an aziridine, which generally can be considered to be a compound containing the aziridine functional group (a 3-membered heterocyclic group with one amine (—NR—), where R is H, CH 3 , and two methylenes (—CH 2 —).
  • the chain extender may be chosen based upon compound having a moiety that is reactive with the F functional group of the polyfunctionalized diene monomer-containing polymer.
  • the chain extender comprises one or more additional functional groups F1 along the backbone of the polymer.
  • Such functional groups may be chosen based upon their contribution to desirable properties in the cured polymeric mixture, the cured elastomeric 3-dimensional article or final product.
  • the F1 functional groups may be selected to interact with one or more fillers such as silica filler, i.e., F1 comprises a silica-reactive functional group.
  • the polyfunctionalized diene monomer-containing polymer comprises at least one F1 silica-reactive functional group along its backbone.
  • silica-reactive functional groups include nitrogen-containing functional groups, silicon-containing functional groups, oxygen- or sulfur-containing functional groups, and metal-containing functional groups.
  • Another specific example of a F1 functional group includes phosphorous-containing functional groups.
  • Non-limiting examples of nitrogen-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, any of a substituted or unsubstituted amino group, an amide residue, an isocyanate group, an imidazolyl group, an indolyl group, a nitrile group, a pyridyl group, and a ketimine group.
  • the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of nitrogen-containing functional groups.
  • Non-limiting examples of silicon-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, an organic silyl or siloxy group, and more precisely, the functional group may be selected from an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group.
  • Suitable silicon-containing functional groups for use in functionalizing diene-based elastomer also include those disclosed in U.S. Pat. No. 6,369,167, the entire disclosure of which is herein incorporated by reference.
  • the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of silicon-containing functional groups.
  • Non-limiting examples of oxygen- or sulfur-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a cyclic dithiane-derived functional group, an ester group, an aldehyde group, an alkoxy group, a ketone group, a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group.
  • the foregoing alkoxy group may be an alcohol-derived alkoxy group derived from a benzophenone.
  • the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of oxygen- or sulfur-containing functional groups.
  • Non-limiting examples of phosphorous-containing functional groups that can be utilized as a F1 functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, organophosphorous compounds (i.e., compounds containing carbon-phosphorous bond(s)) as well as phosphate esters and amides and phosphonates.
  • organophosphorous compounds include phosphines including alkyl phosphines and aryl phosphines.
  • the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of phosphorous-containing functional groups.
  • the actinic radiation curable polymeric mixture optionally comprises a chain extender based upon F or reactive with F.
  • the mixture comprises a chain extender, but it is not considered to be essential in all embodiments.
  • the chain extender is a hydrocarbon or hydrocarbon derivative that is monofunctionalized with a functional group that reacts with a functional end group of the dienepolymer chain of the polyfunctionalized diene monomer-containing polymer and is used to increase the molecular weight of the polyfunctionalized diene monomer-containing polymer (by bonding to one of the F groups of the polymer).
  • the chain extender lowers the viscosity of the overall actinic radiation curable polymeric mixture and also acts to increase the molecular weight of the polyfunctionalized diene monomer-containing polymer between crosslinks.
  • the chain extender also increases the elongation at break of the cured elastomeric/polymeric mixture that results from actinic radiation curing the polymeric mixture.
  • the chain extender when the chain extender is present, it comprises a compound that is based upon F. In other words, such a chain extender compound comprises an F group. In certain embodiments when the chain extender is present, it comprises a compound that is based upon F or a compound that is reactive with F.
  • reactive with F is meant a compound containing a moiety that will bond with the F group of the polyfunctionalized diene monomer-containing polymer.
  • the chain extender may comprise a hydrocarbon or hydrocarbon derivative with monofunctionality selected from various functional groups either based on F or reactive with F.
  • the chain extender when the chain extender is present, it is selected so that the Tg of the chain-extended polyfunctionalized diene monomer-containing polymer is less than about 25° C., including about ⁇ 65° C. to about 10° C.
  • the chain extender is selected so that the Tg of the extended polyfunctionalized diene monomer-containing polymer even after crosslinking is less than about 25° C., including about ⁇ 65° C. to about 10° C.
  • the chain extender when the chain extender is present, it comprises a compound that has a Mw of about 72 to about 1000 grams/mole, including about 72 to about 500 grams/mole.
  • the chain extender when it is present, it comprises at least one alkyl (meth)acrylate monomer.
  • the alky (meth)acrylate monomer is comprised of an alkyl chain selected from C2 to about C18 and having a reactive meth(acrylate) head group, termed alkyl functionalized (meth)acrylates; alkyl (meth)acrylate monomers having larger alkyl groups may have a thermal transition, Tm, that is higher than desired.
  • Tm thermal transition
  • the chain extender comprises at least one alkyl (meth)acrylate monomer.
  • the alky (meth)acrylate monomer is at least one monomer selected from C2 to about C18 alkyl functionalized (meth)acrylates; alkyl (meth)acrylate monomers having larger alkyl groups may have a Tg that is higher than desired and may unduly increase the Tg of the overall actinic radiation curable polymeric mixture.
  • the total amount of polyfunctionalized diene monomer-containing polymer and chain extender can be considered to be 100 parts by weight; in certain such embodiments, the polyfunctionalized diene monomer-containing polymer is present in an amount of 1-100 parts by weight and the chain extender is present in an amount of 0-99 parts by weight. In other words, the chain extender is optional in certain embodiments.
  • the relative amounts of polyfunctionalized diene monomer-containing polymer and chain extender can vary greatly because, as discussed above, upon exposure to actinic radiation the chain extender adds to the polymer and increases its molecular weight.
  • the total amount of polyfunctionalized diene monomer-containing polymer and chain extender can comprise relatively less polymer than chain extender.
  • the polyfunctionalized diene monomer-containing polymer is present in an amount of 1-90 parts by weight and the chain extender is present in an amount of 10-99 parts by weight, including 1-80 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 20-99 parts by weight, 1-70 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 30-99 parts by weight, 1-60 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 40-99 parts by weight, 1-50 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 50-99 parts by weight, 1-40 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 60-99 parts by weight, 1-30 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 70-99 parts by weight
  • the polyfunctionalized diene monomer-containing polymer is present in an amount of 10-99 parts by weight and the chain extender is present in an amount of 1-90 parts by weight, including 20-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-80 parts by weight, 30-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-70 parts by weight, 40-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-60 parts by weight, 50-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-50 parts by weight, 60-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-40 parts by weight, 70-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-30 parts by weight
  • the relative amounts of polymer and chain extender are about 50 parts and 50 parts, respectively, including about 40 to about 60 parts polymer and about 60 to about 40 parts chain extender; 40 to 60 parts polymer and 60 to 40 parts chain extender; about 45 to about 60 parts polymer and about 55 to about 40 parts chain extender; 45 to 60 parts polymer and 55 to 40 parts chain extender; about 50 to about 60 parts polymer and about 40 to about 50 parts chain extender; 50 to 60 parts polymer and 40 to 50 parts chain extender; about 55 to about 60 parts polymer and about 40 to about 45 parts chain extender; and 55 to 60 parts polymer and 40 to 45 parts chain extender.
  • the chain extender in addition to being monofunctionalized with at least one F group or a functional group reactive with F, the chain extender is further functionalized with at least one functional group F2 that is molecular oxygen reactive.
  • suitable F2 groups include various amines, including, but not limited to, tertiary amines, secondary amines, and primary amines; thiols; silanes; phosphites, tin-containing compounds, lead containing compounds, and germanium-containing compounds.
  • Incorporating at least one molecular oxygen reactive F2 functional group into the chain extender reduces the amount of undesirable oxidation that may otherwise occur from either solubilized oxygen within the actinic radiation curable polymeric mixture or atmospheric oxygen.
  • a functional group F2 that is molecular oxygen reactive can react with any peroxy radicals that are generated (e.g., from the reaction of a free radical with molecular oxygen) to create a new initiator by hydrogen absorption; this reaction avoid or minimizes the undesirable reaction between a peroxy radical and an initiator (which will yield a non-productive product and consume the initiator).
  • the amount of F2 functionalization on the chain extender may vary.
  • the chain extender is about 10 to 100% functionalized with at least one functional group F2 that is molecular oxygen reactive, including 10 to 100% functionalized, about 20 to 100% functionalized, 20 to 100% functionalized, about 30 to 100% functionalized, 30 to 100% functionalized, about 40 to 100% functionalized, 40 to 100% functionalized, about 50 to 100% functionalized, 50 to 100% functionalized, about 10 to about 90% functionalized, 10 to 90% functionalized, about 10 to about 80% functionalized, 10 to 80% functionalized, about 10 to about 70% functionalized, 10 to 70% functionalized, about 10 to about 60% functionalized, 10 to 60% functionalized, about 10 to about 50% functionalized, and 10 to 50% functionalized.
  • at least one functional group F2 that is molecular oxygen reactive including 10 to 100% functionalized, about 20 to 100% functionalized, 20 to 100% functionalized, about 30 to 100% functionalized, 30 to 100% functionalized, about 40 to 100% functionalized, 40 to 100% functionalized, about 50 to 100% functionalized, 50 to 100% functionalized, 50 to 100% functionalized, about 10 to about 90% functionalized, 10 to 90% functionalized,
  • a separate molecular oxygen reactive ingredient in addition to comprising at least one functional group F2 that is molecular oxygen reactive or as an alternative to comprising at least one functional group F2 that is molecular oxygen reactive, can be utilized in the actinic radiation curable polymeric mixture.
  • this separate ingredient comprises a hydrocarbon or hydrocarbon derivative functionalized with at least one of the functional groups discussed above for F2.
  • the actinic radiation curable polymeric mixture comprises at least one actinic radiation sensitive photoinitiator.
  • the polymeric mixture comprises two, three, or more one actinic radiation sensitive photoinitiators.
  • the purpose of the photoinitiator is to absorb actinic radiation (light) and generate free radicals or a Lewis acid that will react with the functional groups of the polymer resulting in polymerization.
  • Free radical photoinitiators can themselves be separated into two categories, those that undergo cleavage upon irradiation to generate two free radicals (e.g., benzoins, benzoin ethers, and alpha-hydroxy ketones) and those that form an excited state upon irradiation and then abstract an atom or electron from a donor molecule which itself then acts as the initiating species for polymerization (e.g., benzophenones).
  • the photoinitiator comprises at least one free radical photoinitiator.
  • the photoinitiator comprises at least one cationic photoinitiator.
  • the photoinitiator comprises a combination of at least one free radical photoinitiator and at least one cationic photoinitiator.
  • the photoinitiator comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives thereof, an oxime ester, a per-ester, a ketosulfone, a phenylglyoxylate, a borate, and a metallocene.
  • the photoinitiator comprises at least one of: a benzophenone, an aromatic ⁇ -hydroxyketone, a benzilketal, an aromatic ⁇ -aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide.
  • the photoinitiator is selected from benzophenone, benzildimethylketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1 one, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one, (4-methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, (4-morpholinobenzoyl)-1-(4-methylbenzyl)-1-dimethylaminopropane, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, bis(2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-
  • the amount of actinic radiation sensitive photoinitiator(s) utilized can vary.
  • the actinic radiation curable polymeric mixture comprises about 1 to about 10 parts by weight of the photoinitiator, including about 2 to about 5 parts by weight (all amounts based upon 100 total parts of polyfunctionalized diene monomer-containing polymer and chain extender).
  • the foregoing amounts should be understood to apply to both free radical and cationic photoinitiators and to refer to the total amounts (by weight) of all photoinitiators used in the actinic radiation curable polymeric mixture.
  • the actinic radiation curable polymeric mixture comprises a photosensitizer.
  • the photosensitizer is optional.
  • the “photosensitizer” is a light absorbing compound used to enhance the reaction of a photoinitiator; it may absorb part of the actinic radiation (light) that the photoinitiator cannot absorb and transfer the energy to the photoinitiator. Upon photoexcitation, a photosensitizer leads to energy or electron transfer to a photoinitiator.
  • the amount of photosensitizer utilized can vary. (As discussed above, the photosensitizer is not necessarily present in every embodiment disclosed herein.)
  • the actinic radiation curable polymeric mixture comprises about 0.1 to about 5 parts by weight of the photosensitizer, including about 0.1 to about 2 parts by weight (all amounts based upon 100 total parts of polyfunctionalized diene monomer-containing polymer and chain extender).
  • the photosensitizer comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone.
  • a ketocoumarin is disclosed in Tetrahedron 38, 1203 (1982), and U.K. Patent Publication 2,083,832 (Specht et al.).
  • the actinic radiation curable mixture comprises a polyfunctional crosslinker reactive with the functional group F of the polyfunctionalized diene monomer-containing polymer.
  • the polyfunctional crosslinker functions to increase the amount of crosslinking within each diene polymer chain of the polyfunctionalized diene monomer-containing polymer, between (separate) diene polymer chains of polyfunctionalized diene monomer-containing polymers, or both, thereby forming a network.
  • an increased amount of crosslinker or crosslinking will lower the Mc of the crosslinked (cured) polyfunctionalized diene monomer-containing polymer, thereby resulting in a higher modulus and a lower Eb.
  • the polyfunctional crosslinker is a hydrocarbon or hydrocarbon derivative polyfunctionalized with a functional group F.
  • a crosslinker comprises multiple F groups.
  • the crosslinker is a hydrocarbon or hydrocarbon derivative polyfunctionalized with a functional group F or a functional group that is reactive with F.
  • reactive is meant a moiety that will bond with at least two F groups of the polyfunctionalized diene monomer-containing polymer.
  • the crosslinker is a polyfunctionalized hydrocarbon or hydrocarbon derivative containing at least two functional groups reactive with F.
  • the crosslinker is di-functional and in other embodiments, the crosslinker is tri-functional, tetra-functional, or further functionalized.
  • the crosslinker is based upon a hydrocarbon or hydrocarbon derivative, it should be understood that it can also be polymer-like in that it can comprise either a single base unit or multiple, repeating base units.
  • the crosslinker contains at least two (meth)acrylate functional groups.
  • the crosslinker comprises a polyol (meth)acrylate prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms; in such embodiments, the functional group of the crosslinker is (meth)acrylate.
  • Various crosslinkers comprising at least two (meth)acrylate groups are commercially available.
  • the crosslinker comprises at least one of the following: Trimethylolpropane tri(meth)acrylate, Pentaerythritol tetraacrylate, Pentaerythritol triacrylate, Trimethylolpropane ethoxylate triacrylate, Acrylated epoxidized soybean oil, Ditrimethylol Propane Tetraacrylate, Di-pentaerythritol Polyacrylate, Di-pentaerythritol Polymethacrylate, Di-pentaerythritol triacrylate, Di-pentaerythritol trimethacrylate, Di-pentaerythritol tetracrylate, Di-pentaerythritol tetramethacrylate, Di-pentaerythritol pent(meth)acrylate, Di-pentaerythritol hexa(meth)acrylate, Pentaerythritol Poly
  • the crosslinker comprises a polyallylic compound prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms.
  • exemplary polyallylic compounds useful as crosslinker include those compounds comprising two or more allylic groups, non-limiting examples of which include triallylisocyanurate (TAIL), triallylcyanurate (TAC), and the like, and combinations thereof.
  • the crosslinker comprises epoxy functional groups, aziridine functional groups, vinyl functional groups, allyl functional groups, or combinations thereof.
  • the crosslinker comprises a polyfunctional amine with at least two amine groups per molecule.
  • the polyfunctional amine is an aliphatic amine.
  • Exemplary polyfunctional amines include, but are not limited to, diethylene triamine, ethylene diamine, triethylene tetramine, tetraethylene pentamine, hexamethylerie diamine, 1,2-diaminocyclohexane, amino ethyl piperazine, and the like, and combinations thereof.
  • the polyfunctional crosslinker comprises a combination of two types of functional groups, i.e., a functional group capable of crosslinking at least two diene polymer chains based upon cationic radiation and a functional group capable of crosslinking at least two diene polymer chains based upon free radical radiation.
  • the combination of two types of functional groups may be present on the same polyfunctional crosslinker or on separate crosslinkers (i.e., each with one type of functional group).
  • the polyfunctional crosslinker comprises a combination of at least one functional group selected from acrylate groups, methacrylate groups, polyallylic groups, and polyfunctional amines with at least one functional group selected from epoxy groups, aziridine groups, vinyl groups, and allyl groups.
  • the actinic radiation curable polymeric mixture further comprises at least one filler; in certain such embodiments, the at least one filler comprises a reinforcing filler, preferably a non-carbon black reinforcing filler (i.e., a reinforcing filler other than carbon black). In certain embodiments of the first-third embodiments, when at least one filler is utilized it comprises a non-carbon black filler (i.e., no carbon black filler is included in the at least one filler).
  • the term “reinforcing filler” is used to refer to a particulate material that has a nitrogen absorption specific surface area (N 2 SA) of more than about 100 m 2 /g, and in certain instances more than 100 m 2 /g, more than about 125 m 2 /g, more than 125 m 2 /g, or even more than about 150 m 2 /g or more than 150 m 2 /g.
  • N 2 SA nitrogen absorption specific surface area
  • the term “reinforcing filler” can also be used to refer to a particulate material that has a particle size of about 10 nm to about 50 nm (including 10 nm to 50 nm).
  • the actinic radiation curable polymeric mixture further comprises at least one metal or metal oxide filler.
  • the mixture further comprises at least one metal filler, at least one metal oxide filler, or combinations thereof.
  • metal fillers and metal oxide fillers are suitable for use in various embodiments of the actinic radiation curable polymeric mixture.
  • the at least one metal or metal oxide filler comprises at least one of: silica (in its various forms only some of which are listed below), aluminum hydroxide, starch, talc, clay, alumina (Al 2 O 3 ), aluminum hydrate (Al 2 O 3 H 2 O), aluminum hydroxide (Al(OH) 3 ), aluminum carbonate (Al 2 (CO 3 ) 2 ), aluminum nitride, aluminum magnesium oxide (MgOAl 2 O 3 ), aluminum silicate (Al 2 SiO 5 , Al 4 ⁇ 3SiO 4 ⁇ 5H 2 O etc.), aluminum calcium silicate (Al 2 O 3 ⁇ CaO 2 SiO 2 , etc.), pyrofilite (Al 2 O 3 4SiO 2 ⁇ H 2 O), bentonite (Al 2 O 3 ⁇ 4SiO 2 ⁇ 2H 2 O), boron nitride, mica, kaolin, glass balloon, glass beads, calcium oxide (CaO), calcium hydroxide
  • the at least one filler comprises at least one of: silica (in its various forms only some of which are listed below), aluminum hydroxide, starch, talc, clay, alumina (Al 2 O 3 ), aluminum hydrate (Al 2 O 3 H 2 O), aluminum hydroxide (Al(OH) 3 ), aluminum carbonate (Al 2 (CO 3 ) 2 ), aluminum nitride, aluminum magnesium oxide (MgOA 2 O 3 ), aluminum silicate (Al 2 SiO 5 , Al 4 ⁇ 3SiO 4 ⁇ 5H 2 O etc.), aluminum calcium silicate (Al 2 O 3 ⁇ CaO 2 SiO 2 , etc.), pyrofilite (Al 2 O 3 4SiO 2 ⁇ H 2 O), bentonite (Al 2 O 3 ⁇ 4SiO 2 ⁇ 2H 2 O), boron nitride, mica, kaolin, glass balloon, glass beads, calcium oxide (CaO), calcium hydroxide (Ca(OH) 3 ),
  • the at least one filler includes ground, cured rubber, optionally in combination with one of more of the foregoing fillers.
  • ground, cured rubber refers to cured, i.e., vulcanized (cross-linked) rubber that has been ground or pulverized into particulate matter; various particle size ground, cured rubber may be utilized.
  • ground, cured rubber it has an average particle size in the range of about 50 ⁇ m to about 250 ⁇ m (including 50 ⁇ m to 250 ⁇ m), preferably an average particle size of about 74 ⁇ m to about 105 ⁇ m (including 74 ⁇ m to 105 ⁇ m.
  • the average particle size of ground, cured rubber particles may be measured by any conventional means known in the art including the methods according to ASTM D5644.
  • suitable sources of rubber for the ground, cured rubber include used tires. It is well known to those skilled in the art that tires are prepared from natural and synthetic rubbers that are generally compounded using fillers including carbon black and sometimes also including silica.
  • the source of the ground, cured rubber used in accordance with the first, second, and third embodiments disclosed herein may vary, but in certain embodiments can be tires (or rubber from such tires) produced with a carbon black filler, with a silica filler, or with mixtures of both. Exemplary sources include tires from passenger cars, light trucks, or combinations of both.
  • the ground, cured rubber is free of carbon black filler (i.e., the ground, cured rubber contains less than 1 phr carbon black filler or even 0 phr carbon black filler).
  • the total amount utilized may vary widely. Generally, the total amount of filler utilized will vary depending upon the type of filler and the properties sought in the cured polymeric mixture produced from the atcinic radiation curable polymeric mixture. As well, in certain embodiments, the amount of filler will also be adjusted based upon any viscosity increase that it causes to the overall atcinic radiation curable polymeric mixture. In certain embodiments, the total amount of filler utilized in the actinic radiation curable polymeric mixture is an amount that does not cause the viscosity of the mixture to exceed about 10,000 cps (at 25° C.), preferably not exceeding about 5,000 cps (at 25° C.).
  • the at least one filler is present in a total amount (i.e, the total of amount of all fillers if more than one is present) of up to about 2 ⁇ 3 (e.g., 67%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, or 1%) of the total volume of the actinic radiation curable polymeric mixture.
  • the at least one filler is present in a total amount (i.e, the total of amount of all fillers if more than one is present) of about 40 to about 80 parts (based upon 100 total parts of (a) and (b)), including 40 parts, 45 parts, 50 parts, 55 parts, 60 parts, 65 parts, 70 parts, 75 parts and 80 parts.
  • the only fillers utilized are non-carbon black fillers and the total amount of all non-carbon black fillers (i.e, the total of amount of all non-carbon black fillers if more than one is present) is of up to about 2 ⁇ 3 of the total volume (e.g., 67%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, or 1%) of the actinic radiation curable polymeric mixture.
  • the only fillers utilized are non-carbon black fillers and the total amount of all non-carbon black fillers (i.e, the total of amount of all non-carbon black fillers if more than one is present) is about 40 to about 80 parts (based upon 100 total parts of (a) and (b)).
  • At least one carbon black filler is utilized; in such embodiments the at least one carbon black filler may be utilized as the only filler but may alternatively be utilized in combination with one or more non-carbon black filler such as those discussed above.
  • the total amount of carbon black filler can vary and may include amounts such as at least 0.01 parts, 0.01 to less than 1 part, 0.05 to 0.5 parts (based upon 100 total parts of (a) and (b)).
  • first-third embodiments where at least one carbon black is utilized as a filler, various carbon blacks can be utilized.
  • one or more reinforcing carbon blacks are utilized.
  • one or more non-reinforcing carbon blacks are utilized.
  • at least one reinforcing carbon black is used in combination with at least one non-reinforcing carbon black.
  • Carbon blacks having a nitrogen surface area of greater than 30 m 2 /g and a DBP absorption of greater than 60 cm 3 /100 g) are referred to herein as “reinforcing carbon blacks” and carbon blacks having a lower nitrogen surface area and/or lower DBP absorption are referred to herein as “non-reinforcing carbon blacks.”
  • the nitrogen surface area and the DBP absorption provide respective characterizations of the particle size and structure of the carbon black.
  • the nitrogen surface area is a conventional way of measuring the surface area of carbon black. Specifically, the nitrogen surface area is a measurement of the amount of nitrogen which can be absorbed into a given mass of carbon black.
  • the nitrogen surface area for carbon black fillers is determined according to ASTM test D6556 or D3037.
  • the DBP absorption is a measure of the relative structure of carbon black determined by the amount of DBP a given mass of carbon black can absorb before reaching a specified viscous paste.
  • the DBP absorption for carbon black fillers is determined according to ASTM test D2414.
  • the useful carbon blacks are furnace black, channel blacks, and lamp blacks.
  • examples of useful carbon blacks include super abrasion furnace (SAF) blacks, high abrasion furnace (HAF) blacks, fast extrusion furnace (FEF) blacks, fine furnace (FF) blacks, intermediate super abrasion furnace (ISAF) blacks, semi-reinforcing furnace (SRF) blacks, medium processing channel blacks, hard processing channel blacks and conducting channel blacks.
  • SAF super abrasion furnace
  • HAF high abrasion furnace
  • FEF fast extrusion furnace
  • FF fine furnace
  • ISRF intermediate super abrasion furnace
  • SRF semi-reinforcing furnace
  • medium processing channel blacks hard processing channel blacks and conducting channel blacks.
  • Exemplary reinforcing carbon blacks include: N-110, N-220, N-339, N-330, N-351, N-550, and N-660, and combinations thereof.
  • Exemplary non-reinforcing carbon blacks include: thermal blacks or the N9 series carbon blacks (also referred to as
  • Container(s) e.g., Cartridge(s)
  • the actinic radiation curable polymeric mixture is packaged into a cartridge or other container suitable for shipping or storage.
  • a cartridge is a container adapted for or configured for use in an additive manufacturing device; other types of containers may be useful such as for shipping or storage, and the term container should be considered as inclusive of, but not limited to, a cartridge.
  • containers to contain the ingredients of the actinic radiation curable polymeric mixture in its various sub-embodiments (as described above) are envisioned.
  • at least two containers (or cartridges) are utilized, with one container (or cartridge) comprising: the polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and chain extender based upon F or reactive with F and the second container (or cartridge) comprising chain extender based upon F or reactive with F along with at least one of an actinic radiation sensitive photoinitiator and a photosensitizer.
  • the second container further comprises a crosslinker reactive with F; alternatively, a third container (or cartridge) comprising a crosslinker reactive with F can be provided.
  • a kit is provided for producing an elastomeric cured product by additive printing comprising at least two containers (or cartridges) as previously described.
  • the kit comprises at least two containers (or cartridges), wherein at least one container (or cartridge) comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or compatible with F; and at least a second container (or cartridge) comprises a chain extender based upon F or compatible with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer, and optionally a crosslinker reactive with F.
  • kits and containers wherein at least one of the first or second container (or cartridge) further comprises at least one metal or metal oxide filler. In certain of the foregoing embodiments of the kit and containers (or cartridges), wherein at least one of the first or second container (or cartridge) further comprises at least one filler (as discussed below).
  • the second embodiment disclosed herein is directed to a cured polymeric mixture.
  • the cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone [P], multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
  • the cured polymeric mixture can be understood as comprising a cured version of the actinic radiation curable polymeric mixture as previously described (i.e., according to the first embodiment described herein).
  • the cured polymeric mixture comprises an elastomeric polymeric mixture. In certain embodiments of the second embodiment, the cured polymeric mixture is elastomeric.
  • the term elastomeric can be understood according to the following explanation. Yield as used herein refers to the onset of plastic deformation in a material under an applied load. Plastic deformation is deformation that remains after the load is removed. The yield point is the peak in a load-elongation curve (load on y axis, elongation on x axis) at which plastic flow becomes dominant.
  • elastomer or elastomeric refers to a material which does not exhibit any definite yield point or area of plastic deformation; in other words, the deformation of an elastomeric material remains elastic as opposed to becoming plastic.
  • the cured elastomeric mixture comprises crosslinkages which contain no sulfur. In certain embodiments of the second embodiment, the cured elastomeric mixture comprises crosslinkages which are essentially free of sulfur. By essentially free of sulfur is meant that no more than about 1 ppm of sulfur in the overall actinic radiation curable polymeric mixture of the cured polymeric mixture, including less than 1 ppm, less than about 0.1 ppm, less than 0.1 ppm, and 0 ppm. In certain embodiments of the second embodiment, the cured elastomer mixture comprises crosslinkages which contain sulfur, various amounts of which are possible.
  • the third embodiment disclosed herein is directed to a process for producing a cured polymeric product.
  • This process comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising an actinic radiation curable polymeric mixture according to the first embodiments disclosed herein (i.e., as previously described) to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
  • various types of additive manufacturing devices may be utilized.
  • the additive manufacturing device forms the product by a process that comprises solidifying each layer by using the actinic radiation to trace a pattern in the liquid material; in certain such embodiments the device contains no printer head; in certain such embodiments, such a process can be referred to as vat photopolymerization.
  • the additive manufacturing device forms the product by a process that comprises solidifying each layer by using actinic radiation to provide at least one pattern on the liquid material, such a process can be referred to as laser rastering.
  • the laser rastering can be understood as involving the use of pinpoint radiation which is moved across the service to result in an overall pattern being provided.
  • the additive manufacturing device forms the product by a process that comprises solidifying each layer by using actinic radiation to project at least one image on the liquid material, such a process can be referred to as digital light processing.
  • the phrase tracing a pattern in the liquid material is intended to encompass both digital light processing and laser rastering processes.
  • the additive manufacturing device forms the product by dispensing the mixture from a printing head having a set of nozzles; in certain such embodiments, such a process can be referred to as material jetting.
  • each layer has a thickness of about 0.01 mm to about 1 mm, including a thickness of 0.01 mm to 1 mm, about 0.1 mm to about 0.3 mm, and 0.1 mm to 0.3 mm.
  • the materials of construction for the support structure of the additive manufacturing device upon which the product is formed may vary.
  • the support structure comprises polysiloxane polymer (e.g., polydimethylsiloxane or PDMS), a halogenated polymer coating, a halogenated wax coating, or a combination thereof.
  • Non-limiting examples of halogenated polymer coatings include fluorinated halogenated polymers such as polytetrafluoroethylene (PTFE, sold under the tradename Teflon® by DuPont).
  • Non-limiting examples of halogenated wax coatings include fluorinated waxes, chlorinated waxes, brominated waxes, and combinations thereof.
  • Various commercial sources for halogenated waxes exist such as Dover Chemical Corporation (Dover, Ohio) which sells Doverguard® brand brominated waxes and Chlorez® brand chlorinated waxes.
  • the foregoing materials of construction for the support structure or employing those materials as a coating for the support structure upon which the product is formed can facilitate the processes of the third embodiment and production of the resulting products by enabling the product to be more easily removed from the support structure, preferably without curing or otherwise sticking to the support structure such that removal therefrom involves tearing or breaking one or more layers of the product.
  • the particular material of construction used for the support structure may be intentionally varied depending upon the ingredients contained in the actinic radiation curable polymeric mixture (in particular, the type of chain extender utilized).
  • the wavelength of the actinic radiation used in the processes of the third embodiment disclosed herein may vary, depending upon the particular type of additive manufacturing device chosen or the setting chosen for a particular additive manufacturing devices (some devices allow the user to select different wavelength ranges).
  • the actinic radiation has a wavelength in the UV to Visible range.
  • the actinic radiation (light) has a wavelength of about 320 to less than 500 nm, including about 350 to about 450 nm, and about 365 to about 405 nm.
  • the process includes the use of a cartridge to provide the liquid mixture comprising the actinic radiation curable polymeric mixture.
  • the interior tank of the additive manufacturing device further comprises a component capable of receiving a liquid mixture from at least one cartridge. In other words, in such embodiments, the interior tank of the additive manufacturing device is capable of receiving a liquid mixture from at least one cartridge.
  • the process comprises the use of at least two cartridges, with one cartridge comprising: the polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and chain extender based upon F or reactive with F and the second cartridge comprising chain extender based upon F or reactive with F along with at least one of an actinic radiation sensitive photoinitiator and a photosensitizer.
  • the second cartridge further comprises a crosslinker reactive with F; alternatively, a third cartridge comprising a crosslinker reactive with F can be provided.
  • kits comprising at least two containers or cartridges as previously described is provided.
  • Such kits can be useful in producing an cured polymeric product by additive printing.
  • a manufacturer may utilize different types and combinations of polyfunctionalized diene monomer-containing polymer(s), chain extender(s), photoinitiator(s), photosensitizer(s), and crosslinker(s).
  • the use of a kit with multiple cartridges or containers could provide an advantage in material jetting processes where the machine and print head could be used to selectively dispense the materials from different cartridges or containers without the need to pre-mix the materials.
  • the kit comprises at least two containers or cartridges, wherein at least one container (or cartridge) comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or compatible with F; and at least a second container (or cartridge) comprises a chain extender based upon F or compatible with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer, and optionally a crosslinker reactive with F.
  • At least one container or cartridge further comprises at least one metal or metal oxide filler. In certain of the foregoing embodiments of the kit, at least one container or cartridge further comprises at least one filler (as discussed above).
  • the particular ingredients of each container or cartridge used in a kit can vary in conjunction with the description of the actinic radiation curable polymeric mixture as previously described.
  • the fifth embodiment disclosed herein is directed to a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture of the first embodiment (as described above) that has been cured.
  • the ingredients of the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain embodiments of the cured polymeric mixture, as if fully set forth with specific language directed to the cured polymeric mixture of the second embodiment.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises at least one of: a tread, a bead, a sidewall, an innerliner, and a subtread.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire tread.
  • a tire tread comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) r the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a subtread.
  • a tire subtread comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire sidewall.
  • a tire sidewall comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire bead.
  • a tire bead comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire innerliner.
  • a tire innerliner comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • a tire component e.g., treads, beads, sidewalls, innerliners or subtreads
  • an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein can provide an advantage in terms of being able to produce shapes and design that cannot be produced using traditional manufacturing processes such as molding.
  • a tread can be produced that includes at least one of the following: a closed hollow void, an undercut void, and an overhung void.
  • closed hollow void refers to a void that is not open to the road-contacting surface of the tread (at least not upon manufacture); the particular shape of the closed hollow is not particularly limited and shapes that are circular, elliptical, square, rectangular, trapezoidal, rectangular, and triangular may be utilized in various embodiments. Non-limiting examples of closed hollow voids are provided in FIG. 1 .
  • overhung void refers to a void that is partially open to the road-contacting surface of the tread (upon manufacture), that is wider (in at least one dimension) than the opening, and that includes upper walls (at the road-contacting surface) having a thickness less than the overall depth of the void and projecting over and partially covering the opening to the road-contacting surface of the tread.
  • overhung voids are provided in FIG. 2 .
  • undercut void refers to a void that is partially open to the road-contacting surface of the tread (upon manufacture), that is wider (in at least one dimension) than the opening, and that includes upper walls (at the road-contacting surface) that partially extend into the void without hanging over the void.
  • the undercut void has unsupported walls angled (from the bottom towards the top) generally toward the opening to the road-contacting surface.
  • the overhung void has unsupported walls that are substantially parallel (+ or ⁇ about 5°) to the road-contacting surface or have angles (from the bottom towards the top) generally directed away from the opening to the road-contacting surface.
  • overhung voids are provided in FIG. 3 .
  • a rubber good other than a tire or tire component is made from (i.e., comprises) the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture of the first embodiment (as described above) that has been cured.
  • the ingredients of the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain embodiments of the cured polymeric mixture, as if fully set forth with specific language directed to the cured polymeric mixture of the second embodiment.
  • descriptions of the cured polymeric mixture and the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain rubber goods embodiments, as if fully set forth with specific language directed to such rubber goods of the sixth embodiment.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises at least one of: a bushing, a seal, a gasket, a conveyor belt, a hose, or a glove (or gloves).
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a bushing.
  • a bushing comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a seal.
  • a seal comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a gasket.
  • a gasket comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a conveyor belt.
  • a conveyor belt comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a hose.
  • a hose comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a glove or gloves.
  • a glove or gloves comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
  • Manufacturing rubber goods e.g., bushings, seals, gaskets, conveyor belts, hoses, or gloves
  • an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein can provide an advantage in terms of being able to produce shapes and designs that cannot be produced using traditional manufacturing processes such as molding.
  • a hose manufactured by an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein could include internal structure(s) such as multiple channels (to allow separate passage of ingredients through a portion of the hose) or internal projections, protrusions or other internal structure(s) to effect mixing of ingredients during flow through the hose.
  • Another non-limiting example includes the ability to manufacture custom-fitting or custom sized gloves without the need for production of a custom form or a multitude of forms in different sizes.
  • An actinic radiation curable polymeric mixture comprising: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
  • P represents a diene polymer chain
  • F represents a functional group
  • n is 2 to about 15
  • each F can be the same or different
  • the actinic radiation curable polymeric mixture of item 1 wherein the total amount of (a) and (b) is 100 parts and (c) is present in a total amount of at least about 0.1 parts (based upon 100 parts of (a) and (b)).
  • Item 3 The actinic radiation curable polymeric mixture of item 1 or item 2, wherein the mixture is curable by UV-VIS light.
  • Item 4 The actinic radiation curable polymeric mixture according to any one of items 1-3, wherein (a) is present in an amount of 1-100 parts and (b) is present in an amount of 0-99 parts. Item 5.
  • actinic radiation curable polymeric mixture according to any one of items 1-4, wherein the at least one actinic sensitive photoinitiator is present in an amount of about 1 part to about 10 parts (per 100 total parts of (a) and (b)).
  • Item 6 The actinic radiation curable polymeric mixture according to any one of items 1-5, wherein the photosensitizer is present in an amount of about 0.1 parts to about 5 parts (per 100 total parts of (a) and (b)).
  • Item 7 The actinic radiation curable polymeric mixture according to any one of items 1-6, wherein each F comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide.
  • Item 9 The actinic radiation curable polymeric mixture according to any one of items 1-8, wherein F comprises a free radical polymerizable functionalizing group.
  • Item 10 The actinic radiation curable polymeric mixture according to any one of items 1-9, wherein F comprises a cationic polymerizable functionalizing group.
  • F comprises a combination of cationic polymerizable and free radical polymerizable functional groups either on the same diene polymer chain or on separate diene polymer chains.
  • Item 13 The actinic radiation curable polymeric mixture according to any one of items 1-12, wherein the diene polymer chain comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms. Item 14.
  • Item 15 The actinic radiation curable polymeric mixture according to any one of items 1-14, comprising a polyfunctional crosslinker selected from polyol (meth)acrylates prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms, polyallylic compounds prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms, polyfunctional amines, or combinations thereof.
  • a polyfunctional crosslinker selected from polyol (meth)acrylates prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms, polyallylic compounds prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms, polyfunctional amines, or combinations thereof.
  • the actinic radiation curable polymeric mixture according to any one of items 1-15, comprising a polyfunctional crosslinker selected from at least one of: Trimethylolpropane tri(meth)acrylate, Pentaerythritol tetraacrylate, Pentaerythritol triacrylate, Trimethylolpropane ethoxylate triacrylate, Acrylated epoxidized soybean oil, Ditrimethylol Propane Tetraacrylate, Di-pentaerythritol Polyacrylate, Di-pentaerythritol Polymethacrylate, Di-pentaerythritol triacrylate, Di-pentaerythritol trimethacrylate, Di-pentaerythritol tetracrylate, Di-pentaerythritol tetramethacrylate, Di-pentaerythritol pent(meth)acrylate, Di-pentaerythritol he
  • Item 17 The actinic radiation curable polymeric mixture according to item 13 or item 14, wherein the diene polymer chain further comprises at least one vinyl aromatic monomer.
  • Item 18 The actinic radiation curable polymeric mixture according to any one of items 1-17, wherein the Tg of the polyfunctionalized diene polymer is about ⁇ 105 to about ⁇ 10° C.
  • Item 19 The actinic radiation curable polymeric mixture according to any one of items 1-18, wherein the chain extender comprises an (meth)acrylate monomer selected from C2 to about C18 alkyl functionalized (meth)acrylates.
  • Item 20 The actinic radiation curable polymeric mixture according to any one of items 1-29, wherein the Tg of the chain extender is about ⁇ 65 to about 10° C.
  • Item 21 The actinic radiation curable polymeric mixture according to any one of item 1-20, wherein the chain extender has a Mw of about 72.06 to about 135,000 grams/mole.
  • Item 22 The actinic radiation curable polymeric mixture according to any one of items 1-21, wherein the photo sensitizer comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone.
  • Item 23 The actinic radiation curable polymeric mixture according to any one of item 1-20, wherein the chain extender has a Mw of about 72.06 to about 135,000 grams/mole.
  • the photo sensitizer comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone.
  • the actinic radiation curable polymeric mixture according to any one of items 1-22, wherein the photoinitiator comprises at least one of: a benzophenone, an aromatic ⁇ -hydroxyketone, a benzilketal, an aromatic ⁇ -aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide.
  • the photoinitiator comprises at least one of: a benzophenone, an aromatic ⁇ -hydroxyketone, a benzilketal, an aromatic ⁇ -aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide.
  • the actinic radiation curable polymeric mixture according to any one of items 1-23, wherein the photoinitiator is selected from benzophenone, benzildimethylketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1one, 2-hydroxy-1- ⁇ 4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl ⁇ -2-methyl-propan-1-one, (4-methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, (4-morpholinobenzoyl)-1-(4-methylbenzyl)-1-dimethylaminopropane, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, bis(2,6-dimethoxy-benzoyl)-(2,4,
  • Item 25 The actinic radiation curable polymeric mixture according to any one of items 1-24, wherein the photoinitiator comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives thereof, an oxime ester, a per-ester, a ketosulfone, a phenylglyoxylate, a borate, and a metallocene.
  • the photoinitiator comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives
  • actinic radiation curable polymeric mixture according to any one of item 1-28, wherein the mixture has a viscosity at 25° C.) of about 1 to about 10,000 cps, preferably about 100 to about 5,000 cps.
  • Item 30 A cartridge containing the actinic radiation curable polymeric mixture according to any one of items 1-29.
  • Item 100 A cured polymeric mixture comprising: a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone [P], multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
  • Item 101 The cured polymeric mixture according to item 100, wherein each F comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide.
  • Item 102 A cured polymeric mixture comprising: a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone [P], multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
  • Item 101 The cured polymeric mixture according to item 100, wherein each F comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide.
  • Item 105 The cured polymeric mixture according to any one of items 101-101, wherein F comprises an acrylate or methacrylate, when present the chain extender comprises an acrylate-based chain extender, and when present the crosslinker comprises a poly acrylate-based crosslinker.
  • the diene polymer chain comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,
  • Item 108 The cured polymeric mixture according to item 106 or 107, wherein the diene polymer chain further comprises at least one vinyl aromatic monomer.
  • Item 109 The cured polymeric mixture according to any one of items 100-108, further comprising at least one metal or metal oxide filler.
  • Item 110 The cured polymeric mixture according to item 109, wherein the at least one metal or metal oxide filler is present in an amount of up to about 2 ⁇ 3 of the total volume of The cured polymeric mixture.
  • Item 111 The cured polymeric mixture according to item 109, wherein the at least one metal or metal oxide filler is present in an amount of about 40 to about 80 parts (based upon 100 total parts of the crosslinked polyfunctionalized diene polymer.
  • a cured polymeric mixture comprising the cured polymeric mixture according to any one of items 1-29.
  • Item 300 A process for producing a cured polymeric product, comprising providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of any one of items 1-30 to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
  • Item 301 The process of item 300, wherein each layer has a thickness of about 0.01 mm to about 1 mm.
  • the process of item 300 or item 301, wherein the forming comprises solidifying each layer by using the actinic radiation to trace a pattern in the liquid material.
  • Item 303. The process of item 300 or item 301, wherein the forming comprises dispensing the mixture from a printing head having a set of nozzles.
  • Item 304. The process of any one of items 300-303, wherein the actinic radiation comprises UV or Visible light.
  • the process of any one of items 300-303, wherein the actinic radiation comprises light having a wavelength of about 320 to less than 500 nm.
  • Item 306. The process of any one of items 300-305, wherein the interior tank is capable of receiving a liquid mixture from at least one cartridge. Item 307.
  • a kit for producing an elastomeric cured product by additive printing comprising at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F] n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F.
  • Item 310 The kit according to item 309, wherein at least one of the first or second cartridge further comprises at least one metal or metal oxide filler.
  • Item 400 A tire comprising at least one component comprised of the cured polymeric mixture according to any one of items 100-116.
  • Item 401 A tire comprising at least one component comprised of the actinic radiation curable polymeric mixture of any one of items 1-30 that has been cured.
  • Item 402. The tire according to item 400 or item 401, wherein the at least one component is selected from a tread, a bead, a sidewall, an innerliner, and a subtread.
  • Item 403. The tire according to any one of items 400-402, wherein the at least one component comprises a tread.
  • Item 501 A rubber good comprising the cured polymeric mixture according to any one of items 100-116.
  • Item 501 A rubber good comprising the actinic radiation curable polymeric mixture of any one of items 1-30 that has been cured.
  • Item 502. The rubber good according to item 500 or item 501, wherein the rubber good comprises a bushing, a seal, a gasket, a conveyor belt, a hose, or a glove.

Abstract

The present disclosure is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a continuation of U.S. patent application Ser. No. 16/901,826 filed Jun. 15, 2020 and assigned U.S. Pat. No. 11,261,279, which is a continuation of U.S. patent application Ser. No. 15/539,007 filed Jun. 22, 2017 and assigned U.S. Pat. No. 10,683,381, which is a national stage application of PCT Application No. PCT/US2015/066288 filed Dec. 17, 2015, which claims priority to and any other benefit of U.S. Provisional Patent Application Ser. No. 62/142,271 filed Apr. 2, 2015, and U.S. Provisional Patent Application Ser. No. 62/096,120 filed Dec. 23, 204, the entire disclosure of each of which is incorporated by reference herein.
FIELD
The present application is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
BACKGROUND
Additive manufacturing (which encompasses processes such as “3D Printing”) is a process whereby a three-dimensional article is manufactured (such as by printing) layer by layer from raw material. Certain additive manufacturing processes manufacture an article by building up cross-sectional layers of the article as compared to other so-called subtractive manufacturing processes which require that certain portions of a manufactured article be removed in order to produce the article in its final shape or form. While various additive manufacturing methods have existed since the 1980s, certain of them have been focused upon the use of various plastic polymers such as acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high density polyethylene (HDPE), and high impact polystyrene (HIPS). Another type of additive manufacturing process is roll-to-roll UV-NIL (UV-assisted nanoimprint lithography) which has been used to manufacture various devices including battery separators and organic electronics.
SUMMARY
The present disclosure is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
In a first embodiment, an actinic radiation curable polymeric mixture is disclosed. The mixture comprises: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally, a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
In a second embodiment, a cured polymeric mixture is disclosed. The cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone P, multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
In a third embodiment, a process for producing a cured polymeric product is disclosed. The process comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of the first embodiment to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
In a fourth embodiment, a kit for producing an elastomeric cured product by additive printing is disclosed. The kit comprises at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F; at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F.
In a fifth embodiment, a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
In a sixth embodiment, a rubber good comprising the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 shows exemplary closed hollow voids in treads, in cut-away profile with the top being the road-contacting surface.
FIG. 2 shows exemplary overhung voids in treads, in cut-away profile with the top being the road-contacting surface.
FIG. 3 shows exemplary undercut voids in treads, in cut-away profile with the top being the road-contacting surface.
DETAILED DESCRIPTION
The present disclosure is directed to actinic radiation curable polymeric mixtures, cured polymeric mixtures, tires and tire components made from the foregoing, and related processes.
In a first embodiment, an actinic radiation curable polymeric mixture is disclosed. The mixture comprises: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally, a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F.
In a second embodiment, a cured polymeric mixture is disclosed. The cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone P, multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups.
In a third embodiment, a process for producing a cured polymeric product is disclosed. The process comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of the first embodiment to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product.
In a fourth embodiment, a kit for producing an elastomeric cured product by additive printing is disclosed. The kit comprises at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F; at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F.
In a fifth embodiment, a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
In a sixth embodiment, a rubber good comprising the cured polymeric mixture according to second embodiment or the actinic radiation curable polymeric mixture of the first embodiment that has been cured is disclosed.
Definitions
The terminology as set forth herein is for description of the embodiments only and should not be construed as limiting the invention as a whole.
As used herein, the phrase “actinic radiation” refers to electromagnetic radiation capable of producing photochemical reactions.
As used herein, the phrase “additive manufacturing” refers to the process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies.
As used herein, the term “cartridge” refers to a container that is adapted for or configured for use in an additive manufacturing device.
As used herein, the phrase “chain extender” refers to a monofunctionalized hydrocarbon or hydrocarbon derivative containing a functional group that reacts with a functional end group of the diene polymer chain and adds to the polymer chain, thereby increasing its molecular weight.
As used herein, the phrase “polyfunctional crosslinker” refers to a hydrocarbon or hydrocarbon derivative containing two or more functional groups which are capable of undergoing a reaction to provide cross-linking between two diene polymer chains or within a diene polymer chain.
As used herein, the term “hydrocarbon” refers to a compound consisting entirely of carbon and hydrogen atoms.
As used herein, the phrase “hydrocarbon derivative” refers to a hydrocarbon containing at least one heteroatom (e.g., N, O, S).
As used herein, the term “mer” or “mer unit” means that portion of a polymer derived from a single reactant molecule (e.g., ethylene mer has the general formula —CH2CH2-).
As used herein, the term “(meth)acrylate” encompasses both acrylate and methacrylate.
As used herein, the term “photoinitiator” refers to a compound that generates free radicals. The term “photoinitiator” is used interchangeably herein with the phrase “actinic radiation sensitive photoinitiator.”
As used herein, the term “photosensitizer” refers to a light absorbing compound used to enhance the reaction of a photoinitiator. Upon photoexcitation, a photosensitizer leads to energy or electron transfer to a photoinitiator.
As used herein, the term “polyfunctionalized” refers to more than one functionalization and includes polymers that have been di-functionalized, tri-functionalized, etc. Generally, functionalization of a polymer may occur at one or both ends of a polymer chain, along the backbone of the polymer chain, in a side chain, and combinations thereof.
As used herein, the term “polymer” refers to the polymerization product of two or more monomers and is inclusive of homo-, co-, ter-, tetra-polymers, etc. Unless indicated to the contrary herein, the term polymer includes oligomers.
As used herein, the term “void” refers to a portion of a tire tread that is devoid of material (other than air); the term can include grooves or channels extending around all or a portion of the circumference of the tire as well as a pocket or cavity that does not extend around the circumference of the tire.
Actinic Radiation Curable Polymeric Mixture
As discussed above, the first embodiment disclosed herein relates to an actinic radiation curable polymeric mixture comprising (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F. Generally, the actinic radiation curable polymeric mixture is suitable for use in additive manufacturing processes which utilize various additive manufacturing devices. The product or article produced by curing the actinic radiation curable polymeric mixture is referred to herein as a cured elastomeric/polymeric product. In certain embodiments according to the first embodiment, the actinic radiation curable polymeric mixture is curable by light having a wavelength in the UV to Visible range. In certain embodiments, the actinic radiation (light) has a wavelength of about 320 to less than 500 nm, including about 350 to about 450 nm, and about 365 to about 405 nm. Generally, there are two types of radiation induced curing chemistries: free radical and cationic. Free radical curing involves cross-linking through double bonds, most usually (meth)acrylate double bonds. Cationic curing involves cross-linking through other functional groups, most usually epoxy groups.
Polyfunctionalized Diene Monomer-Containing Polymer
As discussed above, the actinic radiation curable polymeric mixture comprises a polyfunctionalized diene monomer-containing polymer which comprises a diene polymer chain [P]. In certain embodiments, the actinic radiation curable polymeric mixture comprises one type of polyfunctionalized diene monomer-containing polymer and in other embodiments, the mixture comprises more than one type of polyfunctionalized diene monomer-containing polymer. Polyfunctionalized diene monomer-containing polymers can be categorized into different types based upon one or more of: molecular weight, monomer type(s), relative amount of monomer(s), types of functional group(s) (e.g., free radical polymerizable or cationic polymerizable), identity of functional group(s) (as discussed in more detail below), and amount of functional group(s). In certain embodiments, the polyfunctionalized diene monomer-containing polymer(s) can be referred to as a pre-polymer since they will react with each other and with a chain extender (when a chain extender is present) to form a higher molecular weight polymer. The diene polymer chain comprises (is based upon) at least one diene monomer. A diene monomer is a monomer having two carbon-carbon double bonds. Various diene monomers exist and are generally suitable for use in preparing the diene polymer chain of the polyfunctionalized diene monomer-containing polymer. In certain embodiments according to the first-fifth embodiments disclosed herein, the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms. In certain embodiments according to the first-fifth embodiments disclosed herein, the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-hexadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, and 1,3-cyclooctadiene, farnescene, and substituted derivatives of each of the foregoing. In certain embodiments, the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises 1,3-butadiene monomer, isoprene monomer, or a combination thereof. In certain embodiments, the diene polymer chain of the polyfunctionalized diene-monomer-containing polymer further comprises at least one vinyl aromatic monomer. Non-limiting examples of suitable vinyl aromatic monomers include, but are not limited to, styrene, α-methyl styrene, p-methylstyrene, o-methylstyrene, p-butylstyrene, vinylnaphthalene, p-tertbutylstyrene, vinyl catechol-based, and combinations thereof. In certain embodiments, the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises a combination of 1,3-butadiene monomer and styrene monomer.
As discussed above, the term “polyfunctionalized” is used herein to refer to more than one functionalization and includes polymers that have been di-functionalized, tri-functionalized, etc. Generally, functionalization of a polymer may occur at one or both ends of a polymer chain, along the backbone of the polymer chain, and combinations thereof. Generally, each F functional group present in the polyfunctionalized diene monomer-containing polymer may be same or different. In certain embodiments according to the first-fifth embodiments disclosed herein, the polyfunctionalized diene monomer-containing polymer comprises a di-functionalized polymer having an F functional group at each terminal end of the polymer chain; each F functional group may be the same or different. In certain embodiments according to the first-fifth embodiments disclosed herein, the polyfunctionalized diene monomer-containing polymer comprises a di-functionalized polymer having a F functional group at one terminal end of the polymer chain and at least one additional F functional group along the backbone of the polymer chain; each F functional group may be the same or different. In certain embodiments according to the first-fifth embodiments disclosed herein, the polyfunctionalized diene monomer-containing polymer comprises a functionalized polymer having at least three F functional groups, with one at each terminal end of the polymer chain, and at least one along the backbone of the polymer chain; each F functional group may be the same or different.
Various polyfunctionalized diene monomer-containing polymers are commercially available and may be suitable for use in various embodiments of the first-fifth embodiments disclosed herein. Non-limiting examples of these include, but are not limited to, Sartomer CN307 polybutadiene dimethacrylate, Sartomer CN301 polybutadiene dimethacrylate and Sartomer CN303 hydrophobic acrylate ester, all available from Sartomer Americas (Exton, Pennsylvania); Ricacryl® 3500 methacrylated polybutadiene, Ricacryl® 3801 methacrylated polybutadiene, Ricacryl® 3100 methacrylated polybutadiene, all available from Cray Valley USA LLC (Exton, Pennsylvania); BAC-45 polybutadiene diacrylate and BAC-15 polybutadiene diacrylate, available from San Esters Corp. (New York, New York); Kuraray UC-102 methacrylated polyisoprene and UC-203 methacrylated polyisoprene, available from Kuraray America Inc. (Pasadena, Texas); Poly bd® 600E epoxidized polybutadiene and Poly bd® 605E polybutadiene, available from Cray Valley USA LLC (Exton, Pennsylvania). Methods for preparing polyfunctionalized diene monomer-containing polymers are well-known to those of skill in the art and include those using functional initiators, functional terminators and reactions of diol terminated dienes with various functional acid chlorides or with carboxylic acids (through a dehydration reaction). Other methods include the reaction of an oxidant and a carboxylic acid to form a peracid for adding an epoxy group.
In certain embodiments, the diene polymer chain of the polyfunctionalized diene monomer-containing polymer comprises: polybutadiene, styrene-butadiene copolymer, polyisoprene, ethylene-propylene-diene rubber (EPDM), styrene-isoprene rubber, or butyl rubber (halogenated or non-halogenated).
The molecular weight of the polyfunctionalized diene monomer-containing polymer may vary widely depending upon various factors, including, but not limited to the amount and type of chain extender (if any) that is utilized in the actinic radiation curable polymeric mixture. Generally, higher molecular weight polymers will lead to better properties in the cured article or product, but will also lead to higher viscosities in the overall actinic radiation curable polymeric mixture. Thus, preferred polyfunctionalized diene monomer-containing polymers for use in the mixture will balance molecular weight with its effect on viscosity. In certain embodiments, the polyfunctionalized diene monomer-containing polymer has a Mn of about 3,000 to about 135,000 grams/mole (polystyrene standard). In certain embodiments, the polyfunctionalized diene monomer-containing polymer has a Mn of 3,000 to 135,000 grams/mole (polystyrene standard); including about 5,000 to about 100,000 grams/mole (polystyrene standard); 5,000 to 100,000 grams/mole (polystyrene standard); about 10,000 to about 75,000 grams/mole (polystyrene standard); and 10,000 to 75,000 grams/mole (polystyrene standard). The number average molecular weights (Mn) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F).
In certain embodiments, the cured elastomeric mixture comprises crosslinked polyfunctionalized diene monomer-containing polymer has a Mc (molecular weight between crosslinks) of about 500 to about 150,000 grams/mole, including 500 to 150,000 grams/mole (e.g., 1000, 2500, 5000, 10000, 20000, 25000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 115000, 120000, 130000, 140000 or 150000). The crosslinked molecular weight (Mc) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F). Mc can be determined in accordance with previously published procedures such as those disclosed in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986), herein incorporated by reference in its entirety.
In certain embodiments, the molecular weight of the crosslinked polyfunctionalized diene monomer-containing polymer of the cured elastomeric mixture can be quantified in terms of Mr or molecular weight between chain restrictions. In certain embodiments, the cured elastomeric mixture comprises crosslinked polyfunctionalized diene monomer-containing polymer has a Mc (molecular weight between crosslinks) of about 500 to about 150,000 grams/mole, including 500 to 150,000 grams/mole (e.g., 1000, 2500, 5000, 10000, 20000, 25000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 110000, 115000, 120000, 130000, 140000 or 150000). The crosslinked molecular weight (Mc) values that are discussed herein for the polyfunctionalized diene monomer-containing polymer include the weight contributed by the functional groups (F). Generally Mr can be determined according to the procedure described in U.S. Patent Application Publication No. 2012/0174661, herein incorporated by reference in its entirely. More specifically, Mr can be determined according to the following equation:
M r = ρ RT ( Λ - Λ - 2 ) σ
where ρ is the compound density, σ is stress, R is the gas constant, T is temperature, A is 1+Xϵ where X is the strain amplification factor from the Guth-Gold equation and the strain (ϵ) is (1−lset)/lset where l is the specimen length at a point on the retraction curve and lset is the specimen length after retraction to zero stress. A TR or tensile retraction test set consists of at least two tensile retraction tests, each to a progressively higher target extension ratio, Λmax, followed immediately by a retraction to a zero stress. Each tensile pull and subsequent retraction are performed at the same testing rate such that a series of extension and retraction curve pairs are obtained. During each retraction, the stress, σ, is measured as a function of extension ratio, A, defining the tensile retraction curve. Testing may be performed in accordance with the procedures outlined in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986), herein incorporated by reference in its entirety.
When determining Mr for compounds containing rigid fillers, the enhancement of modulus due to rigid particles should be taken into account in a fashion similar to that of Harwood and Payne, J. Appl. Polym. Sci., v. 10, pp. 315 (1966) and Harwood, Mullins and Payne, J. Appl. Polym. Sci, v. 9, pp. 3011 (1965), both of which are herein incorporated by reference in their entirety. When a filled compound is first stretched in tension to the same stress as its corresponding gum compound (e.g., non-filled compound), subsequent retraction and extension curves are generally very similar to those of the gum compounds when stress is graphed as a function of normalized strain. Normalized strain is defined as the strain at any point on the subsequent extension or retraction curves divided by the maximum strain of the initial extension. For retraction curves in particular, and for maximum strains of natural rubber gum compounds up to and including near breaking strain, this could be applied to a number of filled compounds. The result can be interpreted as evidence of strain amplification of the polymer matrix by the filler, where the average strain the polymer matrix of a filled compound is the same as that in the corresponding gum (non-filled) compound, when the filled and gum compounds are compared at the same stress. Strain amplification X can be determined by the Guth-Gold equation as discussed in Mullins et al., J. Appl. Polym. Sci., vol. 9, pp. 2993 (1965) and Guth et al., Phys. Rev. v. 53, pp. 322 (1938), both of which are herein incorporated by reference in their entirety. After correction of Λ for filler level, neo-Hookean rubber elasticity theory (Shen, Science & Technology of Rubber, Academic Press, New York, 1978, pp. 162-165, herein incorporated by reference) may be applied to an internal segment of the retraction curve from which a molecular weight between chain restrictions of all types, Mr can be calculated according to the above equation. Extension of the same rubber specimen to successively higher Amax provides Mr as a function of Λmax.
Tensile retraction testing can be measured using a special ribbed TR mold to prevent slippage when stretched in tension between clamps of an Instron 1122 tester controlled by a computer (for testing, data acquisition and calculations), as described in Hergenrother, J., Appl. Polym. Sci., v. 32, pp. 3039 (1986). Specimens for testing may be nominally 12 mm wide by 50 mm long by 1.8 mm thick. Mr can be calculated at each of 25 (σ, Λ) pairs, collected from about the middle one-third of the particular retraction curve. Mr values as disclosed herein may be the average of the 25 calculated values. In order to reduce test time, elongations to successively higher Amax can be carried out at successively higher speeds of the Instron crosshead motion. A master TR curve can be obtained by shifting the different test speeds to a standardized testing rate of 5%/minute. High strain (greater than about 40% to 80% elongation) region of the smooth curve obtained may be fitted by a linear equation of the form of Mr=S(Λmax−1)+Mc. The fit to strain region at less than 80% elongation may deviate steadily from the Mr line as strains are progressively reduced. The logarithim of such difference between the calculated and observed ye can be plotted versus the lower level of strain to give a linear fit to Δve as a function of (Λmax−1). The antilog of the reciprocal of the intercept, m, can be denoted as B (expressed in kg/mole) and relates to the micro-dispersion of the filler. See, U.S. Pat. No. 6,384,117, herein incorporated by reference in its entirety. In a similar fashion, the lowest strain deviation can be treated to give a plot of ΔΔve as a function of (Λmax−1). The antilog of the reciprocal of the intercept for the process that occurs at strains of less than 6% elongation can be denoted as γ (expressed in kg/mole). These three equations, each with a slope and intercept, can be used to fit the various strain regions of the TR curve can be summed to provide a single master equation that empirically describes the Mr response over the entire range of testing. Experimental constants of the new master equation can be adjusted using ExcelSolver® to obtain the best possible fit of the predicted values to the experimental values obtained by TR. Fitting criteria consisting of a slope and an intercept can be determined when the experimental and curve fit values of Mr are compared. The composite equation can allow the transition between each fitted linear region to be independent of the choice of the experimental strains measured and the small mathematical adjusting of the strain range can allow a more precise linear fit of the data to be made.
F Functional Groups
As discussed above, F represents a functional group associated with the polyfunctionalized diene monomer-containing polymer. Various types of functional groups F may be suitable for use in certain embodiments of the first-fifth embodiments disclosed herein. In certain embodiments, these functional groups F can be described as either free radical polymerizable or cationic polymerizable, which is a general description of how the groups react upon exposure to actinic radiation (light) to result in cross-linking or curing. Generally, functional groups that improve curability (cross-linking) by actinic radiation are useful as the functional group F.
In certain embodiments, the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a free radical polymerizable functionalizing group. In certain embodiments, the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a cationic polymerizable functionalizing group. In certain embodiments, the F functional group of the polyfunctionalized diene monomer-containing polymer comprises a combination of cationic polymerizable and free radical polymerizable functional groups either on the same diene polymer chain or on separate diene polymer chains. Generally, functional groups that are free radical polymerizable have the advantage of reacting faster than cationic polymerizable functionalizing groups, but the disadvantage is being prone to inhibition by oxygen exposure. Generally, functional groups that are cationic polymerizable have the advantage of being resistant to oxygen exposure (i.e., they are not inhibited), but have the disadvantages of being prone to inhibition by water exposure and having a generally slower rate of reaction. The combination of cationic polymerizable and free radical polymerizable functional groups can be advantageous as providing the advantages of each type and minimizing the disadvantages of each alone; an additional advantage of such a combination is to allow for a double network system wherein a crosslink of a first type occurs at a first wavelength and a crosslink of a second type occurs at a second wavelength or a single wavelength is used to activate both types of photoinitators which will create a double network.
In certain embodiments, each functional group F in the polyfunctionalized diene monomer-containing polymer comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide. In certain embodiments, each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an acrylate or methacrylate. Suitable acrylates or methacrylates may be linear, branched, cyclic, or aromatic. As used herein, the term acrylate should be understood to include both acrylic acid and esters thereof. Similarly, the term methacrylate should be understood to include both methacrylic acid and esters thereof. Various types of acrylates and methacrylates are commonly used and may be suitable for use as the functional group F. In certain embodiments of the first-fifth embodiments disclosed herein, the function group F comprises at least one of: acrylic acid, methacrylic acid, ethyl (meth)acrylate, methyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, cyclobutyl (meth)acrylate, (cyano)acrylate, 2-ethylhexyl(meth)acrylate, isostearyl (meth)acrylate, isobornyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, cyclopropyl (meth)acrylate, pentyl (meth)acrylate, isopentyl (meth)acrylate, cyclopentyl (meth)acrylate, hexyl (meth)acrylate, isohexyl (meth)acrylate, cyclohexyl (meth)acrylate, heptyl (meth)acrylate, isoheptyl (meth)acrylate, cycloheptyl (meth)acrylate, octyl (meth)acrylate, cyclooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, cyclononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, cyclodecyl (meth)acrylate, undecyl (meth)acrylate, isoundecyl (meth)acrylate, cycloundecyl (meth)acrylate, lauryl (meth)acrylate, tridecyl (meth)acrylate, isotridecyl (meth)acrylate, cyclotridecyl (meth)acrylate, tetradecyl (meth)acrylate, isotetradecyl (meth)acrylate, cyclotetradecyl (meth)acrylate, pentadecyl (meth)acrylate), isopentadecyl (meth)acrylate, cyclopentadecyl (meth)acrylate, and combinations thereof. In certain embodiments, each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an epoxide or a thioepoxide. In certain embodiments, each functional group F in the polyfunctionalized diene monomer-containing polymer comprises an aziridine, which generally can be considered to be a compound containing the aziridine functional group (a 3-membered heterocyclic group with one amine (—NR—), where R is H, CH3, and two methylenes (—CH2—).
In certain embodiments, the chain extender may be chosen based upon compound having a moiety that is reactive with the F functional group of the polyfunctionalized diene monomer-containing polymer.
In certain embodiments, the chain extender comprises one or more additional functional groups F1 along the backbone of the polymer. Such functional groups may be chosen based upon their contribution to desirable properties in the cured polymeric mixture, the cured elastomeric 3-dimensional article or final product. As a non-limiting example, the F1 functional groups may be selected to interact with one or more fillers such as silica filler, i.e., F1 comprises a silica-reactive functional group. Thus, in certain embodiments the polyfunctionalized diene monomer-containing polymer comprises at least one F1 silica-reactive functional group along its backbone. Non-limiting examples of silica-reactive functional groups include nitrogen-containing functional groups, silicon-containing functional groups, oxygen- or sulfur-containing functional groups, and metal-containing functional groups. Another specific example of a F1 functional group includes phosphorous-containing functional groups.
Non-limiting examples of nitrogen-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, any of a substituted or unsubstituted amino group, an amide residue, an isocyanate group, an imidazolyl group, an indolyl group, a nitrile group, a pyridyl group, and a ketimine group. The foregoing substituted or unsubstituted amino group should be understood to include a primary alkylamine, a secondary alkylamine, or a cyclic amine, and an amino group derived from a substituted or unsubstituted imine. In certain embodiments of the first-third embodiments, the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of nitrogen-containing functional groups.
Non-limiting examples of silicon-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, an organic silyl or siloxy group, and more precisely, the functional group may be selected from an alkoxysilyl group, an alkylhalosilyl group, a siloxy group, an alkylaminosilyl group, and an alkoxyhalosilyl group. Suitable silicon-containing functional groups for use in functionalizing diene-based elastomer also include those disclosed in U.S. Pat. No. 6,369,167, the entire disclosure of which is herein incorporated by reference. In certain embodiments of the first-third embodiments, the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of silicon-containing functional groups.
Non-limiting examples of oxygen- or sulfur-containing functional groups that can be utilized as a F1 silica-reactive functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, a hydroxyl group, a carboxyl group, an epoxy group, a glycidoxy group, a diglycidylamino group, a cyclic dithiane-derived functional group, an ester group, an aldehyde group, an alkoxy group, a ketone group, a thiocarboxyl group, a thioepoxy group, a thioglycidoxy group, a thiodiglycidylamino group, a thioester group, a thioaldehyde group, a thioalkoxy group, and a thioketone group. In certain embodiments, the foregoing alkoxy group may be an alcohol-derived alkoxy group derived from a benzophenone. In certain embodiments of the first-third embodiments, the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of oxygen- or sulfur-containing functional groups.
Non-limiting examples of phosphorous-containing functional groups that can be utilized as a F1 functional group along the backbone of the polyfunctionalized diene monomer-containing polymer in certain embodiments include, but are not limited to, organophosphorous compounds (i.e., compounds containing carbon-phosphorous bond(s)) as well as phosphate esters and amides and phosphonates. Non-limiting examples of organophosphorous compounds include phosphines including alkyl phosphines and aryl phosphines. In certain embodiments of the first-third embodiments, the polyfunctionalized diene monomer-containing polymer comprises at least one F1 functional group along its backbone selected from the foregoing list of phosphorous-containing functional groups.
Chain Extender
As discussed above, the actinic radiation curable polymeric mixture optionally comprises a chain extender based upon F or reactive with F. In other words, in certain embodiments the mixture comprises a chain extender, but it is not considered to be essential in all embodiments. Generally, the chain extender is a hydrocarbon or hydrocarbon derivative that is monofunctionalized with a functional group that reacts with a functional end group of the dienepolymer chain of the polyfunctionalized diene monomer-containing polymer and is used to increase the molecular weight of the polyfunctionalized diene monomer-containing polymer (by bonding to one of the F groups of the polymer). Preferably, the chain extender lowers the viscosity of the overall actinic radiation curable polymeric mixture and also acts to increase the molecular weight of the polyfunctionalized diene monomer-containing polymer between crosslinks. In certain embodiments, the chain extender also increases the elongation at break of the cured elastomeric/polymeric mixture that results from actinic radiation curing the polymeric mixture.
In certain embodiments when the chain extender is present, it comprises a compound that is based upon F. In other words, such a chain extender compound comprises an F group. In certain embodiments when the chain extender is present, it comprises a compound that is based upon F or a compound that is reactive with F. By reactive with F is meant a compound containing a moiety that will bond with the F group of the polyfunctionalized diene monomer-containing polymer.
As discussed above, in those embodiments where the chain extender is present, it may comprise a hydrocarbon or hydrocarbon derivative with monofunctionality selected from various functional groups either based on F or reactive with F. In certain embodiments when the chain extender is present, it is selected so that the Tg of the chain-extended polyfunctionalized diene monomer-containing polymer is less than about 25° C., including about −65° C. to about 10° C. Preferably, the chain extender is selected so that the Tg of the extended polyfunctionalized diene monomer-containing polymer even after crosslinking is less than about 25° C., including about −65° C. to about 10° C. In certain embodiments when the chain extender is present, it comprises a compound that has a Mw of about 72 to about 1000 grams/mole, including about 72 to about 500 grams/mole.
In certain embodiments of the first-fifth embodiments, when the chain extender is present, it comprises at least one alkyl (meth)acrylate monomer. In certain such embodiments, the alky (meth)acrylate monomer is comprised of an alkyl chain selected from C2 to about C18 and having a reactive meth(acrylate) head group, termed alkyl functionalized (meth)acrylates; alkyl (meth)acrylate monomers having larger alkyl groups may have a thermal transition, Tm, that is higher than desired. By utilizing as a chain extender a compound/monomer that contains only one functional group (e.g., a (meth)acrylate) it is possible to increase the molecular weight between crosslinks, while reducing the viscosity.
In certain embodiments when the F group of the polyfunctionalized diene monomer-containing polymer comprises an acrylate or methacrylate, the chain extender comprises at least one alkyl (meth)acrylate monomer. In certain such embodiments, the alky (meth)acrylate monomer is at least one monomer selected from C2 to about C18 alkyl functionalized (meth)acrylates; alkyl (meth)acrylate monomers having larger alkyl groups may have a Tg that is higher than desired and may unduly increase the Tg of the overall actinic radiation curable polymeric mixture.
In certain embodiments, the total amount of polyfunctionalized diene monomer-containing polymer and chain extender can be considered to be 100 parts by weight; in certain such embodiments, the polyfunctionalized diene monomer-containing polymer is present in an amount of 1-100 parts by weight and the chain extender is present in an amount of 0-99 parts by weight. In other words, the chain extender is optional in certain embodiments. Generally, the relative amounts of polyfunctionalized diene monomer-containing polymer and chain extender can vary greatly because, as discussed above, upon exposure to actinic radiation the chain extender adds to the polymer and increases its molecular weight. As a non-limiting example, when the Mn of the polyfunctionalized diene monomer-containing polymer is relatively low (e.g., about 3,000 grams/mole, polystyrene standard), and the Mw of the chain extender is relatively high (e.g., about 1000 grams/mole), the total amount of polyfunctionalized diene monomer-containing polymer and chain extender can comprise relatively less polymer than chain extender. In certain embodiments, the polyfunctionalized diene monomer-containing polymer is present in an amount of 1-90 parts by weight and the chain extender is present in an amount of 10-99 parts by weight, including 1-80 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 20-99 parts by weight, 1-70 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 30-99 parts by weight, 1-60 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 40-99 parts by weight, 1-50 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 50-99 parts by weight, 1-40 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 60-99 parts by weight, 1-30 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 70-99 parts by weight, 1-20 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 80-99 parts by weight, 1-10 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 10-99 parts by weight. In certain embodiments, the polyfunctionalized diene monomer-containing polymer is present in an amount of 10-99 parts by weight and the chain extender is present in an amount of 1-90 parts by weight, including 20-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-80 parts by weight, 30-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-70 parts by weight, 40-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-60 parts by weight, 50-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-50 parts by weight, 60-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-40 parts by weight, 70-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-30 parts by weight, 80-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-20 parts by weight, 90-99 parts by weight polyfunctionalized diene monomer-containing polymer and the chain extender is present in an amount of 1-10 parts by weight.
In certain embodiments, when the F groups of the polyfunctionalized diene monomer-containing polymer comprise (meth)acrylate and the F groups of the chain extender comprise an alkyl (meth)acrylate, the relative amounts of polymer and chain extender are about 50 parts and 50 parts, respectively, including about 40 to about 60 parts polymer and about 60 to about 40 parts chain extender; 40 to 60 parts polymer and 60 to 40 parts chain extender; about 45 to about 60 parts polymer and about 55 to about 40 parts chain extender; 45 to 60 parts polymer and 55 to 40 parts chain extender; about 50 to about 60 parts polymer and about 40 to about 50 parts chain extender; 50 to 60 parts polymer and 40 to 50 parts chain extender; about 55 to about 60 parts polymer and about 40 to about 45 parts chain extender; and 55 to 60 parts polymer and 40 to 45 parts chain extender.
In certain embodiments, in addition to being monofunctionalized with at least one F group or a functional group reactive with F, the chain extender is further functionalized with at least one functional group F2 that is molecular oxygen reactive. Non-limiting examples of suitable F2 groups include various amines, including, but not limited to, tertiary amines, secondary amines, and primary amines; thiols; silanes; phosphites, tin-containing compounds, lead containing compounds, and germanium-containing compounds. Incorporating at least one molecular oxygen reactive F2 functional group into the chain extender reduces the amount of undesirable oxidation that may otherwise occur from either solubilized oxygen within the actinic radiation curable polymeric mixture or atmospheric oxygen. Without being bound by theory, a functional group F2 that is molecular oxygen reactive can react with any peroxy radicals that are generated (e.g., from the reaction of a free radical with molecular oxygen) to create a new initiator by hydrogen absorption; this reaction avoid or minimizes the undesirable reaction between a peroxy radical and an initiator (which will yield a non-productive product and consume the initiator). The amount of F2 functionalization on the chain extender may vary. In certain embodiments, the chain extender is about 10 to 100% functionalized with at least one functional group F2 that is molecular oxygen reactive, including 10 to 100% functionalized, about 20 to 100% functionalized, 20 to 100% functionalized, about 30 to 100% functionalized, 30 to 100% functionalized, about 40 to 100% functionalized, 40 to 100% functionalized, about 50 to 100% functionalized, 50 to 100% functionalized, about 10 to about 90% functionalized, 10 to 90% functionalized, about 10 to about 80% functionalized, 10 to 80% functionalized, about 10 to about 70% functionalized, 10 to 70% functionalized, about 10 to about 60% functionalized, 10 to 60% functionalized, about 10 to about 50% functionalized, and 10 to 50% functionalized. In other embodiments, in addition to comprising at least one functional group F2 that is molecular oxygen reactive or as an alternative to comprising at least one functional group F2 that is molecular oxygen reactive, a separate molecular oxygen reactive ingredient can be utilized in the actinic radiation curable polymeric mixture. Generally, this separate ingredient comprises a hydrocarbon or hydrocarbon derivative functionalized with at least one of the functional groups discussed above for F2.
Photoinitiator
As discussed above, the actinic radiation curable polymeric mixture comprises at least one actinic radiation sensitive photoinitiator. In certain embodiments, the polymeric mixture comprises two, three, or more one actinic radiation sensitive photoinitiators. Generally, the purpose of the photoinitiator is to absorb actinic radiation (light) and generate free radicals or a Lewis acid that will react with the functional groups of the polymer resulting in polymerization. Two types of actinic radiation sensitive photoinitators exist: free radical and cationic. Free radical photoinitiators can themselves be separated into two categories, those that undergo cleavage upon irradiation to generate two free radicals (e.g., benzoins, benzoin ethers, and alpha-hydroxy ketones) and those that form an excited state upon irradiation and then abstract an atom or electron from a donor molecule which itself then acts as the initiating species for polymerization (e.g., benzophenones). In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator comprises at least one free radical photoinitiator. In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator comprises at least one cationic photoinitiator. In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator comprises a combination of at least one free radical photoinitiator and at least one cationic photoinitiator.
When a photoinitiator is utilized, various photoinitiators are suitable for use in the actinic radiation curable polymeric mixtures. In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives thereof, an oxime ester, a per-ester, a ketosulfone, a phenylglyoxylate, a borate, and a metallocene. In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator comprises at least one of: a benzophenone, an aromatic α-hydroxyketone, a benzilketal, an aromatic α-aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide. In certain embodiments of the first-fifth embodiments disclosed herein, the photoinitiator is selected from benzophenone, benzildimethylketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1 one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, (4-methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, (4-morpholinobenzoyl)-1-(4-methylbenzyl)-1-dimethylaminopropane, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, bis(2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2-hydroxy-1-{1-[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-1,3,3-trimethyl-indan-5-yl}-2-methyl-propan-1-one, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O-benzyloxime), oligo[2-hydroxy-2-methyl-1-[4-methylvinyl]phenyl]propanone, 2-hydroxy-2-methyl-1-phenyl propan-1-one, and combinations thereof.
The amount of actinic radiation sensitive photoinitiator(s) utilized can vary. In certain embodiments of the first-fifth embodiments disclosed herein, when the photoinitiator is present, the actinic radiation curable polymeric mixture comprises about 1 to about 10 parts by weight of the photoinitiator, including about 2 to about 5 parts by weight (all amounts based upon 100 total parts of polyfunctionalized diene monomer-containing polymer and chain extender). The foregoing amounts should be understood to apply to both free radical and cationic photoinitiators and to refer to the total amounts (by weight) of all photoinitiators used in the actinic radiation curable polymeric mixture.
Photosensitizer
As discussed above, in certain embodiments, the actinic radiation curable polymeric mixture comprises a photosensitizer. In other words, in certain embodiments, the photosensitizer is optional. Generally, the “photosensitizer” is a light absorbing compound used to enhance the reaction of a photoinitiator; it may absorb part of the actinic radiation (light) that the photoinitiator cannot absorb and transfer the energy to the photoinitiator. Upon photoexcitation, a photosensitizer leads to energy or electron transfer to a photoinitiator.
In those embodiments where a photosensitizer is used, the amount of photosensitizer utilized can vary. (As discussed above, the photosensitizer is not necessarily present in every embodiment disclosed herein.) In certain embodiments of the first-fifth embodiments disclosed herein, when the photosensitizer is present, the actinic radiation curable polymeric mixture comprises about 0.1 to about 5 parts by weight of the photosensitizer, including about 0.1 to about 2 parts by weight (all amounts based upon 100 total parts of polyfunctionalized diene monomer-containing polymer and chain extender).
When a photosensitizer is utilized, various photosensitizers are suitable for use in the actinic radiation curable polymeric mixtures. In certain embodiments of the first-fifth embodiments disclosed herein, the photosensitizer comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone. Exemplary ketocoumarins are disclosed in Tetrahedron 38, 1203 (1982), and U.K. Patent Publication 2,083,832 (Specht et al.).
Crosslinker
As discussed above, the actinic radiation curable mixture comprises a polyfunctional crosslinker reactive with the functional group F of the polyfunctionalized diene monomer-containing polymer. Generally, the polyfunctional crosslinker functions to increase the amount of crosslinking within each diene polymer chain of the polyfunctionalized diene monomer-containing polymer, between (separate) diene polymer chains of polyfunctionalized diene monomer-containing polymers, or both, thereby forming a network. Generally, an increased amount of crosslinker or crosslinking will lower the Mc of the crosslinked (cured) polyfunctionalized diene monomer-containing polymer, thereby resulting in a higher modulus and a lower Eb. In certain embodiments, the polyfunctional crosslinker is a hydrocarbon or hydrocarbon derivative polyfunctionalized with a functional group F. In other words, such a crosslinker comprises multiple F groups. In certain embodiments, the crosslinker is a hydrocarbon or hydrocarbon derivative polyfunctionalized with a functional group F or a functional group that is reactive with F. By reactive is meant a moiety that will bond with at least two F groups of the polyfunctionalized diene monomer-containing polymer.
Generally, the crosslinker is a polyfunctionalized hydrocarbon or hydrocarbon derivative containing at least two functional groups reactive with F. In certain embodiments, the crosslinker is di-functional and in other embodiments, the crosslinker is tri-functional, tetra-functional, or further functionalized. While the crosslinker is based upon a hydrocarbon or hydrocarbon derivative, it should be understood that it can also be polymer-like in that it can comprise either a single base unit or multiple, repeating base units.
Various compounds are suitable for use as the crosslinker. In certain embodiments, the crosslinker contains at least two (meth)acrylate functional groups. In certain embodiments, the crosslinker comprises a polyol (meth)acrylate prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms; in such embodiments, the functional group of the crosslinker is (meth)acrylate. Various crosslinkers comprising at least two (meth)acrylate groups are commercially available. In certain embodiments, the crosslinker comprises at least one of the following: Trimethylolpropane tri(meth)acrylate, Pentaerythritol tetraacrylate, Pentaerythritol triacrylate, Trimethylolpropane ethoxylate triacrylate, Acrylated epoxidized soybean oil, Ditrimethylol Propane Tetraacrylate, Di-pentaerythritol Polyacrylate, Di-pentaerythritol Polymethacrylate, Di-pentaerythritol triacrylate, Di-pentaerythritol trimethacrylate, Di-pentaerythritol tetracrylate, Di-pentaerythritol tetramethacrylate, Di-pentaerythritol pent(meth)acrylate, Di-pentaerythritol hexa(meth)acrylate, Pentaerythritol Poly(meth)acrylate, Pentaerythritol tri(meth)acrylate, Pentaerythritol tetra(meth)acrylate, Pentaerythritol penta(meth)acrylate, Pentaerythritol hexa(meth)acrylate, Ethoxylated glycerine triacrylate, ε-Caprolactone ethoxylated isocyanuric acid triacrylate and Ethoxylated isocyanuric acid triacrylate, Tris(2-acryloxyethyl) Isocyanulate, Propoxylated glyceryl Triacrylate, ethyleneglycol diacrylate, 1,6-hexanediol diacrylate, neopentylglycol di(meth)acrylate, ethyleneglycol dimethacrylate (EDMA), polyethyleneglycol di(meth)acrylates, polypropyleneglycol di(meth)acrylates, polybutyleneglycol di(meth)acrylates, 2,2-bis(4-(meth)acryloxyethoxyphenyl) propane, 2,2-bis(4-(meth)acryloxydiethoxyphenyl) propane, di(trimethylolpropane) tetra(meth)acrylate, and combinations thereof.
In certain embodiments, the crosslinker comprises a polyallylic compound prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms. Exemplary polyallylic compounds useful as crosslinker include those compounds comprising two or more allylic groups, non-limiting examples of which include triallylisocyanurate (TAIL), triallylcyanurate (TAC), and the like, and combinations thereof.
In certain embodiments, the crosslinker comprises epoxy functional groups, aziridine functional groups, vinyl functional groups, allyl functional groups, or combinations thereof.
In certain embodiments, the crosslinker comprises a polyfunctional amine with at least two amine groups per molecule. In certain such embodiments, the polyfunctional amine is an aliphatic amine. Exemplary polyfunctional amines include, but are not limited to, diethylene triamine, ethylene diamine, triethylene tetramine, tetraethylene pentamine, hexamethylerie diamine, 1,2-diaminocyclohexane, amino ethyl piperazine, and the like, and combinations thereof.
In certain embodiments, the polyfunctional crosslinker comprises a combination of two types of functional groups, i.e., a functional group capable of crosslinking at least two diene polymer chains based upon cationic radiation and a functional group capable of crosslinking at least two diene polymer chains based upon free radical radiation. The combination of two types of functional groups may be present on the same polyfunctional crosslinker or on separate crosslinkers (i.e., each with one type of functional group). In certain embodiments, the polyfunctional crosslinker comprises a combination of at least one functional group selected from acrylate groups, methacrylate groups, polyallylic groups, and polyfunctional amines with at least one functional group selected from epoxy groups, aziridine groups, vinyl groups, and allyl groups.
Filler(s)
In certain embodiments of the first-third embodiments, the actinic radiation curable polymeric mixture further comprises at least one filler; in certain such embodiments, the at least one filler comprises a reinforcing filler, preferably a non-carbon black reinforcing filler (i.e., a reinforcing filler other than carbon black). In certain embodiments of the first-third embodiments, when at least one filler is utilized it comprises a non-carbon black filler (i.e., no carbon black filler is included in the at least one filler). As used herein, the term “reinforcing filler” is used to refer to a particulate material that has a nitrogen absorption specific surface area (N2SA) of more than about 100 m2/g, and in certain instances more than 100 m2/g, more than about 125 m2/g, more than 125 m2/g, or even more than about 150 m2/g or more than 150 m2/g. Alternatively or additionally, the term “reinforcing filler” can also be used to refer to a particulate material that has a particle size of about 10 nm to about 50 nm (including 10 nm to 50 nm). In certain embodiments, the actinic radiation curable polymeric mixture further comprises at least one metal or metal oxide filler. In other words, the mixture further comprises at least one metal filler, at least one metal oxide filler, or combinations thereof. Various metal fillers and metal oxide fillers are suitable for use in various embodiments of the actinic radiation curable polymeric mixture. In certain embodiments, the at least one metal or metal oxide filler comprises at least one of: silica (in its various forms only some of which are listed below), aluminum hydroxide, starch, talc, clay, alumina (Al2O3), aluminum hydrate (Al2O3H2O), aluminum hydroxide (Al(OH)3), aluminum carbonate (Al2(CO3)2), aluminum nitride, aluminum magnesium oxide (MgOAl2O3), aluminum silicate (Al2SiO5, Al4·3SiO4·5H2O etc.), aluminum calcium silicate (Al2O3·CaO2SiO2, etc.), pyrofilite (Al2O34SiO2·H2O), bentonite (Al2O3·4SiO2·2H2O), boron nitride, mica, kaolin, glass balloon, glass beads, calcium oxide (CaO), calcium hydroxide (Ca(OH)2), calcium carbonate (CaCO3), magnesium carbonate, magnesium hydroxide (MH(OH)2), magnesium oxide (MgO), magnesium carbonate (MgCO3), magnesium silicate (Mg2SiO4, MgSiO3 etc.), magnesium calcium silicate (CaMgSiO4), titanium oxide, titanium dioxide, potassium titanate, barium sulfate, zirconium oxide (ZrO2), zirconium hydroxide [Zr(OH)2·nH2O], zirconium carbonate [Zr(CO3)2], crystalline aluminosilicates, zinc oxide (i.e., reinforcing or non-reinforcing), and combinations thereof. graphite, clay, titanium dioxide, magnesium dioxide, aluminum oxide (Al2O3), silicon nitride, calcium silicate (Ca2SiO4, etc.), crystalline aluminosilicates, silicon carbide, single walled carbon nanotubes, double walled carbon nanotubes, multi walled carbon nanotubes, grapheme oxide, graphene, silver, gold, platinum, copper, strontium titanate (StTiO3), barium titanate (BaTiO3), silicon (Si), hafnium dioxide (HfO2), manganese dioxide (MnO2), iron oxide (Fe2O4 or Fe3O4), cerium dioxide (CeO2), copper oxide (CuO), indium oxide (In2O3), indium tin oxide (In2O3SnO2). In certain embodiments, the at least one filler comprises at least one of: silica (in its various forms only some of which are listed below), aluminum hydroxide, starch, talc, clay, alumina (Al2O3), aluminum hydrate (Al2O3H2O), aluminum hydroxide (Al(OH)3), aluminum carbonate (Al2(CO3)2), aluminum nitride, aluminum magnesium oxide (MgOA2O3), aluminum silicate (Al2SiO5, Al4·3SiO4·5H2O etc.), aluminum calcium silicate (Al2O3·CaO2SiO2, etc.), pyrofilite (Al2O34SiO2·H2O), bentonite (Al2O3·4SiO2·2H2O), boron nitride, mica, kaolin, glass balloon, glass beads, calcium oxide (CaO), calcium hydroxide (Ca(OH)2), calcium carbonate (CaCO3), magnesium carbonate, magnesium hydroxide (MH(OH)2), magnesium oxide (MgO), magnesium carbonate (MgCO3), magnesium silicate (Mg2SiO4, MgSiO3 etc.), magnesium calcium silicate (CaMgSiO4), titanium oxide, titanium dioxide, potassium titanate, barium sulfate, zirconium oxide (ZrO2), zirconium hydroxide [Zr(OH)2·nH2O], zirconium carbonate [Zr(CO3)2], crystalline aluminosilicates, zinc oxide (i.e., reinforcing or non-reinforcing), and combinations thereof. graphite, clay, titanium dioxide, magnesium dioxide, aluminum oxide (Al2O3), silicon nitride, calcium silicate (Ca2SiO4, etc.), crystalline aluminosilicates, silicon carbide, single walled carbon nanotubes, double walled carbon nanotubes, multi walled carbon nanotubes, grapheme oxide, graphene, silver, gold, platinum, copper, strontium titanate (StTiO3), barium titanate (BaTiO3), silicon (Si), hafnium dioxide (HfO2), manganese dioxide (MnO2), iron oxide (Fe2O4 or Fe3O4), cerium dioxide (CeO2), copper oxide (CuO), indium oxide (In2O3), indium tin oxide (In2O3 SnO2).
In certain embodiments of the first-third embodiments, the at least one filler includes ground, cured rubber, optionally in combination with one of more of the foregoing fillers. As used herein, the term “ground, cured rubber” refers to cured, i.e., vulcanized (cross-linked) rubber that has been ground or pulverized into particulate matter; various particle size ground, cured rubber may be utilized. In certain embodiments of the first-third embodiments where ground, cured rubber is utilized, it has an average particle size in the range of about 50 μm to about 250 μm (including 50 μm to 250 μm), preferably an average particle size of about 74 μm to about 105 μm (including 74 μm to 105 μm. The average particle size of ground, cured rubber particles may be measured by any conventional means known in the art including the methods according to ASTM D5644. Examples of suitable sources of rubber for the ground, cured rubber include used tires. It is well known to those skilled in the art that tires are prepared from natural and synthetic rubbers that are generally compounded using fillers including carbon black and sometimes also including silica. The source of the ground, cured rubber used in accordance with the first, second, and third embodiments disclosed herein may vary, but in certain embodiments can be tires (or rubber from such tires) produced with a carbon black filler, with a silica filler, or with mixtures of both. Exemplary sources include tires from passenger cars, light trucks, or combinations of both. In certain embodiments of the first-third embodiments where ground, cured rubber is utilized, the ground, cured rubber is free of carbon black filler (i.e., the ground, cured rubber contains less than 1 phr carbon black filler or even 0 phr carbon black filler).
When at least one filler is utilized in the actinic radiation curable polymeric mixture, the total amount utilized may vary widely. Generally, the total amount of filler utilized will vary depending upon the type of filler and the properties sought in the cured polymeric mixture produced from the atcinic radiation curable polymeric mixture. As well, in certain embodiments, the amount of filler will also be adjusted based upon any viscosity increase that it causes to the overall atcinic radiation curable polymeric mixture. In certain embodiments, the total amount of filler utilized in the actinic radiation curable polymeric mixture is an amount that does not cause the viscosity of the mixture to exceed about 10,000 cps (at 25° C.), preferably not exceeding about 5,000 cps (at 25° C.). In certain embodiments of the first-fifth embodiments disclosed herein, the at least one filler is present in a total amount (i.e, the total of amount of all fillers if more than one is present) of up to about ⅔ (e.g., 67%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, or 1%) of the total volume of the actinic radiation curable polymeric mixture. In certain embodiments of the first-fifth embodiments disclosed herein, the at least one filler is present in a total amount (i.e, the total of amount of all fillers if more than one is present) of about 40 to about 80 parts (based upon 100 total parts of (a) and (b)), including 40 parts, 45 parts, 50 parts, 55 parts, 60 parts, 65 parts, 70 parts, 75 parts and 80 parts. In certain embodiments of the first-third embodiments disclosed herein, the only fillers utilized are non-carbon black fillers and the total amount of all non-carbon black fillers (i.e, the total of amount of all non-carbon black fillers if more than one is present) is of up to about ⅔ of the total volume (e.g., 67%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2%, or 1%) of the actinic radiation curable polymeric mixture. In certain embodiments of the first-third embodiments disclosed herein, the only fillers utilized are non-carbon black fillers and the total amount of all non-carbon black fillers (i.e, the total of amount of all non-carbon black fillers if more than one is present) is about 40 to about 80 parts (based upon 100 total parts of (a) and (b)).
In certain embodiments of the first-third embodiments, at least one carbon black filler is utilized; in such embodiments the at least one carbon black filler may be utilized as the only filler but may alternatively be utilized in combination with one or more non-carbon black filler such as those discussed above. In those embodiments of the first-third embodiments disclosed herein that include at least one carbon black filler, the total amount of carbon black filler can vary and may include amounts such as at least 0.01 parts, 0.01 to less than 1 part, 0.05 to 0.5 parts (based upon 100 total parts of (a) and (b)).
In those embodiments of the first-third embodiments where at least one carbon black is utilized as a filler, various carbon blacks can be utilized. In certain embodiments of the first-third embodiments, one or more reinforcing carbon blacks are utilized. In other embodiments of the first-third embodiments, one or more non-reinforcing carbon blacks are utilized. In yet other embodiments of the first-third embodiments, at least one reinforcing carbon black is used in combination with at least one non-reinforcing carbon black. Carbon blacks having a nitrogen surface area of greater than 30 m2/g and a DBP absorption of greater than 60 cm3/100 g) are referred to herein as “reinforcing carbon blacks” and carbon blacks having a lower nitrogen surface area and/or lower DBP absorption are referred to herein as “non-reinforcing carbon blacks.” The nitrogen surface area and the DBP absorption provide respective characterizations of the particle size and structure of the carbon black. The nitrogen surface area is a conventional way of measuring the surface area of carbon black. Specifically, the nitrogen surface area is a measurement of the amount of nitrogen which can be absorbed into a given mass of carbon black. Preferably, the nitrogen surface area for carbon black fillers is determined according to ASTM test D6556 or D3037. The DBP absorption is a measure of the relative structure of carbon black determined by the amount of DBP a given mass of carbon black can absorb before reaching a specified viscous paste. Preferably, the DBP absorption for carbon black fillers is determined according to ASTM test D2414. Among the useful carbon blacks are furnace black, channel blacks, and lamp blacks. More specifically, examples of useful carbon blacks include super abrasion furnace (SAF) blacks, high abrasion furnace (HAF) blacks, fast extrusion furnace (FEF) blacks, fine furnace (FF) blacks, intermediate super abrasion furnace (ISAF) blacks, semi-reinforcing furnace (SRF) blacks, medium processing channel blacks, hard processing channel blacks and conducting channel blacks. Exemplary reinforcing carbon blacks include: N-110, N-220, N-339, N-330, N-351, N-550, and N-660, and combinations thereof. Exemplary non-reinforcing carbon blacks include: thermal blacks or the N9 series carbon blacks (also referred to as the N-900 series), such as those with the ASTM designation N-907, N-908, N-990, and N-991.
Container(s) (e.g., Cartridge(s))
In certain embodiments, the actinic radiation curable polymeric mixture is packaged into a cartridge or other container suitable for shipping or storage. As discussed above, a cartridge is a container adapted for or configured for use in an additive manufacturing device; other types of containers may be useful such as for shipping or storage, and the term container should be considered as inclusive of, but not limited to, a cartridge.
Various combinations of one or more containers (or cartridges) to contain the ingredients of the actinic radiation curable polymeric mixture in its various sub-embodiments (as described above) are envisioned. In certain embodiments, at least two containers (or cartridges) are utilized, with one container (or cartridge) comprising: the polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and chain extender based upon F or reactive with F and the second container (or cartridge) comprising chain extender based upon F or reactive with F along with at least one of an actinic radiation sensitive photoinitiator and a photosensitizer. In certain of the foregoing embodiments, the second container (or cartridge) further comprises a crosslinker reactive with F; alternatively, a third container (or cartridge) comprising a crosslinker reactive with F can be provided. In certain embodiments, a kit is provided for producing an elastomeric cured product by additive printing comprising at least two containers (or cartridges) as previously described. In certain embodiments, the kit comprises at least two containers (or cartridges), wherein at least one container (or cartridge) comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or compatible with F; and at least a second container (or cartridge) comprises a chain extender based upon F or compatible with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer, and optionally a crosslinker reactive with F. In certain of the foregoing embodiments of the kit and containers (or cartridges), wherein at least one of the first or second container (or cartridge) further comprises at least one metal or metal oxide filler. In certain of the foregoing embodiments of the kit and containers (or cartridges), wherein at least one of the first or second container (or cartridge) further comprises at least one filler (as discussed below).
Cured Elastomeric/Polymeric Product/Article
As discussed above, the second embodiment disclosed herein is directed to a cured polymeric mixture. In certain embodiments of the second embodiment, the cured polymeric mixture comprises a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone [P], multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups. In other embodiments of the second embodiment, the cured polymeric mixture can be understood as comprising a cured version of the actinic radiation curable polymeric mixture as previously described (i.e., according to the first embodiment described herein). It should be understood that descriptions of the ingredients of the actinic radiation curable polymeric mixture are intended to apply to the fullest extent possible to certain embodiments of the cured polymeric mixture, as if fully set forth with specific language directed to the cured polymeric mixture of the second embodiment.
In certain embodiments of the second embodiment, the cured polymeric mixture comprises an elastomeric polymeric mixture. In certain embodiments of the second embodiment, the cured polymeric mixture is elastomeric. As used herein, the term elastomeric can be understood according to the following explanation. Yield as used herein refers to the onset of plastic deformation in a material under an applied load. Plastic deformation is deformation that remains after the load is removed. The yield point is the peak in a load-elongation curve (load on y axis, elongation on x axis) at which plastic flow becomes dominant. Thus, as used herein, the term elastomer or elastomeric refers to a material which does not exhibit any definite yield point or area of plastic deformation; in other words, the deformation of an elastomeric material remains elastic as opposed to becoming plastic.
In certain embodiments of the second embodiment, the cured elastomeric mixture comprises crosslinkages which contain no sulfur. In certain embodiments of the second embodiment, the cured elastomeric mixture comprises crosslinkages which are essentially free of sulfur. By essentially free of sulfur is meant that no more than about 1 ppm of sulfur in the overall actinic radiation curable polymeric mixture of the cured polymeric mixture, including less than 1 ppm, less than about 0.1 ppm, less than 0.1 ppm, and 0 ppm. In certain embodiments of the second embodiment, the cured elastomer mixture comprises crosslinkages which contain sulfur, various amounts of which are possible.
Processes for Producing a Cured Elastomeric Product/Article
As discussed above, the third embodiment disclosed herein is directed to a process for producing a cured polymeric product. This process comprises providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising an actinic radiation curable polymeric mixture according to the first embodiments disclosed herein (i.e., as previously described) to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product. According to the third embodiment disclosed herein, various types of additive manufacturing devices may be utilized. Generally, a great variety of additive manufactures devices are commercially available from companies including, but not limited to, 3D Systems, Inc. (Rock Hill, South Carolina) and Stratasys Ltd. (Eden Prairie, Minnesota). In certain embodiments, the additive manufacturing device forms the product by a process that comprises solidifying each layer by using the actinic radiation to trace a pattern in the liquid material; in certain such embodiments the device contains no printer head; in certain such embodiments, such a process can be referred to as vat photopolymerization. In certain embodiments of the third embodiment, the additive manufacturing device forms the product by a process that comprises solidifying each layer by using actinic radiation to provide at least one pattern on the liquid material, such a process can be referred to as laser rastering. In certain embodiments of the third embodiment, the laser rastering can be understood as involving the use of pinpoint radiation which is moved across the service to result in an overall pattern being provided. In certain embodiments of the third embodiment, the additive manufacturing device forms the product by a process that comprises solidifying each layer by using actinic radiation to project at least one image on the liquid material, such a process can be referred to as digital light processing. As used herein, the phrase tracing a pattern in the liquid material is intended to encompass both digital light processing and laser rastering processes. In other embodiments, the additive manufacturing device forms the product by dispensing the mixture from a printing head having a set of nozzles; in certain such embodiments, such a process can be referred to as material jetting.
According to the process of the third embodiment, the thickness of each layer that is formed by the additive manufacturing device (e.g., upon the support structure) may vary. In certain embodiments, each layer has a thickness of about 0.01 mm to about 1 mm, including a thickness of 0.01 mm to 1 mm, about 0.1 mm to about 0.3 mm, and 0.1 mm to 0.3 mm. According to the third embodiment, the materials of construction for the support structure of the additive manufacturing device upon which the product is formed may vary. In certain embodiments of the third embodiment, the support structure comprises polysiloxane polymer (e.g., polydimethylsiloxane or PDMS), a halogenated polymer coating, a halogenated wax coating, or a combination thereof. Non-limiting examples of halogenated polymer coatings include fluorinated halogenated polymers such as polytetrafluoroethylene (PTFE, sold under the tradename Teflon® by DuPont). Non-limiting examples of halogenated wax coatings include fluorinated waxes, chlorinated waxes, brominated waxes, and combinations thereof. Various commercial sources for halogenated waxes exist such as Dover Chemical Corporation (Dover, Ohio) which sells Doverguard® brand brominated waxes and Chlorez® brand chlorinated waxes. Use of the foregoing materials of construction for the support structure or employing those materials as a coating for the support structure upon which the product is formed can facilitate the processes of the third embodiment and production of the resulting products by enabling the product to be more easily removed from the support structure, preferably without curing or otherwise sticking to the support structure such that removal therefrom involves tearing or breaking one or more layers of the product. As those of skill in the art will appreciate, the particular material of construction used for the support structure may be intentionally varied depending upon the ingredients contained in the actinic radiation curable polymeric mixture (in particular, the type of chain extender utilized).
The wavelength of the actinic radiation used in the processes of the third embodiment disclosed herein may vary, depending upon the particular type of additive manufacturing device chosen or the setting chosen for a particular additive manufacturing devices (some devices allow the user to select different wavelength ranges). In certain embodiments, the actinic radiation has a wavelength in the UV to Visible range. In certain embodiments, the actinic radiation (light) has a wavelength of about 320 to less than 500 nm, including about 350 to about 450 nm, and about 365 to about 405 nm.
In certain embodiments of the processes of the third embodiment disclosed herein, the process includes the use of a cartridge to provide the liquid mixture comprising the actinic radiation curable polymeric mixture. In certain embodiments of the processes of the third embodiment disclosed herein, the interior tank of the additive manufacturing device further comprises a component capable of receiving a liquid mixture from at least one cartridge. In other words, in such embodiments, the interior tank of the additive manufacturing device is capable of receiving a liquid mixture from at least one cartridge.
Various combinations of one or more cartridges to contain the ingredients of the actinic radiation curable polymeric mixture in its various sub-embodiments (as described above) are envisioned for use in certain embodiments of the processes of the third embodiment. In certain embodiments of the third embodiment, the process comprises the use of at least two cartridges, with one cartridge comprising: the polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and chain extender based upon F or reactive with F and the second cartridge comprising chain extender based upon F or reactive with F along with at least one of an actinic radiation sensitive photoinitiator and a photosensitizer. In certain of the foregoing embodiments, the second cartridge further comprises a crosslinker reactive with F; alternatively, a third cartridge comprising a crosslinker reactive with F can be provided.
Kits
According to a fourth embodiment, a kit is provided comprising at least two containers or cartridges as previously described is provided. Such kits can be useful in producing an cured polymeric product by additive printing. For example, by the use of such kits, a manufacturer may utilize different types and combinations of polyfunctionalized diene monomer-containing polymer(s), chain extender(s), photoinitiator(s), photosensitizer(s), and crosslinker(s). The use of a kit with multiple cartridges or containers could provide an advantage in material jetting processes where the machine and print head could be used to selectively dispense the materials from different cartridges or containers without the need to pre-mix the materials. Use of a kit comprising at least one cartridge or container with at least one filler would allow for the filler to be in a stable dispersion and mixed (as needed) with the other components either just prior to or upon printing. In certain embodiments, the kit comprises at least two containers or cartridges, wherein at least one container (or cartridge) comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or compatible with F; and at least a second container (or cartridge) comprises a chain extender based upon F or compatible with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer, and optionally a crosslinker reactive with F. In certain of the foregoing embodiments of the kit, at least one container or cartridge further comprises at least one metal or metal oxide filler. In certain of the foregoing embodiments of the kit, at least one container or cartridge further comprises at least one filler (as discussed above). The particular ingredients of each container or cartridge used in a kit can vary in conjunction with the description of the actinic radiation curable polymeric mixture as previously described.
Tires and Tire Components
As discussed above, the fifth embodiment disclosed herein is directed to a tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture of the first embodiment (as described above) that has been cured. As mentioned above, descriptions of the ingredients of the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain embodiments of the cured polymeric mixture, as if fully set forth with specific language directed to the cured polymeric mixture of the second embodiment. Likewise, it should be understood that descriptions of the cured polymeric mixture and the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain embodiments of the tires and tire components, as if fully set forth with specific language directed to the tires and tire components of the fifth embodiment.
In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises at least one of: a tread, a bead, a sidewall, an innerliner, and a subtread. In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire tread. In other words, disclosed herein is a tire tread comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) r the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a subtread. In other words, disclosed herein is a tire subtread comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire sidewall. In other words, disclosed herein is a tire sidewall comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire bead. In other words, disclosed herein is a tire bead comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the fifth embodiment, the component of the tire comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a tire innerliner. In other words, disclosed herein is a tire innerliner comprising at least one component comprised of the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
Manufacturing a tire component (e.g., treads, beads, sidewalls, innerliners or subtreads) by an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein can provide an advantage in terms of being able to produce shapes and design that cannot be produced using traditional manufacturing processes such as molding. As a non-limiting example, in certain embodiments of the fifth embodiment, wherein the at least one component of the tire comprises a tread, a tread can be produced that includes at least one of the following: a closed hollow void, an undercut void, and an overhung void. As used herein, the phrase “closed hollow void” refers to a void that is not open to the road-contacting surface of the tread (at least not upon manufacture); the particular shape of the closed hollow is not particularly limited and shapes that are circular, elliptical, square, rectangular, trapezoidal, rectangular, and triangular may be utilized in various embodiments. Non-limiting examples of closed hollow voids are provided in FIG. 1 . As used herein, the phrase “overhung void” refers to a void that is partially open to the road-contacting surface of the tread (upon manufacture), that is wider (in at least one dimension) than the opening, and that includes upper walls (at the road-contacting surface) having a thickness less than the overall depth of the void and projecting over and partially covering the opening to the road-contacting surface of the tread. Non-limiting examples of overhung voids are provided in FIG. 2 . As used herein, the phrase “undercut void” refers to a void that is partially open to the road-contacting surface of the tread (upon manufacture), that is wider (in at least one dimension) than the opening, and that includes upper walls (at the road-contacting surface) that partially extend into the void without hanging over the void. In certain embodiments, the undercut void has unsupported walls angled (from the bottom towards the top) generally toward the opening to the road-contacting surface. In certain embodiments, the overhung void has unsupported walls that are substantially parallel (+ or − about 5°) to the road-contacting surface or have angles (from the bottom towards the top) generally directed away from the opening to the road-contacting surface. Non-limiting examples of overhung voids are provided in FIG. 3 .
Other Rubber Goods
In certain embodiments, a rubber good other than a tire or tire component is made from (i.e., comprises) the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture of the first embodiment (as described above) that has been cured. As mentioned above, descriptions of the ingredients of the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain embodiments of the cured polymeric mixture, as if fully set forth with specific language directed to the cured polymeric mixture of the second embodiment. Likewise, it should be understood that descriptions of the cured polymeric mixture and the actinic radiation curable polymeric mixture apply to the fullest extent possible to certain rubber goods embodiments, as if fully set forth with specific language directed to such rubber goods of the sixth embodiment.
In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises at least one of: a bushing, a seal, a gasket, a conveyor belt, a hose, or a glove (or gloves). In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a bushing. In other words, disclosed herein is a bushing comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a seal. In other words, disclosed herein is a seal comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a gasket. In other words, disclosed herein is a gasket comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a conveyor belt. In other words, disclosed herein is a conveyor belt comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a hose. In other words, disclosed herein is a hose comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured. In certain embodiments of the sixth embodiment, the rubber good comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured comprises a glove or gloves. In other words, disclosed herein is a glove or gloves comprising the cured polymeric mixture according to second embodiment disclosed herein (as described above) or the actinic radiation curable polymeric mixture according to the first embodiment (as described above) that has been cured.
Manufacturing rubber goods (e.g., bushings, seals, gaskets, conveyor belts, hoses, or gloves) by an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein can provide an advantage in terms of being able to produce shapes and designs that cannot be produced using traditional manufacturing processes such as molding. As a non-limiting example a hose manufactured by an additive manufacturing process using the actinic radiation curable polymeric mixtures disclosed herein or according to the processes of the third embodiment disclosed herein could include internal structure(s) such as multiple channels (to allow separate passage of ingredients through a portion of the hose) or internal projections, protrusions or other internal structure(s) to effect mixing of ingredients during flow through the hose. Another non-limiting example includes the ability to manufacture custom-fitting or custom sized gloves without the need for production of a custom form or a multitude of forms in different sizes.
Exemplary Embodiments of the First-Sixth Embodiments
The following exemplary embodiments or sub-embodiments of the first-fifth embodiments should be considered to be specifically disclosed herein. Item 1. An actinic radiation curable polymeric mixture comprising: (a) a polyfunctionalized diene monomer-containing polymer having the formula: [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different; (b) optionally a chain extender based upon F or reactive with F; (c) at least one actinic radiation sensitive photoinitiator; (d) optionally, a photosensitizer; and (e) a polyfunctional crosslinker reactive with F. Item 2. The actinic radiation curable polymeric mixture of item 1, wherein the total amount of (a) and (b) is 100 parts and (c) is present in a total amount of at least about 0.1 parts (based upon 100 parts of (a) and (b)). Item 3. The actinic radiation curable polymeric mixture of item 1 or item 2, wherein the mixture is curable by UV-VIS light. Item 4. The actinic radiation curable polymeric mixture according to any one of items 1-3, wherein (a) is present in an amount of 1-100 parts and (b) is present in an amount of 0-99 parts. Item 5. The actinic radiation curable polymeric mixture according to any one of items 1-4, wherein the at least one actinic sensitive photoinitiator is present in an amount of about 1 part to about 10 parts (per 100 total parts of (a) and (b)). Item 6. The actinic radiation curable polymeric mixture according to any one of items 1-5, wherein the photosensitizer is present in an amount of about 0.1 parts to about 5 parts (per 100 total parts of (a) and (b)). Item 7. The actinic radiation curable polymeric mixture according to any one of items 1-6, wherein each F comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide. Item 8. The actinic radiation curable polymeric mixture according to any one of items 1-7, wherein F comprises an acrylate or methacrylate, when present the chain extender comprises an acrylate-based chain extender, and when present the crosslinker comprises a poly acrylate-based crosslinker. Item 9. The actinic radiation curable polymeric mixture according to any one of items 1-8, wherein F comprises a free radical polymerizable functionalizing group. Item 10. The actinic radiation curable polymeric mixture according to any one of items 1-9, wherein F comprises a cationic polymerizable functionalizing group. Item 11. The actinic radiation curable polymeric mixture according to any one of items 1-8, wherein F comprises a combination of cationic polymerizable and free radical polymerizable functional groups either on the same diene polymer chain or on separate diene polymer chains. 12. The actinic radiation curable polymeric mixture according to any one of items 1-11, wherein the polyfunctionalized diene monomer-containing polymer has a Mn of about 3,000 to about 135,000 grams/mole (polystyrene standard). Item 13. The actinic radiation curable polymeric mixture according to any one of items 1-12, wherein the diene polymer chain comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms. Item 14. The actinic radiation curable polymeric mixture according to any one of items 1-13, wherein the diene polymer chain comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-hexadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, farnescene, and substituted derivatives of each of the foregoing. Item 15. The actinic radiation curable polymeric mixture according to any one of items 1-14, comprising a polyfunctional crosslinker selected from polyol (meth)acrylates prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms, polyallylic compounds prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms, polyfunctional amines, or combinations thereof. Item 16. The actinic radiation curable polymeric mixture according to any one of items 1-15, comprising a polyfunctional crosslinker selected from at least one of: Trimethylolpropane tri(meth)acrylate, Pentaerythritol tetraacrylate, Pentaerythritol triacrylate, Trimethylolpropane ethoxylate triacrylate, Acrylated epoxidized soybean oil, Ditrimethylol Propane Tetraacrylate, Di-pentaerythritol Polyacrylate, Di-pentaerythritol Polymethacrylate, Di-pentaerythritol triacrylate, Di-pentaerythritol trimethacrylate, Di-pentaerythritol tetracrylate, Di-pentaerythritol tetramethacrylate, Di-pentaerythritol pent(meth)acrylate, Di-pentaerythritol hexa(meth)acrylate, Pentaerythritol Poly(meth)acrylate, Pentaerythritol tri(meth)acrylate, Pentaerythritol tetra(meth)acrylate, Pentaerythritol penta(meth)acrylate, Pentaerythritol hexa(meth)acrylate, Ethoxylated glycerine triacrylate, ε-Caprolactone ethoxylated isocyanuric acid triacrylate and Ethoxylated isocyanuric acid triacrylate, Tris(2-acryloxyethyl) Isocyanulate, Propoxylated glyceryl Triacrylate, ethyleneglycol diacrylate, 1,6-hexanediol diacrylate, neopentylglycol di(meth)acrylate, ethyleneglycol dimethacrylate (EDMA), polyethyleneglycol di(meth)acrylates, polypropyleneglycol di(meth)acrylates, polybutyleneglycol di(meth)acrylates, 2,2-bis(4-(meth)acryloxyethoxyphenyl) propane, 2,2-bis(4-(meth)acryloxydiethoxyphenyl) propane, di(trimethylolpropane) tetra(meth)acrylate, and combinations thereof. Item 17. The actinic radiation curable polymeric mixture according to item 13 or item 14, wherein the diene polymer chain further comprises at least one vinyl aromatic monomer. Item 18. The actinic radiation curable polymeric mixture according to any one of items 1-17, wherein the Tg of the polyfunctionalized diene polymer is about −105 to about −10° C. Item 19. The actinic radiation curable polymeric mixture according to any one of items 1-18, wherein the chain extender comprises an (meth)acrylate monomer selected from C2 to about C18 alkyl functionalized (meth)acrylates. Item 20. The actinic radiation curable polymeric mixture according to any one of items 1-29, wherein the Tg of the chain extender is about −65 to about 10° C. Item 21. The actinic radiation curable polymeric mixture according to any one of item 1-20, wherein the chain extender has a Mw of about 72.06 to about 135,000 grams/mole. Item 22. The actinic radiation curable polymeric mixture according to any one of items 1-21, wherein the photo sensitizer comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone. Item 23. The actinic radiation curable polymeric mixture according to any one of items 1-22, wherein the photoinitiator comprises at least one of: a benzophenone, an aromatic α-hydroxyketone, a benzilketal, an aromatic α-aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide. Item 24. The actinic radiation curable polymeric mixture according to any one of items 1-23, wherein the photoinitiator is selected from benzophenone, benzildimethylketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, (4-methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, (4-morpholinobenzoyl)-1-(4-methylbenzyl)-1-dimethylaminopropane, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, bis(2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2-hydroxy-1-{1-[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-1,3,3-trimethyl-indan-5-yl}-2-methyl-propan-1-one, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O-benzyloxime), oligo[2-hydroxy-2-methyl-1-[4-methylvinyl]phenyl]propanone, 2-hydroxy-2-methyl-1-phenyl propan-1-one, and combinations thereof. Item 25. The actinic radiation curable polymeric mixture according to any one of items 1-24, wherein the photoinitiator comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives thereof, an oxime ester, a per-ester, a ketosulfone, a phenylglyoxylate, a borate, and a metallocene. Item 26. The actinic radiation curable polymeric mixture according to any one of items 1-25, further comprising at least one metal or metal oxide filler. Item 27. The actinic radiation curable polymeric mixture according to item 26, wherein the at least one metal or metal oxide filler is present in an amount of up to about ⅔ of the total volume of the actinic radiation curable polymeric mixture. Item 28. The actinic radiation curable polymeric mixture according to item 26, wherein the at least one metal or metal oxide filler is present in an amount of about 40 to about 80 parts (based upon 100 total parts of (a) and (b)). Item 29. The actinic radiation curable polymeric mixture according to any one of item 1-28, wherein the mixture has a viscosity at 25° C.) of about 1 to about 10,000 cps, preferably about 100 to about 5,000 cps. Item 30. A cartridge containing the actinic radiation curable polymeric mixture according to any one of items 1-29.
Item 100. A cured polymeric mixture comprising: a crosslinked polyfunctionalized diene polymer comprising a diene polymer chain backbone [P], multiple functional groups F where each F is the same or different, and crosslinkages between pairs of functional groups. Item 101. The cured polymeric mixture according to item 100, wherein each F comprises at least one of: acrylate, methacrylate, cyanoacrylate, epoxide, aziridine, and thioepoxide. Item 102. The cured polymeric mixture according to any one of items 101-101, wherein F comprises an acrylate or methacrylate, when present the chain extender comprises an acrylate-based chain extender, and when present the crosslinker comprises a poly acrylate-based crosslinker. Item 103. The cured polymeric mixture according to any one of items 100-102, wherein F comprises a free radical polymerizable functionalizing group. Item 104. The cured polymeric mixture according to any one of items 100-102, wherein F comprises a cationic polymerizable functionalizing group. Item 105. The cured polymeric mixture according to any one of items 100-102, wherein F comprises a combination of cationic polymerizable and free radical polymerizable functional groups either on the same diene polymer chain or on separate diene polymer chains. Item 106. The cured polymeric mixture according to any one of items 100-105, wherein the diene polymer chain comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms. Item 107. The cured polymeric mixture according to any one of items 100-106, wherein the diene polymer chain comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-hexadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, farnescene, and substituted derivatives of each of the foregoing. Item 108. The cured polymeric mixture according to item 106 or 107, wherein the diene polymer chain further comprises at least one vinyl aromatic monomer. Item 109. The cured polymeric mixture according to any one of items 100-108, further comprising at least one metal or metal oxide filler. Item 110. The cured polymeric mixture according to item 109, wherein the at least one metal or metal oxide filler is present in an amount of up to about ⅔ of the total volume of The cured polymeric mixture. Item 111. The cured polymeric mixture according to item 109, wherein the at least one metal or metal oxide filler is present in an amount of about 40 to about 80 parts (based upon 100 total parts of the crosslinked polyfunctionalized diene polymer. Item 112. A cured polymeric mixture comprising the cured polymeric mixture according to any one of items 1-29. Item 113. The cured polymeric mixture according to item 112, wherein the polyfunctionalized diene monomer-containing polymer is crosslinked between F groups. Item 114. The cured polymeric mixture according to any one of items 100-113, wherein the mixture comprises a 3-dimensional article. Item 115. The cured polymeric mixture according to any one of items 100-114, wherein the mixture comprises an elastomeric polymeric mixture. Item 116. The cured elastomeric mixture according to any one of items 100-115, wherein the crosslinked polyfunctionalized diene polymer has a Mc of about 500 to about 150,000 grams/mole.
Item 300. A process for producing a cured polymeric product, comprising providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure; providing a liquid mixture comprising the actinic radiation curable polymeric mixture of any one of items 1-30 to the interior tank; repeatedly forming upon a support structure a layer from the liquid mixture; using actinic radiation to cure each layer; thereby producing a cured polymeric product. Item 301. The process of item 300, wherein each layer has a thickness of about 0.01 mm to about 1 mm. Item 302. The process of item 300 or item 301, wherein the forming comprises solidifying each layer by using the actinic radiation to trace a pattern in the liquid material. Item 303. The process of item 300 or item 301, wherein the forming comprises dispensing the mixture from a printing head having a set of nozzles. Item 304. The process of any one of items 300-303, wherein the actinic radiation comprises UV or Visible light. Item 305. The process of any one of items 300-303, wherein the actinic radiation comprises light having a wavelength of about 320 to less than 500 nm. Item 306. The process of any one of items 300-305, wherein the interior tank is capable of receiving a liquid mixture from at least one cartridge. Item 307. The process of item 306, wherein the liquid mixture is provided in at least one cartridge. Item 308. The process of item 306 or 307, wherein at least two cartridges are utilized with one cartridge comprising (a) and (b) and a second cartridge comprising (b) in combination with (c). Item 309. A kit for producing an elastomeric cured product by additive printing, the kit comprising at least two cartridges, wherein at least one cartridge comprises a polyfunctionalized diene monomer-containing polymer having the formula [P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F can be the same or different and a chain extender based upon F or reactive with F; and at least a second cartridge comprises a chain extender based upon F or reactive with F, at least one of an actinic radiation sensitive photoinitiator and a photosensitizer; and optionally a crosslinker reactive with F. Item 310. The kit according to item 309, wherein at least one of the first or second cartridge further comprises at least one metal or metal oxide filler.
Item 400. A tire comprising at least one component comprised of the cured polymeric mixture according to any one of items 100-116. Item 401. A tire comprising at least one component comprised of the actinic radiation curable polymeric mixture of any one of items 1-30 that has been cured. Item 402. The tire according to item 400 or item 401, wherein the at least one component is selected from a tread, a bead, a sidewall, an innerliner, and a subtread. Item 403. The tire according to any one of items 400-402, wherein the at least one component comprises a tread. Item 404. The tire according to item 403, wherein the tread comprises: at least one of the following: a closed hollow void, an undercut void, and an overhung tread.
Item 501. A rubber good comprising the cured polymeric mixture according to any one of items 100-116. Item 501. A rubber good comprising the actinic radiation curable polymeric mixture of any one of items 1-30 that has been cured. Item 502. The rubber good according to item 500 or item 501, wherein the rubber good comprises a bushing, a seal, a gasket, a conveyor belt, a hose, or a glove.
To the extent that the term “includes” or “including” is used in the specification or the claims, it is intended to be inclusive in a manner similar to the term “comprising” as that term is interpreted when employed as a transitional word in a claim. Furthermore, to the extent that the term “or” is employed (e.g., A or B) it is intended to mean “A or B or both.” When the applicants intend to indicate “only A or B but not both” then the term “only A or B but not both” will be employed. Thus, use of the term “or” herein is the inclusive, and not the exclusive use. See Bryan A. Garner, A Dictionary of Modern Legal Usage 624 (2d. Ed. 1995). Also, to the extent that the terms “in” or “into” are used in the specification or the claims, it is intended to additionally mean “on” or “onto.” Furthermore, to the extent the term “connect” is used in the specification or claims, it is intended to mean not only “directly connected to,” but also “indirectly connected to” such as connected through another component or components.
While the present application has been illustrated by the description of embodiments thereof, and while the embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the application, in its broader aspects, is not limited to the specific details and embodiments described. Accordingly, departures may be made from such details without departing from the spirit or scope of the applicant's general inventive concept.
This application discloses several numerical range limitations that support any range within the disclosed numerical ranges even though a precise range limitation is not stated verbatim in the specification because the embodiments could be practiced throughout the disclosed numerical ranges. With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. As well, all numerical limitations and ranges that are preceded by the word “about” should be understood to include the particular number or range without the about as if fully set forth herein.

Claims (19)

What is claimed is:
1. A process for producing a cured polymeric product, comprising providing an additive manufacturing device comprising a source of actinic radiation, an exterior support structure, an interior tank capable of containing a liquid mixture, and an interior support structure,
providing an actinic radiation curable polymeric mixture to the interior tank, wherein the actinic radiation curable polymeric mixture comprises
(a) a polyfunctionalized diene monomer-containing polymer having a formula as follows:
[P][F]n where P represents a diene polymer chain, F represents a functional group, n is 2 to about 15, and each F is selected from the group consisting of cyanoacrylate, epoxide, aziridine, thiopeoxide, and combinations thereof;
(b) optionally a chain extender based upon F or reactive with F;
(c) at least one actinic radiation sensitive photoinitiator;
(d) optionally, a photosensitizer; and
(e) a polyfunctional crosslinker reactive with F,
wherein the polyfunctionalized diene monomer-containing polymer (a) is present in an amount of 1-100 parts, the chain extender (b) is present in an amount of 0-99 parts, and the at least one actinic radiation sensitive photoinitiator (c) is present in an amount of about 1 part to about 10 parts (per 100 total parts of (a) and (b)),
repeatedly forming upon a support structure a layer from the actinic radiation curable polymeric mixture, and
using actinic radiation to cure each layer,
thereby producing the cured polymeric product.
2. The process of claim 1, wherein the actinic radiation curable polymeric mixture is curable by UV-VIS light.
3. The process of claim 1, wherein
the photosensitizer (d) is present in an amount of about 0.1 parts to about 5 parts (per 100 total parts of (a) and (b)).
4. The process of claim 1, wherein at least one of the following is met:
(i) each F comprises epoxide, or thioepoxide.
5. The process of claim 1, wherein F comprises cyanoacrylate.
6. The process of claim 1, wherein at least one of the following is met:
(i) the diene polymer chain comprises monomers selected from at least one of: acyclic and cyclic dienes having 3 to about 15 carbon atoms;
(ii) the polyfunctionalized diene monomer-containing polymer has a Tg of about −105 to about −10° C.;
(iii) the diene polymer chain comprises monomers selected from at least one of: 1,3-butadiene, isoprene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethyl-1,3-butadiene, 2-ethyl-1,3-butadiene, 2-methyl-1,3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 2,4-hexadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1,3-cycloheptadiene, 1,3-cyclooctadiene, farnescene, and substituted derivatives of each of the foregoing; or
(iv) in addition to (ii) above the diene polymer chain further comprises at least one vinyl aromatic monomer.
7. The process of claim 1, wherein at least one of the following is met:
a. the polyfunctional crosslinker (e) is selected from polyol (meth)acrylates prepared from an aliphatic diol, triol, or tetraol containing 2-100 carbon atoms, polyallylic compounds prepared from an aliphatic diol, triol or tetraol containing 2-100 carbon atoms, polyfunctional amines, or combinations thereof; or
b. the polyfunctional crosslinker (e) is selected from at least one of: Trimethylolpropane tri(meth)acrylate, Pentaerythritol tetraacrylate, Pentaerythritol triacrylate, Trimethylolpropane ethoxylate triacrylate, Acrylated epoxidized soybean oil, Ditrimethylol Propane Tetraacrylate, Di-pentaerythritol Polyacrylate, Di-pentaerythritol Polymethacrylate, Di-pentaerythritol triacrylate, Di-pentaerythritol trimethacrylate, Di-pentaerythritol tetracrylate, Di-pentaerythritol tetramethacrylate, Di-pentaerythritol pent(meth)acrylate, Di-pentaerythritol hexa(meth)acrylate, Pentaerythritol Poly(meth)acrylate, Pentaerythritol tri(meth)acrylate, Pentaerythritol tetra(meth)acrylate, Pentaerythritol penta(meth)acrylate, Pentaerythritol hexa(meth)acrylate, Ethoxylated glycerine triacrylate, F-Caprolactone ethoxylated isocyanuric acid triacrylate and Ethoxylated isocyanuric acid triacrylate, Tris(2-acryloxyethyl) Isocyanulate, Propoxylated glyceryl Triacrylate, ethyleneglycol diacrylate, 1,6-hexanediol diacrylate, neopentylglycol di(meth)acrylate, ethyleneglycol dimethacrylate (EDMA), polyethyleneglycol di(meth)acrylates, polypropyleneglycol di(meth)acrylates, polybutyleneglycol di(meth)acrylates, 2,2-bis(4-(meth)acryloxyethoxyphenyl) propane, 2,2-bis(4-(meth)acryloxydiethoxyphenyl) propane, di(trimethylolpropane) tetra(meth)acrylate, and combinations thereof.
8. The process of claim 1, wherein at least one of the following is met when the chain extender (b) is present:
(i) the chain extender (b) comprises an (meth)acrylate monomer selected from C2 to about C18 alkyl functionalized (meth)acrylates;
(ii) the chain extender has a Tg of about −65 to about 10° C.; or
(iii) the chain extender (b) has a Mw of about 72.06 to about 135,000 grams/mole.
9. The process of claim 1, wherein the photosensitizer (d) comprises at least one of a ketocoumarin, a xanthone, a thioxanthone, a polycyclic aromatic hydrocarbon, and an oximester derived from aromatic ketone.
10. The process of claim 1, wherein at least one of the following is met:
a. the actinic radiation sensitive photoinitiator (c) comprises at least one of: a benzophenone, an aromatic α-hydroxyketone, a benzilketal, an aromatic α-aminoketone, a phenylglyoxalic acid ester, a mono-acylphosphinoxide, a bis-acylphosphinoxide, and a tris-acylphosphinoxide;
b. the actinic radiation sensitive photoinitiator (c) is selected from benzophenone, benzildimethylketal, 1-hydroxy-cyclohexyl-phenyl-ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-2-methyl-1-propan-1one, 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one, (4-methylthiobenzoyl)-1-methyl-1-morpholinoethane, (4-morpholinobenzoyl)-1-benzyl-1-dimethylaminopropane, (4-morpholinobenzoyl)-1-(4-methylbenzyl)-1-dimethylaminopropane, (2,4,6-trimethylbenzoyl)diphenylphosphine oxide, bis(2,6-dimethoxy-benzoyl)-(2,4,4-trimethyl-pentyl)phosphine oxide, bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide and 2-hydroxy-1-{1-[4-(2-hydroxy-2-methyl-propionyl)-phenyl]-1,3,3-trimethyl-indan-5-yl}-2-methyl-propan-1-one, 1,2-octanedione, 1-[4-(phenylthio)phenyl]-2-(O-benzyloxime), oligo[2-hydroxy-2-methyl-1-[4-methylvinyl]phenyl]propanone, 2-hydroxy-2-methyl-1-phenyl propan-1-one, and combinations thereof; or
c. the actinic radiation sensitive photoinitiator (c) comprises at least one of: a benzoin, an aryl ketone, an alpha-amino ketone, a mono- or bis(acyl)phosphine oxide, a benzoin alkyl ether, a benzil ketal, a phenylglyoxalic ester or derivatives thereof, an oxime ester, a per-ester, a ketosulfone, a phenylglyoxylate, a borate, and a metallocene.
11. The process of claim 1, wherein the actinic radiation curable polymeric mixture further comprises at least one filler.
12. The process of claim 11, wherein at least one of the following is met:
a. the at least one filler is present in an amount of up to about ⅔ of the total volume of the actinic radiation curable polymeric mixture; or
b. the at least one filler is present in an amount of about 40 to about 80 parts (based upon 100 total parts of (a) and (b)).
13. The process of claim 1, wherein the actinic radiation curable polymeric mixture has a viscosity at 25° C. of about 1 to about 10,000 cps, preferably about 100 to about 5,000 cps.
14. The process of claim 1, wherein the polyfunctionalized diene monomer-containing polymer has a Mn of about 500 to about 150,000 grams/mole based upon a polystyrene standard.
15. The process of claim 1, wherein (a) and (b) are present in a total amount of 100 parts and (c) is present in a total amount of at least about 0.1 parts (based upon 100 parts of (a) and (b)).
16. The process of claim 1 wherein at least one of the following is met:
(i) each layer has a thickness of about 0.01 mm to about 1 mm;
(ii) the forming comprises solidifying each layer by using the actinic radiation to trace a pattern in the liquid material;
(iii) the forming comprises dispensing the mixture from a printing head having a set of nozzles;
(iv) the forming comprises using the actinic radiation to provide at least one pattern on the liquid material;
(v) the forming comprises using the actinic radiation to project at least one image on the liquid material;
(iv) the interior tank is capable of receiving a liquid mixture from at least one cartridge;
(v) the liquid mixture is provided in at least one cartridge; or
(vi) at least two cartridges are utilized with one cartridge comprising (a) and (b) and a second cartridge comprising (b) in combination with (c).
17. The process of claim 1, wherein F comprises aziridine.
18. The process of claim 1, wherein the diene polymer chain further comprises at least one vinyl aromatic monomer.
19. The process of claim 1, wherein the cured polymeric product is a tire component.
US17/683,135 2014-12-23 2022-02-28 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes Active US11926688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/683,135 US11926688B2 (en) 2014-12-23 2022-02-28 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462096120P 2014-12-23 2014-12-23
US201562142271P 2015-04-02 2015-04-02
PCT/US2015/066288 WO2016106062A1 (en) 2014-12-23 2015-12-17 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US201715539007A 2017-06-22 2017-06-22
US16/901,826 US11261279B2 (en) 2014-12-23 2020-06-15 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US17/683,135 US11926688B2 (en) 2014-12-23 2022-02-28 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US16/901,826 Continuation US11261279B2 (en) 2014-12-23 2020-06-15 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes

Publications (2)

Publication Number Publication Date
US20220185936A1 US20220185936A1 (en) 2022-06-16
US11926688B2 true US11926688B2 (en) 2024-03-12

Family

ID=55182557

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/539,007 Active 2036-03-07 US10683381B2 (en) 2014-12-23 2015-12-17 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US16/901,826 Active US11261279B2 (en) 2014-12-23 2020-06-15 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US17/683,135 Active US11926688B2 (en) 2014-12-23 2022-02-28 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US15/539,007 Active 2036-03-07 US10683381B2 (en) 2014-12-23 2015-12-17 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US16/901,826 Active US11261279B2 (en) 2014-12-23 2020-06-15 Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes

Country Status (5)

Country Link
US (3) US10683381B2 (en)
EP (1) EP3237972A1 (en)
JP (2) JP6568218B2 (en)
CN (2) CN107111225B (en)
WO (1) WO2016106062A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016085992A1 (en) 2014-11-24 2016-06-02 Ppg Industries Ohio, Inc. Methods for reactive three-dimensional printing by extrusion
EP3237972A1 (en) 2014-12-23 2017-11-01 Bridgestone Americas Tire Operations, LLC Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
WO2017105960A1 (en) 2015-12-17 2017-06-22 Bridgestone Americas Tire Operations, Llc Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing
EP3429833B1 (en) * 2016-03-14 2022-04-13 Covestro (Netherlands) B.V. Radiation curable compositions for additive fabrication with improved toughness and high temperature resistance
EP3532267B1 (en) 2016-10-27 2023-03-01 Bridgestone Americas Tire Operations, LLC Processes for producing cured polymeric products by additive manufacturing
US10434704B2 (en) 2017-08-18 2019-10-08 Ppg Industries Ohio, Inc. Additive manufacturing using polyurea materials
TWI820237B (en) * 2018-10-18 2023-11-01 美商羅傑斯公司 Polymer structure, its stereolithography method of manufacture, and electronic device comprising same
MX2021009610A (en) * 2019-02-11 2021-10-26 Ppg Ind Ohio Inc Multilayer systems and methods of making multilayer systems.
AT522889B1 (en) * 2020-01-23 2021-03-15 Polymer Competence Center Leoben Gmbh Process for the production of a liquid formulation for the production of an elastomer in 3-D printing, formulation therefrom and its use
CN113845622B (en) * 2021-10-13 2023-03-24 常州邦瑞新材料科技有限公司 High-refractive-index and high-brightness prism resin for laminating film and preparation method thereof
WO2024054742A1 (en) * 2022-09-09 2024-03-14 Bridgestone Bandag, Llc Fabrication of tire tread using lithography based methods
WO2024054741A1 (en) * 2022-09-09 2024-03-14 Bridgestone Bandag, Llc Fabrication of pre-cured tread using additive manufacturing techniques

Citations (263)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057431A (en) 1975-09-29 1977-11-08 The Goodyear Tire & Rubber Company Ethylenically polyurethane unsaturated composition
US5059266A (en) 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
US5314741A (en) 1992-10-07 1994-05-24 The Goodyear Tire & Rubber Company Rubber article having protective coating
US5352310A (en) 1989-02-17 1994-10-04 Natter Marc D Actinic activation shaping system and method
US5639413A (en) 1995-03-30 1997-06-17 Crivello; James Vincent Methods and compositions related to stereolithography
US5738817A (en) 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US5952152A (en) 1995-11-24 1999-09-14 Ciba Specialty Chemicals Corporation Borate coinitiators for photopolymerization
US5981616A (en) 1996-12-13 1999-11-09 Dsm N.V. Photo-curable resin composition used for photo fabication of three-dimensional objects
US5985510A (en) 1996-11-26 1999-11-16 Asahi Denka Kogyo Kabushiki Kaisha Energy beam curable epoxy resin composition, stereolithographic resin composition and stereolithographic method
US6011180A (en) 1995-11-24 2000-01-04 Cunningham; Allan Francis Acid-stable borates for photopolymerization
US6013714A (en) 1996-09-20 2000-01-11 Dsm N.V. Resin composition and fibrous material forming mold
US6022906A (en) 1996-06-12 2000-02-08 Ciba Specialty Chemicals Corporation α-aminoacetophenone photoinitiators
US6096794A (en) 1997-11-03 2000-08-01 Ciba Specialty Chemicals Corporation Quinolinium dyes and borates in photopolymerizable compositions
WO2000053398A1 (en) 1999-03-09 2000-09-14 Lee Eisinger Application of textured or patterned surfaces to a prototype
US6130025A (en) 1995-05-12 2000-10-10 Asahi Denka Kogyo Kabushiki Kaisha Stereolithographic resin composition and stereolithographic method
WO2000059972A1 (en) 1999-04-05 2000-10-12 Dsm N.V. Resin composition for photofabrication of three dimensional objects
US6243616B1 (en) 1997-06-30 2001-06-05 Huels Aktiengesellschaft Method and device for producing three-dimensional objects
WO2001057094A2 (en) 2000-02-07 2001-08-09 Sartomer Company, Inc. Curable polymeric compositions
US6281307B1 (en) 1995-01-31 2001-08-28 Ciba Specialty Chemicals Corporation Polymerizable composition, process for producing cross linked polymers, and cross-linkable polymers
US6323295B1 (en) 1995-02-09 2001-11-27 Ciba Specialty Chemicals Corporation Polymerizable composition, process for producing cross-linked polymers and crosslinkable polymers
US20010048182A1 (en) 1997-01-29 2001-12-06 Pirelli Coordinamento Pneumatici S.P.A. Method of producing tyres, of making vulcanization moulds for said tyres, tyres and moulds thus produced
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US6332943B1 (en) 1997-06-30 2001-12-25 Basf Aktiengesellschaft Method of ink-jet printing with pigment preparations having a dispersant
US20020018959A1 (en) 2000-03-31 2002-02-14 Lawton John A. Solid imaging compositions for preparing polypropylene-like articles
US6353771B1 (en) 1996-07-22 2002-03-05 Smith International, Inc. Rapid manufacturing of molds for forming drill bits
US20020048717A1 (en) 1998-02-18 2002-04-25 Tetsuya Yamamura Photocurable liquid resin composition
US6379796B1 (en) 1997-10-02 2002-04-30 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane
DE10143218A1 (en) 2000-09-06 2002-08-01 Objet Geometries Ltd System for printing three dimensional models comprises a bath containing a polymerizable resin, a printing head and control unit
CN1365372A (en) 1999-07-29 2002-08-21 拜尔公司 Rubber composition
US20030054158A1 (en) 1995-09-28 2003-03-20 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US20030059708A1 (en) 2000-06-09 2003-03-27 Tetsuya Yamamura Resin composition and three-dimensional object
US20030090034A1 (en) 2000-04-17 2003-05-15 Muelhaupt Rolf Device and method for the production of three-dimensional objects
US6576684B1 (en) 1998-08-21 2003-06-10 Ciba Specialty Chemicals Corporation Thermal- and photoinitiated radical polymerization in the presence of an addition fragmentation agent
US20030162665A1 (en) 1998-07-06 2003-08-28 Anatoly Rokhvarger Superconductor composite material
US20030198824A1 (en) 2002-04-19 2003-10-23 Fong John W. Photocurable compositions containing reactive polysiloxane particles
US20030224314A1 (en) 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliance having a duplicated tooth area and/or a predicted tooth area and a method for correcting the position of the teeth of a patient
US20030224313A1 (en) 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliances having attachable upper and lower halves and systems and methods for treating malocclusions
US20040023145A1 (en) 2002-07-31 2004-02-05 3D Systems, Inc. Toughened stereolithographic resin compositions
US20040020614A1 (en) 2000-11-03 2004-02-05 Jeffrey Dean Lindsay Three-dimensional tissue and methods for making the same
JP2004051665A (en) 2002-07-16 2004-02-19 Mitsubishi Rayon Co Ltd Resin composition for optical stereolithographic shaping and stereolithographic shaped product
US20040036200A1 (en) 2001-02-15 2004-02-26 Ranjana Patel Three-dimensional structured printing
US20040146806A1 (en) 2003-01-29 2004-07-29 Roberts David H. Photo-imageable nanocomposites
US20040171742A1 (en) 2002-10-17 2004-09-02 Tanya Estrin Solventless method for preparation of carboxylic polymers
US20040259023A1 (en) 2002-11-08 2004-12-23 Campagnola Paul J. Photoactivators, methods of use, and the articles derived therefrom
CN1566244A (en) 2003-07-01 2005-01-19 中国乐凯胶片集团公司 UV photo-curing adhesive for lamination of polarizer sheet protective membrane
US20050014005A1 (en) 2003-07-18 2005-01-20 Laura Kramer Ink-jettable reactive polymer systems for free-form fabrication of solid three-dimensional objects
US20050054798A1 (en) 2003-09-10 2005-03-10 Klang Jeffrey A. Polybutadiene (meth)acrylate composition and method
US20050064333A1 (en) 2002-05-16 2005-03-24 Rensselaer Polytechnic Institute Thianthrenium salt cationic photoinitiators
US20050154121A1 (en) 2004-01-14 2005-07-14 Mingxin Fan Poly(ethylene-butylene) (meth)acrylates and related compositions
US20050158660A1 (en) 2004-01-20 2005-07-21 Dsm Desotech, Inc. Solid imaging compositions for preparing polypropylene-like articles
US20050220983A1 (en) 2002-05-13 2005-10-06 Jonathan Hayes Method of processing a stack of coatings and apparatus for processing a stack of coatings
CN1688938A (en) 2002-10-02 2005-10-26 3M创新有限公司 Multiphoton photosensitization system
DE102004028462A1 (en) 2004-06-11 2005-12-29 Continental Aktiengesellschaft Tire vulcanization mold has molding segments formed of a base part supporting a grid structure with channels for air and heating fluid and a microporous sintered metal tool surface
JP2006002110A (en) 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Resin composition for optical solid shaping and solid shape
US20060008777A1 (en) 2004-07-08 2006-01-12 Peterson David S System and mehtod for making sequentially layered dental restoration
EP1625952A1 (en) 2004-08-13 2006-02-15 The Goodyear Tire & Rubber Company Tire with raised indicia
EP1652644A1 (en) 2004-10-30 2006-05-03 Continental Aktiengesellschaft Tire mould with a contoured forming surface made of sintered material
US20060113714A1 (en) 2004-11-05 2006-06-01 Tamicare Ltd. Method and apparatus to produce stretchable products
US20060141276A1 (en) 2003-06-24 2006-06-29 Takashi Ito Three-dimensional structure and method for production thereof
US20060155376A1 (en) 2005-01-13 2006-07-13 Blue Membranes Gmbh Composite materials containing carbon nanoparticles
US20060154195A1 (en) 2004-12-10 2006-07-13 Mather Patrick T Shape memory polymer orthodontic appliances, and methods of making and using the same
US20060159869A1 (en) 2005-01-14 2006-07-20 Laura Kramer Reactive materials systems and methods for solid freeform fabrication of three-dimensional objects
US20060163774A1 (en) 2005-01-25 2006-07-27 Norbert Abels Methods for shaping green bodies and articles made by such methods
US20060167147A1 (en) 2005-01-24 2006-07-27 Blue Membranes Gmbh Metal-containing composite materials
US20060184005A1 (en) 2005-02-03 2006-08-17 Christopher Sakezles Models and methods of using same for testing medical devices
US7105206B1 (en) 1999-12-01 2006-09-12 Basf Aktiengesellschaft Light curing of radiation curable materials under protective gas
US20060211802A1 (en) 2005-03-18 2006-09-21 Soheil Asgari Porous sintered metal-containing materials
US20060208388A1 (en) 1999-11-05 2006-09-21 Z Corporation Material systems and methods of three-dimensional printing
WO2006102238A2 (en) 2005-03-21 2006-09-28 Massachusetts Institute Of Technology Methods to fabricate articles having microfeatures and nanofeatures using gas expansion and deformable, hardenable media, and articles made by such methods
US20060231982A1 (en) 2003-07-23 2006-10-19 Xiaorong You Viscosity reducible radiation curable resin composition
US20060247360A1 (en) 2005-04-20 2006-11-02 Halasa Adel F Rubber composition containing an alkoxysilane coupled in-chain functionalized elastomer and tire with component thereof
US20060257511A1 (en) 2002-11-01 2006-11-16 Kabushiki Kaisha Bridgestone Method for producing tire vulcanizing mold and tire vulcanizing mold
US20070003749A1 (en) 2005-07-01 2007-01-04 Soheil Asgari Process for production of porous reticulated composite materials
US20070003753A1 (en) 2005-07-01 2007-01-04 Soheil Asgari Medical devices comprising a reticulated composite material
US20070007698A1 (en) 2003-08-27 2007-01-11 Shojiro Sano Method of producting three-dimensional model
WO2007006850A2 (en) 2005-07-13 2007-01-18 Picodeon Ltd Oy Radiation arrangement
US20070043138A1 (en) 1999-04-19 2007-02-22 Tetsuya Yamamura Resin composition for photofabrication of three dimensional objects
EP1757667A2 (en) 2005-08-11 2007-02-28 Bridgestone Corporation Adhesive composition and process for adhesion using the adhesive composition
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
US20070049652A1 (en) 2005-08-29 2007-03-01 Cmet Inc Rapid prototyping resin compositions
US20070060682A1 (en) 2003-06-25 2007-03-15 Takashi Ito Actinic radiation-curable stereolithographic resin composition having improved stability
US20070072287A1 (en) 2005-05-23 2007-03-29 Biovitesse, Inc. Biomems cartridges
JP2007137957A (en) 2005-11-16 2007-06-07 Nippon Kayaku Co Ltd Adhesive composition for rubber, and adhering method of rubber
US20070134596A1 (en) 2005-12-08 2007-06-14 Adrian Lungu Photosensitive printing element having nanoparticles and method for preparing the printing element
US20070187117A1 (en) 2004-02-27 2007-08-16 Hideaki Tanaka Blade planting method, tire curing metal mold, and blade
US20070205528A1 (en) 2004-03-22 2007-09-06 Huntsman Advanced Materials Americans Inc. Photocurable Compositions
US20070225458A1 (en) 2004-05-28 2007-09-27 Hideki Kimura Novel Fluorinated Alkyl Fluorophosphoric Acid Salts of Onium and Ttransition Metal Complex
US20070232713A1 (en) 2004-05-26 2007-10-04 Jsr Corporation Radiation Curable Liquid Resin Composition for Optical Three-Dimensional Molding and Optical Molded Article Obtained by Photocuring Same
US20070241482A1 (en) 2006-04-06 2007-10-18 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
US20070245956A1 (en) 2006-02-23 2007-10-25 Picodeon Ltd Oy Surface treatment technique and surface treatment apparatus associated with ablation technology
US20070267884A1 (en) 2006-05-22 2007-11-22 Lear Corporation Grab handle systems for a vehicle
US20080003372A1 (en) 2004-06-14 2008-01-03 Basf Coatings Ag Method for Curing Radically Curable Compounds in a Protective Atmosphere and Device for Carrying Out Said Method
CN101107307A (en) 2005-01-19 2008-01-16 米其林技术公司 Tyre tread
US20080021126A1 (en) 2004-02-02 2008-01-24 Kurt Dietliker Functionalized Photoinitiators
US20080057101A1 (en) 2006-08-21 2008-03-06 Wouter Roorda Medical devices for controlled drug release
US20080075668A1 (en) 2006-09-27 2008-03-27 Goldstein Alan H Security Device Using Reversibly Self-Assembling Systems
US7381360B2 (en) 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
US20080135502A1 (en) 2006-12-07 2008-06-12 Electronics And Telecommunications Research Institute Blood plasma separator employing micro channel and blood plasma separation method thereof
EP1967284A2 (en) 2007-03-06 2008-09-10 Ist Metz Gmbh Method and device for UV-ray hardening of substrate layers
US7427317B2 (en) 2005-03-31 2008-09-23 Sloan Donald D High elongation vacuum formable digital ink
WO2008113813A1 (en) 2007-03-19 2008-09-25 Axiatec 3d printing method
US20080236597A1 (en) 2007-03-28 2008-10-02 Bergersen Earl O Appliance, system and method for preventing snoring
US20080258345A1 (en) 2004-07-15 2008-10-23 Arthur Thomas Bens Liquid Radiation-Curing Compositions
EP2030762A1 (en) 2007-08-31 2009-03-04 Deltamed Gmbh Flexible medicinal form body and method for its manufacture
US20090101278A1 (en) 2007-10-17 2009-04-23 Louis Laberge-Lebel Methods for preparing freeform three-dimensional structures
US20090148813A1 (en) 2007-08-31 2009-06-11 Sun Benjamin J Three-dimensional printing methods and materials for making dental products
US20090176034A1 (en) 2006-02-23 2009-07-09 Picodeon Ltd. Oy Surface Treatment Technique and Surface Treatment Apparatus Associated With Ablation Technology
CN101495561A (en) 2006-08-02 2009-07-29 超科有限公司 Photo-crosslinkable polyolefin compositions
US7569273B2 (en) 2003-05-21 2009-08-04 Z Corporation Thermoplastic powder material system for appearance models from 3D printing systems
US7578958B2 (en) 2001-05-24 2009-08-25 Huntsman Advanced Materials Americas Inc. Three-dimensional structured printing
US20090287332A1 (en) 2006-07-06 2009-11-19 Prasad Adusumilli System and method for manufacturing full and partial dentures
US7641752B2 (en) 2003-11-21 2010-01-05 Michelin-Recherche et Technique S.A. Process for laying a strip continuously on a toroidal surface
US20100015408A1 (en) 2005-10-27 2010-01-21 Huntsman International Llc Antimony-free photocurable resin composition and three dimensional article
US7662224B2 (en) 2005-03-31 2010-02-16 Sloan Donald D High elongation vacuum formable digital ink
US20100053287A1 (en) 2008-09-04 2010-03-04 Xerox Corporation Ultra-Violet Curable Gellant Inks For Braille, Raised Print, And Regular Print Applications
US20100055484A1 (en) 2008-09-04 2010-03-04 Xerox Corporation Ultra-Violet Curable Gellant Inks For Three-Dimensional Printing And Digital Fabrication Applications
JP2010512255A (en) 2006-12-08 2010-04-22 ズィー コーポレイション Three-dimensional printing material system and method using peroxide curing
US20100104832A1 (en) 2007-03-14 2010-04-29 Loic Messe Curable composition
US20100119835A1 (en) 2007-03-14 2010-05-13 Huntsman International Llc Photocurable compositions for preparing abs-like articles
WO2010061235A1 (en) 2008-11-03 2010-06-03 Franz Andrae Kuncic Method for forming microstructures or method for reducing the weight of massive components through the generation of microstructures
US20100140850A1 (en) * 2008-12-04 2010-06-10 Objet Geometries Ltd. Compositions for 3D printing
US20100152316A1 (en) 2008-12-17 2010-06-17 Robert Lee Cornell Uv-curable coatings and methods for applying uv-curable coatings using thermal micro-fluid ejection heads
WO2010072961A2 (en) 2008-12-24 2010-07-01 Societe De Technologie Michelin Intermediate die for the manufacture of a tyre mould produced by laser sintering
US20100196624A1 (en) 2007-02-23 2010-08-05 Picodeon Ltd Oy Arrangement
US20100227941A1 (en) 2007-03-20 2010-09-09 Dsm Ip Assets B.V. Stereolithography resin compositions and three-dimensional objects made therefrom
US20100230850A1 (en) 2009-03-14 2010-09-16 Raytheon Company Method of manufacture of one-piece composite parts using a two-piece form including a shaped polymer that does not draw with a rigid insert designed to draw
CN101855294A (en) 2007-12-14 2010-10-06 大陆轮胎德国有限公司 Curable rubber stock and be used for the purposes of rubber product
US20100279007A1 (en) 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
US20100304088A1 (en) 2006-05-01 2010-12-02 Paulus Antonius Maria Steeman Radiation curable resin composition and rapid three dimensional imaging process using the same
US20110059291A1 (en) 2009-09-07 2011-03-10 Boyce Christopher M Structured materials with tailored isotropic and anisotropic poisson's ratios including negative and zero poisson's ratios
US20110113630A1 (en) * 2002-02-18 2011-05-19 Bridgestone Americas Tire Operations, Llc Tire and method of securing an object thereto
US20110163101A1 (en) * 2006-07-14 2011-07-07 Dupont Teijin Films U.S. Limited Partnership Multilayer sealant film
US20110200655A1 (en) 2010-02-16 2011-08-18 Michael Darryl Black Systems and methods that kill infectious agents (bacteria) without the use of a systemic anti-biotic
US20110262711A1 (en) 2010-04-22 2011-10-27 Xerox Corporation Curable compositions for three-dimensional printing
US20110293522A1 (en) 2008-11-17 2011-12-01 Dsm Ip Assets B.V. Surface modification of polymers via surface active and reactive end groups
US20110293891A1 (en) 2005-09-13 2011-12-01 Huntsman International Llc Photocurable compositions for preparing abs-like articles
US20110304082A1 (en) 2008-12-17 2011-12-15 Michelin Recherche Et Technique S.A. Mould lining comprising a sacrificial connecting element
US20110309556A1 (en) 2008-12-17 2011-12-22 Michelin Recherche Et Technique S.A. Lining element comprising a shell and a core
US20110309728A1 (en) 2010-06-16 2011-12-22 Incase Designs Corp. Case for Portable Electronic Device
EP2399695A1 (en) 2010-06-22 2011-12-28 SLM Solutions GmbH Method and device for creating a three-dimensional structure on a curved base level
US20110319745A1 (en) 2010-06-29 2011-12-29 Frey George A Patient Matching Surgical Guide and Method for Using the Same
US20110318532A1 (en) 2008-12-17 2011-12-29 Michelin Recherche Et Technique S.A. Lining Assembly on a Skin for a Tire Vulcanization Mould
US20120048439A1 (en) 2009-06-12 2012-03-01 Societe De Technologie Michelin Progressive tire mold element with undulation on its upper member and tire formed by the same
US20120055601A1 (en) 2009-06-12 2012-03-08 Societe De Technologie Michelin Progressive tire mold element with scallops and tire formed by the same
US20120060468A1 (en) 2010-09-13 2012-03-15 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
JP2012074644A (en) 2010-09-30 2012-04-12 Shin Etsu Chem Co Ltd Micro-contact printing material and manufacturing method thereof
US20120168049A1 (en) 2009-05-13 2012-07-05 Brian William Jenkins Tire with a sipe having areas with reduced thickness and apparatus for making the same
US20120174661A1 (en) 2005-04-05 2012-07-12 Hergenrother William L Method of optimizing a tire tread compound, and a tire tread compound made by said method
CN102660107A (en) 2012-05-31 2012-09-12 东北林业大学 Post-treatment agent and method for using same to treat eucalyptus/PES (polyether sulfone) composite powder formed part formed by selective laser sintering
CN102731723A (en) 2011-04-13 2012-10-17 住友橡胶工业株式会社 Diene polymer and production method thereof
US20120260492A1 (en) 2009-11-03 2012-10-18 Michelin Recherche Et Technique S.A. Supporting plate for a laser sintering device and enhanced sintering method
US20120289657A1 (en) 2010-02-16 2012-11-15 Evonik Roehm Gmbh Functional materials with controllable viscosity
US20120309895A1 (en) 2010-02-16 2012-12-06 Evonik Roehm Gmbh Functional materials with reversible crosslinking
WO2012171055A1 (en) 2011-06-15 2012-12-20 Vr Tek Wheels Pty Ltd Non-pneumatic composite integrated tyre and wheel and method of fabrication thereof
EP2540783A1 (en) 2011-06-28 2013-01-02 Fujifilm Corporation Ink composition, ink container, and ink jet recording method
CN102863666A (en) 2011-07-06 2013-01-09 住友橡胶工业株式会社 Tire rubber composition and pneumatic tire
US20130012660A1 (en) 2011-07-06 2013-01-10 Michio Hirayama Tire rubber composition and pneumatic tire
US20130026683A1 (en) 2011-07-28 2013-01-31 Ng Hou T Liquid inkjettable materials for three-dimensional printing
WO2013013566A1 (en) 2011-07-25 2013-01-31 Henkel (China) Company Limited Photocurable adhesive composition and use of the same
US20130031888A1 (en) 2011-08-01 2013-02-07 The Aerospace Corporation Systems, Methods, and Apparatus for Providing a Multi-Fuel Hybrid Rocket Motor
US20130079877A1 (en) 2010-05-06 2013-03-28 Stichting Katholieke Universiteit Non-resorbable meniscus prosthesis for the human knee joint
US20130083276A1 (en) 2010-05-28 2013-04-04 Fujifilm Corporation Printing sheet for printing stereo picture, stereo picture print, method of manufacturing stereo picture print, and method of providing stereo picture
US20130090407A1 (en) 2010-06-28 2013-04-11 James Wells Carter Curable resin compositions
EP1960986B1 (en) 2005-12-07 2013-05-01 Berner Fachhochschule Device and method for producing braille script and three-dimensional structures
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
US20130149182A1 (en) 2010-08-16 2013-06-13 National Oilwell Varco, L.P. Reinforced Stators and Fabrication Methods
WO2013090885A2 (en) 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
WO2013086577A1 (en) 2011-12-16 2013-06-20 Erdman Alan The person identified in box 2 has been recorded as applicant for us only and inventor for all designated states
WO2013092994A1 (en) 2011-12-23 2013-06-27 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects
US20130164401A1 (en) 2010-06-25 2013-06-27 Michelin Recherche Et Technique S.A. Thin plate for a lining of a mould intended for vulcanizing a tire tread
US20130165586A1 (en) 2010-09-24 2013-06-27 Nippon Soda Co., Ltd. Method for producing terminal acrylic-modified polybutadiene or terminal acrylic-modified hydrogenated polybutadiene, and composition containing same
US20130172480A1 (en) 2010-09-06 2013-07-04 Evonik Roehm Gmbh Functional materials having a controllable viscosity or reversible crosslinking via aza diels-alder reactions with bishydrazones or conjugated bis-schiff bases
US20130170171A1 (en) 2012-01-04 2013-07-04 Board Of Regents, The University Of Texas System Extrusion-based additive manufacturing system for 3d structural electronic, electromagnetic and electromechanical components/devices
CN103224643A (en) 2012-01-30 2013-07-31 住友橡胶工业株式会社 Surface modification method and surface modification elastormer
CN103232608A (en) 2013-05-10 2013-08-07 成都顺康电子有限责任公司 Method for preparing faceted heater from ultraviolet crosslinking macromolecular positive temperature coefficient (PTC) material through adopting three-dimensional (3D) printing mode
US20130203883A1 (en) 2012-02-02 2013-08-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
US20130206291A1 (en) 2010-07-12 2013-08-15 Michelin Recherche Et Technique S.A. Tire tread comprising a wear indicator
US20130213543A1 (en) 2010-10-27 2013-08-22 Michelin Recherche Et Technique S.A. Tire tread with sipes and a method for the manufacture of a tire tread with sipes
US20130225779A1 (en) 2010-10-29 2013-08-29 Bellandtechnology Ag Water-soluble or water-disintegrable copolymer
US20130227901A1 (en) 2011-05-11 2013-09-05 Ron Zohar Methods and devices for making a building block for mortar-free construction
WO2013127655A1 (en) 2012-02-27 2013-09-06 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
WO2013128452A1 (en) 2012-03-01 2013-09-06 Stratasys Ltd. Cationic polymerizable compositions and methods of use thereof
US20130241114A1 (en) 2010-11-28 2013-09-19 Stratasys Ltd. System and method for additive manufacturing of an object
DE102012102322A1 (en) 2012-03-20 2013-09-26 Continental Reifen Deutschland Gmbh Manufacturing curing mold for vehicle tires, comprises separately producing lamellar sheets by rapid prototyping process while producing mold surfaces by casting or machining processes, and introducing lamellar sheets in mold surfaces
WO2013146527A1 (en) 2012-03-28 2013-10-03 株式会社ダイセル Curable epoxy resin composition
US20130288062A1 (en) 2010-09-30 2013-10-31 Abb Research Ltd. Method of producing a layer of a vulcanized silicone rubber composition having an improved adhesion to the substrate surface
US20130297062A1 (en) 2012-05-03 2013-11-07 Alberto Daniel Lacaze Field Deployable Rapid Prototypable UXVs
WO2013164599A1 (en) 2012-05-02 2013-11-07 Michael Pritchard Wellbore encasement
US20130292117A1 (en) 2012-05-04 2013-11-07 Schlumberger Technology Corporation Compliant sand screen
US20130303678A1 (en) 2010-11-17 2013-11-14 Evonik Roehm Gmbh Materials having a controllable degree of crosslinking
US20130310484A1 (en) 2011-01-05 2013-11-21 Kaneka Corporation Polymer microparticle-dispersed resin composition and method for producing same
US20130317164A1 (en) 2011-04-20 2013-11-28 Evonik Roehm Gmbh Maleic anhydride copolymers as soluble support material for fused deposition modelling (fdm) printer
US20130320467A1 (en) 2010-12-08 2013-12-05 Condalign As Method for assembling conductive particles into conductive pathways and sensors thus formed
EP2671759A1 (en) 2012-06-09 2013-12-11 Egon Schneider Holder for holding a plate as an identifying plate for a motor vehicle and method for producing same
US20130335807A1 (en) 2010-11-15 2013-12-19 Opalux Incorporated Reversibly Responsive Light-Scattering Photonic Material
US20130344232A1 (en) 2012-06-22 2013-12-26 Xerox Corporation Methods of forming conductive features on three-dimensional objects
DE102012211450A1 (en) 2012-07-02 2014-01-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wheel assembly for land vehicle i.e. all-terrain vehicle, has rolling portion provided with multiple rolling elements, which form running surface having cylindrical shape or tooth-like profile shape depending on load
US20140017460A1 (en) 2011-03-09 2014-01-16 3D Systems, Inc. Build Material And Applications Thereof
US8653153B1 (en) 2012-12-18 2014-02-18 Xerox Corporation Violet curable ink
JP2014034270A (en) 2012-08-08 2014-02-24 Bridgestone Corp Rubber laminate and tire
US20140067106A1 (en) 2012-08-29 2014-03-06 Prem Makeig Computer-Implemented Methods for Generating 3D Models Suitable for 3D Printing
US20140061974A1 (en) 2012-08-29 2014-03-06 Kenneth Tyler Method and apparatus for continuous composite three-dimensional printing
US20140072712A1 (en) 2012-09-13 2014-03-13 3D Systems, Inc. Opaque Inks And Applications Thereof
US20140075810A1 (en) 2012-08-16 2014-03-20 Dmitri Mikroulis Universal ak-47 and variant bolt hold open follower
US20140081192A1 (en) 2011-03-21 2014-03-20 KET Kunststoff-und Elaststoff-und Elasttechnik GmbH Liegau-Augustustutusbad Primary dressing for moist wound healing, and method for producing said primary dressing
CN103707507A (en) 2013-12-13 2014-04-09 吉林大学 Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method
WO2014060450A1 (en) 2012-10-19 2014-04-24 Basf Se Hybrid photoinitiators
US20140110872A1 (en) 2010-11-28 2014-04-24 Stratasys Ltd. System and method for additive manufacturing of an object
US20140121327A1 (en) 2011-07-26 2014-05-01 Evonik Roehm Gmbh Polymer powder for producing three-dimensional objects
WO2014067828A1 (en) 2012-10-30 2014-05-08 Compagnie Generale Des Etablissements Michelin Tyre with improved grip on ice
JP2014083744A (en) 2012-10-23 2014-05-12 Kao Corp Developing liquid composition for 3d printing molded object
US20140131908A1 (en) 2012-11-14 2014-05-15 Dentsply International Inc. Three-dimensional fabricating material systems for producing dental products
WO2014077848A1 (en) 2012-11-19 2014-05-22 Hewlett-Packard Development Company, L.P. Compositions for three-dimensional (3d) printing
CN103819892A (en) 2014-03-16 2014-05-28 贵州省材料产业技术研究院 Long aramid fiber-reinforced wear-resistant thermoplastic polyurethane (TPU) composite material and preparation method thereof
US20140147538A1 (en) 2011-05-17 2014-05-29 Compagine Generale Des Etablissements Micheln Method for manufacturing a molding element by fritting with a completely planar unfritted portion, and corresponding molding element
US20140162033A1 (en) 2010-10-27 2014-06-12 Eugene Giller Process and Apparatus for Fabrication of Three-Dimensional Objects
WO2014090492A1 (en) 2012-12-11 2014-06-19 Evonik Industries Ag Functional materials with reversible crosslinking
CN103911078A (en) 2014-04-04 2014-07-09 深圳市库泰克电子材料技术有限公司 Ultraviolet curing adhesive with high light transmittance for fitting touch panel
JP2014136311A (en) 2013-01-15 2014-07-28 Konica Minolta Inc Device for molding three-dimensional object, and method for molding three-dimensional object
CN103980592A (en) 2014-04-30 2014-08-13 中国科学院化学研究所 high-filling-content micro-nano powder/polymer composite material for 3D printing and preparation method and product thereof
CN103992560A (en) 2014-04-30 2014-08-20 中国科学院化学研究所 High-rubber polypropylene polyphase copolymer resin used for 3D printing, and preparation method and application thereof
US20140249406A1 (en) 2011-05-08 2014-09-04 University Of Iowa Research Foundation Compensator-based brachytherapy
CN104039839A (en) * 2011-11-16 2014-09-10 德莎欧洲公司 Method for producing non-colored polyacrylate adhesive compounds with a narrow molar mass distribution
US20140265034A1 (en) 2013-03-12 2014-09-18 Orange Maker LLC 3d printing using spiral buildup
US20140265033A1 (en) 2013-03-15 2014-09-18 Michelin Recherche Et Technique S.A. Method for improved tire mold manufacturing
US20140259327A1 (en) 2013-03-15 2014-09-18 Nike, Inc. Interlocking Impact Protection System For Contact Sports
US20140268607A1 (en) 2012-01-04 2014-09-18 Board Of Regents, The University Of Texas System Methods and Systems For Connecting Inter-Layer Conductors and Components in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices
US20140259325A1 (en) 2013-03-14 2014-09-18 Nike, Inc. Protective Apparatus With A Varied Thickness Lattice Support Structure
US20140271328A1 (en) 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
CN203844238U (en) 2014-05-21 2014-09-24 南京邮电大学 Melting deposition type 3D (Three-Dimensional) printing machine feeding device
US20140284832A1 (en) 2013-03-25 2014-09-25 Petr Novikov System and Method for Manufacturing a Three-Dimensional Object from Freely Formed Three-Dimensional Curves
CA2810963A1 (en) 2013-03-28 2014-09-28 Michael R. Albert Window pan drainage dam
CA2814605A1 (en) 2013-04-25 2014-10-25 Robert Magri Protective hockey sock
US20140323967A1 (en) 2013-04-29 2014-10-30 Carl Michael Mancino Waterproof chest catheter protector sheath
US8876513B2 (en) 2008-04-25 2014-11-04 3D Systems, Inc. Selective deposition modeling using CW UV LED curing
WO2014179568A2 (en) 2013-05-02 2014-11-06 Odin Biotech Two-layer ocular implant
CN104149371A (en) 2014-08-07 2014-11-19 北京化工大学 Method and equipment for manufacturing tire with tread patterns
US20140339741A1 (en) 2013-05-14 2014-11-20 Arian Aghababaie Apparatus for fabrication of three dimensional objects
US20140339745A1 (en) 2013-05-17 2014-11-20 Stuart URAM Molds for ceramic casting
US20140348692A1 (en) 2011-12-23 2014-11-27 Compagnie Generale Des Establissements Michelin Method and apparatus for producing three-dimensional objects
CN104220510A (en) 2012-02-15 2014-12-17 横滨橡胶株式会社 Rubber composition for tire treads
WO2014204476A1 (en) 2013-06-20 2014-12-24 Hewlett-Packard Development Company, L.P. Pattern-forming three-dimensional printing system and method thereof
WO2014204450A1 (en) 2013-06-19 2014-12-24 Hewlett-Packard Development Company, L.P. Compositions for three-dimensional (3d) printing
WO2014209994A2 (en) 2013-06-24 2014-12-31 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
WO2014210584A1 (en) 2013-06-28 2014-12-31 Graphene 3D Lab Inc. Dispersions for nanoplatelets of graphene-like materials
US20150024169A1 (en) 2013-07-17 2015-01-22 Stratasys, Inc. Method for Printing 3D Parts and Support Structures with Electrophotography-Based Additive Manufacturing
US20150032241A1 (en) 2013-07-24 2015-01-29 Electronics And Telecommunications Research Institute Device and method for supporting 3d object printing and apparatus for providing 3d object printing service
US8980406B2 (en) 2012-08-28 2015-03-17 3D Systems, Inc. Color stable inks and applications thereof
US20150079362A1 (en) 2013-09-16 2015-03-19 The University Of Western Ontario Surface-Modification of Printed Objects
US9004663B2 (en) 2006-12-21 2015-04-14 Agfa Graphics Nv Inkjet printing methods and ink sets
US20150102532A1 (en) 2013-02-12 2015-04-16 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US9017589B2 (en) 2002-12-03 2015-04-28 Stratasys Ltd. Method for printing of three-dimensional objects
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US20150153282A1 (en) 2012-04-20 2015-06-04 Mocon, Inc. Calibration vial and technique for calibrating a fiber optic oxygen sensing needle
US20150174954A1 (en) 2013-12-24 2015-06-25 Bridgestone Americas Tire Operations, Llc Airless tire construction having variable stiffness
US9098000B2 (en) 2010-09-17 2015-08-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process of making a three-dimensional structure on a support structure
WO2015118552A1 (en) 2014-02-10 2015-08-13 Stratasys Ltd. Composition and method for additive manufacturing of an object
WO2015148613A1 (en) 2014-03-26 2015-10-01 Dsm Ip Assets B.V. Color and/or opacity changing liquid radiation curable resins for additive fabrication
WO2016106062A1 (en) 2014-12-23 2016-06-30 Bridgestone Americas Tire Operations, Llc Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US20170368816A1 (en) 2014-12-23 2017-12-28 Stratasys, Inc. Resin slot extruder for additive manufacturing system
US20170371350A1 (en) 2016-06-27 2017-12-28 Siemens Aktiengesellschaft Vehicle control system and method for automated driving of a specific lane for continuous supply with electrical energy
US20190055392A1 (en) 2015-10-02 2019-02-21 Dsm Ip Assets, B.V. Particle-based multi-network polymers

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1216998A (en) 1980-09-10 1987-01-20 Donald P. Specht Photopolymerization compositions comprising amine- substituted photosensitizers and n-heterocyclic compounds bearing an n-oxy substituent
US6384117B1 (en) 1997-07-11 2002-05-07 Bridgestone Corporation Processability of silica-filled rubber stocks

Patent Citations (294)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057431A (en) 1975-09-29 1977-11-08 The Goodyear Tire & Rubber Company Ethylenically polyurethane unsaturated composition
US5352310A (en) 1989-02-17 1994-10-04 Natter Marc D Actinic activation shaping system and method
US5059266A (en) 1989-05-23 1991-10-22 Brother Kogyo Kabushiki Kaisha Apparatus and method for forming three-dimensional article
US5314741A (en) 1992-10-07 1994-05-24 The Goodyear Tire & Rubber Company Rubber article having protective coating
US6281307B1 (en) 1995-01-31 2001-08-28 Ciba Specialty Chemicals Corporation Polymerizable composition, process for producing cross linked polymers, and cross-linkable polymers
US6323295B1 (en) 1995-02-09 2001-11-27 Ciba Specialty Chemicals Corporation Polymerizable composition, process for producing cross-linked polymers and crosslinkable polymers
US5639413A (en) 1995-03-30 1997-06-17 Crivello; James Vincent Methods and compositions related to stereolithography
US6130025A (en) 1995-05-12 2000-10-10 Asahi Denka Kogyo Kabushiki Kaisha Stereolithographic resin composition and stereolithographic method
US20030054158A1 (en) 1995-09-28 2003-03-20 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
US6011180A (en) 1995-11-24 2000-01-04 Cunningham; Allan Francis Acid-stable borates for photopolymerization
US5952152A (en) 1995-11-24 1999-09-14 Ciba Specialty Chemicals Corporation Borate coinitiators for photopolymerization
US5738817A (en) 1996-02-08 1998-04-14 Rutgers, The State University Solid freeform fabrication methods
US6022906A (en) 1996-06-12 2000-02-08 Ciba Specialty Chemicals Corporation α-aminoacetophenone photoinitiators
US6353771B1 (en) 1996-07-22 2002-03-05 Smith International, Inc. Rapid manufacturing of molds for forming drill bits
US6013714A (en) 1996-09-20 2000-01-11 Dsm N.V. Resin composition and fibrous material forming mold
US5985510A (en) 1996-11-26 1999-11-16 Asahi Denka Kogyo Kabushiki Kaisha Energy beam curable epoxy resin composition, stereolithographic resin composition and stereolithographic method
US5981616A (en) 1996-12-13 1999-11-09 Dsm N.V. Photo-curable resin composition used for photo fabication of three-dimensional objects
US20010048182A1 (en) 1997-01-29 2001-12-06 Pirelli Coordinamento Pneumatici S.P.A. Method of producing tyres, of making vulcanization moulds for said tyres, tyres and moulds thus produced
US6243616B1 (en) 1997-06-30 2001-06-05 Huels Aktiengesellschaft Method and device for producing three-dimensional objects
US6332943B1 (en) 1997-06-30 2001-12-25 Basf Aktiengesellschaft Method of ink-jet printing with pigment preparations having a dispersant
US6379796B1 (en) 1997-10-02 2002-04-30 Mitsubishi Rayon Co., Ltd. Composite hollow fiber membrane
US6096794A (en) 1997-11-03 2000-08-01 Ciba Specialty Chemicals Corporation Quinolinium dyes and borates in photopolymerizable compositions
US20020048717A1 (en) 1998-02-18 2002-04-25 Tetsuya Yamamura Photocurable liquid resin composition
US20030162665A1 (en) 1998-07-06 2003-08-28 Anatoly Rokhvarger Superconductor composite material
US6576684B1 (en) 1998-08-21 2003-06-10 Ciba Specialty Chemicals Corporation Thermal- and photoinitiated radical polymerization in the presence of an addition fragmentation agent
WO2000053398A1 (en) 1999-03-09 2000-09-14 Lee Eisinger Application of textured or patterned surfaces to a prototype
WO2000059972A1 (en) 1999-04-05 2000-10-12 Dsm N.V. Resin composition for photofabrication of three dimensional objects
US20070043138A1 (en) 1999-04-19 2007-02-22 Tetsuya Yamamura Resin composition for photofabrication of three dimensional objects
CN1365372A (en) 1999-07-29 2002-08-21 拜尔公司 Rubber composition
US6737476B1 (en) 1999-07-29 2004-05-18 Bayer Inc. Rubber composition
US20060208388A1 (en) 1999-11-05 2006-09-21 Z Corporation Material systems and methods of three-dimensional printing
US7795349B2 (en) 1999-11-05 2010-09-14 Z Corporation Material systems and methods of three-dimensional printing
US7105206B1 (en) 1999-12-01 2006-09-12 Basf Aktiengesellschaft Light curing of radiation curable materials under protective gas
WO2001057094A2 (en) 2000-02-07 2001-08-09 Sartomer Company, Inc. Curable polymeric compositions
US20020018959A1 (en) 2000-03-31 2002-02-14 Lawton John A. Solid imaging compositions for preparing polypropylene-like articles
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
US20030090034A1 (en) 2000-04-17 2003-05-15 Muelhaupt Rolf Device and method for the production of three-dimensional objects
US6942830B2 (en) 2000-04-17 2005-09-13 Envisiontec Gmbh Device and method for the production of three-dimensional objects
US20030059708A1 (en) 2000-06-09 2003-03-27 Tetsuya Yamamura Resin composition and three-dimensional object
DE10143218A1 (en) 2000-09-06 2002-08-01 Objet Geometries Ltd System for printing three dimensional models comprises a bath containing a polymerizable resin, a printing head and control unit
US20040020614A1 (en) 2000-11-03 2004-02-05 Jeffrey Dean Lindsay Three-dimensional tissue and methods for making the same
US7455804B2 (en) 2001-02-15 2008-11-25 Huntsman Advanced Materials Americas Inc. Three-dimensional structured printing
US20040036200A1 (en) 2001-02-15 2004-02-26 Ranjana Patel Three-dimensional structured printing
US7578958B2 (en) 2001-05-24 2009-08-25 Huntsman Advanced Materials Americas Inc. Three-dimensional structured printing
US20110113630A1 (en) * 2002-02-18 2011-05-19 Bridgestone Americas Tire Operations, Llc Tire and method of securing an object thereto
US7307123B2 (en) 2002-04-19 2007-12-11 Huntsman Advanced Materials Americas Inc. Photocurable compositions containing reactive particles
US20030198824A1 (en) 2002-04-19 2003-10-23 Fong John W. Photocurable compositions containing reactive polysiloxane particles
US20050220983A1 (en) 2002-05-13 2005-10-06 Jonathan Hayes Method of processing a stack of coatings and apparatus for processing a stack of coatings
US20050064333A1 (en) 2002-05-16 2005-03-24 Rensselaer Polytechnic Institute Thianthrenium salt cationic photoinitiators
US20030224314A1 (en) 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliance having a duplicated tooth area and/or a predicted tooth area and a method for correcting the position of the teeth of a patient
US20030224313A1 (en) 2002-05-30 2003-12-04 Bergersen Earl O. Dental appliances having attachable upper and lower halves and systems and methods for treating malocclusions
JP2004051665A (en) 2002-07-16 2004-02-19 Mitsubishi Rayon Co Ltd Resin composition for optical stereolithographic shaping and stereolithographic shaped product
US20040023145A1 (en) 2002-07-31 2004-02-05 3D Systems, Inc. Toughened stereolithographic resin compositions
US7381516B2 (en) 2002-10-02 2008-06-03 3M Innovative Properties Company Multiphoton photosensitization system
CN1688938A (en) 2002-10-02 2005-10-26 3M创新有限公司 Multiphoton photosensitization system
US20040171742A1 (en) 2002-10-17 2004-09-02 Tanya Estrin Solventless method for preparation of carboxylic polymers
US20060257511A1 (en) 2002-11-01 2006-11-16 Kabushiki Kaisha Bridgestone Method for producing tire vulcanizing mold and tire vulcanizing mold
US20040259023A1 (en) 2002-11-08 2004-12-23 Campagnola Paul J. Photoactivators, methods of use, and the articles derived therefrom
US9017589B2 (en) 2002-12-03 2015-04-28 Stratasys Ltd. Method for printing of three-dimensional objects
US20040146806A1 (en) 2003-01-29 2004-07-29 Roberts David H. Photo-imageable nanocomposites
US7569273B2 (en) 2003-05-21 2009-08-04 Z Corporation Thermoplastic powder material system for appearance models from 3D printing systems
US20060141276A1 (en) 2003-06-24 2006-06-29 Takashi Ito Three-dimensional structure and method for production thereof
US20070060682A1 (en) 2003-06-25 2007-03-15 Takashi Ito Actinic radiation-curable stereolithographic resin composition having improved stability
CN1566244A (en) 2003-07-01 2005-01-19 中国乐凯胶片集团公司 UV photo-curing adhesive for lamination of polarizer sheet protective membrane
CN1290953C (en) 2003-07-01 2006-12-20 中国乐凯胶片集团公司 UV photo-curing adhesive for lamination of polarizer sheet protective membrane
US20050014005A1 (en) 2003-07-18 2005-01-20 Laura Kramer Ink-jettable reactive polymer systems for free-form fabrication of solid three-dimensional objects
US20060231982A1 (en) 2003-07-23 2006-10-19 Xiaorong You Viscosity reducible radiation curable resin composition
US20070007698A1 (en) 2003-08-27 2007-01-11 Shojiro Sano Method of producting three-dimensional model
US7192688B2 (en) 2003-09-10 2007-03-20 Sartomer Technology, Inc. Polybutadiene (meth)acrylate composition and method
US20050054798A1 (en) 2003-09-10 2005-03-10 Klang Jeffrey A. Polybutadiene (meth)acrylate composition and method
US7381360B2 (en) 2003-11-03 2008-06-03 Hewlett-Packard Development Company, L.P. Solid free-form fabrication of three-dimensional objects
US7641752B2 (en) 2003-11-21 2010-01-05 Michelin-Recherche et Technique S.A. Process for laying a strip continuously on a toroidal surface
US20050154121A1 (en) 2004-01-14 2005-07-14 Mingxin Fan Poly(ethylene-butylene) (meth)acrylates and related compositions
US20050158660A1 (en) 2004-01-20 2005-07-21 Dsm Desotech, Inc. Solid imaging compositions for preparing polypropylene-like articles
US20080021126A1 (en) 2004-02-02 2008-01-24 Kurt Dietliker Functionalized Photoinitiators
US20070187117A1 (en) 2004-02-27 2007-08-16 Hideaki Tanaka Blade planting method, tire curing metal mold, and blade
US20070205528A1 (en) 2004-03-22 2007-09-06 Huntsman Advanced Materials Americans Inc. Photocurable Compositions
US20070232713A1 (en) 2004-05-26 2007-10-04 Jsr Corporation Radiation Curable Liquid Resin Composition for Optical Three-Dimensional Molding and Optical Molded Article Obtained by Photocuring Same
US20070225458A1 (en) 2004-05-28 2007-09-27 Hideki Kimura Novel Fluorinated Alkyl Fluorophosphoric Acid Salts of Onium and Ttransition Metal Complex
DE102004028462A1 (en) 2004-06-11 2005-12-29 Continental Aktiengesellschaft Tire vulcanization mold has molding segments formed of a base part supporting a grid structure with channels for air and heating fluid and a microporous sintered metal tool surface
US20080003372A1 (en) 2004-06-14 2008-01-03 Basf Coatings Ag Method for Curing Radically Curable Compounds in a Protective Atmosphere and Device for Carrying Out Said Method
JP2006002110A (en) 2004-06-21 2006-01-05 Mitsubishi Rayon Co Ltd Resin composition for optical solid shaping and solid shape
US20060008777A1 (en) 2004-07-08 2006-01-12 Peterson David S System and mehtod for making sequentially layered dental restoration
US20080258345A1 (en) 2004-07-15 2008-10-23 Arthur Thomas Bens Liquid Radiation-Curing Compositions
US7232498B2 (en) 2004-08-13 2007-06-19 The Goodyear Tire & Rubber Company Tire with raised indicia
US20060032569A1 (en) 2004-08-13 2006-02-16 Zimmer Rene J Tire with raised indicia
EP1625952A1 (en) 2004-08-13 2006-02-15 The Goodyear Tire & Rubber Company Tire with raised indicia
EP1652644A1 (en) 2004-10-30 2006-05-03 Continental Aktiengesellschaft Tire mould with a contoured forming surface made of sintered material
US20060113714A1 (en) 2004-11-05 2006-06-01 Tamicare Ltd. Method and apparatus to produce stretchable products
US20060154195A1 (en) 2004-12-10 2006-07-13 Mather Patrick T Shape memory polymer orthodontic appliances, and methods of making and using the same
US20060155376A1 (en) 2005-01-13 2006-07-13 Blue Membranes Gmbh Composite materials containing carbon nanoparticles
US20060159869A1 (en) 2005-01-14 2006-07-20 Laura Kramer Reactive materials systems and methods for solid freeform fabrication of three-dimensional objects
CN101107307A (en) 2005-01-19 2008-01-16 米其林技术公司 Tyre tread
US20080121324A1 (en) 2005-01-19 2008-05-29 Stephanie Cambon Tire Running Thread
US20060167147A1 (en) 2005-01-24 2006-07-27 Blue Membranes Gmbh Metal-containing composite materials
US20060163774A1 (en) 2005-01-25 2006-07-27 Norbert Abels Methods for shaping green bodies and articles made by such methods
US20060184005A1 (en) 2005-02-03 2006-08-17 Christopher Sakezles Models and methods of using same for testing medical devices
US20060211802A1 (en) 2005-03-18 2006-09-21 Soheil Asgari Porous sintered metal-containing materials
WO2006102238A2 (en) 2005-03-21 2006-09-28 Massachusetts Institute Of Technology Methods to fabricate articles having microfeatures and nanofeatures using gas expansion and deformable, hardenable media, and articles made by such methods
US7427317B2 (en) 2005-03-31 2008-09-23 Sloan Donald D High elongation vacuum formable digital ink
US7662224B2 (en) 2005-03-31 2010-02-16 Sloan Donald D High elongation vacuum formable digital ink
US20120174661A1 (en) 2005-04-05 2012-07-12 Hergenrother William L Method of optimizing a tire tread compound, and a tire tread compound made by said method
US20060247360A1 (en) 2005-04-20 2006-11-02 Halasa Adel F Rubber composition containing an alkoxysilane coupled in-chain functionalized elastomer and tire with component thereof
US20070072287A1 (en) 2005-05-23 2007-03-29 Biovitesse, Inc. Biomems cartridges
US20070003753A1 (en) 2005-07-01 2007-01-04 Soheil Asgari Medical devices comprising a reticulated composite material
US20070003749A1 (en) 2005-07-01 2007-01-04 Soheil Asgari Process for production of porous reticulated composite materials
US20100181706A1 (en) 2005-07-13 2010-07-22 Jari Ruuttu Radiation Arrangement
WO2007006850A2 (en) 2005-07-13 2007-01-18 Picodeon Ltd Oy Radiation arrangement
EP1757667A2 (en) 2005-08-11 2007-02-28 Bridgestone Corporation Adhesive composition and process for adhesion using the adhesive composition
EP1757979A1 (en) 2005-08-26 2007-02-28 Cmet Inc. Rapid prototyping resin compositions
US20070049652A1 (en) 2005-08-29 2007-03-01 Cmet Inc Rapid prototyping resin compositions
US20110293891A1 (en) 2005-09-13 2011-12-01 Huntsman International Llc Photocurable compositions for preparing abs-like articles
US20100015408A1 (en) 2005-10-27 2010-01-21 Huntsman International Llc Antimony-free photocurable resin composition and three dimensional article
JP2007137957A (en) 2005-11-16 2007-06-07 Nippon Kayaku Co Ltd Adhesive composition for rubber, and adhering method of rubber
EP1960986B1 (en) 2005-12-07 2013-05-01 Berner Fachhochschule Device and method for producing braille script and three-dimensional structures
US20070134596A1 (en) 2005-12-08 2007-06-14 Adrian Lungu Photosensitive printing element having nanoparticles and method for preparing the printing element
US20090176034A1 (en) 2006-02-23 2009-07-09 Picodeon Ltd. Oy Surface Treatment Technique and Surface Treatment Apparatus Associated With Ablation Technology
US20070245956A1 (en) 2006-02-23 2007-10-25 Picodeon Ltd Oy Surface treatment technique and surface treatment apparatus associated with ablation technology
US20070241482A1 (en) 2006-04-06 2007-10-18 Z Corporation Production of three-dimensional objects by use of electromagnetic radiation
US20100304088A1 (en) 2006-05-01 2010-12-02 Paulus Antonius Maria Steeman Radiation curable resin composition and rapid three dimensional imaging process using the same
US20070267884A1 (en) 2006-05-22 2007-11-22 Lear Corporation Grab handle systems for a vehicle
US20090287332A1 (en) 2006-07-06 2009-11-19 Prasad Adusumilli System and method for manufacturing full and partial dentures
US20110163101A1 (en) * 2006-07-14 2011-07-07 Dupont Teijin Films U.S. Limited Partnership Multilayer sealant film
US7923121B2 (en) 2006-08-02 2011-04-12 Shawcor Ltd. Photo-crosslinkable polyolefin compositions
CN101495561A (en) 2006-08-02 2009-07-29 超科有限公司 Photo-crosslinkable polyolefin compositions
US7744803B2 (en) 2006-08-02 2010-06-29 Shawcor Ltd. Photo-crosslinkable polyolefin compositions
US20080057101A1 (en) 2006-08-21 2008-03-06 Wouter Roorda Medical devices for controlled drug release
US20080075668A1 (en) 2006-09-27 2008-03-27 Goldstein Alan H Security Device Using Reversibly Self-Assembling Systems
US20080135502A1 (en) 2006-12-07 2008-06-12 Electronics And Telecommunications Research Institute Blood plasma separator employing micro channel and blood plasma separation method thereof
JP2010512255A (en) 2006-12-08 2010-04-22 ズィー コーポレイション Three-dimensional printing material system and method using peroxide curing
US8157908B2 (en) 2006-12-08 2012-04-17 3D Systems, Inc. Three dimensional printing material system and method using peroxide cure
US9004663B2 (en) 2006-12-21 2015-04-14 Agfa Graphics Nv Inkjet printing methods and ink sets
US20100196624A1 (en) 2007-02-23 2010-08-05 Picodeon Ltd Oy Arrangement
EP1967284A2 (en) 2007-03-06 2008-09-10 Ist Metz Gmbh Method and device for UV-ray hardening of substrate layers
US20100119835A1 (en) 2007-03-14 2010-05-13 Huntsman International Llc Photocurable compositions for preparing abs-like articles
US20100104832A1 (en) 2007-03-14 2010-04-29 Loic Messe Curable composition
US8362148B2 (en) 2007-03-14 2013-01-29 3D Systems, Inc. Curable composition
WO2008113813A1 (en) 2007-03-19 2008-09-25 Axiatec 3d printing method
US20100227941A1 (en) 2007-03-20 2010-09-09 Dsm Ip Assets B.V. Stereolithography resin compositions and three-dimensional objects made therefrom
US20080236597A1 (en) 2007-03-28 2008-10-02 Bergersen Earl O Appliance, system and method for preventing snoring
US20100279007A1 (en) 2007-08-14 2010-11-04 The Penn State Research Foundation 3-D Printing of near net shape products
US20090148813A1 (en) 2007-08-31 2009-06-11 Sun Benjamin J Three-dimensional printing methods and materials for making dental products
EP2030762A1 (en) 2007-08-31 2009-03-04 Deltamed Gmbh Flexible medicinal form body and method for its manufacture
US20090101278A1 (en) 2007-10-17 2009-04-23 Louis Laberge-Lebel Methods for preparing freeform three-dimensional structures
US20100292406A1 (en) 2007-12-14 2010-11-18 Katharina Herzog Vulcanizable rubber mixture and rubber products comprising the same
CN101855294A (en) 2007-12-14 2010-10-06 大陆轮胎德国有限公司 Curable rubber stock and be used for the purposes of rubber product
US8876513B2 (en) 2008-04-25 2014-11-04 3D Systems, Inc. Selective deposition modeling using CW UV LED curing
US8916084B2 (en) 2008-09-04 2014-12-23 Xerox Corporation Ultra-violet curable gellant inks for three-dimensional printing and digital fabrication applications
US20100055484A1 (en) 2008-09-04 2010-03-04 Xerox Corporation Ultra-Violet Curable Gellant Inks For Three-Dimensional Printing And Digital Fabrication Applications
US20100053287A1 (en) 2008-09-04 2010-03-04 Xerox Corporation Ultra-Violet Curable Gellant Inks For Braille, Raised Print, And Regular Print Applications
WO2010061235A1 (en) 2008-11-03 2010-06-03 Franz Andrae Kuncic Method for forming microstructures or method for reducing the weight of massive components through the generation of microstructures
US20110293522A1 (en) 2008-11-17 2011-12-01 Dsm Ip Assets B.V. Surface modification of polymers via surface active and reactive end groups
US20100140850A1 (en) * 2008-12-04 2010-06-10 Objet Geometries Ltd. Compositions for 3D printing
US20110304082A1 (en) 2008-12-17 2011-12-15 Michelin Recherche Et Technique S.A. Mould lining comprising a sacrificial connecting element
US20110318532A1 (en) 2008-12-17 2011-12-29 Michelin Recherche Et Technique S.A. Lining Assembly on a Skin for a Tire Vulcanization Mould
US20100152316A1 (en) 2008-12-17 2010-06-17 Robert Lee Cornell Uv-curable coatings and methods for applying uv-curable coatings using thermal micro-fluid ejection heads
US20110309556A1 (en) 2008-12-17 2011-12-22 Michelin Recherche Et Technique S.A. Lining element comprising a shell and a core
WO2010072961A2 (en) 2008-12-24 2010-07-01 Societe De Technologie Michelin Intermediate die for the manufacture of a tyre mould produced by laser sintering
US20100230850A1 (en) 2009-03-14 2010-09-16 Raytheon Company Method of manufacture of one-piece composite parts using a two-piece form including a shaped polymer that does not draw with a rigid insert designed to draw
US20120168049A1 (en) 2009-05-13 2012-07-05 Brian William Jenkins Tire with a sipe having areas with reduced thickness and apparatus for making the same
US20120048439A1 (en) 2009-06-12 2012-03-01 Societe De Technologie Michelin Progressive tire mold element with undulation on its upper member and tire formed by the same
US20120055601A1 (en) 2009-06-12 2012-03-08 Societe De Technologie Michelin Progressive tire mold element with scallops and tire formed by the same
US20110059291A1 (en) 2009-09-07 2011-03-10 Boyce Christopher M Structured materials with tailored isotropic and anisotropic poisson's ratios including negative and zero poisson's ratios
US20120260492A1 (en) 2009-11-03 2012-10-18 Michelin Recherche Et Technique S.A. Supporting plate for a laser sintering device and enhanced sintering method
US20120289657A1 (en) 2010-02-16 2012-11-15 Evonik Roehm Gmbh Functional materials with controllable viscosity
US20120309895A1 (en) 2010-02-16 2012-12-06 Evonik Roehm Gmbh Functional materials with reversible crosslinking
US20110200655A1 (en) 2010-02-16 2011-08-18 Michael Darryl Black Systems and methods that kill infectious agents (bacteria) without the use of a systemic anti-biotic
US8603612B2 (en) 2010-04-22 2013-12-10 Xerox Corporation Curable compositions for three-dimensional printing
US20110262711A1 (en) 2010-04-22 2011-10-27 Xerox Corporation Curable compositions for three-dimensional printing
US9012527B2 (en) 2010-04-22 2015-04-21 Xerox Corporation Curable compositions for three-dimensional printing
US20130079877A1 (en) 2010-05-06 2013-03-28 Stichting Katholieke Universiteit Non-resorbable meniscus prosthesis for the human knee joint
US20130083276A1 (en) 2010-05-28 2013-04-04 Fujifilm Corporation Printing sheet for printing stereo picture, stereo picture print, method of manufacturing stereo picture print, and method of providing stereo picture
US20110309728A1 (en) 2010-06-16 2011-12-22 Incase Designs Corp. Case for Portable Electronic Device
EP2399695A1 (en) 2010-06-22 2011-12-28 SLM Solutions GmbH Method and device for creating a three-dimensional structure on a curved base level
US20130164401A1 (en) 2010-06-25 2013-06-27 Michelin Recherche Et Technique S.A. Thin plate for a lining of a mould intended for vulcanizing a tire tread
US20130090407A1 (en) 2010-06-28 2013-04-11 James Wells Carter Curable resin compositions
US20110319745A1 (en) 2010-06-29 2011-12-29 Frey George A Patient Matching Surgical Guide and Method for Using the Same
US20130206291A1 (en) 2010-07-12 2013-08-15 Michelin Recherche Et Technique S.A. Tire tread comprising a wear indicator
US20130149182A1 (en) 2010-08-16 2013-06-13 National Oilwell Varco, L.P. Reinforced Stators and Fabrication Methods
US20130172480A1 (en) 2010-09-06 2013-07-04 Evonik Roehm Gmbh Functional materials having a controllable viscosity or reversible crosslinking via aza diels-alder reactions with bishydrazones or conjugated bis-schiff bases
US20120060468A1 (en) 2010-09-13 2012-03-15 Experimental Propulsion Lab, Llc Additive manufactured propulsion system
US9098000B2 (en) 2010-09-17 2015-08-04 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Process of making a three-dimensional structure on a support structure
US20130165586A1 (en) 2010-09-24 2013-06-27 Nippon Soda Co., Ltd. Method for producing terminal acrylic-modified polybutadiene or terminal acrylic-modified hydrogenated polybutadiene, and composition containing same
JP2012074644A (en) 2010-09-30 2012-04-12 Shin Etsu Chem Co Ltd Micro-contact printing material and manufacturing method thereof
US20130288062A1 (en) 2010-09-30 2013-10-31 Abb Research Ltd. Method of producing a layer of a vulcanized silicone rubber composition having an improved adhesion to the substrate surface
US20140162033A1 (en) 2010-10-27 2014-06-12 Eugene Giller Process and Apparatus for Fabrication of Three-Dimensional Objects
JP2013540627A (en) 2010-10-27 2013-11-07 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire tread including opening and method for manufacturing tire tread including opening
US20130213543A1 (en) 2010-10-27 2013-08-22 Michelin Recherche Et Technique S.A. Tire tread with sipes and a method for the manufacture of a tire tread with sipes
US20130225779A1 (en) 2010-10-29 2013-08-29 Bellandtechnology Ag Water-soluble or water-disintegrable copolymer
US20130335807A1 (en) 2010-11-15 2013-12-19 Opalux Incorporated Reversibly Responsive Light-Scattering Photonic Material
US20130303678A1 (en) 2010-11-17 2013-11-14 Evonik Roehm Gmbh Materials having a controllable degree of crosslinking
US20140110872A1 (en) 2010-11-28 2014-04-24 Stratasys Ltd. System and method for additive manufacturing of an object
JP2014503384A (en) 2010-11-28 2014-02-13 ストラタシス リミテッド System and method for additive manufacturing of objects
US20130241114A1 (en) 2010-11-28 2013-09-19 Stratasys Ltd. System and method for additive manufacturing of an object
US20130320467A1 (en) 2010-12-08 2013-12-05 Condalign As Method for assembling conductive particles into conductive pathways and sensors thus formed
US20130310484A1 (en) 2011-01-05 2013-11-21 Kaneka Corporation Polymer microparticle-dispersed resin composition and method for producing same
US8460451B2 (en) 2011-02-23 2013-06-11 3D Systems, Inc. Support material and applications thereof
US20140017460A1 (en) 2011-03-09 2014-01-16 3D Systems, Inc. Build Material And Applications Thereof
US20140081192A1 (en) 2011-03-21 2014-03-20 KET Kunststoff-und Elaststoff-und Elasttechnik GmbH Liegau-Augustustutusbad Primary dressing for moist wound healing, and method for producing said primary dressing
CN102731723A (en) 2011-04-13 2012-10-17 住友橡胶工业株式会社 Diene polymer and production method thereof
US20120264898A1 (en) 2011-04-13 2012-10-18 Satoru Inoue Diene polymer and production method thereof
US8822590B2 (en) 2011-04-20 2014-09-02 Evonik Röhm Gmbh Maleic anhydride copolymers as soluble support material for fused deposition modelling (FDM) printer
US20130317164A1 (en) 2011-04-20 2013-11-28 Evonik Roehm Gmbh Maleic anhydride copolymers as soluble support material for fused deposition modelling (fdm) printer
US20140249406A1 (en) 2011-05-08 2014-09-04 University Of Iowa Research Foundation Compensator-based brachytherapy
US20130227901A1 (en) 2011-05-11 2013-09-05 Ron Zohar Methods and devices for making a building block for mortar-free construction
US20140147538A1 (en) 2011-05-17 2014-05-29 Compagine Generale Des Etablissements Micheln Method for manufacturing a molding element by fritting with a completely planar unfritted portion, and corresponding molding element
WO2012171055A1 (en) 2011-06-15 2012-12-20 Vr Tek Wheels Pty Ltd Non-pneumatic composite integrated tyre and wheel and method of fabrication thereof
US20130002773A1 (en) 2011-06-28 2013-01-03 Fujifilm Corporation Ink composition, ink container, and ink jet recording method
EP2540783A1 (en) 2011-06-28 2013-01-02 Fujifilm Corporation Ink composition, ink container, and ink jet recording method
US20130012660A1 (en) 2011-07-06 2013-01-10 Michio Hirayama Tire rubber composition and pneumatic tire
CN102863666A (en) 2011-07-06 2013-01-09 住友橡胶工业株式会社 Tire rubber composition and pneumatic tire
CN103797077A (en) 2011-07-25 2014-05-14 汉高股份有限公司 Photocurable adhesive composition and use of the same
US20140131306A1 (en) 2011-07-25 2014-05-15 Henkel US IP LLC Photocurable adhesive composition and use of the same
WO2013013566A1 (en) 2011-07-25 2013-01-31 Henkel (China) Company Limited Photocurable adhesive composition and use of the same
US20140121327A1 (en) 2011-07-26 2014-05-01 Evonik Roehm Gmbh Polymer powder for producing three-dimensional objects
US20130026683A1 (en) 2011-07-28 2013-01-31 Ng Hou T Liquid inkjettable materials for three-dimensional printing
US20130031888A1 (en) 2011-08-01 2013-02-07 The Aerospace Corporation Systems, Methods, and Apparatus for Providing a Multi-Fuel Hybrid Rocket Motor
CN104039839A (en) * 2011-11-16 2014-09-10 德莎欧洲公司 Method for producing non-colored polyacrylate adhesive compounds with a narrow molar mass distribution
WO2013090885A2 (en) 2011-12-15 2013-06-20 Bridgestone Corporation Stabilized multi-valent anionic polymerization initiators and methods for preparing the same
US20140353862A1 (en) 2011-12-16 2014-12-04 Alan Erdman Apparatus and Method for Retreading Tyres
WO2013086577A1 (en) 2011-12-16 2013-06-20 Erdman Alan The person identified in box 2 has been recorded as applicant for us only and inventor for all designated states
JP2015506855A (en) 2011-12-16 2015-03-05 アードマン アラン Apparatus and method for tread regeneration on a tire
WO2013092994A1 (en) 2011-12-23 2013-06-27 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects
US20140348692A1 (en) 2011-12-23 2014-11-27 Compagnie Generale Des Establissements Michelin Method and apparatus for producing three-dimensional objects
US20130170171A1 (en) 2012-01-04 2013-07-04 Board Of Regents, The University Of Texas System Extrusion-based additive manufacturing system for 3d structural electronic, electromagnetic and electromechanical components/devices
US20140268607A1 (en) 2012-01-04 2014-09-18 Board Of Regents, The University Of Texas System Methods and Systems For Connecting Inter-Layer Conductors and Components in 3D Structures, Structural Components, and Structural Electronic, Electromagnetic and Electromechanical Components/Devices
CN103224643A (en) 2012-01-30 2013-07-31 住友橡胶工业株式会社 Surface modification method and surface modification elastormer
US20130203883A1 (en) 2012-02-02 2013-08-08 Sumitomo Rubber Industries, Ltd. Surface modification method and surface-modified elastic body
CN103242487A (en) 2012-02-02 2013-08-14 住友橡胶工业株式会社 Surface modification method and surface-modified elastic body
CN104220510A (en) 2012-02-15 2014-12-17 横滨橡胶株式会社 Rubber composition for tire treads
WO2013127655A1 (en) 2012-02-27 2013-09-06 Compagnie Generale Des Etablissements Michelin Method and apparatus for producing three-dimensional objects with improved properties
WO2013128452A1 (en) 2012-03-01 2013-09-06 Stratasys Ltd. Cationic polymerizable compositions and methods of use thereof
DE102012102322A1 (en) 2012-03-20 2013-09-26 Continental Reifen Deutschland Gmbh Manufacturing curing mold for vehicle tires, comprises separately producing lamellar sheets by rapid prototyping process while producing mold surfaces by casting or machining processes, and introducing lamellar sheets in mold surfaces
WO2013146527A1 (en) 2012-03-28 2013-10-03 株式会社ダイセル Curable epoxy resin composition
US20150153282A1 (en) 2012-04-20 2015-06-04 Mocon, Inc. Calibration vial and technique for calibrating a fiber optic oxygen sensing needle
WO2013164599A1 (en) 2012-05-02 2013-11-07 Michael Pritchard Wellbore encasement
US20130297062A1 (en) 2012-05-03 2013-11-07 Alberto Daniel Lacaze Field Deployable Rapid Prototypable UXVs
US20130292117A1 (en) 2012-05-04 2013-11-07 Schlumberger Technology Corporation Compliant sand screen
CN102660107A (en) 2012-05-31 2012-09-12 东北林业大学 Post-treatment agent and method for using same to treat eucalyptus/PES (polyether sulfone) composite powder formed part formed by selective laser sintering
EP2671759A1 (en) 2012-06-09 2013-12-11 Egon Schneider Holder for holding a plate as an identifying plate for a motor vehicle and method for producing same
US20130344232A1 (en) 2012-06-22 2013-12-26 Xerox Corporation Methods of forming conductive features on three-dimensional objects
DE102012211450A1 (en) 2012-07-02 2014-01-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Wheel assembly for land vehicle i.e. all-terrain vehicle, has rolling portion provided with multiple rolling elements, which form running surface having cylindrical shape or tooth-like profile shape depending on load
JP2014034270A (en) 2012-08-08 2014-02-24 Bridgestone Corp Rubber laminate and tire
US20140075810A1 (en) 2012-08-16 2014-03-20 Dmitri Mikroulis Universal ak-47 and variant bolt hold open follower
US8980406B2 (en) 2012-08-28 2015-03-17 3D Systems, Inc. Color stable inks and applications thereof
US20140067106A1 (en) 2012-08-29 2014-03-06 Prem Makeig Computer-Implemented Methods for Generating 3D Models Suitable for 3D Printing
US20140061974A1 (en) 2012-08-29 2014-03-06 Kenneth Tyler Method and apparatus for continuous composite three-dimensional printing
US20140072712A1 (en) 2012-09-13 2014-03-13 3D Systems, Inc. Opaque Inks And Applications Thereof
WO2014060450A1 (en) 2012-10-19 2014-04-24 Basf Se Hybrid photoinitiators
JP2014083744A (en) 2012-10-23 2014-05-12 Kao Corp Developing liquid composition for 3d printing molded object
WO2014067828A1 (en) 2012-10-30 2014-05-08 Compagnie Generale Des Etablissements Michelin Tyre with improved grip on ice
US20140131908A1 (en) 2012-11-14 2014-05-15 Dentsply International Inc. Three-dimensional fabricating material systems for producing dental products
WO2014077848A1 (en) 2012-11-19 2014-05-22 Hewlett-Packard Development Company, L.P. Compositions for three-dimensional (3d) printing
WO2014090492A1 (en) 2012-12-11 2014-06-19 Evonik Industries Ag Functional materials with reversible crosslinking
US8653153B1 (en) 2012-12-18 2014-02-18 Xerox Corporation Violet curable ink
JP2014136311A (en) 2013-01-15 2014-07-28 Konica Minolta Inc Device for molding three-dimensional object, and method for molding three-dimensional object
US20150102532A1 (en) 2013-02-12 2015-04-16 Carbon3D, Inc. Method and apparatus for three-dimensional fabrication
US20140265034A1 (en) 2013-03-12 2014-09-18 Orange Maker LLC 3d printing using spiral buildup
US20140259325A1 (en) 2013-03-14 2014-09-18 Nike, Inc. Protective Apparatus With A Varied Thickness Lattice Support Structure
US20140265033A1 (en) 2013-03-15 2014-09-18 Michelin Recherche Et Technique S.A. Method for improved tire mold manufacturing
US20140259327A1 (en) 2013-03-15 2014-09-18 Nike, Inc. Interlocking Impact Protection System For Contact Sports
US20140271328A1 (en) 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
US20140284832A1 (en) 2013-03-25 2014-09-25 Petr Novikov System and Method for Manufacturing a Three-Dimensional Object from Freely Formed Three-Dimensional Curves
CA2810963A1 (en) 2013-03-28 2014-09-28 Michael R. Albert Window pan drainage dam
CA2814605A1 (en) 2013-04-25 2014-10-25 Robert Magri Protective hockey sock
US20140323967A1 (en) 2013-04-29 2014-10-30 Carl Michael Mancino Waterproof chest catheter protector sheath
WO2014179568A2 (en) 2013-05-02 2014-11-06 Odin Biotech Two-layer ocular implant
CN103232608A (en) 2013-05-10 2013-08-07 成都顺康电子有限责任公司 Method for preparing faceted heater from ultraviolet crosslinking macromolecular positive temperature coefficient (PTC) material through adopting three-dimensional (3D) printing mode
US20140339741A1 (en) 2013-05-14 2014-11-20 Arian Aghababaie Apparatus for fabrication of three dimensional objects
US20140339745A1 (en) 2013-05-17 2014-11-20 Stuart URAM Molds for ceramic casting
WO2014204450A1 (en) 2013-06-19 2014-12-24 Hewlett-Packard Development Company, L.P. Compositions for three-dimensional (3d) printing
WO2014204476A1 (en) 2013-06-20 2014-12-24 Hewlett-Packard Development Company, L.P. Pattern-forming three-dimensional printing system and method thereof
WO2014209994A2 (en) 2013-06-24 2014-12-31 President And Fellows Of Harvard College Printed three-dimensional (3d) functional part and method of making
WO2014210584A1 (en) 2013-06-28 2014-12-31 Graphene 3D Lab Inc. Dispersions for nanoplatelets of graphene-like materials
US9029058B2 (en) 2013-07-17 2015-05-12 Stratasys, Inc. Soluble support material for electrophotography-based additive manufacturing
US20150024169A1 (en) 2013-07-17 2015-01-22 Stratasys, Inc. Method for Printing 3D Parts and Support Structures with Electrophotography-Based Additive Manufacturing
US9023566B2 (en) 2013-07-17 2015-05-05 Stratasys, Inc. ABS part material for electrophotography-based additive manufacturing
US20150032241A1 (en) 2013-07-24 2015-01-29 Electronics And Telecommunications Research Institute Device and method for supporting 3d object printing and apparatus for providing 3d object printing service
US20150079362A1 (en) 2013-09-16 2015-03-19 The University Of Western Ontario Surface-Modification of Printed Objects
CN103707507A (en) 2013-12-13 2014-04-09 吉林大学 Polyether-ether-ketone biomimetic artificial bone 3D printing manufacturing method
US20150174954A1 (en) 2013-12-24 2015-06-25 Bridgestone Americas Tire Operations, Llc Airless tire construction having variable stiffness
WO2015118552A1 (en) 2014-02-10 2015-08-13 Stratasys Ltd. Composition and method for additive manufacturing of an object
CN103819892A (en) 2014-03-16 2014-05-28 贵州省材料产业技术研究院 Long aramid fiber-reinforced wear-resistant thermoplastic polyurethane (TPU) composite material and preparation method thereof
WO2015148613A1 (en) 2014-03-26 2015-10-01 Dsm Ip Assets B.V. Color and/or opacity changing liquid radiation curable resins for additive fabrication
CN103911078A (en) 2014-04-04 2014-07-09 深圳市库泰克电子材料技术有限公司 Ultraviolet curing adhesive with high light transmittance for fitting touch panel
CN103980592A (en) 2014-04-30 2014-08-13 中国科学院化学研究所 high-filling-content micro-nano powder/polymer composite material for 3D printing and preparation method and product thereof
CN103992560A (en) 2014-04-30 2014-08-20 中国科学院化学研究所 High-rubber polypropylene polyphase copolymer resin used for 3D printing, and preparation method and application thereof
CN203844238U (en) 2014-05-21 2014-09-24 南京邮电大学 Melting deposition type 3D (Three-Dimensional) printing machine feeding device
CN104149371A (en) 2014-08-07 2014-11-19 北京化工大学 Method and equipment for manufacturing tire with tread patterns
WO2016106062A1 (en) 2014-12-23 2016-06-30 Bridgestone Americas Tire Operations, Llc Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US20170368816A1 (en) 2014-12-23 2017-12-28 Stratasys, Inc. Resin slot extruder for additive manufacturing system
US20170369620A1 (en) 2014-12-23 2017-12-28 Bridgestone Americas Tire Operations, Llc Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US20190055392A1 (en) 2015-10-02 2019-02-21 Dsm Ip Assets, B.V. Particle-based multi-network polymers
US20170371350A1 (en) 2016-06-27 2017-12-28 Siemens Aktiengesellschaft Vehicle control system and method for automated driving of a specific lane for continuous supply with electrical energy

Non-Patent Citations (51)

* Cited by examiner, † Cited by third party
Title
3D Systems Corporation, "3D System's ProJet 660 the Ultimate Solution for Hankook Tire Concept Design," 2 pp. (2014).
3D Systems, Inc., "Continental Tire Cruises Through Tire Design With 3D Systems 3D Printing Solution," 2 pp. (Jan. 2012).
3D Systems, Inc., "DuraForm Flex (SLS)," downloaded from http://www.3dsystems.com/materials/duraformr-flex in Oct. 2018, 4 pp.
A look inside Materialise, the Belgian company 3D printing its way into the future of everything, 16 pp. (printed Oct. 4, 2018).
Abstract of Baldeck, P. L. et al., "Laser-induced binding of precured rubber compounds," Optical Engineering, vol. 30, No. 3, pp. 312-316 (Mar. 1991).
Abstract of Decker, Christian, "Kinetic Study and New Applications of UV Radiation Curing," Macromolecular Rapid Communications, vol. 23, Issue 18, pp. 1067-1093, doi: 10.1002/marc.200290014 (2002).
Abstract of Elsner, C et al., "3D-Microstructure Replication Processes Using UV-Curable Acrylates," Microelectronic Engineering, vol. 65, Issues 1-2, pp. 163-170 (Jan. 2003).
Abstract of Guo, Qiuquan et al., "Paintable' 3D printed structures via a post-ATRP process with antimicrobial function for biomedical applications," Journal of Materials Chemistry B, vol. 1, No. 48, pp. 6644-6649 (Dec. 28, 2013).
Abstract of Meniga, Tarle Z. et al., "Polymerization of composites using pulsed laser," European Journal of Oral Sciences, vol. 103, pp. 394-398 (1995).
Abstract of Sun, X. et al., "Intermittent curing and its effect on pulsed laser-induced photopolymerization," Applied Physics B, vol. 92, Issue 1, pp. 93-98 (printed on Nov. 19, 2014).
Abstract of Suri, Shalu et al., "Solid freeform fabrication of designer scaffolds of hyaluronic acid for nerve tissue engineering," Biomedical Microdevices, vol. 13, Issue 6, pp. 983-993 (Dec. 2011).
Abstract of Tillier, Delphine L. et al., "About crosslinking of low molecular weight ethylene-propylene(-diene) copolymer-based artificial latices," Journal of Polymer Science Part A: Polymer Chemistry, vol. 43, Issue 16, pp. 3600-3615, doi: 10.1002/pola.20807 (Aug. 15, 2005).
Abstract of Umezu, Shinjiro et al., "Fundamental Characteristics of Bioprint on Calcium Alginate Gel," Japanese Journal of Applied Physics, vol. 52, No. 5S1, 2 pp. (May 20, 2013).
Abstract of Wang, Xiaolong et al., "I3DP, a robust 3D printing approach enabling genetic post-printing surface modification," Chemical Communications, vol. 49, No. 86, pp. 10064-10066 (Nov. 7, 2013).
Abstract of Williams, Richard R. et al., "Composite Sandwich Structures With Rapid Prototyped Cores," Rapid Prototyping Journal, vol. 17, No. 2, pp. 92-97 (2011).
Abstract of Xu, Renmei et al., "Flexographic Platemaking Using Rapid Prototyping Technologies," Proceedings of the Technical Association of the Graphic Arts, TAGA, pp. 1-11 (2008).
Aliakbari, Mina, "Additive Manufacturing: State-of-th-Art, Capabilities, and Sample Applications with Cost Analysis," Master of Science Thesis, Production Engineering and Management, Department of Industrial Production, pp. 1-90 (Jun. 2012).
Arceneaux, Jo Ann et al., "UV & EB Chemistry and Technology," RadTech Printer's Guide, pp. 1-8 (undated, printed Oct. 2018).
Duan, Yugang et al., "Effects of compaction and UV exposure on performance of acrylate/glass-fiber composites cured layer by layer," Journal of Applied Polymer Science, vol. 123, Issue 6, pp. 3799-3805, doi: 10.1002/app.34909 (Mar. 15, 2012).
Duann, "Introducing 3D Printed Black Elasto Plastic: I Can't Believe It's Not Rubber," Shapeways Magazine, 3D Printing News and Innovation, 12 pp., downloaded from https://www.shapeways.com/blog/archives/1375-introducing-3d-printed-black-elasto-plastic-i-cant-believe-its-not-rubber.html (May 17, 2012).
Eggers, Karin, Interational Search Report with Written Opinion from PCT Application No. PCT/US2015/066288, 13 pp. (dated Apr. 4, 2016).
Esquivel de la Garza, Alejandro et al., "UV Curing with Lasers," Adhesives Magazine, downloaded from http://www.adhesivesmag.com/articles/print/91983-uv-curing-with-lasers on Nov. 19, 2014, 6 pp.
Extended European Search Report from EP application 16876406.6 dated Aug. 13, 2019.
Fenner Drives, NinjaFlex® Flexible 3D Printing Filament by NinjaTek®, 3 pp., downloaded from http://www.fennerdrives.com/product-lines/_/3d/?= on Sep. 17, 2018.
Formerol F.10/Sugru Technical Data Sheet v 2.3, pp. 1-12 (Sep. 2016).
Ganter, B. et al., "UV-Curing Silicone Rubbers find uses in new of application fields," Rubber Fibres Plastics International Magazine for the Polymer Industry, Special Reprint, pp. 1-4 (2013).
Herderick, E., "Additive Manufacturing of Metals: A Review," Materials Science and Technology, pp. 1413-1425 (2011).
Hyrel 3D printout from website, 5 pp. (undated, printed Oct. 2018).
International Search Report and Written Opinion from PCT application No. PCT/US2015/066288 (13 pages), dated Apr. 2016.
International Search Report and Written Opinion from PCT application No. PCT/US2016/065360 (15 pages), dated Feb. 2017.
Jirman, R. et al., "Individual Replacement of the Frontal Bone Defect: Case Report," Prague Medical Report, vol. 110, No. 1, pp. 79-84 (2009).
Kaelin, Brooke, "Chinese Researchers Invent Regenovo Bioprinter," 2 pp. (Aug. 11, 2013).
Kai, Du, et al., "Progress on Research Application of High Trans-butadiene-iosprene Copolymer (TBIR) Rubber," Special Purpose Rubber Products, vol. 25, No. 6, Dec. 2004, pp. 54-58.
Kolczak, Urszula et al., " Reaction Mechanism of Monoacyl- and Bisacylphosphine Oxide Photoinitiators Studied by 31P-, 13C-, and 1H-CIDNP and ESR, " Journal of American Chemical Society, vol. 118, pp. 6477-6489 (1996).
Lee, Myung Jin, Interational Search Report with Written Opinion from PCT Application No. PCT/US2016/065360, 15 pp. (dated Feb. 20, 2017).
Maker Geeks 3D Printing Filament Blog, Flex EcoPLA-Flexible 3D Printer Filament, 17 pp., downloaded from http://makergeeks.blogspot.com/2013/05/flex-ecopla-flexible-3d-printer.html in Oct. 2018.
Mataerial, "A radically new 3D printing method," 7 pp., downloaded from http://www.mataerial.com on Oct. 4, 2018.
Materials Science; Studies from University of Western Ontario Yield New Data on Materials Science, Technology & Business Journal, 1404 (Apr. 22, 2014), Publisher: NewsRx, ISSN 1945-8398, ProQuest Document ID: 1516993358.
Object, "FullCure Materials," 4 pp. (2008.).
Palmiga Innovation, "Rubber 3D printing—Makerbot Replicator 3DP Rubber Fliament Mod," 10 pp., downloaded from http://palmiga.com/design-2/design/makerbot-replicator-rubber-fdm-mod/ (undated, printed Oct. 2018).
PL Industries, LLC Brochure, 1 pg. (Mar. 2012).
Presentation by Stephen Heston and Stan K. Kulikowski entitled: "Flexing the 3D Imagination: The genesis of NinjaFlex™ 3D flexible filament for desktop printing," pp. 1-7 (Apr. 25, 2014).
Regenovo 3D Bioprinter, 7 pp. (undated, printed Oct. 2018).
Stratasys, PolyJet Materials Data Sheet, 3 pp. (2014).
Stratasys, TangoPlus Polyjet Material Specifications, 1 pg. (2014).
Structur3D Printing, "Introducing the Discov3ry 2.0: A Fully Integrated 3D Printer System for Two Part Materials," 4 pp., downloaded from http://www.structur3d.io/#discov3ry (undated, printed Oct. 2018).
Tehfe, Mohamad-Ali et al., "Polyaromatic Structures as Organo-Photoinitiator Catalysts for Efficient Visible Light Induced Dual Radical/Cationic Photopolymerization and Interpenetrated Polymer Networks Synthesis," Macromolecules, vol. 45, pp. 4454-4460 (2012).
TNO Science and Industry, "High-viscous material inkjet printer: Inkjet as manufacturing process," 2 pp., downloaded from https://www.tno.nl/downloads/tno_highviscous_material_inkjetprinted.pdf (undated, printed Oct. 2018).
Wikipedia contributors, "Polybutadiene," Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Polybutadiene, accessed Mar. 6, 2023), (Year 2023).
Yang, H. et al., "High Viscosity Jetting System for 3D Reactive Inkjet Printing," 24th Annual International Solid Freeform Fabrication Symposium, An Additive Manufacturing Conference, pp. 505-513 (Jan. 2013).
Zhang, Jing et al., "Structure design of naphthalimide derivatives: Toward versatile photoinitiators for Near-UV/Visible LEDs, 3D printing, and water-soluble photoinitiating systems," Macromolecules, vol. 48, No. 7, pp. 2054-2063 (Apr. 14, 2015).

Also Published As

Publication number Publication date
US10683381B2 (en) 2020-06-16
JP2018502197A (en) 2018-01-25
CN107111225B (en) 2021-07-27
CN107111225A (en) 2017-08-29
US20200347170A1 (en) 2020-11-05
JP6835917B2 (en) 2021-02-24
JP2019218551A (en) 2019-12-26
CN113325664A (en) 2021-08-31
US20220185936A1 (en) 2022-06-16
US11261279B2 (en) 2022-03-01
WO2016106062A1 (en) 2016-06-30
JP6568218B2 (en) 2019-08-28
US20170369620A1 (en) 2017-12-28
EP3237972A1 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
US11926688B2 (en) Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes
US11453161B2 (en) Processes for producing cured polymeric products by additive manufacturing
US20210379831A1 (en) Additive Manufacturing Cartridges And Processes For Producing Cured Polymeric Products By Additive Manufacturing
JP4803617B2 (en) Modified natural rubber, method for producing modified natural rubber, rubber composition and tire
RU2570882C2 (en) Tyre and rubber composition containing graft polymer
JP6545675B2 (en) Tire comprising a composition comprising a zinc diacrylate derivative and a peroxide
CN110709259A (en) Rubber composition
JP2008527061A (en) Elastomer composition reinforced with functionalized polyvinyl aromatic filler
JP2013136748A (en) Method of making graft copolymer
JP2008038119A (en) Pneumatic tire for heavy load
JP7275136B2 (en) Diacid crosslinked rubber composition containing phenol compound
WO2019235622A1 (en) Rubber composition and tire using same
JP5078256B2 (en) Rubber composition and pneumatic tire using modified conjugated diene polymer
BR112013012193B1 (en) polymers functionalized by end groups, use of cycloperoxides as functionalization reagents, process to produce polymers functionalized by end groups, use of polymers functionalized by end groups, vulcanizable rubber compositions, use of vulcanizable rubber compositions, tires and molds
JP6674912B2 (en) Rubber composition containing elastomer containing methacrylate unit
CN107250165A (en) Diene polymer containing heteroatomic modification
JP2004107384A (en) Conjugated diene rubber, rubber composition and method for producing conjugated diene rubber
US20180170123A1 (en) Uv-curable rubber as antenna component of the tread
RU2596231C2 (en) Trialkylsilyloxy-terminated polymers
JP6305796B2 (en) Process for producing alkoxy-modified diene rubber and rubber composition using the same
JP6342752B2 (en) Process for producing modified solution polymerized diene rubber for silica and rubber composition thereof
CN110087905A (en) Enhance rubber composition

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: BIG.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

AS Assignment

Owner name: BRIDGESTONE AMERICAS TIRE OPERATIONS, LLC, TENNESSEE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ABELL, JOSHUA P.;BEAULIEU, MICHAEL R.;COSTLOW, DOUGLAS B.;AND OTHERS;SIGNING DATES FROM 20230130 TO 20230303;REEL/FRAME:062865/0830

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT RECEIVED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE