US20080057101A1 - Medical devices for controlled drug release - Google Patents
Medical devices for controlled drug release Download PDFInfo
- Publication number
- US20080057101A1 US20080057101A1 US11/839,093 US83909307A US2008057101A1 US 20080057101 A1 US20080057101 A1 US 20080057101A1 US 83909307 A US83909307 A US 83909307A US 2008057101 A1 US2008057101 A1 US 2008057101A1
- Authority
- US
- United States
- Prior art keywords
- agents
- medical device
- pores
- active agent
- porous body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000013267 controlled drug release Methods 0.000 title abstract description 6
- 239000011148 porous material Substances 0.000 claims abstract description 175
- 239000013543 active substance Substances 0.000 claims abstract description 155
- 239000011159 matrix material Substances 0.000 claims abstract description 134
- 238000010828 elution Methods 0.000 claims abstract description 104
- 239000000463 material Substances 0.000 claims description 122
- -1 poly(hydroxybutyrates) Polymers 0.000 claims description 92
- 239000003795 chemical substances by application Substances 0.000 claims description 64
- 229920000642 polymer Polymers 0.000 claims description 62
- 239000003814 drug Substances 0.000 claims description 39
- 150000001875 compounds Chemical class 0.000 claims description 37
- 229940079593 drug Drugs 0.000 claims description 31
- 239000000560 biocompatible material Substances 0.000 claims description 30
- 241001465754 Metazoa Species 0.000 claims description 29
- 229920001223 polyethylene glycol Polymers 0.000 claims description 27
- 239000007943 implant Substances 0.000 claims description 24
- 238000012377 drug delivery Methods 0.000 claims description 22
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 claims description 17
- 229920000954 Polyglycolide Polymers 0.000 claims description 16
- 229920001296 polysiloxane Polymers 0.000 claims description 16
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 15
- 230000003637 steroidlike Effects 0.000 claims description 15
- 229920002554 vinyl polymer Polymers 0.000 claims description 13
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 12
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 claims description 12
- 229920001610 polycaprolactone Polymers 0.000 claims description 12
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 claims description 12
- 229960002930 sirolimus Drugs 0.000 claims description 12
- 229930012538 Paclitaxel Natural products 0.000 claims description 11
- 239000003242 anti bacterial agent Substances 0.000 claims description 11
- 229920001577 copolymer Polymers 0.000 claims description 11
- 229960001592 paclitaxel Drugs 0.000 claims description 11
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 11
- 229920000058 polyacrylate Polymers 0.000 claims description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 11
- 235000019422 polyvinyl alcohol Nutrition 0.000 claims description 11
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 claims description 11
- 229920002463 poly(p-dioxanone) polymer Polymers 0.000 claims description 10
- 239000000622 polydioxanone Substances 0.000 claims description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 10
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 10
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 8
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 8
- 229920002472 Starch Polymers 0.000 claims description 8
- 239000003146 anticoagulant agent Substances 0.000 claims description 8
- 229940127218 antiplatelet drug Drugs 0.000 claims description 8
- 239000011575 calcium Substances 0.000 claims description 8
- 229910052791 calcium Inorganic materials 0.000 claims description 8
- 239000003527 fibrinolytic agent Substances 0.000 claims description 8
- 239000000106 platelet aggregation inhibitor Substances 0.000 claims description 8
- 235000019698 starch Nutrition 0.000 claims description 8
- 229960000103 thrombolytic agent Drugs 0.000 claims description 8
- 102000009123 Fibrin Human genes 0.000 claims description 7
- 108010073385 Fibrin Proteins 0.000 claims description 7
- 108010049003 Fibrinogen Proteins 0.000 claims description 7
- 102000008946 Fibrinogen Human genes 0.000 claims description 7
- 239000000730 antalgic agent Substances 0.000 claims description 7
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 7
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 7
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical class C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 7
- 239000004053 dental implant Substances 0.000 claims description 7
- 229920000669 heparin Polymers 0.000 claims description 7
- 239000003018 immunosuppressive agent Substances 0.000 claims description 7
- 230000000399 orthopedic effect Effects 0.000 claims description 7
- 230000000079 pharmacotherapeutic effect Effects 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 7
- 229920002635 polyurethane Polymers 0.000 claims description 7
- 239000004814 polyurethane Substances 0.000 claims description 7
- 208000037803 restenosis Diseases 0.000 claims description 7
- CGTADGCBEXYWNE-JUKNQOCSSA-N zotarolimus Chemical compound N1([C@H]2CC[C@@H](C[C@@H](C)[C@H]3OC(=O)[C@@H]4CCCCN4C(=O)C(=O)[C@@]4(O)[C@H](C)CC[C@H](O4)C[C@@H](/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C3)OC)C[C@H]2OC)C=NN=N1 CGTADGCBEXYWNE-JUKNQOCSSA-N 0.000 claims description 7
- 229950009819 zotarolimus Drugs 0.000 claims description 7
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 claims description 6
- 102000008186 Collagen Human genes 0.000 claims description 6
- 108010035532 Collagen Proteins 0.000 claims description 6
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 claims description 6
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 claims description 6
- 239000004952 Polyamide Substances 0.000 claims description 6
- 229920002732 Polyanhydride Polymers 0.000 claims description 6
- 229920001710 Polyorthoester Polymers 0.000 claims description 6
- 229940121375 antifungal agent Drugs 0.000 claims description 6
- 239000003429 antifungal agent Substances 0.000 claims description 6
- 239000002246 antineoplastic agent Substances 0.000 claims description 6
- 229920002678 cellulose Polymers 0.000 claims description 6
- 235000010980 cellulose Nutrition 0.000 claims description 6
- 229920001436 collagen Polymers 0.000 claims description 6
- 229960003957 dexamethasone Drugs 0.000 claims description 6
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 claims description 6
- 229960005309 estradiol Drugs 0.000 claims description 6
- 229930182833 estradiol Natural products 0.000 claims description 6
- 229960002897 heparin Drugs 0.000 claims description 6
- 229960000890 hydrocortisone Drugs 0.000 claims description 6
- 229960001680 ibuprofen Drugs 0.000 claims description 6
- 229920002521 macromolecule Polymers 0.000 claims description 6
- 229960002009 naproxen Drugs 0.000 claims description 6
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 claims description 6
- 229960005489 paracetamol Drugs 0.000 claims description 6
- 229920001308 poly(aminoacid) Polymers 0.000 claims description 6
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 claims description 6
- 229920002647 polyamide Polymers 0.000 claims description 6
- 229920001195 polyisoprene Polymers 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 6
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 6
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 6
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 claims description 6
- 229960004618 prednisone Drugs 0.000 claims description 6
- NJNWCIAPVGRBHO-UHFFFAOYSA-N 2-hydroxyethyl-dimethyl-[(oxo-$l^{5}-phosphanylidyne)methyl]azanium Chemical class OCC[N+](C)(C)C#P=O NJNWCIAPVGRBHO-UHFFFAOYSA-N 0.000 claims description 5
- 229920001651 Cyanoacrylate Polymers 0.000 claims description 5
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 5
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 claims description 5
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- 239000004698 Polyethylene Substances 0.000 claims description 5
- 229920002367 Polyisobutene Polymers 0.000 claims description 5
- 150000001241 acetals Chemical class 0.000 claims description 5
- 125000001931 aliphatic group Chemical group 0.000 claims description 5
- 229940035676 analgesics Drugs 0.000 claims description 5
- 230000003288 anthiarrhythmic effect Effects 0.000 claims description 5
- 239000004004 anti-anginal agent Substances 0.000 claims description 5
- 230000003178 anti-diabetic effect Effects 0.000 claims description 5
- 230000002924 anti-infective effect Effects 0.000 claims description 5
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 5
- 230000000118 anti-neoplastic effect Effects 0.000 claims description 5
- 230000001139 anti-pruritic effect Effects 0.000 claims description 5
- 230000001754 anti-pyretic effect Effects 0.000 claims description 5
- 229940124345 antianginal agent Drugs 0.000 claims description 5
- 239000003416 antiarrhythmic agent Substances 0.000 claims description 5
- 229940124346 antiarthritic agent Drugs 0.000 claims description 5
- 229940088710 antibiotic agent Drugs 0.000 claims description 5
- 229940127219 anticoagulant drug Drugs 0.000 claims description 5
- 229940125681 anticonvulsant agent Drugs 0.000 claims description 5
- 239000001961 anticonvulsive agent Substances 0.000 claims description 5
- 239000000935 antidepressant agent Substances 0.000 claims description 5
- 229940005513 antidepressants Drugs 0.000 claims description 5
- 239000000504 antifibrinolytic agent Substances 0.000 claims description 5
- 239000002255 antigout agent Substances 0.000 claims description 5
- 229960002708 antigout preparations Drugs 0.000 claims description 5
- 229940125715 antihistaminic agent Drugs 0.000 claims description 5
- 239000000739 antihistaminic agent Substances 0.000 claims description 5
- 239000002220 antihypertensive agent Substances 0.000 claims description 5
- 229940030600 antihypertensive agent Drugs 0.000 claims description 5
- 229960005475 antiinfective agent Drugs 0.000 claims description 5
- 239000000228 antimanic agent Substances 0.000 claims description 5
- 239000004599 antimicrobial Substances 0.000 claims description 5
- 229940125684 antimigraine agent Drugs 0.000 claims description 5
- 239000002282 antimigraine agent Substances 0.000 claims description 5
- 229940034982 antineoplastic agent Drugs 0.000 claims description 5
- 239000000939 antiparkinson agent Substances 0.000 claims description 5
- 229940125688 antiparkinson agent Drugs 0.000 claims description 5
- 239000003908 antipruritic agent Substances 0.000 claims description 5
- 239000000164 antipsychotic agent Substances 0.000 claims description 5
- 239000002221 antipyretic Substances 0.000 claims description 5
- 229940125716 antipyretic agent Drugs 0.000 claims description 5
- 239000003435 antirheumatic agent Substances 0.000 claims description 5
- 239000003443 antiviral agent Substances 0.000 claims description 5
- 239000002249 anxiolytic agent Substances 0.000 claims description 5
- 230000033228 biological regulation Effects 0.000 claims description 5
- 229940124630 bronchodilator Drugs 0.000 claims description 5
- 239000000168 bronchodilator agent Substances 0.000 claims description 5
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 claims description 5
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 claims description 5
- 229960005167 everolimus Drugs 0.000 claims description 5
- LNMQRPPRQDGUDR-UHFFFAOYSA-N hexyl prop-2-enoate Chemical class CCCCCCOC(=O)C=C LNMQRPPRQDGUDR-UHFFFAOYSA-N 0.000 claims description 5
- 229940088597 hormone Drugs 0.000 claims description 5
- 239000005556 hormone Substances 0.000 claims description 5
- 239000003326 hypnotic agent Substances 0.000 claims description 5
- 230000000147 hypnotic effect Effects 0.000 claims description 5
- 229940125721 immunosuppressive agent Drugs 0.000 claims description 5
- 150000003891 oxalate salts Chemical class 0.000 claims description 5
- 229950004354 phosphorylcholine Drugs 0.000 claims description 5
- PYJNAPOPMIJKJZ-UHFFFAOYSA-N phosphorylcholine chloride Chemical compound [Cl-].C[N+](C)(C)CCOP(O)(O)=O PYJNAPOPMIJKJZ-UHFFFAOYSA-N 0.000 claims description 5
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 claims description 5
- 229920005670 poly(ethylene-vinyl chloride) Polymers 0.000 claims description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 5
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 5
- 229920002401 polyacrylamide Polymers 0.000 claims description 5
- 229920001281 polyalkylene Polymers 0.000 claims description 5
- 229920002857 polybutadiene Polymers 0.000 claims description 5
- 229920001748 polybutylene Polymers 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 5
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920001692 polycarbonate urethane Polymers 0.000 claims description 5
- 229920000573 polyethylene Polymers 0.000 claims description 5
- 229920000193 polymethacrylate Polymers 0.000 claims description 5
- 229920000166 polytrimethylene carbonate Polymers 0.000 claims description 5
- 229920001290 polyvinyl ester Polymers 0.000 claims description 5
- 239000000932 sedative agent Substances 0.000 claims description 5
- 229940125723 sedative agent Drugs 0.000 claims description 5
- FBPFZTCFMRRESA-ZXXMMSQZSA-N D-iditol Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-ZXXMMSQZSA-N 0.000 claims description 4
- 150000004648 butanoic acid derivatives Chemical class 0.000 claims description 4
- HDERJYVLTPVNRI-UHFFFAOYSA-N ethene;ethenyl acetate Chemical class C=C.CC(=O)OC=C HDERJYVLTPVNRI-UHFFFAOYSA-N 0.000 claims description 4
- CGPRUXZTHGTMKW-UHFFFAOYSA-N ethene;ethyl prop-2-enoate Chemical class C=C.CCOC(=O)C=C CGPRUXZTHGTMKW-UHFFFAOYSA-N 0.000 claims description 4
- 150000003673 urethanes Chemical class 0.000 claims description 4
- 238000000034 method Methods 0.000 abstract description 100
- 238000011282 treatment Methods 0.000 abstract description 10
- 230000006378 damage Effects 0.000 abstract description 6
- 208000019553 vascular disease Diseases 0.000 abstract description 3
- 241000124008 Mammalia Species 0.000 abstract description 2
- 230000006806 disease prevention Effects 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 description 56
- 238000004519 manufacturing process Methods 0.000 description 54
- 239000010410 layer Substances 0.000 description 51
- 230000008569 process Effects 0.000 description 41
- 229910052751 metal Inorganic materials 0.000 description 38
- 239000002184 metal Substances 0.000 description 38
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 35
- 239000000843 powder Substances 0.000 description 32
- 201000010099 disease Diseases 0.000 description 25
- 238000000576 coating method Methods 0.000 description 23
- 238000005520 cutting process Methods 0.000 description 22
- 239000004005 microsphere Substances 0.000 description 21
- 239000000919 ceramic Substances 0.000 description 20
- 238000007493 shaping process Methods 0.000 description 19
- 239000011248 coating agent Substances 0.000 description 15
- 239000002245 particle Substances 0.000 description 15
- 230000001225 therapeutic effect Effects 0.000 description 15
- 238000005245 sintering Methods 0.000 description 14
- 150000002739 metals Chemical class 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 229920000147 Styrene maleic anhydride Polymers 0.000 description 11
- 238000007641 inkjet printing Methods 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- 210000001124 body fluid Anatomy 0.000 description 10
- 208000035475 disorder Diseases 0.000 description 10
- 230000003993 interaction Effects 0.000 description 10
- 239000010839 body fluid Substances 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 9
- 238000007639 printing Methods 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 210000001519 tissue Anatomy 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 229910001000 nickel titanium Inorganic materials 0.000 description 8
- 239000007787 solid Substances 0.000 description 8
- 230000002459 sustained effect Effects 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 7
- 230000008018 melting Effects 0.000 description 7
- 238000002560 therapeutic procedure Methods 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 229920002988 biodegradable polymer Polymers 0.000 description 6
- 239000004621 biodegradable polymer Substances 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000013270 controlled release Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 238000009760 electrical discharge machining Methods 0.000 description 6
- 238000003754 machining Methods 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 238000013268 sustained release Methods 0.000 description 6
- 239000012730 sustained-release form Substances 0.000 description 6
- 229940124597 therapeutic agent Drugs 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Polymers OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 235000001465 calcium Nutrition 0.000 description 5
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 5
- 238000011960 computer-aided design Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000010348 incorporation Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 230000002927 anti-mitotic effect Effects 0.000 description 4
- 230000000975 bioactive effect Effects 0.000 description 4
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000005538 encapsulation Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000010902 jet-milling Methods 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 231100000252 nontoxic Toxicity 0.000 description 4
- 230000003000 nontoxic effect Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 210000005166 vasculature Anatomy 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000003080 antimitotic agent Substances 0.000 description 3
- 229960004676 antithrombotic agent Drugs 0.000 description 3
- 229920000249 biocompatible polymer Polymers 0.000 description 3
- 239000001506 calcium phosphate Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 230000032823 cell division Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 239000005038 ethylene vinyl acetate Substances 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 229950003499 fibrin Drugs 0.000 description 3
- 229940012952 fibrinogen Drugs 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- CRDNMYFJWFXOCH-YPKPFQOOSA-N (3z)-3-(3-oxo-1h-indol-2-ylidene)-1h-indol-2-one Chemical compound N/1C2=CC=CC=C2C(=O)C\1=C1/C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-YPKPFQOOSA-N 0.000 description 2
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- STQGQHZAVUOBTE-UHFFFAOYSA-N 7-Cyan-hept-2t-en-4,6-diinsaeure Natural products C1=2C(O)=C3C(=O)C=4C(OC)=CC=CC=4C(=O)C3=C(O)C=2CC(O)(C(C)=O)CC1OC1CC(N)C(O)C(C)O1 STQGQHZAVUOBTE-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IYMAXBFPHPZYIK-BQBZGAKWSA-N Arg-Gly-Asp Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O IYMAXBFPHPZYIK-BQBZGAKWSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- 102000019034 Chemokines Human genes 0.000 description 2
- 108010012236 Chemokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 2
- HZQDCMWJEBCWBR-UUOKFMHZSA-N Mizoribine Chemical compound OC1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 HZQDCMWJEBCWBR-UUOKFMHZSA-N 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 229920000331 Polyhydroxybutyrate Polymers 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 2
- 108090000190 Thrombin Proteins 0.000 description 2
- 102100030951 Tissue factor pathway inhibitor Human genes 0.000 description 2
- 108090000435 Urokinase-type plasminogen activator Proteins 0.000 description 2
- 102000003990 Urokinase-type plasminogen activator Human genes 0.000 description 2
- 229940122803 Vinca alkaloid Drugs 0.000 description 2
- 102100023038 WD and tetratricopeptide repeats protein 1 Human genes 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 235000010443 alginic acid Nutrition 0.000 description 2
- 229920000615 alginic acid Polymers 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000001028 anti-proliverative effect Effects 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000006065 biodegradation reaction Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 235000019827 calcium polyphosphate Nutrition 0.000 description 2
- 235000011132 calcium sulphate Nutrition 0.000 description 2
- 201000011510 cancer Diseases 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000003486 chemical etching Methods 0.000 description 2
- OSASVXMJTNOKOY-UHFFFAOYSA-N chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- STQGQHZAVUOBTE-VGBVRHCVSA-N daunorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(C)=O)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 STQGQHZAVUOBTE-VGBVRHCVSA-N 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 2
- RBLGLDWTCZMLRW-UHFFFAOYSA-K dicalcium phosphate dihydrate Substances O.O.[Ca+2].[Ca+2].[O-]P([O-])([O-])=O RBLGLDWTCZMLRW-UHFFFAOYSA-K 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 229910000701 elgiloys (Co-Cr-Ni Alloy) Inorganic materials 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229940012413 factor vii Drugs 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229960002706 gusperimus Drugs 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229960003444 immunosuppressant agent Drugs 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- VHOGYURTWQBHIL-UHFFFAOYSA-N leflunomide Chemical compound O1N=CC(C(=O)NC=2C=CC(=CC=2)C(F)(F)F)=C1C VHOGYURTWQBHIL-UHFFFAOYSA-N 0.000 description 2
- 108010013555 lipoprotein-associated coagulation inhibitor Proteins 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 229950000844 mizoribine Drugs 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 150000007530 organic bases Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000005015 poly(hydroxybutyrate) Substances 0.000 description 2
- 229920000052 poly(p-xylylene) Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229940002612 prodrug Drugs 0.000 description 2
- 239000000651 prodrug Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 108010073863 saruplase Proteins 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 229960001967 tacrolimus Drugs 0.000 description 2
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GBNXLQPMFAUCOI-UHFFFAOYSA-H tetracalcium;oxygen(2-);diphosphate Chemical compound [O-2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GBNXLQPMFAUCOI-UHFFFAOYSA-H 0.000 description 2
- 229960004072 thrombin Drugs 0.000 description 2
- 230000002885 thrombogenetic effect Effects 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- 235000019731 tricalcium phosphate Nutrition 0.000 description 2
- 229960005356 urokinase Drugs 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- LDDMACCNBZAMSG-BDVNFPICSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-(methylamino)hexanal Chemical compound CN[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO LDDMACCNBZAMSG-BDVNFPICSA-N 0.000 description 1
- NTUPOKHATNSWCY-PMPSAXMXSA-N (2s)-2-[[(2s)-1-[(2r)-2-amino-3-phenylpropanoyl]pyrrolidine-2-carbonyl]amino]-5-(diaminomethylideneamino)pentanoic acid Chemical compound C([C@@H](N)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)C1=CC=CC=C1 NTUPOKHATNSWCY-PMPSAXMXSA-N 0.000 description 1
- RCLLNBVPCJDIPX-UHFFFAOYSA-N 1-(2-chloroethyl)-3-[2-(dimethylsulfamoyl)ethyl]-1-nitrosourea Chemical compound CN(C)S(=O)(=O)CCNC(=O)N(N=O)CCCl RCLLNBVPCJDIPX-UHFFFAOYSA-N 0.000 description 1
- PVOAHINGSUIXLS-UHFFFAOYSA-N 1-Methylpiperazine Chemical compound CN1CCNCC1 PVOAHINGSUIXLS-UHFFFAOYSA-N 0.000 description 1
- QLZJUIZVJLSNDD-UHFFFAOYSA-N 2-(2-methylidenebutanoyloxy)ethyl 2-methylidenebutanoate Chemical compound CCC(=C)C(=O)OCCOC(=O)C(=C)CC QLZJUIZVJLSNDD-UHFFFAOYSA-N 0.000 description 1
- CDPROXZBMHOBTQ-SJORKVTESA-N 2-[[(2r)-3-cyclohexyl-1-[(2s)-2-[3-(diaminomethylideneamino)propylcarbamoyl]piperidin-1-yl]-1-oxopropan-2-yl]amino]acetic acid Chemical compound NC(N)=NCCCNC(=O)[C@@H]1CCCCN1C(=O)[C@H](NCC(O)=O)CC1CCCCC1 CDPROXZBMHOBTQ-SJORKVTESA-N 0.000 description 1
- SCXZSBFGBBJQQC-UHFFFAOYSA-N 2-aminopropane-1,1,1-triol Chemical compound CC(N)C(O)(O)O SCXZSBFGBBJQQC-UHFFFAOYSA-N 0.000 description 1
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 description 1
- LCSKNASZPVZHEG-UHFFFAOYSA-N 3,6-dimethyl-1,4-dioxane-2,5-dione;1,4-dioxane-2,5-dione Chemical group O=C1COC(=O)CO1.CC1OC(=O)C(C)OC1=O LCSKNASZPVZHEG-UHFFFAOYSA-N 0.000 description 1
- GNSFRPWPOGYVLO-UHFFFAOYSA-N 3-hydroxypropyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCO GNSFRPWPOGYVLO-UHFFFAOYSA-N 0.000 description 1
- XDLMVUHYZWKMMD-UHFFFAOYSA-N 3-trimethoxysilylpropyl 2-methylprop-2-enoate Chemical compound CO[Si](OC)(OC)CCCOC(=O)C(C)=C XDLMVUHYZWKMMD-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 229910001149 41xx steel Inorganic materials 0.000 description 1
- OZQDLJNDRVBCST-SHUUEZRQSA-N 5-amino-2-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,4-triazin-3-one Chemical compound O=C1N=C(N)C=NN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 OZQDLJNDRVBCST-SHUUEZRQSA-N 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 206010002329 Aneurysm Diseases 0.000 description 1
- 208000031295 Animal disease Diseases 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical class OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Natural products CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 1
- 229910021532 Calcite Inorganic materials 0.000 description 1
- 239000004132 Calcium polyphosphate Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- 229910000531 Co alloy Inorganic materials 0.000 description 1
- 102100023804 Coagulation factor VII Human genes 0.000 description 1
- 229910000684 Cobalt-chrome Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- CRDNMYFJWFXOCH-BUHFOSPRSA-N Couroupitine B Natural products N\1C2=CC=CC=C2C(=O)C/1=C1/C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-BUHFOSPRSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytarabine Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- WEAHRLBPCANXCN-UHFFFAOYSA-N Daunomycin Natural products CCC1(O)CC(OC2CC(N)C(O)C(C)O2)c3cc4C(=O)c5c(OC)cccc5C(=O)c4c(O)c3C1 WEAHRLBPCANXCN-UHFFFAOYSA-N 0.000 description 1
- 229920004937 Dexon® Polymers 0.000 description 1
- 235000019739 Dicalciumphosphate Nutrition 0.000 description 1
- 229940123900 Direct thrombin inhibitor Drugs 0.000 description 1
- 108010024212 E-Selectin Proteins 0.000 description 1
- 102100023471 E-selectin Human genes 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 108010056764 Eptifibatide Proteins 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 108010023321 Factor VII Proteins 0.000 description 1
- 229940082863 Factor VIIa inhibitor Drugs 0.000 description 1
- 108010074860 Factor Xa Proteins 0.000 description 1
- MBMLMWLHJBBADN-UHFFFAOYSA-N Ferrous sulfide Chemical compound [Fe]=S MBMLMWLHJBBADN-UHFFFAOYSA-N 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 229920002971 Heparan sulfate Polymers 0.000 description 1
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical class Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 108010035766 P-Selectin Proteins 0.000 description 1
- 102100023472 P-selectin Human genes 0.000 description 1
- 102000004211 Platelet factor 4 Human genes 0.000 description 1
- 108090000778 Platelet factor 4 Proteins 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- SSZBUIDZHHWXNJ-UHFFFAOYSA-N Stearinsaeure-hexadecylester Natural products CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCCCC SSZBUIDZHHWXNJ-UHFFFAOYSA-N 0.000 description 1
- 108010023197 Streptokinase Proteins 0.000 description 1
- 239000002174 Styrene-butadiene Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 108090000373 Tissue Plasminogen Activator Proteins 0.000 description 1
- 102000003978 Tissue Plasminogen Activator Human genes 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- YASNUXZKZNVXIS-CBNXCZCTSA-N [(3ar,6r,6ar)-4-[[2-chloroethyl(nitroso)carbamoyl]amino]-2,2-dimethyl-3a,4,6,6a-tetrahydrofuro[3,4-d][1,3]dioxol-6-yl]methyl 4-nitrobenzoate Chemical compound C([C@@H]1[C@H]2OC(O[C@H]2C(NC(=O)N(CCCl)N=O)O1)(C)C)OC(=O)C1=CC=C([N+]([O-])=O)C=C1 YASNUXZKZNVXIS-CBNXCZCTSA-N 0.000 description 1
- WAIPAZQMEIHHTJ-UHFFFAOYSA-N [Cr].[Co] Chemical compound [Cr].[Co] WAIPAZQMEIHHTJ-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000003655 absorption accelerator Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 150000004781 alginic acids Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 229940045799 anthracyclines and related substance Drugs 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 238000009175 antibody therapy Methods 0.000 description 1
- 229940041181 antineoplastic drug Drugs 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229960003856 argatroban Drugs 0.000 description 1
- KXNPVXPOPUZYGB-XYVMCAHJSA-N argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 108010072041 arginyl-glycyl-aspartic acid Proteins 0.000 description 1
- 229940104697 arixtra Drugs 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229960004360 azathioprine sodium Drugs 0.000 description 1
- UPABQMWFWCMOFV-UHFFFAOYSA-N benethamine Chemical compound C=1C=CC=CC=1CNCCC1=CC=CC=C1 UPABQMWFWCMOFV-UHFFFAOYSA-N 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 239000012867 bioactive agent Substances 0.000 description 1
- 239000005312 bioglass Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229950003042 bofumustine Drugs 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- PZOHOALJQOFNTB-UHFFFAOYSA-M brequinar sodium Chemical compound [Na+].N1=C2C=CC(F)=CC2=C(C([O-])=O)C(C)=C1C(C=C1)=CC=C1C1=CC=CC=C1F PZOHOALJQOFNTB-UHFFFAOYSA-M 0.000 description 1
- 229950004398 broxuridine Drugs 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical class [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- XAAHAAMILDNBPS-UHFFFAOYSA-L calcium hydrogenphosphate dihydrate Chemical compound O.O.[Ca+2].OP([O-])([O-])=O XAAHAAMILDNBPS-UHFFFAOYSA-L 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 239000001175 calcium sulphate Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 229960000541 cetyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960004926 chlorobutanol Drugs 0.000 description 1
- PRQRQKBNBXPISG-UHFFFAOYSA-N chromium cobalt molybdenum nickel Chemical compound [Cr].[Co].[Ni].[Mo] PRQRQKBNBXPISG-UHFFFAOYSA-N 0.000 description 1
- SZMZREIADCOWQA-UHFFFAOYSA-N chromium cobalt nickel Chemical compound [Cr].[Co].[Ni] SZMZREIADCOWQA-UHFFFAOYSA-N 0.000 description 1
- 229960004588 cilostazol Drugs 0.000 description 1
- RRGUKTPIGVIEKM-UHFFFAOYSA-N cilostazol Chemical compound C=1C=C2NC(=O)CCC2=CC=1OCCCCC1=NN=NN1C1CCCCC1 RRGUKTPIGVIEKM-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229960002842 clobetasol Drugs 0.000 description 1
- FCSHDIVRCWTZOX-DVTGEIKXSA-N clobetasol Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@H](C)[C@@](C(=O)CCl)(O)[C@@]1(C)C[C@@H]2O FCSHDIVRCWTZOX-DVTGEIKXSA-N 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000010952 cobalt-chrome Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 229960000684 cytarabine Drugs 0.000 description 1
- 229960000975 daunorubicin Drugs 0.000 description 1
- XEKSTYNIJLDDAZ-JASSWCPGSA-D decasodium;(2s,3s,4r,5r,6r)-6-[(2r,3r,4r,5r,6r)-6-[(2r,3s,4s,5r,6r)-2-carboxylato-4-hydroxy-6-[(2r,3s,4r,5r,6s)-4-hydroxy-6-methoxy-5-(sulfonatoamino)-2-(sulfonatooxymethyl)oxan-3-yl]oxy-5-sulfonatooxyoxan-3-yl]oxy-5-(sulfonatoamino)-4-sulfonatooxy-2-(sul Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].[Na+].O[C@@H]1[C@@H](NS([O-])(=O)=O)[C@@H](OC)O[C@H](COS([O-])(=O)=O)[C@H]1O[C@H]1[C@H](OS([O-])(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS([O-])(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS([O-])(=O)=O)O4)NS([O-])(=O)=O)[C@H](O3)C([O-])=O)O)[C@@H](COS([O-])(=O)=O)O2)NS([O-])(=O)=O)[C@H](C([O-])=O)O1 XEKSTYNIJLDDAZ-JASSWCPGSA-D 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- CGMRCMMOCQYHAD-UHFFFAOYSA-J dicalcium hydroxide phosphate Chemical compound [OH-].[Ca++].[Ca++].[O-]P([O-])([O-])=O CGMRCMMOCQYHAD-UHFFFAOYSA-J 0.000 description 1
- NEFBYIFKOOEVPA-UHFFFAOYSA-K dicalcium phosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])([O-])=O NEFBYIFKOOEVPA-UHFFFAOYSA-K 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229910000390 dicalcium phosphate Inorganic materials 0.000 description 1
- 229940038472 dicalcium phosphate Drugs 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- UGMCXQCYOVCMTB-UHFFFAOYSA-K dihydroxy(stearato)aluminium Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[Al](O)O UGMCXQCYOVCMTB-UHFFFAOYSA-K 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 108010021568 disagregin Proteins 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 238000009708 electric discharge sintering Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 229960004468 eptifibatide Drugs 0.000 description 1
- GLGOPUHVAZCPRB-LROMGURASA-N eptifibatide Chemical compound N1C(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CCCCNC(=N)N)NC(=O)CCSSC[C@@H](C(N)=O)NC(=O)[C@@H]2CCCN2C(=O)[C@@H]1CC1=CN=C2[C]1C=CC=C2 GLGOPUHVAZCPRB-LROMGURASA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical compound CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 229920005680 ethylene-methyl methacrylate copolymer Polymers 0.000 description 1
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 1
- 229960005420 etoposide Drugs 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 229940012414 factor viia Drugs 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 229960002714 fluticasone Drugs 0.000 description 1
- MGNNYOODZCAHBA-GQKYHHCASA-N fluticasone Chemical compound C1([C@@H](F)C2)=CC(=O)C=C[C@]1(C)[C@]1(F)[C@@H]2[C@@H]2C[C@@H](C)[C@@](C(=O)SCF)(O)[C@@]2(C)C[C@@H]1O MGNNYOODZCAHBA-GQKYHHCASA-N 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- YAKWPXVTIGTRJH-UHFFFAOYSA-N fotemustine Chemical compound CCOP(=O)(OCC)C(C)NC(=O)N(CCCl)N=O YAKWPXVTIGTRJH-UHFFFAOYSA-N 0.000 description 1
- 229960004783 fotemustine Drugs 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000003862 glucocorticoid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- IDINUJSAMVOPCM-UHFFFAOYSA-N gusperimus Chemical compound NCCCNCCCCNC(=O)C(O)NC(=O)CCCCCCN=C(N)N IDINUJSAMVOPCM-UHFFFAOYSA-N 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000008241 heterogeneous mixture Substances 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 150000003840 hydrochlorides Chemical class 0.000 description 1
- 239000012051 hydrophobic carrier Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000008105 immune reaction Effects 0.000 description 1
- 229910001026 inconel Inorganic materials 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 229950003291 inogatran Drugs 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 235000013980 iron oxide Nutrition 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- CRDNMYFJWFXOCH-UHFFFAOYSA-N isoindigotin Natural products N1C2=CC=CC=C2C(=O)C1=C1C2=CC=CC=C2NC1=O CRDNMYFJWFXOCH-UHFFFAOYSA-N 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 229910000833 kovar Inorganic materials 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000003698 laser cutting Methods 0.000 description 1
- 229960000681 leflunomide Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229940127215 low-molecular weight heparin Drugs 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- DKWNMCUOEDMMIN-PKOBYXMFSA-N melagatran Chemical compound C1=CC(C(=N)N)=CC=C1CNC(=O)[C@H]1N(C(=O)[C@H](NCC(O)=O)C2CCCCC2)CC1 DKWNMCUOEDMMIN-PKOBYXMFSA-N 0.000 description 1
- 229960002137 melagatran Drugs 0.000 description 1
- 102000006240 membrane receptors Human genes 0.000 description 1
- 108020004084 membrane receptors Proteins 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- CFCUWKMKBJTWLW-BKHRDMLASA-N mithramycin Chemical compound O([C@@H]1C[C@@H](O[C@H](C)[C@H]1O)OC=1C=C2C=C3C[C@H]([C@@H](C(=O)C3=C(O)C2=C(O)C=1C)O[C@@H]1O[C@H](C)[C@@H](O)[C@H](O[C@@H]2O[C@H](C)[C@H](O)[C@H](O[C@@H]3O[C@H](C)[C@@H](O)[C@@](C)(O)C3)C2)C1)[C@H](OC)C(=O)[C@@H](O)[C@@H](C)O)[C@H]1C[C@@H](O)[C@H](O)[C@@H](C)O1 CFCUWKMKBJTWLW-BKHRDMLASA-N 0.000 description 1
- 230000004660 morphological change Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- RTGDFNSFWBGLEC-SYZQJQIISA-N mycophenolate mofetil Chemical compound COC1=C(C)C=2COC(=O)C=2C(O)=C1C\C=C(/C)CCC(=O)OCCN1CCOCC1 RTGDFNSFWBGLEC-SYZQJQIISA-N 0.000 description 1
- 229960004866 mycophenolate mofetil Drugs 0.000 description 1
- IDINUJSAMVOPCM-INIZCTEOSA-N n-[(1s)-2-[4-(3-aminopropylamino)butylamino]-1-hydroxy-2-oxoethyl]-7-(diaminomethylideneamino)heptanamide Chemical compound NCCCNCCCCNC(=O)[C@H](O)NC(=O)CCCCCCN=C(N)N IDINUJSAMVOPCM-INIZCTEOSA-N 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 1
- CVPJXKJISAFJDU-UHFFFAOYSA-A nonacalcium;magnesium;hydrogen phosphate;iron(2+);hexaphosphate Chemical compound [Mg+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Fe+2].OP([O-])([O-])=O.OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O CVPJXKJISAFJDU-UHFFFAOYSA-A 0.000 description 1
- 239000012457 nonaqueous media Substances 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910000392 octacalcium phosphate Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 230000008058 pain sensation Effects 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 108010089198 phenylalanyl-prolyl-arginine Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229960003171 plicamycin Drugs 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920006211 poly(glycolic acid-co-trimethylene carbonate) Polymers 0.000 description 1
- 229920001849 poly(hydroxybutyrate-co-valerate) Polymers 0.000 description 1
- 239000002745 poly(ortho ester) Substances 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920002432 poly(vinyl methyl ether) polymer Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920002721 polycyanoacrylate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920006124 polyolefin elastomer Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical compound OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 1
- 150000003856 quaternary ammonium compounds Chemical class 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000003340 retarding agent Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 108010011655 saratin Proteins 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 150000003346 selenoethers Chemical class 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000009761 sinker EDM Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- WISNYKIQFMKSDQ-UHFFFAOYSA-N sodium;6-(3-methyl-5-nitroimidazol-4-yl)sulfanylpurin-9-ide Chemical compound [Na+].CN1C=NC([N+]([O-])=O)=C1SC1=NC=NC2=C1[N-]C=N2 WISNYKIQFMKSDQ-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 208000010110 spontaneous platelet aggregation Diseases 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 229960005202 streptokinase Drugs 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229960000894 sulindac Drugs 0.000 description 1
- MLKXDPUZXIRXEP-MFOYZWKCSA-N sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 229940037128 systemic glucocorticoids Drugs 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 150000003892 tartrate salts Chemical class 0.000 description 1
- 229950010168 tauromustine Drugs 0.000 description 1
- 150000004772 tellurides Chemical class 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- YIGWVOWKHUSYER-UHFFFAOYSA-F tetracalcium;hydrogen phosphate;diphosphate Chemical compound [Ca+2].[Ca+2].[Ca+2].[Ca+2].OP([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O YIGWVOWKHUSYER-UHFFFAOYSA-F 0.000 description 1
- 238000011285 therapeutic regimen Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- COKMIXFXJJXBQG-NRFANRHFSA-N tirofiban Chemical compound C1=CC(C[C@H](NS(=O)(=O)CCCC)C(O)=O)=CC=C1OCCCCC1CCNCC1 COKMIXFXJJXBQG-NRFANRHFSA-N 0.000 description 1
- 229960003425 tirofiban Drugs 0.000 description 1
- 229960000187 tissue plasminogen activator Drugs 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 231100000816 toxic dose Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000005270 trialkylamine group Chemical group 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 229960004528 vincristine Drugs 0.000 description 1
- OGWKCGZFUXNPDA-UHFFFAOYSA-N vincristine Natural products C1C(CC)(O)CC(CC2(C(=O)OC)C=3C(=CC4=C(C56C(C(C(OC(C)=O)C7(CC)C=CCN(C67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)CN1CCC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229960001134 von willebrand factor Drugs 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052591 whitlockite Inorganic materials 0.000 description 1
- 229960001522 ximelagatran Drugs 0.000 description 1
- ZXIBCJHYVWYIKI-PZJWPPBQSA-N ximelagatran Chemical compound C1([C@@H](NCC(=O)OCC)C(=O)N2[C@@H](CC2)C(=O)NCC=2C=CC(=CC=2)C(\N)=N\O)CCCCC1 ZXIBCJHYVWYIKI-PZJWPPBQSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/4353—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
- A61K31/436—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/08—Materials for coatings
- A61L31/10—Macromolecular materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/146—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0058—Additional features; Implant or prostheses properties not otherwise provided for
- A61F2250/0067—Means for introducing or releasing pharmaceutical products into the body
- A61F2250/0068—Means for introducing or releasing pharmaceutical products into the body the pharmaceutical product being in a reservoir
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/60—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
- A61L2300/606—Coatings
- A61L2300/608—Coatings having two or more layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1051—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F2003/1054—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by microwave
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to medical devices, endoprostheses, stents, and methods for the manufacture and use of the same. More particularly, the devices of the present invention are configured to include a porous network that contains an elution rate controlling matrix carrying an active agent.
- Endoprostheses are generally tubular members having a collapsed state suitable for insertion into a vessel and a deployed state in which the endoprosthesis is expanded to support the surrounding tissue and prevent at least local narrowing of the vessel.
- endoprostheses including balloon expandable, self-expanding, and endoprostheses constructed from biostable springs.
- Polymeric materials for example, are commonly used in medical devices as matrices for the retention of therapeutic agents. These polymeric materials are typically applied as coatings to the medical devices, raising issues regarding coating adhesion, mechanical properties, cracking, delamination, and material biocompatibility.
- problems occur when mechanical forces are applied on an endoprosthesis during manufacture (e.g., crimping, endoprosthetic retention procedures, packaging etc.) as well as during actual use (e.g., unsheathing, catheter preparation, advancement through catheter and vasculature), which may result in damaging the polymeric coating.
- polymers with desirable controlled release properties like the family of biodegradable polymers based on polylactide, polyglycolide and their copolymers are difficult candidates for a polymeric endoprosthetic coating, because of poor adhesion to metals and/or poor elongation and brittle character.
- the present invention is a medical device for controlling the release of an active agent.
- the medical device has a supporting structure that is configured and dimensioned to be used within a body of an animal.
- the medical device of the present invention has a porous body disposed on and at least partially covering the supporting structure of the medical device.
- the porous body is made from a biocompatible material having a plurality of pores.
- the present invention includes a medical device for controlling the release of an active agent therefrom.
- a medical device can include the following: a supporting structure configured and dimensioned to be used within a body of an animal; a porous body disposed on and at least partially covering the supporting structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and an elution rate controlling matrix disposed on at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls an elution rate of the active agent from the pores.
- the present invention includes an endoprosthesis for controlling the release of an active agent therefrom.
- an endoprosthesis can include the following: a supporting metal structure configured and dimensioned to be used within a body of a human; a porous body disposed on and at least partially covering the supporting metal structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within said pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; an elution rate controlling matrix disposed within the porous body so as to contain said active agent within said pores, said matrix material including a polymeric biocompatible material that at least partially controls an elution rate of the active agent from the pores; and said pores each having a dimension that is configured to at least partially determine said elution rate.
- the present invention includes a stent for controlling the release of an active agent therefrom.
- a stent can include the following: a superelastic metal structure configured and dimensioned as a stent to be used within a lumen of an animal; a porous body disposed on and at least partially covering the superelastic metal structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and an elution rate controlling matrix disposed on at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix material including a second biocompatible material that controls an elution rate of the active agent from the pores.
- the porous body is integrated with the supporting structure.
- the porous body has a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the porous body can include pores having a diameter of from about 10 nanometers to about 1 millimeter.
- the medical device is selected from the group consisting of endoprostheses, drug delivery stents, drug delivery catheters, grafts, drug delivery balloons, guidewires, orthopedic implants, dental implants, fixation screws, indwelling catheters, ocular implants, pharmacotherapeutic implants, blood-contacting components of extracorporeal devices, staples, filters, needles, tubes, coils, wires, clips, screws, sensors, plates, conduits, portions thereof, and combinations thereof.
- the second biocompatible material is at least one polymeric material comprised of phosphorylcholines, phosphorylcholine linked macromolecules, polyolefins, poly(meth)acrylates, polyurethanes, polyesters, polyanhydrides, polyphosphazenes, polyacrylates, acrylic polymers, poly(lactide-coglycolides) (PLGA), polylactic acids (PLA), poly(hydroxybutyrates), poly(hydroxybutyrate-co-valerates), polydioxanones (PDO), polyorthoesters, polyglycolic acids (PGA), polycaprolactones (PCL), poly(glycolic acid-co-trimethylene carbonates), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyiminocarbonates, aliphatic polycarbonates, fibrins, fibrinogens
- the active agent is comprised of at least one of analgesics, antipyretics, antiasthamatics, antibiotics, antidepressants, antidiabetics, antifungal agents, antihypertensive agents, anti-inflammatories including non-steroidal and steroidal, antineoplastics, antianxiety agents, immunosuppressive agents, antimigraine agents, sedatives, hypnotics, antianginal agents, antipsychotic agents, antimanic agents, antiarrhythmics, antiarthritic agents, antigout agents, anticoagulants, thrombolytic agents, antifibrinolytic agents, hemorheologic agents, antiplatelet agents, anticonvulsants, antiparkinson agents, antihistamines, anti-restenosis agents, antipruritics, agents useful for calcium regulation, antibacterial agents, antiviral agents, antimicrobials, anti-infectives, bronchodilators, steroidal compounds and hormones, or combinations thereof.
- the active agent comprises at least one of rapamycin, rapamycin analog, zotarolimus, sirolimus, everolimus, dexamethasone, prednisone, hydrocortisone, estradiol, acetaminophen, ibuprofen, naproxen, sulidac, heparin, taxol, paclitaxel, and combinations thereof.
- the present invention includes a method of treating and/or preventing a disease in an animal.
- a medical device e.g., endoprosthesis, stent, etc.
- the medical device can be placed into or in contact with a body or fluid of an animal. This can include placing the medical device within the vascular system of an animal.
- the medical device can then elute a therapeutically effective amount of the active agent to treat and/or prevent a disease in which said active agent is useful as a therapy.
- the medical device can treat a vascular disease, such as restenosis.
- the present invention includes a method of manufacturing a medical device used for treating and/or preventing a disease in an animal.
- a method can include the following: fabricating a supporting structure, which can include shaping the supporting structure into the medical device (e.g., endoprosthesis, stent, etc.); fabricating a porous body onto at least a portion of the supporting structure, said porous body including a first biocompatible material having a plurality of pores; introducing a therapeutically effective amount of an active agent into at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and introducing an elution rate controlling matrix onto at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls the elution of the active agent from the pores.
- the fabrication of the porous body can include dimensioning and configuring the porous body to have a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the fabrication of the porous body can include dimensioning and configuring the pores to have a diameter of from about 10 nanometers to about 1 millimeter.
- the method of manufacture can include configuring the medical device to be at least one of an endoprosthesis, drug delivery stent, drug delivery catheter, graft, drug delivery balloon, guidewire, orthopedic implant, dental implant, fixation screws, indwelling catheter, ocular implant, pharmacotherapeutic implant, blood-contacting component of extracorporeal device, staple, filter, needle, tube, coil, wire, clip, screw, sensor, plate, conduit, portion thereof, or combination thereof.
- the method of manufacture can include combining the active agent with the second biocompatible material. This can include combining the active agent and elution rate controlling matrix before, during, or after being introduced into the porous body. As such, the active agent can be absorbed into the elution rate controlling matrix after being introduced into the porous body.
- the method of manufacture can include any of the following processes: fabricating the supporting structure and/or porous body by sintering; fabricating the supporting structure and/or porous body by a metal printing process; fabricating the supporting structure and/or porous body by a direct rapid prototyping process; or shaping the supporting structure and/or porous body into an endoprosthesis.
- FIG. 1 is a cross-sectional view illustrating an embodiment of a portion of a medical device including a supporting structure defining a lumen and having a porous body disposed thereon, wherein different pore embodiments are depicted to have different active agent and elution rate controlling matrix embodiments.
- FIG. 2 is a cross-sectional view illustrating an embodiment of a porous body having a plurality of pores.
- FIG. 3 is a schematic representation of an embodiment of a direct rapid prototyping process for preparing a medical device in accordance with the present invention.
- the present invention generally relates to a drug eluting medical devices, endoprostheses, stents, and the like that have an elution rate controlling matrix that contains an active agent and that is disposed within a porous material. Also, the present invention relates to methods of manufacturing and using the medical devices of the invention in treating and/or preventing diseases in animals, such as mammals.
- the medical devices of the invention are constructed of materials suitable for use in animals, and include at least one elution rate controlling matrix and a therapeutically effective amount of at least one biologically active agent.
- the medical devices of the invention also include at least one porous material associated with a supporting structure, where the elution rate controlling matrix containing the active agent is disposed within the pores of the porous material. The pores of the porous material can be dimensioned and configured to cooperate with the elution rate controlling matrix for controlling the elution of the active agent.
- Drug eluting medical devices such as endoprostheses (e.g., stents), are known in the art, but a problem with the use of existing medical devices having drug eluting coatings is that the coatings are prone to being rubbed off or otherwise damaged during the manufacturing processes, through manipulation by the physician, during the deployment procedure, or through scratching, rubbing, or other interactions with the body in which they are deployed.
- One additional problem with drug eluting medical devices has been the lack of being able to control the rate of elution of the drugs from the coatings.
- An advantage for a medical device of the present invention includes the polymer containing an active agent being resistant to damage from mechanical forces placed upon an endoprosthesis during manufacture (e.g. crimping, endoprosthesis retention procedures, and packaging) as well as during actual use (e.g. unsheathing, catheter prep, advancement through catheter, and vasculature).
- an endoprosthesis during manufacture e.g. crimping, endoprosthesis retention procedures, and packaging
- actual use e.g. unsheathing, catheter prep, advancement through catheter, and vasculature.
- the elution rate controlling matrix is disposed inside the protective pores of a porous body, making more manufacturing methods possible. For example, with small, densely dispersed pores, a fairly uniform distribution of the matrix is achieved. As such, the porous body can protect the matrix from mechanical damage such as delamination, flaking, and/or cracking.
- Another advantage permits the use of many polymers (previously unusable) with desirable controlled release properties including biodegradable polymers based on polylactide and/or polyglycolide.
- Polylactide and/or polyglycolide polymers are difficult candidates for a drug elution rate controlling coating because of their poor adhesion to metals and/or poor elongation and brittle character.
- agents within polylactide and/or polyglycolide and by incorporating the mixture within the pores of the porous body of the medical devices, the use of polylactide and/or polyglycolide polymers, for example, becomes feasible.
- the medical devices of the present invention are configured to be capable of controlling the elution of active agents (e.g., pharmaceuticals, therapeutics, and other substances or compounds) from the medical device.
- active agents e.g., pharmaceuticals, therapeutics, and other substances or compounds
- the medical device is configured for either permanent or temporary placement into, or brought in contact with, the body or body fluid of an animal.
- the medical device is constructed to include supporting structure for a porous body that includes at least one elution rate controlling matrix containing an effective amount of at least one active agent.
- the porous body has a plurality of pores that are dimensioned and configured to retain the elution rate controlling matrix, and for contributing to the controlled elution profile of the active agent.
- the porous body and the elution rate controlling matrix are configured, either individually or in combination, to control the release of the active agent in order to achieve the desired diffusion kinetics.
- the medical device is constructed of at least one biocompatible material. That is, the different portions of the medical device can be constructed of different biocompatible materials, which can be different types of metals, polymers, or ceramics, or different combinations of such materials.
- the supporting structure and porous body can be prepared of different types of metals, while the elution rate controlling matrix can be prepared from a polymer.
- the supporting structure and/or porous body can be prepared from a shape-memory material.
- the porous body of the medical device can include millipores, micropores, and/or nanopores.
- the dimension of the pores can be modulated and adapted for the particular needs and uses of the medical device on which it will be utilized.
- the pores are configured to be capable of retaining the elution rate controlling matrix and allowing for the elution of the active agent therefrom with controlled diffusion kinetics.
- the pores can be configured to obtain zero, first, and/or second order diffusion kinetics with or without burst effects.
- the configuration of the medical devices that includes the elution rate controlling matrix disposed within the pores of the porous body can allow for a broader range of polymers to be used in the matrix.
- the porous body provides increased resistance to physical damage of the elution rate controlling matrix and agents disposed therein That is, the disposition of the matrix in the pores protects the matrix in a manner that allows for structurally weak polymers that are subject to uncontrolled degradation by physical contact to now be usable with drug eluting medical devices.
- polymers not previously available for use as drug eluting materials can now be used in drug eluting medical devices. In part, this is because the porous body protects the elution rate controlling matrix from contact with the body of a patient (e.g., intraluminal wall). Therefore, polymer coatings of a polymer-coated medical device that would normally rub off or otherwise uncontrollably degrade are able to maintain structural integrity by being protected by the porous body.
- agent refers to an active agent that has biological activity and may be used in a therapy.
- an “agent” can be synonymous with “at least one agent,” “compound,” or “at least one compound,” and can refer to any form of the agent, such as a derivative, analog, salt or a prodrug thereof.
- the agent can be present in various forms, components of molecular complexes, and pharmaceutically acceptable salts (e.g., hydrochlorides, hydrobromides, sulfates, phosphates, nitrates, borates, acetates, maleates, tartrates, and silicylates).
- the term “agent” can also refer to any pharmaceutical molecules or compounds, therapeutic molecules or compounds, matrix forming molecules or compounds, polymers, synthetic molecules and compounds, natural molecules and compounds, and any combination thereof.
- an effective amount” or “therapeutically effective amount” of an agent, compound or therapeutic, with respect to methods of treatment refers to an amount of the pharmaceutical, therapeutic, agent or other compound in a preparation which, when administered as part of a desired dosage regimen (to an animal, preferably a human) alleviates a symptom, ameliorates a condition, or slows the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose.
- a “therapeutically effective amount,” as recognized by those of skill in the art, will be determined on a case by case basis. Factors to be considered include, but are not limited to, the disorder to be treated and the physical characteristics of the one suffering from the disorder.
- biocompatible and “biocompatibility” are art-recognized and mean that the referent is neither itself toxic to a host (e.g., an animal or human), nor degrades (if it degrades) at a rate that produces byproducts (e.g., monomeric or oligomeric subunits or other byproducts) at toxic concentrations, causes inflammation or irritation, or induces an immune reaction at unacceptable levels in the host. It is not necessary that any subject composition have a purity of 100% to be deemed biocompatible.
- a subject composition may comprise 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, or even less of biocompatible agents, such as polymers and other materials and excipients described herein, and still be biocompatible.
- co-incorporation refers to the incorporation of a pharmaceutical, therapeutic, agent, compound, or other material, and at least one other pharmaceutical, therapeutic, agent, compound, or other material in an elution rate controlling matrix. More specifically, the physical form in which any pharmaceutical, therapeutic agent, compound or other material is encapsulated in an elution rate controlling matrix may vary with the particular embodiment. For example, a pharmaceutical, therapeutic, agent, compound, or other material may be first encapsulated in a microsphere and then combined with the elution rate controlling matrix in such a way that at least a portion of the microsphere structure is maintained.
- a pharmaceutical, therapeutic, agent, compound, or other material may be sufficiently immiscible in the polymer of the invention such that it is dispersed as small droplets, rather than being dissolved, in the elution rate controlling matrix.
- Any form of encapsulation or incorporation is contemplated by the invention, in so much as the release, or sustained release, of any encapsulated pharmaceutical, therapeutic, agent, compound, or other material determines whether the form of encapsulation is sufficiently acceptable for any particular use.
- dispensersed means at least one bioactive agent and/or compound as disclosed herein is dispersed, mixed, dissolved, homogenized, and/or covalently bound (“dispersed”) in a polymer, such as the elution rate controlling matrix.
- incorporation when used in reference to a pharmaceutical, therapeutic, agent, compound, or other material and an elution rate controlling matrix indicates that the agent is contained within the elution rate controlling matrix.
- these terms include incorporating, formulating, or otherwise including such agents into a composition that allows for release, such as sustained release, of such agent in the desired application.
- a pharmaceutical, therapeutic, agent, compound, or other material is incorporated into a polymer matrix, including for example: attached to a monomer of such elution rate controlling matrix (e.g., by covalent, ionic, or other binding interaction), physical admixture, enveloping the agent in a coating layer of a polymer, and having such monomer be part of the polymerization to give a polymeric formulation, distributed throughout the polymeric matrix, appended to the surface of the polymeric matrix (e.g., by covalent or other binding interactions), encapsulated inside the polymeric matrix (e.g., elution rate controlling matrix), and the like.
- a monomer of such elution rate controlling matrix e.g., by covalent, ionic, or other binding interaction
- physical admixture enveloping the agent in a coating layer of a polymer, and having such monomer be part of the polymerization to give a polymeric formulation, distributed throughout the polymeric matrix, appended to the surface of the poly
- pharmaceutically acceptable salts is art-recognized, and includes relatively non-toxic, inorganic and organic acid, or base addition salts of compositions, including without limitation, analgesic agents, therapeutic agents, other materials, and the like.
- pharmaceutically acceptable salts include those derived from mineral acids, such as hydrochloric acid and sulfuric acid, and those derived from organic acids, such as ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like.
- suitable inorganic bases for the formation of salts include the hydroxides, carbonates, and bicarbonates of ammonia, sodium, lithium, potassium, calcium, magnesium, aluminum, zinc, and the like.
- Salts may also be formed with suitable organic bases, including those that are non-toxic and strong enough to form such salts.
- the class of such organic bases may include mono-, di-, and trialkylamines, including methylamine, dimethylamine, and triethylamine; mono-, di-, or trihydroxyalkylamines including mono-, di-, and triethanolamine; amino acids, including arginine and lysine; guanidine; N-methylglucosamine; N-methylglucamine; L-glutamine; N-methylpiperazine; morpholine; ethylenediamine; N-benzylphenethylamine; trihydroxymethyl aminoethane; and the like. (See, J. Pharm. Sci. 66: 1-19 (1977)).
- polymer is intended to include a product of a polymerization reaction inclusive of oligomers, homopolymers, copolymers, terpolymers, and the like, whether natural or synthetic, including random, alternating, block, graft, branched, cross-linked, blends, compositions of blends, and variations thereof.
- pharmaceutically acceptable carrier means a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material, or formulation auxiliary of any type.
- preventing or “prevention” is art-recognized, and when used in relation to a condition, including a local recurrence (e.g., pain), a disease including cancer, a syndrome complex including heart failure, or any other medical condition, is well understood in the art and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
- a condition including a local recurrence (e.g., pain)
- a disease including cancer
- a syndrome complex including heart failure
- any other medical condition is well understood in the art and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
- prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, (e.g., by a statistically and/or clinically significant amount).
- Prevention of an infection includes, for example, reducing the number of diagnoses of the infection in a treated population versus an untreated control population, and/or delaying the onset of symptoms of the infection in a treated population versus an untreated control population.
- Prevention of pain includes, for example, reducing the magnitude of, or alternatively delaying, pain sensations experienced by subjects in a treated population versus an untreated control population.
- metal refers to elemental metals, alloys of elemental metals, alloys having multiple components, and metals mixed with other elements or compounds in a heterogeneous or homogeneous mixture.
- pore refers to invaginations in a surface such that one end of the pore is exposed to the surface and the other end of the pore is disposed within the material whose surface the pore is displaced within.
- a pore can be substantially hole-like, having a first end disposed within a metal covering of an endoprosthesis and having a second end forming an opening upon the surface of the metal covering of the endoprosthesis.
- porous layer refers to a layer having at least one pore.
- the porous layer is disposed upon another surface.
- the porous layer may have pores of different shapes.
- porosity is art-recognized, and refers to both the void volume of a porous material as well as its surface area. It should be understood that a numerical value for porosity of a material, for instance as a percent of the total volume of material, can describe a wide range of compositions, since it does not include the surface area of the material. For example, a material with 50% porosity could have a small number of large pores, or a large number of small pores. The surface area of the latter can be many orders of magnitude larger than that of the former.
- pro-drug refers to compounds which are transformed in vivo to the parent compound of the formula above, for example, by hydrolysis in blood.
- sustained release when used with respect to a pharmaceutical, therapeutic, agent, compound, or other material is art-recognized.
- a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time.
- the polymer matrices upon contact with body fluids including blood, spinal fluid, lymph, or the like, may undergo gradual degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein (e.g., a therapeutic and/or biologically active agent) for a sustained or extended period as compared to the release from a bolus or burst effect.
- any material incorporated therein e.g., a therapeutic and/or biologically active agent
- sustained release will vary in certain embodiments as described in greater detail below.
- treating or “treatment” is art-recognized and includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder, and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder, or condition, impeding its progress; and relieving the disease, disorder, or condition (e.g., causing regression of the disease, disorder, and/or condition).
- Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected, including treating the pain of a subject by administration of an analgesic agent even though such an agent does not treat the cause of the pain.
- the present invention includes a medical device that is configured for controlling the release of an active agent therefrom. This can include release into a blood, organ, tissue, or other body fluid that is directed to circulate within a body.
- a medical device can include a supporting structure, porous body, elution rate controlling matrix, and an active agent.
- the supporting structure can be configured and dimensioned to be used within a body of an animal, or to be used in contact with a body fluid, organ, tissue, or other fluid that is directed to circulate within a body.
- the porous body can be disposed on and at least partially covering the supporting structure.
- the porous body can be comprised of a first biocompatible material that is configured to include a plurality of pores or a porous network.
- the elution rate controlling matrix can be disposed on at least one surface of the porous body so as to contain the active agent within a portion of the pores. That is, the matrix can be disposed within the pores and adhered or affixed to the wall of a pore.
- the matrix material can be prepared from a second biocompatible material that determines an elution rate of the active agent from the pores.
- the active agent can be present in the matrix at a therapeutically effective amount that is being capable of treating and/or preventing a disease in which the medical device is used in an a therapy.
- the porous body has a thickness ranging from about 10 nanometers to about 1 millimeter, more preferably from about 100 nanometers to about 100 microns, more referable from about 1 micron to about 10 microns.
- the porous body comprises pores having a diameter of from about 10 nanometers to about 1 millimeter, more preferably from about 100 nanometers to about 100 microns, more preferable from about 1 micron to about 10 microns.
- the porous body can include a relative porosity from about 5% to about 98%, more preferably from about 40% to about 85%, and most preferably from about 50% to about 75%.
- the present invention is a drug eluting stent allowing for the controlled release of pharmaceutical and therapeutic agents.
- the stent includes at least one body having a lumen. The body is dimensioned into a desired stent configuration, and has at least one elution rate controlling material and an effective amount of at least one agent.
- the stent also has a layer of porous material associated with the stent body. The pores of the porous material are dimensioned and configured to house the elution rate controlling materials and agents for a controlled drug release application.
- the pores and elution rate controlling materials can be configured independently or in combination to control the release of the active agents therefrom.
- the active agents are homogeneously dispersed within the elution rate controlling matrix within the pores.
- the active agents may also be non-homogeneously or heterogeneously distributed within the elution rate controlling matrix within the pores.
- the elution rate controlling matrix provide for controlled release of agents, which includes long-term or sustained release of an agent that is bioactive and that is eluted from pores in a controlled, determined, and configured manner over a desired, often extended, period of time.
- the biodegradation rate of the polymer may be characterized by a release rate of the active agent.
- the biodegradation rate depends on not only the chemical identity and physical characteristics of the polymer, but also on the identity of agents incorporated therein.
- the elution rate controlling matrix is a polymeric formulation that is configured to biodegrade within a period that is acceptable in the desired application. In certain embodiments, including in vivo therapy, such degradation occurs in a period usually less than about five years, one year, six months, three months, one month, fifteen days, five days, three days, or even one day upon exposure to a physiological solution with a pH between 6 and 8 having a temperature of between 25 degrees Celsius and 37 degrees Celsius. In one embodiment, the polymer degrades in a period of between about one hour and several weeks.
- FIG. 1 is a schematic representation of various embodiments of portions of a medical device 10 in accordance with the present invention.
- the medical device 10 includes a supporting structure 12 that has a porous body 14 disposed thereon.
- the medical device 10 is an endoprosthesis where the supporting structure 12 defines an internal lumen 11 .
- the medical device 10 and supporting structure 12 can be configured into a wide array of shapes, sizes, and designs commensurate with the vast number of different types of medical devices.
- the porous body 14 is shown to include a plurality of pores 16 that contain an active agent 18 and an elution rate controlling matrix 20 .
- the pores 16 can have different shapes, sizes, and configurations depending on the process of manufacture as well as the desired functionality and desired elution rate of the active agent 18 from the matrix.
- exemplary pore 16 , active agent 18 , and matrix 20 configurations are depicted in portions A-E.
- Portion A shows that the active agent 18 can be deposed into a pore 16 and then covered with matrix 20 , which forms a protective barrier for the active agent. Also, the matrix 20 serves to control the elution rate from the active agent 18 from the pore 16 . As shown, the matrix 20 is disposed within the pore 16 in a manner such that a portion of the matrix 20 protrudes out of the pore 16 .
- Portion B shows the active agent 18 to be included within microspheres 22 that are disposed within the pore 16 .
- the microspheres 22 can be microparticles, nanoparticles, or the like.
- the microspheres 22 can be round, spherical, and symmetrical, or they can be irregular, rough, jagged, or nonsymmetrical.
- the microspheres 22 are then contained within the matrix 20 . As such, the microspheres 22 can elute from the pore 16 , and/or the active agent can diffuse out of the microspheres 22 which are retained within the pore 16 .
- the microspheres 22 can elute from the pore 16 in the case of a biodegradable matrix 20 , where the active agent 18 diffuses from the microspheres 22 .
- the active agent 18 can diffuse from the microsphere 22 while disposed within the pore 16 , through the matrix 20 , and then elute from the pore 16 .
- other similar configurations that include the use of microspheres 22 can be used.
- Portion C is similar to Portion A in that it shows that the active agent 18 can be deposed into a pore 16 and then covered with matrix 20 , which forms a protective barrier for the active agent. However, the matrix 20 is disposed within the pore 16 in a manner such that a portion of the matrix 20 does not protrude out of the pore 16 , and the matrix 20 is protected by the porous body 14 .
- Portion D shows a first active agent composition 24 and a second active agent composition 26 disposed within the pore 16 . More particularly, the first active agent composition 24 is shown to be disposed at the bottom of the pore 16 and covered with a layer of the matrix 20 , which in turn is covered with the second active agent composition 26 that is covered with another layer of the matrix 20 . Such a configuration can be useful when the first active agent composition 24 and second active agent composition 26 have different active agents or different formulations. Also, the two different matrix 20 layers can have the same composition or different compositions so as to alter the rate of elution of the active agent from the pore 16 .
- the active agent in the second active agent composition 26 can be useful for a first stage of a therapy and the active agent in the first active agent composition 24 can be useful for a second stage of a therapy.
- the active agent in the first active agent composition 24 may diffuse through the matrix 20 at a faster rate, and thereby elute from the pore 16 concomitantly.
- the outer matrix 20 can be substantially more resilient to forces than the inner matrix 20 , and thereby the outer matrix 20 can provide protection to the inner matrix 20 and the active agent compositions 24 , 26 ). Additionally, other similar configurations that include the use of multiple active agent compositions can be used.
- Portion E is similar to Portion B in that it shows a first microsphere 28 and a second microsphere 30 disposed within the pore 16 .
- the microspheres 28 , 30 are then contained within the matrix 20 , and a topcoat 32 is applied over the matrix 20 to protect the matrix 20 and microspheres 28 , 30 from mechanical damage.
- the microspheres 28 , 30 can elute from the pore 16 as described in connection with Portion B.
- the microspheres 28 , 30 can have different formulations as described in connection with Portion D. Additionally, other similar configurations that include the use of different microsphere 28 , 30 formulations can be used.
- the active agent composition can include an elution rate controlling matrix.
- an elution rate controlling matrix can be used.
- only a single elution rate controlling matrix containing the active agent can be used.
- FIG. 2 is a schematic representation of a portion of an embodiment of a porous body 50 in accordance with the present invention.
- the porous body 50 is comprised of a plurality of layers 52 that are configured and dimensioned such that the consecutive layers 52 form a plurality of pores 54 .
- Such a porous body 50 can be prepared layer-by-layer in a manner that results in a plurality of pores.
- Exemplary methods of preparing such a porous body 50 comprised of a plurality of layers 52 can include direct rapid prototyping, metal printing processes, and the like, which are described in more detail below.
- the elution rate controlling matrix can include a combination or mixture of a non-polymeric material and a polymeric material.
- the elution rate controlling matrix can include the active agent and radiopaque dyes or particles.
- the medical device can include a topcoat that covers the pores of the porous body.
- the topcoat can be applied onto the matrix in order to provide additional protection or to confer desirable controlled release characteristics.
- the topcoat can be configured to include various functions, such as the following: it can provide a smooth outer profile for the porous body; it can minimize loss of the active agent during delivery; it can provide a biocompatible interface with tissue (e.g., blood vessel) after implantation; and it can aide in controlling the release of the active agent from the pores into the surrounding tissue or body fluid upon use.
- the topcoat may include, or be substantially free of, any active agents. In some instances, the topcoat is applied over the porous body.
- the top coat is disposed substantially within the pores such that the top coat does not protrude from the pores. In other instances, the topcoat is at least partially included in the pores such that the topcoat is anchored into the pore complex. Thus, the adhesion of the topcoat to the surface of the device is improved or even largely achieved by its anchoring into the pores.
- the medical device can be an endoprosthesis, such as an endovascular and/or intracoronary device.
- an endoprosthesis such as an endovascular and/or intracoronary device. Examples include drug delivery catheters, grafts, drug delivery balloons, guidewires, stents, filters, grafts, valves, occlusive devices, trocars, aneurysm treatment devices, and accessories used in vascular intervention.
- an endoprosthesis can be configured for a variety of intralumenal applications, including vascular, coronary, biliary, esophageal, urological, gastrointestinal, nasal, or the like.
- endoprostheses When the medical device is an endoprosthesis, multiple configurations of endoprostheses may be utilized including, but not limited to, peripheral endoprostheses, peripheral coronary endoprostheses, degradable coronary endoprostheses, non-degradable coronary endoprostheses, self-expanding endoprostheses, balloon-expanded endoprostheses, and esophageal endoprostheses.
- the drug eluting endoprostheses of the invention may be manufactured into a number of different configurations. These medical devices may have a primary function that is different from the release of the drug.
- an endoprosthesis may be primarily used for maintaining the patency of a lumen, and also releases a drug to prevent restenosis of a lumen.
- the medical device may have drug delivery as its primary function, for instance an implantable system for the local delivery of a therapeutic substance like an anti-cancer drug.
- the medical devices include an implant indwelling device.
- implant indwelling device examples include orthopedic implants, ocular implants, pharmacotherapeutic implants, dental implants, other prosthetic implants, fixation screws, indwelling catheters, any other indwelling device, and other implant or indwelling medical devices that are deployed so as to be in contact with bodily fluid or tissue.
- the medical device includes blood-contacting components of extracorporeal devices.
- the medical device configured in accordance with the present invention can be a portion of an extracorporeal device that comes into contact with a body part of a body fluid.
- the medical device can be a portion of a kidney dialysis system that contacts the body fluid.
- the medical device includes a surgical or medical procedure tool.
- a surgical or medical procedure tool can include staples, filters, needles, tubes, coils, wires, clips, screws, sensors, plates, conduits, and the like.
- the medical device can be any medical tool that is used in a medical procedure in a manner that would allow for the drug to be eluted from the device so as to provide a beneficial function.
- the medical device can have a delivery orientation and a deployed orientation.
- a stent has a delivery orientation that has a much narrower cross-sectional profile compared to the deployed orientation. This allows the stent in the delivery orientation to be delivered through the tortuous vasculature pathway before being expanded into the deployed orientation that provides structural support to the vasculature.
- the supporting structure and/or porous body of the medical devices of the present invention can be made of a variety of materials, such as, but not limited to, those materials which are well known in the art of medical device manufacturing.
- the supporting structure and/or porous body can be prepared from the same materials or different materials.
- the materials for the supporting structure and/or porous body can be selected according to the structural performance and biological characteristics that are desired.
- Materials well known in the art for preparing medical devices e.g., endoprostheses
- polymers, ceramics, and metals can be employed in preparing the supporting structure and/or porous body.
- the medical device can include a material made from any of a variety of known suitable materials, such as a shaped memory material (“SMM”) or superelastic material.
- SMM shaped memory material
- the SMM can be shaped in a manner that allows for restriction to induce a substantially tubular, linear orientation while within a delivery shaft (e.g., delivery catheter), but can automatically retain the memory shape of the medical device once extended from the delivery shaft.
- SMMs have a shape memory effect in which they can be made to remember a particular shape. Once a shape has been remembered, the SMM may be bent out of shape or deformed and then returned to its original shape by unloading from strain or heating.
- SMMs can be shape memory alloys (“SMA”) or superelastic metals comprised of metal alloys, or shape memory plastics (“SMP”) comprised of polymers.
- An SMA can have any non-characteristic initial shape that can then be configured into a memory shape by heating the SMA and conforming the SMA into the desired memory shape. After the SMA is cooled, the desired memory shape can be retained. This allows for the SMA to be bent, straightened, compacted, and placed into various contortions by the application of requisite forces; however, after the forces are released, the SMA can be capable of returning to the memory shape.
- SMAs are as follows: copper-zinc-aluminium; copper-aluminium-nickel; nickel-titanium (“NiTi”) alloys known as nitinol; and cobalt-chromium-nickel alloys or cobalt-chromium-nickel-molybdenum alloys known as elgiloy.
- NiTi nickel-titanium
- elgiloy cobalt-chromium-nickel alloys or cobalt-chromium-nickel-molybdenum alloys known as elgiloy.
- the nitinol and elgiloy alloys can be more expensive, but have superior mechanical characteristics in comparison with the copper-based SMAs.
- the temperatures at which the SMA changes its crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios.
- the primary material of the supporting structure and/or porous body can be of a NiTi alloy that forms superelastic nitinol.
- Nitinol materials can be trained to remember a certain shape, straightened in a shaft, catheter, or other tube, and then released from the catheter or tube to return to its trained shape.
- additional materials can be added to the nitinol depending on the desired characteristic.
- An SMP is a shape-shifting plastic that can be fashioned into the supporting structure and/or porous body in accordance with the present invention.
- an SMP encounters a temperature above the lowest melting point of the individual polymers, the blend makes a transition to a rubbery state.
- the elastic modulus can change more than two orders of magnitude across the transition temperature (“T tr ”).
- T tr transition temperature
- an SMP can be formed into a desired shape of the supporting structure and/or porous body by heating it above the T tr , fixing the SMP into the new shape, and cooling the material below T tr .
- the SMP can then be arranged into a temporary shape by force and then resume the memory shape once the force has been applied.
- SMPs include, but are not limited to, biodegradable polymers, such as oligo( ⁇ -caprolactone)diol, oligo( ⁇ -dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined.
- biodegradable polymers such as oligo( ⁇ -caprolactone)diol, oligo( ⁇ -dioxanone)diol
- non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined.
- any SMP can be used in accordance with the present invention.
- At least one layer of an SMA and at least one layer of an SMP can be beneficial to include at least one layer of an SMA and at least one layer of an SMP to form a multilayered body; however, any appropriate combination of materials can be used to form a multilayered medical device.
- the supporting structure and/or porous body can be comprised of a variety of known suitable deformable materials, including stainless steel, silver, platinum, tantalum, palladium, cobalt-chromium alloys such as L605, MP35N, or MP20N, niobium, iridium, any equivalents thereof, alloys thereof, and combinations thereof.
- the alloy L605 is understood to be a trade name for an alloy available from UTI Corporation of Collegeville, Pa., including about 53% cobalt, 20% chromium and 10% nickel.
- the alloys MP35N and MP20N are understood to be trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. More particularly, MP35N generally includes about 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum, and MP20N generally includes about 50% cobalt, 20% nickel, 20% chromium and 10% molybdenum.
- the supporting structure and/or porous body can include a suitable biocompatible polymer in addition to or in place of a suitable metal.
- the polymeric supporting structure and/or porous body can include a biocompatible material, such as biostable, biodegradable, or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration. If plastically deformable, the material can be selected to allow the medical device (e.g., stent) to be expanded in a similar manner using an expandable member so as to have sufficient radial strength and scaffolding and also to minimize recoil once expanded.
- a biocompatible material such as biostable, biodegradable, or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration. If plastically deformable, the material can be selected to allow the medical device (e.g., stent) to be expanded in a similar manner using an expandable member so as to have sufficient radial strength and scaffolding and also to minimize reco
- the expandable member can be provided with a heat source or infusion ports to provide the required catalyst to set or cure the polymer.
- Biocompatible polymers are well known in the art, and examples are recited with respect to the polymeric matrix.
- the matrix, supporting structure, and/or porous body can be prepared from a biocompatible polymer.
- the supporting structure and/or porous body can be formed from a ceramic material.
- the ceramic can be a biocompatible ceramic.
- suitable ceramic materials include bioinert ceramic, alumina, surface-bioactive ceramics, silicon carbide, zirconia, hydroxyapatite (HA), bioglasses, resorbable bioactive ceramics, alpha and/or beta tricalcium phosphates (TCP), tetracalcium phosphate (TTCP), octacalcium phosphate, calcium sulfate, dicalcium phosphate dihydrate (DCPD), hydrated calcium phosphates, calcium hydrogen phosphate, dicalcium phosphate anhydrous (DCPA), low-crystallinity HA, calcium pyrophosphates (anhydrous or hydrated), calcium polyphosphates (n ⁇ 3), calcium polyphosphate, calcium silicates, calcium carbonate, amorphous calcium salts, whitlockite, zeolites, artificial apatite, brushite,
- Ceramics can be crystalline, amorphous, glassy, anhydrous, or hydrated. Ceramics generally contain one or more of titanium, zinc, aluminium, zirconium, magnesium, potassium, calcium, iron, ammonium, and sodium ions or atoms in addition to one or more of an oxide, a phosphate (ortho, pyro, tri, tetra, penta, meta, poly etc), a silicate, a carbonate, a nitride, a carbide, a sulphate, ions thereof, or the like. Also, other materials with similar properties that can be fabricated into a ceramic as described herein can be included in the present invention.
- Preferred ceramics include hydroxylapatite, mullite, crystalline oxides, non-crystalline oxides, carbides, nitrides, silicides, borides, phosphides, sulfides, tellurides, selenides, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, alumina-zirconia, silicon carbide, titanium carbide, titanium boride, aluminum nitride, silicon nitride, ferrites, iron sulfide, and the like.
- the supporting structure and/or porous body can include a radiopaque material to increase visibility during placement.
- the radiopaque material can be a layer or coating any portion of the supporting structure and/or porous body.
- the radiopaque materials can be platinum, tungsten, silver, stainless steel, gold, tantalum, bismuth, barium sulfate, or a similar material.
- the medical device in the form of a stent or other tubular medical device can be comprised of a shape-memory material, where an outer sheath may be disposed over the medical device to confine the medical device in a contracted state, while retraction of the outer sheath causes the medical device to self-expand to a deployed shape.
- the elution rate controlling matrix can be prepared with at least one polymeric material having the properties of being biocompatible, bioabsorbable, biodegradable, bioerodible, naturally occurring, synthetic, or any combination thereof.
- a polymeric material can include at least one natural or synthetic, homopolymer or copolymer (without limitation to the amount of different monomers), linear, branched or cross-linked, soluble or insoluble, biostable or biodegradable, hydrophilic, hydrophobic, intermediate or amphiphilic, neutral or ionically charged, or polymerized with pendant groups.
- the polymers can include condensation and addition polymers, macromolecules, thermoplastic elastomers, polyolefin elastomers, biostable plastics, and the like.
- the polymeric material can include phosphorylcholines, phosphorylcholine linked macromolecules, polyolefins, poly(meth)acrylates, polyurethanes, polyesters, polyanhydrides, polyphosphazenes, polyacrylates, acrylic polymers, pendant phosphoryl groups, poly(lactide-co-glycolide) (PLGA), polycaprolactones, polylactic acids (PLA), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone (PDO), polyorthoester, polyglycolic acid (PGA), polycaprolactone (PCL), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyiminocarbonates, aliphatic polycarbonates, fibrin, fibrinogen,
- the polymer can be poly(MPC w :LMA x :UPMA y :TSMA z ), where MPC is 2-methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate,
- the elution rate controlling matrix is a biodegradable polymer selected from the group consisting of poly(L-lactic acids), poly(DL-lactic acids), polycaprolactones, polyhydroxybutyrates, polyglycolides, poly(diaxanones), poly(hydroxy valerates), polyorthoesters, poly(lactide-co-glycolides), polyhydroxy(butyrate-co-valerates), polyglycolide-co-trimethylene carbonates, polyanhydrides, polyphosphoesters, polyphosphoester-urethanes, polyamino acids, polycyanoacrylates, biomolecules, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, mixtures thereof, derivatives thereof, copolymers thereof, and like polymers.
- the elution rate controlling matrix is a biostable polymer selected from the group consisting of polyurethanes, silicones, polyesters, polyolefins, polyamides, polycaprolactams, polyimides, polyvinyl chlorides, polyvinyl methyl ethers, polyvinyl alcohols, acrylic polymers, polyacrylonitriles, polystyrenes, vinyl polymers, polymers including olefins (e.g., styrene acrylonitrile copolymers, ethylene methyl methacrylate copolymers, ethylene vinyl acetate, and other like polymers), polyethers, rayons, cellulosics (e.g., cellulose acetate, cellulose nitrate, cellulose propionate, and other like polymers), parylene, mixtures thereof, derivatives thereof, copolymers thereof, and like polymers.
- olefins e.g., styrene acrylonitrile copo
- the elution rate controlling matrix includes a non-polymeric material such as sugars, waxes, and lipids.
- the elution rate controlling matrix can be formulated with a pharmaceutically acceptable carrier, which is a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- a pharmaceutically acceptable carrier which is a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type.
- the compositions that can be included can be comprised of pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, as well as sterile powders for reconstitution into sterile solutions or dispersions just prior to be included with the endoprosthesis.
- aqueous and nonaqueous carriers examples include water, ethanol, polyols (e.g., glycerol, propylene glycol, polyethylene glycol, and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (e.g., olive oil), organic esters such as ethyl oleate, and the like.
- the elution rate controlling matrix may also contain adjuvants such as preservatives, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- the release of the drug from the elution rate controlling matrix in order to prolong the effect of the drug, it is desirable to slow the release of the drug from the elution rate controlling matrix. This may be accomplished by the use of crystalline or amorphous materials with poor water solubility. The rate of absorption of the drug can depend upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed release can be accomplished by dissolving or suspending the drug in an oil or hydrophobic carrier prior to being included with the elution rate controlling matrix.
- the elution rate controlling matrix can be formulated to be or to include microencapsule matrices, such as microspheres, before being included with the medical device.
- the elution rate controlling matrix can include in liposomes, microspheres, microparticles, microemulsions, or the like that contain the active agent.
- the elution rate controlling matrix can also include other pharmaceutically acceptable materials, such as any of the following: excipients or carriers such as sodium citrate or dicalcium phosphate; fillers or extenders such as starches, lactose, sucrose, glucose, and mannitol; binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; humectants such as glycerol; disintegrating agents such as agar, calcium carbonate, starch, alginic acid, certain silicates, and sodium carbonate; solution retarding agents such as paraffin; absorption accelerators such as quaternary ammonium compounds; wetting agents such as cetyl alcohol and glycerol monostearate; absorbents such as kaolin and bentonite clay; and lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, and sodium lauryl sulf
- the porous material of the applied layer includes at least one of biocompatible metals, metal alloys, ceramics, and polymers.
- Metals include, but are not limited to, pure metals, such as gold or tantalum, metal compositions such as stainless steel, or alloys such as cobalt chromium.
- the active agents of the present invention can include any substance that has a biological activity, such as pharmacological agents.
- Such active agents include analgesics, antipyretics, antiasthamatics, antibiotics, antidepressants, antidiabetics, antifungal agents, antihypertensive agents, anti-inflammatories including non-steroidal and steroidal, antineoplastics, antianxiety agents, immunosuppressive agents, antimigraine agents, sedatives, hypnotics, antianginal agents, antipsychotic agents, antimanic agents, antiarrhythmics, antiarthritic agents, antigout agents, anticoagulants, thrombolytic agents, antifibrinolytic agents, hemorheologic agents, antiplatelet agents, anticonvulsants, antiparkinson agents, antihistamines, anti-restenosis agents, antipruritics, agents useful for calcium regulation, antibacterial agents, antiviral agents, antimicrobials, anti-infectives, bronchod
- the active agent includes at least one of zotarolimus, sirolimus, everolimus, dexamethasone, prednisone, hydrocortisone, estradiol, acetaminophen, ibuprofen, naproxen, sulidac, heparin, taxol, paclitaxel, and any combination thereof.
- the active agents can be anti-restenosis agents, such as anti-proliferative agents, anti-platelet agents, anti-inflammatory agents, anti-thrombotic agents, and thrombolytic agents.
- the anti-proliferative agents can be anti-mitotic.
- Anti-mitotic agents inhibit or affect cell division, whereby processes normally involved in cell division do not take place.
- One sub-class of anti-mitotic agents includes vinca alkaloids. Representative examples of vinca alkaloids include vincristine, paclitaxel, etoposide, nocodazole, indirubin, anthracycline derivatives, daunorubicin, daunomycin, plicamycin, and the like.
- anti-mitotic agents include anti-mitotic alkylating agents, such as, for example, tauromustine, bofumustine, and fotemustine, and anti-mitotic metabolites, such as methotrexate, fluorouracil, 5-bromodeoxyuridine, 6-azacytidine, and cytarabine.
- Anti-mitotic alkylating agents affect cell division by covalently modifying DNA, RNA, or proteins, thereby inhibiting DNA replication, RNA transcription, RNA translation, protein synthesis, or combinations of the foregoing.
- Anti-platelet agents are therapeutic entities that act by (1) inhibiting adhesion of platelets to a surface, typically a thrombogenic surface, (2) inhibiting aggregation of platelets, (3) inhibiting activation of platelets, or (4) combinations of the foregoing.
- Activation of platelets is a process whereby platelets are converted from a quiescent, resting state to one in which platelets undergo a number of morphologic changes induced by contact with a thrombogenic surface. These changes include changes in the shape of the platelets, accompanied by the formation of pseudopods, binding to membrane receptors, and secretion of small molecules and proteins, such as, for example, ADP and platelet factor 4.
- Anti-platelet agents that act as inhibitors of adhesion of platelets include, but are not limited to, eptifibatide, tirofiban, RGD (Arg-Gly-Asp)-based peptides that inhibit binding to gpIIbIIIa or ⁇ v ⁇ 3, antibodies that block binding to gpIIaIIIb or ⁇ v ⁇ 3 , anti-P-selectin antibodies, anti-E-selectin antibodies, compounds that block P-selectin or E-selectin binding to their respective ligands, saratin, and anti-von Willebrand factor antibodies.
- Agents that inhibit ADP-mediated platelet aggregation include, but are not limited to, disagregin and cilostazol.
- Anti-inflammatory agents can also be used. Examples of these include, but are not limited to, prednisone, dexamethasone, hydrocortisone, estradiol, fluticasone, clobetasol, and non-steroidal anti-inflammatories, such as, for example, acetaminophen, ibuprofen, naproxen, and sulindac. Other examples of these agents include those that inhibit binding of cytokines or chemokines to the cognate receptors to inhibit pro-inflammatory signals transduced by the cytokines or the chemokines. Representative examples of these agents include, but are not limited to, anti-IL1, anti-IL2, anti-IL3, anti-IL4, anti-IL8, anti-IL15, anti-IL18, anti-GM-CSF, and anti-TNF antibodies.
- Anti-thrombotic agents include chemical and biological entities that can intervene at any stage in the coagulation pathway. Examples of specific entities include, but are not limited to, small molecules that inhibit the activity of factor Xa.
- heparinoid-type agents that can inhibit both FXa and thrombin, either directly or indirectly, such as, for example, heparin, heparin sulfate, low molecular weight heparins, such as, for example, the compound having the trademark Clivarin®, and synthetic oligosaccharides, such as, for example, the compound having the trademark Arixtra®.
- direct thrombin inhibitors such as, for example, melagatran, ximelagatran, argatroban, inogatran, and peptidomimetics of binding site of the Phe-Pro-Arg fibrinogen substrate for thrombin.
- factor VII/VIIa inhibitors such as, for example, anti-factor VII/VIIa antibodies, rNAPc2, and tissue factor pathway inhibitor (TFPI).
- Thrombolytic agents which may be defined as agents that help degrade thrombi (clots), can also be used as adjunctive agents, because the action of lysing a clot helps to disperse platelets trapped within the fibrin matrix of a thrombus.
- Representative examples of thrombolytic agents include, but are not limited to, urokinase or recombinant urokinase, pro-urokinase or recombinant pro-urokinase, tissue plasminogen activator or its recombinant form, and streptokinase.
- the active agent can also be an immunosuppressant agent.
- the immunosuppressant agents can include azathioprine sodium, brequinar sodium, gusperimus trihydrochloride (also known as deoxyspergualin), mizoribine (also known as bredinin), mycophenolate mofetil, cylosporin A, tacrolimus (also known as FK-506), sirolimus, leflunomide (also known as HWA-486), glucocorticoids such as prednisolone and its derivatives, antibody therapies such as orthoclone (OKT3), and antithymyocyte globulins, such as thymoglobulins.
- azathioprine sodium brequinar sodium
- gusperimus trihydrochloride also known as deoxyspergualin
- mizoribine also known as bredinin
- mycophenolate mofetil cylosporin A
- tacrolimus also known as F
- the medical device is manufactured into an endoprosthesis, such as a stent.
- an endoprosthesis such as a stent.
- the supporting structure and/or porous body in accordance with the present invention can be prepared as described below with respect to the endoprosthesis. That is, references to endoprostheses are intended to broadly encompass the medical devices of the present invention.
- the present invention includes a method of manufacturing a medical device used for treating and/or preventing a disease in an animal.
- a method can include the following: fabricating a supporting structure, which can include shaping the supporting structure into the medical device, such as an endoprosthesis (e.g., stent); fabricating a porous body onto at least a portion of the supporting structure, said porous body including a first biocompatible material having a plurality of pores; introducing a therapeutically effective amount of an active agent into at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and introducing an elution rate controlling matrix onto at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls the elution of the active agent from the pores.
- the fabrication of the porous body can include dimensioning and configuring the porous body to have a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the fabrication of the porous body can include dimensioning and configuring the pores to have a diameter of from about 10 nanometers to about 1 millimeter.
- the method of manufacture can include configuring the medical device to be at least one of an endoprosthesis, drug delivery stent, drug delivery catheter, graft, drug delivery balloon, guidewire, orthopedic implant, dental implant, fixation screws, indwelling catheter, ocular implant, pharmacotherapeutic implant, blood-contacting component of extracorporeal device, staple, filter, needle, tube, coil, wire, clip, screw, sensor, plate, conduit, portion thereof, or combination thereof.
- the method of manufacture can include combining the active agent with the elution rate controlling matrix. This can include combining the active agent and elution rate controlling matrix before, during, or after being introduced into the porous body. As such, the active agent can be absorbed into the elution rate controlling matrix after being introduced into the porous body.
- the method of manufacture can include any of the following processes, which are provided as examples without limitation: fabricating the supporting structure and/or porous body by sintering; fabricating the supporting structure and/or porous body by a metal printing process; fabricating the supporting structure and/or porous body by a direct rapid prototyping process; shaping the porous structure from a mixture of two components, one of which is leached out after the shaping process, leaving the other, permanent component in a porous form; freeze-drying or other similar process where a solid is removed by sublimation from a phase separated mixture of two or more components; by a process similar to supercritical fluid evaporation or foaming; and/or shaping the supporting structure and/or porous body into an endoprosthesis, such as a stent.
- the method of manufacture includes configuring the pores of a porous layer disposed upon the endoprosthesis to accommodate at least one elution rate controlling material and at least one agent. Through configuring the size of the orifice, volume and shape of the pores, as well as the amount of elution rate controlling material and agent, the pores are manufactured to control or determine the rate of elution of an agent.
- the configured shapes and sizes of the pores within the porous material of the invention depend on many variables including, but not limited to: the amount of drug delivery needed, elution rates of the material and how the elution rate controlling material is dispersed, (e.g., encapsulated, co-incorporated, or co-encapsulated, or associated) with the agents; treatment and/or prevention of a particular disease; the agents utilized; the type of medical device and its interactions with other medical devices; the position and location of the medical device in the animal body and body (including tissue and fluid) interactions; and combinations of positions and interactions between the body and medical device.
- the medical device can be shaped into an endoprosthesis, (e.g., stent) which can be formed from a hollow tube of suitable material using a known technique, such as by laser cutting, EDM, milling, chemical etching, hydro-cutting, and the like.
- the shaped structure can be mechanically blasted with a media and then electropolished or otherwise finished to remove burrs and eliminate sharp edges and contaminates.
- An additional de-scaling process may be performed before electropolishing, wherein the de-scaling process involves the use of an acid bath.
- a stent body can be fabricated from a sheet of suitable material using a similar cutting, milling, or etching technique, and then rolled or bent about a longitudinal axis into the desired shape.
- the lateral edges of the structure can be joined together, such as by welding or bonding, to form a closed tubular structure, or the lateral edges can remain unattached to form a coiled, rolled sheet or open tubular structure.
- An additional step of passivation can be performed during the manufacturing stage of the endoprosthesis in order to form a homogeneous oxide layer for corrosion resistance.
- the passivation process may be performed prior to installation of the markers in accordance with the present invention or it may be performed after installation of radiopaque markers. Alternatively, multiple passivation processes may be performed prior to insertion of the markers and again after insertion of the markers.
- a medical device such as an endoprosthetic material can be shaped by various methods as described in more detail below.
- Such shaping techniques can utilize streams of energy and/or streams of matter in order to impart shapes and/or pores into the endoprosthetic material.
- the streams of energy include photons, electromagnetic radiation, atomic, and sub-atomic materials, as described above.
- the streams of matter are considered to include materials larger than atomic scale particles, and can be microscopic or macroscopic in size.
- the shaping can be designed to direct a stream of energy or a stream of matter at the endoprosthetic material to form an endoprosthetic material and/or pores therein.
- mechanical drills can be used to drill pores into an endoprosthesis.
- a stream of energy can cut, shape, and/or form pores in the endoprosthetic material by generating heat at the site where the stream intersects the material, as is well known in the art.
- the thermal interaction can elevate the local temperature to a point which can cut, melt, shape, and/or vaporize portions of the endoprosthetic material from the rest of the material.
- one embodiment of the stream-cutting apparatus can operate and shape the endoprosthetic material by thermal interactions.
- any of the thermal processes described herein can be used for thermal-cutting.
- thermal interactions can arise from laser beam treatment, laser beam machining, electron beam machining, electrical discharge machining, ion beam machining, and plasma beam machining.
- the thermal beam provides the appropriate or minimum energy for melting and/or vaporizing the material without significantly melting undesirable portions of the material.
- laser beams are a common form of a stream of energy that can be used to shape or form pores in the endoprosthetic material. Additionally, there are instances where a laser is preferred over all other cutting techniques because of the nature of the resulting endoprosthesis as well as the characteristics of the endoprosthetic material.
- a laser can cut the endoprosthetic material and/or form pores therein, wherein the power of the laser or the heat generated can depend upon the composition of the material to be cut.
- the ability to vary the laser power arises due to the use of different materials or vary the thickness of the same.
- the laser power can be defined as the rate of which energy is delivered by the beam and is usually measured in units as joules/second or watts.
- lasers typically used in cutting hardened steel, such as YAG or eximer lasers can have a power of about 2,000 watts or greater.
- Some endoprosthetic materials can be shaped with lasers operating below about 2,000 watts, more preferably below about 1,000 watts, and most preferably below about 500 watts.
- a femto-second laser can be used to shape the material, optionally including forming pores therein.
- Use of the femto-second laser also reduces the heated affected zone (HAZ) of the material during manufacturing. Reducing the localized thermal stress upon the material.
- HAZ heated affected zone
- electrical discharge machining can be used to shape endoprosthetic material and/or form the pores therein.
- electrical discharge machining is capable of cutting all types of conductive materials such as exotic metals (e.g., titanium, hastaloy, kovar, inconel, hard steels, carbides, and the like).
- conductive materials such as exotic metals (e.g., titanium, hastaloy, kovar, inconel, hard steels, carbides, and the like).
- the main interaction between the stream of energy and the endoprosthetic material is thermal, where heat is generated by producing electrical discharges. This can lead to the endoprosthetic material being removed by melting and evaporation.
- Some examples of electrical discharge machining include wire electron discharge machining, CNC-controlled electrical discharge machining, sinker electrical discharge machining, small hole discharge machining, and the like.
- a charged particle beam can be used for shaping and/or forming pores in the endoprosthetic material, wherein charged particle beams are exemplified by electron beams and ion beams.
- a charged particle beam is a group of electrically-charged particles that have approximately the same kinetic energy and move in approximately the same direction. Usually, the kinetic energies are much higher than the thermal energies of similar particles at ordinary temperatures. The high kinetic energy and the directionality of these charged beams can be useful for cutting and shaping of the endoprosthetic material, as described herein. Additionally, there are some instances where electron beams or ion beams are preferred over other cutting techniques.
- a stream of chemical matter can be used in order to shape and/or form pores in the endoprosthetic material such as chemical etching or chemical-jet milling.
- Chemical-jet milling for example, provides selective and controlled material removal by jet and chemical action. As such, the process is similar to water-jet cutting, which is described in more detail below.
- chemical-jet milling can be useful for shaping or forming pores in various types of endoprosthetic materials, which provides intricate shaping capabilities.
- electrochemical shaping and/or pore formation can be used, and is based on a controlled electrochemical dissolution process similar to chemical-jet milling an endoprosthetic material.
- the endoprosthetic material can be attached to an electrical source in order to allow an electrical current to assist in the shaping and/or pore formation.
- hydro-cutting or water-jet cutting can be used to shape and/or form pores in an endoprosthetic material.
- Hydro-cutting is essentially a water-jet technology that uses the high force and high pressure of a stream of water directed at the endoprosthetic material in order to cut and shape the material as desired.
- Hydro-cutting can be preferred over some of the other stream-cutting technologies because it can be free of heat, flame, and chemical reactions, and can provide a precise cold shaping technique.
- heated water with or without being doped with reactive chemicals can also be used.
- Hydro-cutting is particularly suitable for a polymeric endoprosthesis, but can be used for some metal materials when combined with abrasive particles, as described below.
- hydro-cutting can be enhanced by the introduction of particulate materials into the water feed line.
- some hydro-cutting techniques utilize garnet or other rigid and strong materials in order to apply an abrasive cutting force along with the force applied by the water itself.
- sandblasting which fits into the regime of stream of matter cutting, can be used to shape and/or form pores in an endoprosthetic material by projecting a high energy stream of sand particles at the material.
- Sandblasting cuts materials similar to hydro-cutting, especially when the water-jet is doped with abrasive particulates. Additionally, various other particulate streams other than sand can be used in the stream-cutting techniques and machinery.
- a method of making a supporting structure and/or porous body in accordance with the present invention can include sintering sinterable particles to provide a sintered article having the shape of the medical device, such as an endoprosthesis.
- the sintered body can be obtained from a green body prepared by molding a mixture of sinterable particles with or without a binder into the shape of an endoprosthesis or body intermediate.
- the molded green body may have the shape of the endoprosthesis with or without pores.
- the process can include shaping the sintered body with a stream of energy and/or matter in order to obtain a desired shape.
- sintering a green body in a mold can result in an endoprosthesis that is either ready for use, or requires additional processing or finishing such as shaping and/or pore forming.
- a de-binding process can be carried out to remove the binder prior to sintering the green body.
- the de-binding can be performed by heat treatment in an oxidizing or non-oxidizing atmosphere, for instance, under a vacuum or low pressure.
- Such debinding can be utilized in order to form pores in the finished product.
- the volume can either shrink as the porosity decreases and the density increases or stay roughly the same with an increase in porosity. This is especially true when the sinterable particles are held together with a binder and can happen as the majority of the binder is melting and/or evaporating so as to draw the individual sinterable particles closer together or create voids between particles.
- the green body can be fabricated, molded, and/or shaped to be larger than the resultant sintered article in order to accommodate for the volume lost or pore enlargement during sintering.
- the sintered body can be shaped into a supporting structure and/or porous body with pores as described herein.
- the endoprosthesis can be further processed after sintering and/or shaping such as by grinding, sanding, or the like to provide enhanced surface characteristics.
- the method can include depositing the elution rate controlling material, such as a biodegradable material or a material impregnated with an active agent, onto the pores.
- the deposited material can partially or substantially fill the pores.
- the medical devices of the present invention can be prepared using a direct rapid prototyping system and process to manufacture the supporting structure and/or porous body.
- This can include a system and process that employs the direct rapid prototyping system and process to print the metal and/or ceramic to form the supporting structure and/or porous body.
- the system and process for preparing the supporting structure and/or porous body can include direct three-dimensional (3D) printing.
- Direct 3D powder printing can be used for rapid prototyping or r large-scale manufacturing.
- the supporting structure and/or porous body can be custom made or prepared in an assembly line manner.
- Rapid prototyping commonly refers to a class of technologies that can automatically construct physical models in 3D from Computer-Aided Design (CAD) files. Rapid prototyping machines can be considered to be three dimensional printers that allow for prototypes or functional products to be quickly created and manufactured. In addition to prototypes, rapid prototyping systems and processes can also be used to make production-quality objects and is sometimes referred to as rapid manufacturing.
- a software package In order to design a supporting structure and/or porous body, a software package virtually-slices a CAD model into a number of thin (about 100 microns) layers so that the direct inkjet printing component can then built up one layer atop another in order to form the endoprosthesis.
- direct inkjet printing is an additive process that combines successive layers of ceramic and/or bioactive substance to create a solid endoprosthesis.
- direct inkjet printing can include the following steps: create a CAD model of the design using a computing system; convert the CAD model to STL format or other appropriate format using the computing system; slice the STL file into virtual thin cross-sectional layers using the computing system; physically construct the model one layer atop another layer by sequentially inkjet printing each layer in successive steps; and clean and finish the endoprosthesis.
- FIG. 3 illustrates an embodiment of a direct rapid prototyping inkjet printing system and process for using inkjet technologies in order to prepare a supporting structure and/or porous body (i.e., endoprosthesis).
- direct rapid prototyping inkjet systems and methods that are well known in the art can be configured to operate under the present invention.
- direct rapid prototyping systems and processes can be configured to eliminate a sintering step or other step that causes excessive heat and/or pressure.
- the endprosthesis prepared by direct rapid prototyping can be sintered as is well known in the art.
- direct inkjet printing refers to an entire class of machines that employ inkjet technology to sequentially build an endoprosthesis layer-by-layer.
- An example of such a direct inkjet printer capable of operating under the present invention is a ZCorp 3D printer, produced by Z Corporation of Burlington, Mass.
- FIG. 3 depicts an embodiment of a direct inkjet printing system 110 and process in accordance with the present invention.
- the direct inkjet printing system 110 includes an inkjet printer 112 , a powder delivery system 120 , a roller 140 , and a fabrication system 130 .
- the inkjet printer 112 has at least one inkjet cartridge 114 that can include any composition capable of being inkjet printed. Additionally, the inkjet printer 112 includes an inkjet line 116 that routes the inkjet composition from the inkjet reservoir 114 to an inkjet printer head 118 . Also, the inkjet printer 112 can be configured to include any number of cartridges 114 , lines 116 , or printer heads 118 . Usually, the inkjet printer 112 includes at least one binder cartridge.
- the powder delivery system 120 has at least one powder delivery chamber 122 that provides a chamber for a powder delivery piston 124 .
- the powder delivery chamber 122 and powder delivery piston 124 cooperate to contain the metal and/or ceramic powder 126 .
- the powder delivery piston 124 is configured to move upward as shown by the arrows after each layer of powder is used in the direct inkjet printing process.
- the roller 140 is depicted to be a conventional rolling object, such as one rolling part of a calender, which can roll a layer 142 of the powder 126 from the powder delivery system 120 to the fabrication system 130 .
- a squeegee or other similar mechanical instruments can be used to scrape or move a top layer of powder from the powder delivery system 120 to the fabrication system 130 .
- the fabrication system 130 has at least one fabrication chamber 132 that provides a chamber for a fabrication piston 134 .
- the fabrication chamber 132 and fabrication piston 134 cooperate to contain the endoprosthesis 136 as it is being fabricated.
- the fabrication piston 124 is configured to move downward as shown by the arrows after each layer of powder is deposited onto the endoprosthesis 136 and fixed by a binder solution contained in an inkjet cartridge 114 .
- the endoprosthesis 136 is built in the fabrication chamber 132 on a substrate or platform situated on or integral with the fabrication piston 134 .
- the powder delivery piston 124 rises so that a top layer 142 of the powder 126 in the powder delivery chamber 122 is rolled by the roller 140 into the fabrication chamber 132 .
- the inkjet printing head 118 selectively deposits or inkjet prints a binder fluid to cure or otherwise fuse the powder 126 together in the desired areas. Unbound powder can remain to support the part or bound layer of the 136 endoprosthesis that has been hardened.
- the fabrication piston 134 is lowered, more powder 126 is added from the powder delivery chamber 122 to the fabrication chamber 134 and leveled, and the process is repeated. Typical layer thicknesses are on the order of 100 microns.
- the deposition and binding can be configured so as to leave pores 138 within the endoprosthesis 136 .
- the endoprosthesis 136 is considered to be a green body having pores 138 that is then removed from the unbound ceramic powder, and excess unbound powder is blown off or washed away. Also, the removal of the unbound powder can form the pores 138 .
- the printed body can then be cured (e.g., sintered) or otherwise finished into an endoprosthesis. While the printed body can be partially cured or hardened during printing, an additional curing step can be advantageous to finish the product. Optionally, such curing or finishing can be performed at low temperatures by immersing the printed body into a curing solution or hardening solution that causes the powder to react and harden to its fully hardened state.
- a metal printing process can be used in a method of manufacturing the porous body.
- the MPP technique produces three-dimensional objects from powder material, utilizing photo-masking and electrostatic attraction, similar to a photocopy machine.
- the MPP technique uses the same fundamental methods as a photocopy machine to build solid objects; on a layer-by-layer basis.
- MPP is able to fabricate porous metal bodies with controlled porosity.
- MPP techniques are well known in the art.
- each layer is deposited on a building table where it is sintered with the aid of electric discharge sintering or microwaves.
- Sintering happens when particles fuse by atomic transport events below their melting points. Sintering enables a manufacturer to choose amongst a large assortment of appropriate powders to use in building endoprostheses. Common powders for sintering include iron and steel as well as more exotic materials such as titanium, nickel-based superelastic alloys, and the like. Sintering needs to be achieved in both materials simultaneously without distortion or the formation of defects. Co-sintering requires that the two materials follow the same shrinkage pathway, even though they may exhibit differences in basic properties. Additionally, the inkjet printing and metal printing processes can be combined and features thereof can be used together so that the direct rapid prototyping procedures can utilize for non-metals, such as ceramics. When ceramics are used, the process can be considered a powder printing process.
- the elution rate controlling matrix can be deposited in the pores of the porous body by various processes well known in the art for applying polymers to substrates.
- the polymer matrix that is deposited into the pores usually includes the active agent mixed therein.
- the active agent can be absorbed into the matrix after being deposited into the pores.
- the active agent can be deposited into the pore and then covered with the polymeric matrix.
- some methods of depositing the polymeric matrix and/or the active agent into the pores can be conducted by spraying, dipping, rolling, brush application, vapor phase deposition, sputtering, and the like.
- a polymeric solution is deposited into the pores and cured and/or dried.
- the active agent can be incorporated into a polymer solution that cures into the polymer matrix and then is applied into the pores of the endoprosthesis and allowed to cure.
- incorporation of the active agent into the polymer matrix can be carried out by dipping the endoprosthesis having the polymer matrix disposed within the pores into a solution containing the active agent for a sufficient period of time (such as, for example, five minutes) and then drying the endoprosthesis for a sufficient period of time (e.g., 10, 15, or 30 minutes).
- porous coatings can be applied to the supporting structure from which the endoprosthesis is eventually cut, or to the shaped endoprosthesis.
- a porous coating may be applied to the supporting structure at the luminal side and/or the side opposite of the lumen.
- the elution rate controlling matrix with or without the active agent can be disposed into the pores of the porous body with solutions that contain the polymer that is cured or solidified to form the matrix.
- a vacuum may be applied to the porous body to remove trapped air from the pores in order increase the loading efficiency.
- a wiping step may remove excess polymeric material from outside the pores.
- a supporting structure can be coated with a porous metal coating according to U.S. Pat. No. 4,612,160, and an endoprosthesis is cut from the supporting structure having the porous coating thereon.
- the endoprosthesis is submerged in a mixture of poly-lactide-co-glycolide and zotarolimus (e.g., a rapamycin analog, ABT-578) in acetone (10% polymer, 10% drug), and a vacuum is applied to remove air from the pores before the endoprosthesis is removed from the solution.
- the excess liquid is blown off of the endoprosthesis with a stream of gas directed axially to the endoprosthesis and the endoprosthesis is dried.
- the process may be repeated several times to build up a sufficient quantity of drugs and polymer in the pores, provided the exposure time to the drug polymer solution is sufficiently short that the pre-deposited drug does not dissolve.
- a wipe with a brush or other wiping device constructed to leave the drug and polymers in the pores undisturbed can be used.
- a supporting structure can be coated with a porous metal coating according to U.S. Pat. No. 4,612,160, and an endoprosthesis is cut from the supporting structure having the porous coating thereon.
- the endoprosthesis is mounted on a snug-fitting mandrel.
- the endoprosthesis-mandrel assembly is coated with a polymer-drug mixture using an extrusion technology analogous to wire coating, with high pressure on the mixture to force it into the pores.
- a die of a size that allows little or no polymer to remain or be deposited on the outer diameter of the endoprosthesis is used.
- the “islands” of drug-polymer mix that get stuck on the outside of the endoprosthesis can be easily removed after cooling of the mixture.
- the sputter deposition process can be used to create nanostructured materials that possess continuous open porosity.
- structural morphologies found for conventionally sputtered coatings can range from porous columnar to dense polycrystalline. The transition in morphology through four zones of growths occurs with increasing substrate temperature and sputter gas pressure.
- a three-dimensional polycrystalline deposit with continuous open porosity is produced under conditions of increased working gas pressure and a substrate temperature at approximately half its absolute melting point.
- One method for applying a porous layer to an endoprostheses includes a complete porous metal beaded coating in titanium and cobalt-chromoly materials being applied to medical devices.
- U.S. Pat. No. 6,945,448 Another method for applying a porous metal layer to a dense metal substrate is described in U.S. Pat. No. 6,945,448.
- the method includes the following: providing a structured porous layer; providing a dense metal substrate; providing a binding mixture; applying the binding mixture to the exterior of the substrate; placing the porous layer against the substrate such that the binding mixture is disposed therebetween, thus forming an assembly; and heat treating the assembly in order to metallurgically bond the porous layer to the substrate.
- MPP porous layer
- a porous coating to a medical device is manufactured when a ceramic and metal are combined; the ceramic functions as the insulator and the metal provides electrical interconnections in a three-dimensional array.
- Certain exemplary polymers used in the methods for applying a porous coating include, but are not limited to, Dexon, Vicryl, natural rubber, silicone rubbers, medical grade polydimethylsiloxanes, and silicone-carbonate copolymers.
- Non-limiting examples of other suitable polymers include EPDM rubbers, nylon, and epoxies.
- Polymers including pendant phosphoryl groups are disclosed in U.S. Pat. Nos. 5,705,583 and 6,090,901 and U.S. Pat. No. 6,083,257 which are all incorporated herein by reference.
- the invention relates to methods of using the medical device for treating and/or preventing at least one animal disease.
- the medical device has at least one elution rate controlling material and also provides an effective amount of at least one agent within at least one porous material associated with the medical device.
- the pores of the at least one porous layer are dimensioned and configured to house the elution rate controlling material and the agents for controlled release applications of agents into an animal for the treatment and prevention of diseases.
- the present invention includes a method of treating and/or preventing a disease in an animal.
- a method of treating and/or preventing a disease in an animal can include the following: providing a medical device configured and dimensioned to be used within a body of an animal, as described herein; deploying the medical device into the body of the animal; and allowing the active agent to elute from the pores into the body of the animal, where the elution rate controlling matrix controls the elution of the active agent from the pores.
- the medical device can be placed into or in contact with a body or fluid of an animal. This can include placing the medical device within the vascular system of an animal. The medical device can then elute a therapeutically effective amount of the active agent to treat and/or prevent a disease in which said active agent is useful as a therapy.
- the medical device can treat a vascular disease, such as restenosis.
- a therapeutically effective amount of one of the active agent When used in the above or other treatments, a therapeutically effective amount of one of the active agent may be employed. It will be understood, however, that the total daily usage of the active agents will be decided by the attending physician within the scope of sound medical judgment.
- the specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; route of administration; and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- the active agent can be delivered in an amount that generates a local concentration of the analog in the tissues, cells, cellular matrices, body fluids, blood, or the like adjacent or proximal to the endoprosthesis. This can include achieving a concentration of the active agent that inhibits and/or treats a disease in which the active agent can be used as part of a therapeutic regimen.
- the active agent e.g., rapamycin analog
- the active agent can be delivered to produce a local concentration of about 10 pg/ml to about 10 mg/ml. More preferably, active agent can produce a local concentration of about 100 pg/ml to about 1 mg/ml.
- the active agent can produce a local concentration of about 1 ng/ml to about 100 ug/ml. Still more preferably, the active agent can produce a local concentration of about 10 ng/ml to about 10 ug/ml. Still more preferably, the active agent can produce a local concentration of about 100 ng/ml to about 1 ug/ml. Most preferably, the active agent can produce a local concentration of about 500 ug/ml.
- the active agent can be delivered in an amount that generates a sustained local concentration of the active agent in the tissues, cells, cellular matrices, body fluids, blood, or the like proximate to the medical device that is expressed as molarity.
- delivery of the active agent e.g., rapamycin analog
- the active agent can produce a sustained local concentration of about 10 pM to about 10 mM.
- the active agent can produce a sustained local concentration of about 100 pM to about 1 mM.
- the active agent can produce a sustained local concentration of about 1 nM to about 100 uM.
- the active agent can produce a sustained local concentration of about 10 nM to about 10 uM.
- the active agent can produce a sustained local concentration of about 100 nM to about 1 uM.
- the active agent can produce a sustained local concentration at about 300 nM.
- the total daily dose of the active agent eluted from the medical device into a human or lower animal may range from about 0.01 to about 10 mg/kg/day.
- the daily dose that a patient will receive depends on the length of the stent.
- a 15 mm coronary stent may contain a drug in an amount ranging from about 1 to about 120 mg and may deliver that drug over a time period ranging from several hours to several weeks.
- the elution rate controlling matrix can be configured to modulate the rate of elution of the active agent, which can include a substantially constant or steady-state rate. Also, this can include being released with or without an initial burst followed by 0, 1st, or 2nd order delivery kinetics.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Epidemiology (AREA)
- Medicinal Chemistry (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Vascular Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Engineering & Computer Science (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Dispersion Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Cardiology (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
Abstract
Description
- This U.S. patent application claims benefit of U.S. provisional patent applications having Ser. Nos. 60/823,057, 60/823,061, 60/823,063, 60/823,067, and 60/823,069 and 60/823,071 each filed on Aug. 21, 2006, each entitled “MEDICAL DEVICES FOR CONTROLLED DRUG RELEASE,” and each having Wouter Roorda as the inventor, which U.S. provisional patent applications are incorporated herein in their entirety by specific reference. Additionally, this U.S. patent application cross-references related U.S. patent applications filed herewith and having Attorney Docket Numbers 17066.15.1.2 (“METHODS OF MANUFACTURING MEDICAL DEVICES FOR CONTROLLED DRUG RELEASE”) and 17066.15.1.3 (“METHODS OF USING MEDICAL DEVICES FOR CONTROLLED DRUG RELEASE”), which cross-referenced applications are incorporated herein in their entirety by specific reference.
- I. Technology Field
- The present invention relates to medical devices, endoprostheses, stents, and methods for the manufacture and use of the same. More particularly, the devices of the present invention are configured to include a porous network that contains an elution rate controlling matrix carrying an active agent.
- II. The Related Technology
- Balloon angioplasty, either alone or followed by an endoprosthetic implantation, has become a commonplace interventional alternative to open heart surgery in those patients appropriate for such treatment. Endoprostheses are generally tubular members having a collapsed state suitable for insertion into a vessel and a deployed state in which the endoprosthesis is expanded to support the surrounding tissue and prevent at least local narrowing of the vessel. Several types of endoprostheses are known, including balloon expandable, self-expanding, and endoprostheses constructed from biostable springs.
- Polymeric materials, for example, are commonly used in medical devices as matrices for the retention of therapeutic agents. These polymeric materials are typically applied as coatings to the medical devices, raising issues regarding coating adhesion, mechanical properties, cracking, delamination, and material biocompatibility. However, problems occur when mechanical forces are applied on an endoprosthesis during manufacture (e.g., crimping, endoprosthetic retention procedures, packaging etc.) as well as during actual use (e.g., unsheathing, catheter preparation, advancement through catheter and vasculature), which may result in damaging the polymeric coating. In addition, many polymers with desirable controlled release properties, like the family of biodegradable polymers based on polylactide, polyglycolide and their copolymers are difficult candidates for a polymeric endoprosthetic coating, because of poor adhesion to metals and/or poor elongation and brittle character.
- There exists a need in the art for medical devices (specifically, drug eluting endoprostheses) capable of retaining a therapeutic agent in an endoprosthesis so that the drug may be eluted to a local region of the vessel wall in a controlled manner through pores in the endoprosthesis. Furthermore, an ideal medical device would incorporate agents within a polymer in protective pores to reduce or eliminate current aggressive manufacturing method problems or actual use to prevent physical damage of the medical device.
- The present invention is a medical device for controlling the release of an active agent. The medical device has a supporting structure that is configured and dimensioned to be used within a body of an animal. The medical device of the present invention has a porous body disposed on and at least partially covering the supporting structure of the medical device. The porous body is made from a biocompatible material having a plurality of pores.
- In one embodiment, the present invention includes a medical device for controlling the release of an active agent therefrom. Such a medical device can include the following: a supporting structure configured and dimensioned to be used within a body of an animal; a porous body disposed on and at least partially covering the supporting structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and an elution rate controlling matrix disposed on at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls an elution rate of the active agent from the pores.
- In one embodiment, the present invention includes an endoprosthesis for controlling the release of an active agent therefrom. Such an endoprosthesis can include the following: a supporting metal structure configured and dimensioned to be used within a body of a human; a porous body disposed on and at least partially covering the supporting metal structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within said pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; an elution rate controlling matrix disposed within the porous body so as to contain said active agent within said pores, said matrix material including a polymeric biocompatible material that at least partially controls an elution rate of the active agent from the pores; and said pores each having a dimension that is configured to at least partially determine said elution rate.
- In one embodiment, the present invention includes a stent for controlling the release of an active agent therefrom. Such a stent can include the following: a superelastic metal structure configured and dimensioned as a stent to be used within a lumen of an animal; a porous body disposed on and at least partially covering the superelastic metal structure, said porous body including a first biocompatible material having a plurality of pores; a therapeutically effective amount of an active agent disposed within at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and an elution rate controlling matrix disposed on at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix material including a second biocompatible material that controls an elution rate of the active agent from the pores. Optionally, the porous body is integrated with the supporting structure.
- In one embodiment, the porous body has a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the porous body can include pores having a diameter of from about 10 nanometers to about 1 millimeter.
- In one embodiment, the medical device is selected from the group consisting of endoprostheses, drug delivery stents, drug delivery catheters, grafts, drug delivery balloons, guidewires, orthopedic implants, dental implants, fixation screws, indwelling catheters, ocular implants, pharmacotherapeutic implants, blood-contacting components of extracorporeal devices, staples, filters, needles, tubes, coils, wires, clips, screws, sensors, plates, conduits, portions thereof, and combinations thereof.
- In one embodiment, the second biocompatible material is at least one polymeric material comprised of phosphorylcholines, phosphorylcholine linked macromolecules, polyolefins, poly(meth)acrylates, polyurethanes, polyesters, polyanhydrides, polyphosphazenes, polyacrylates, acrylic polymers, poly(lactide-coglycolides) (PLGA), polylactic acids (PLA), poly(hydroxybutyrates), poly(hydroxybutyrate-co-valerates), polydioxanones (PDO), polyorthoesters, polyglycolic acids (PGA), polycaprolactones (PCL), poly(glycolic acid-co-trimethylene carbonates), polyphosphoesters, polyphosphoester urethanes, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyiminocarbonates, aliphatic polycarbonates, fibrins, fibrinogens, celluloses, starchs, collagens, polycarbonate urethanes, polyisoprenes, polyisobutylenes, polybutadienes, polyethylenes, plasticized polyethylene terephthalates, polyethylene terepthalates, polymethylmethacrylates, ethylene ethylacrylates, polyethyl hexylacrylates, plasticized ethylene vinylacetates, polyvinyl acetates, ethylene vinyl acetates, ethylene vinyl alcohols, polyvinyl alcohols, cross-linked polyvinyl alcohols, cross-linked polyvinyl butyrates, polyvinylbutyrates, polybutylmethacrylates, polyvinyl chlorides, ethylene vinylchloride copolymers, silicones, polysiloxanes, substituted polysiloxanes, polyethylene oxides, polyethylene glycols (PEG), polybutylene terepthalate-co-PEG, PCL-co-PEG, PLA-co-PEG, polyvinyl acetals, polyvinyl acetates, polyamides, polyvinyl pyrrolidones, polyacrylamides, polyvinyl esters, copolymers thereof, polymer derivatives thereof, or combinations thereof.
- In one embodiment, the active agent is comprised of at least one of analgesics, antipyretics, antiasthamatics, antibiotics, antidepressants, antidiabetics, antifungal agents, antihypertensive agents, anti-inflammatories including non-steroidal and steroidal, antineoplastics, antianxiety agents, immunosuppressive agents, antimigraine agents, sedatives, hypnotics, antianginal agents, antipsychotic agents, antimanic agents, antiarrhythmics, antiarthritic agents, antigout agents, anticoagulants, thrombolytic agents, antifibrinolytic agents, hemorheologic agents, antiplatelet agents, anticonvulsants, antiparkinson agents, antihistamines, anti-restenosis agents, antipruritics, agents useful for calcium regulation, antibacterial agents, antiviral agents, antimicrobials, anti-infectives, bronchodilators, steroidal compounds and hormones, or combinations thereof. Preferably, the active agent comprises at least one of rapamycin, rapamycin analog, zotarolimus, sirolimus, everolimus, dexamethasone, prednisone, hydrocortisone, estradiol, acetaminophen, ibuprofen, naproxen, sulidac, heparin, taxol, paclitaxel, and combinations thereof.
- In one embodiment, the present invention includes a method of treating and/or preventing a disease in an animal. Such as method can include the following: providing a medical device (e.g., endoprosthesis, stent, etc.) configured and dimensioned to be used within a body of an animal, as described herein; deploying the medical device into the body of the animal; and allowing the active agent to elute from the pores into the body of the animal, where the elution rate controlling matrix controls the elution of the active agent from the pores. Accordingly, the medical device can be placed into or in contact with a body or fluid of an animal. This can include placing the medical device within the vascular system of an animal. The medical device can then elute a therapeutically effective amount of the active agent to treat and/or prevent a disease in which said active agent is useful as a therapy. For example, the medical device can treat a vascular disease, such as restenosis.
- In one embodiment, the present invention includes a method of manufacturing a medical device used for treating and/or preventing a disease in an animal. Such a method can include the following: fabricating a supporting structure, which can include shaping the supporting structure into the medical device (e.g., endoprosthesis, stent, etc.); fabricating a porous body onto at least a portion of the supporting structure, said porous body including a first biocompatible material having a plurality of pores; introducing a therapeutically effective amount of an active agent into at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and introducing an elution rate controlling matrix onto at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls the elution of the active agent from the pores.
- In one embodiment, the fabrication of the porous body can include dimensioning and configuring the porous body to have a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the fabrication of the porous body can include dimensioning and configuring the pores to have a diameter of from about 10 nanometers to about 1 millimeter.
- In one embodiment, the method of manufacture can include configuring the medical device to be at least one of an endoprosthesis, drug delivery stent, drug delivery catheter, graft, drug delivery balloon, guidewire, orthopedic implant, dental implant, fixation screws, indwelling catheter, ocular implant, pharmacotherapeutic implant, blood-contacting component of extracorporeal device, staple, filter, needle, tube, coil, wire, clip, screw, sensor, plate, conduit, portion thereof, or combination thereof.
- In one embodiment, the method of manufacture can include combining the active agent with the second biocompatible material. This can include combining the active agent and elution rate controlling matrix before, during, or after being introduced into the porous body. As such, the active agent can be absorbed into the elution rate controlling matrix after being introduced into the porous body.
- In one embodiment, the method of manufacture can include any of the following processes: fabricating the supporting structure and/or porous body by sintering; fabricating the supporting structure and/or porous body by a metal printing process; fabricating the supporting structure and/or porous body by a direct rapid prototyping process; or shaping the supporting structure and/or porous body into an endoprosthesis.
- It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not to be viewed as being restrictive of the present invention, as claimed. Further advantages of this invention will be apparent after a review of the following detailed description of the disclosed embodiments which are illustrated schematically in the accompanying drawings and in the appended claims.
- To further clarify the above and other advantages and features of the present invention, a more particular description of the invention will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. The invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
-
FIG. 1 is a cross-sectional view illustrating an embodiment of a portion of a medical device including a supporting structure defining a lumen and having a porous body disposed thereon, wherein different pore embodiments are depicted to have different active agent and elution rate controlling matrix embodiments. -
FIG. 2 is a cross-sectional view illustrating an embodiment of a porous body having a plurality of pores. -
FIG. 3 is a schematic representation of an embodiment of a direct rapid prototyping process for preparing a medical device in accordance with the present invention. - The present invention generally relates to a drug eluting medical devices, endoprostheses, stents, and the like that have an elution rate controlling matrix that contains an active agent and that is disposed within a porous material. Also, the present invention relates to methods of manufacturing and using the medical devices of the invention in treating and/or preventing diseases in animals, such as mammals. The medical devices of the invention are constructed of materials suitable for use in animals, and include at least one elution rate controlling matrix and a therapeutically effective amount of at least one biologically active agent. The medical devices of the invention also include at least one porous material associated with a supporting structure, where the elution rate controlling matrix containing the active agent is disposed within the pores of the porous material. The pores of the porous material can be dimensioned and configured to cooperate with the elution rate controlling matrix for controlling the elution of the active agent.
- Drug eluting medical devices, such as endoprostheses (e.g., stents), are known in the art, but a problem with the use of existing medical devices having drug eluting coatings is that the coatings are prone to being rubbed off or otherwise damaged during the manufacturing processes, through manipulation by the physician, during the deployment procedure, or through scratching, rubbing, or other interactions with the body in which they are deployed. One additional problem with drug eluting medical devices has been the lack of being able to control the rate of elution of the drugs from the coatings.
- An advantage for a medical device of the present invention includes the polymer containing an active agent being resistant to damage from mechanical forces placed upon an endoprosthesis during manufacture (e.g. crimping, endoprosthesis retention procedures, and packaging) as well as during actual use (e.g. unsheathing, catheter prep, advancement through catheter, and vasculature). In part, this is because the elution rate controlling matrix is disposed inside the protective pores of a porous body, making more manufacturing methods possible. For example, with small, densely dispersed pores, a fairly uniform distribution of the matrix is achieved. As such, the porous body can protect the matrix from mechanical damage such as delamination, flaking, and/or cracking.
- Another advantage permits the use of many polymers (previously unusable) with desirable controlled release properties including biodegradable polymers based on polylactide and/or polyglycolide. Polylactide and/or polyglycolide polymers are difficult candidates for a drug elution rate controlling coating because of their poor adhesion to metals and/or poor elongation and brittle character. By incorporating agents within polylactide and/or polyglycolide, and by incorporating the mixture within the pores of the porous body of the medical devices, the use of polylactide and/or polyglycolide polymers, for example, becomes feasible.
- I. Introduction
- The medical devices of the present invention are configured to be capable of controlling the elution of active agents (e.g., pharmaceuticals, therapeutics, and other substances or compounds) from the medical device. As such, the medical device is configured for either permanent or temporary placement into, or brought in contact with, the body or body fluid of an animal. The medical device is constructed to include supporting structure for a porous body that includes at least one elution rate controlling matrix containing an effective amount of at least one active agent. The porous body has a plurality of pores that are dimensioned and configured to retain the elution rate controlling matrix, and for contributing to the controlled elution profile of the active agent. Thus, the porous body and the elution rate controlling matrix are configured, either individually or in combination, to control the release of the active agent in order to achieve the desired diffusion kinetics.
- The medical device is constructed of at least one biocompatible material. That is, the different portions of the medical device can be constructed of different biocompatible materials, which can be different types of metals, polymers, or ceramics, or different combinations of such materials. For example, the supporting structure and porous body can be prepared of different types of metals, while the elution rate controlling matrix can be prepared from a polymer. In some medical devices, the supporting structure and/or porous body can be prepared from a shape-memory material.
- The porous body of the medical device can include millipores, micropores, and/or nanopores. The dimension of the pores can be modulated and adapted for the particular needs and uses of the medical device on which it will be utilized. In any event, the pores are configured to be capable of retaining the elution rate controlling matrix and allowing for the elution of the active agent therefrom with controlled diffusion kinetics. As such, the pores can be configured to obtain zero, first, and/or second order diffusion kinetics with or without burst effects.
- Additionally, the configuration of the medical devices that includes the elution rate controlling matrix disposed within the pores of the porous body can allow for a broader range of polymers to be used in the matrix. The porous body provides increased resistance to physical damage of the elution rate controlling matrix and agents disposed therein That is, the disposition of the matrix in the pores protects the matrix in a manner that allows for structurally weak polymers that are subject to uncontrolled degradation by physical contact to now be usable with drug eluting medical devices. As such, polymers not previously available for use as drug eluting materials can now be used in drug eluting medical devices. In part, this is because the porous body protects the elution rate controlling matrix from contact with the body of a patient (e.g., intraluminal wall). Therefore, polymer coatings of a polymer-coated medical device that would normally rub off or otherwise uncontrollably degrade are able to maintain structural integrity by being protected by the porous body.
- The terms “agent” refers to an active agent that has biological activity and may be used in a therapy. Also, an “agent” can be synonymous with “at least one agent,” “compound,” or “at least one compound,” and can refer to any form of the agent, such as a derivative, analog, salt or a prodrug thereof. The agent can be present in various forms, components of molecular complexes, and pharmaceutically acceptable salts (e.g., hydrochlorides, hydrobromides, sulfates, phosphates, nitrates, borates, acetates, maleates, tartrates, and silicylates). The term “agent” can also refer to any pharmaceutical molecules or compounds, therapeutic molecules or compounds, matrix forming molecules or compounds, polymers, synthetic molecules and compounds, natural molecules and compounds, and any combination thereof.
- The terms “an effective amount” or “therapeutically effective amount” of an agent, compound or therapeutic, with respect to methods of treatment, refers to an amount of the pharmaceutical, therapeutic, agent or other compound in a preparation which, when administered as part of a desired dosage regimen (to an animal, preferably a human) alleviates a symptom, ameliorates a condition, or slows the onset of disease conditions according to clinically acceptable standards for the disorder or condition to be treated or the cosmetic purpose. A “therapeutically effective amount,” as recognized by those of skill in the art, will be determined on a case by case basis. Factors to be considered include, but are not limited to, the disorder to be treated and the physical characteristics of the one suffering from the disorder.
- The terms “biocompatible” and “biocompatibility” are art-recognized and mean that the referent is neither itself toxic to a host (e.g., an animal or human), nor degrades (if it degrades) at a rate that produces byproducts (e.g., monomeric or oligomeric subunits or other byproducts) at toxic concentrations, causes inflammation or irritation, or induces an immune reaction at unacceptable levels in the host. It is not necessary that any subject composition have a purity of 100% to be deemed biocompatible. Hence, a subject composition may comprise 99%, 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, or even less of biocompatible agents, such as polymers and other materials and excipients described herein, and still be biocompatible.
- The term “co-incorporation” or “co-encapsulation” refers to the incorporation of a pharmaceutical, therapeutic, agent, compound, or other material, and at least one other pharmaceutical, therapeutic, agent, compound, or other material in an elution rate controlling matrix. More specifically, the physical form in which any pharmaceutical, therapeutic agent, compound or other material is encapsulated in an elution rate controlling matrix may vary with the particular embodiment. For example, a pharmaceutical, therapeutic, agent, compound, or other material may be first encapsulated in a microsphere and then combined with the elution rate controlling matrix in such a way that at least a portion of the microsphere structure is maintained. Alternatively, a pharmaceutical, therapeutic, agent, compound, or other material may be sufficiently immiscible in the polymer of the invention such that it is dispersed as small droplets, rather than being dissolved, in the elution rate controlling matrix. Any form of encapsulation or incorporation is contemplated by the invention, in so much as the release, or sustained release, of any encapsulated pharmaceutical, therapeutic, agent, compound, or other material determines whether the form of encapsulation is sufficiently acceptable for any particular use.
- The term “dispersed” means at least one bioactive agent and/or compound as disclosed herein is dispersed, mixed, dissolved, homogenized, and/or covalently bound (“dispersed”) in a polymer, such as the elution rate controlling matrix.
- The term “encapsulation” or “incorporation” when used in reference to a pharmaceutical, therapeutic, agent, compound, or other material and an elution rate controlling matrix indicates that the agent is contained within the elution rate controlling matrix. In certain embodiments, these terms include incorporating, formulating, or otherwise including such agents into a composition that allows for release, such as sustained release, of such agent in the desired application. The terms contemplate any manner by which a pharmaceutical, therapeutic, agent, compound, or other material is incorporated into a polymer matrix, including for example: attached to a monomer of such elution rate controlling matrix (e.g., by covalent, ionic, or other binding interaction), physical admixture, enveloping the agent in a coating layer of a polymer, and having such monomer be part of the polymerization to give a polymeric formulation, distributed throughout the polymeric matrix, appended to the surface of the polymeric matrix (e.g., by covalent or other binding interactions), encapsulated inside the polymeric matrix (e.g., elution rate controlling matrix), and the like.
- The term “pharmaceutically acceptable salts” is art-recognized, and includes relatively non-toxic, inorganic and organic acid, or base addition salts of compositions, including without limitation, analgesic agents, therapeutic agents, other materials, and the like. Examples of pharmaceutically acceptable salts include those derived from mineral acids, such as hydrochloric acid and sulfuric acid, and those derived from organic acids, such as ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and the like. Examples of suitable inorganic bases for the formation of salts include the hydroxides, carbonates, and bicarbonates of ammonia, sodium, lithium, potassium, calcium, magnesium, aluminum, zinc, and the like. Salts may also be formed with suitable organic bases, including those that are non-toxic and strong enough to form such salts. For purposes of illustration, the class of such organic bases may include mono-, di-, and trialkylamines, including methylamine, dimethylamine, and triethylamine; mono-, di-, or trihydroxyalkylamines including mono-, di-, and triethanolamine; amino acids, including arginine and lysine; guanidine; N-methylglucosamine; N-methylglucamine; L-glutamine; N-methylpiperazine; morpholine; ethylenediamine; N-benzylphenethylamine; trihydroxymethyl aminoethane; and the like. (See, J. Pharm. Sci. 66: 1-19 (1977)).
- The term “polymer” is intended to include a product of a polymerization reaction inclusive of oligomers, homopolymers, copolymers, terpolymers, and the like, whether natural or synthetic, including random, alternating, block, graft, branched, cross-linked, blends, compositions of blends, and variations thereof.
- The term “pharmaceutically acceptable carrier” means a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material, or formulation auxiliary of any type.
- The term “preventing” or “prevention” is art-recognized, and when used in relation to a condition, including a local recurrence (e.g., pain), a disease including cancer, a syndrome complex including heart failure, or any other medical condition, is well understood in the art and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, (e.g., by a statistically and/or clinically significant amount). Prevention of an infection includes, for example, reducing the number of diagnoses of the infection in a treated population versus an untreated control population, and/or delaying the onset of symptoms of the infection in a treated population versus an untreated control population. Prevention of pain includes, for example, reducing the magnitude of, or alternatively delaying, pain sensations experienced by subjects in a treated population versus an untreated control population.
- The term “metal,” as used herein, refers to elemental metals, alloys of elemental metals, alloys having multiple components, and metals mixed with other elements or compounds in a heterogeneous or homogeneous mixture.
- The term “pore,” as used herein, refers to invaginations in a surface such that one end of the pore is exposed to the surface and the other end of the pore is disposed within the material whose surface the pore is displaced within. For example, a pore can be substantially hole-like, having a first end disposed within a metal covering of an endoprosthesis and having a second end forming an opening upon the surface of the metal covering of the endoprosthesis.
- The term “porous layer,” as used herein, refers to a layer having at least one pore. The porous layer is disposed upon another surface. The porous layer may have pores of different shapes. Also, the term “porosity” is art-recognized, and refers to both the void volume of a porous material as well as its surface area. It should be understood that a numerical value for porosity of a material, for instance as a percent of the total volume of material, can describe a wide range of compositions, since it does not include the surface area of the material. For example, a material with 50% porosity could have a small number of large pores, or a large number of small pores. The surface area of the latter can be many orders of magnitude larger than that of the former.
- The term “pro-drug,” as used herein, refers to compounds which are transformed in vivo to the parent compound of the formula above, for example, by hydrolysis in blood.
- The term “sustained release,” when used with respect to a pharmaceutical, therapeutic, agent, compound, or other material is art-recognized. For example, a subject composition which releases a substance over time may exhibit sustained release characteristics, in contrast to a bolus type administration in which the entire amount of the substance is made biologically available at one time. For example, in particular embodiments, upon contact with body fluids including blood, spinal fluid, lymph, or the like, the polymer matrices (formulated as provided herein and otherwise as known to one of skill in the art) may undergo gradual degradation (e.g., through hydrolysis) with concomitant release of any material incorporated therein (e.g., a therapeutic and/or biologically active agent) for a sustained or extended period as compared to the release from a bolus or burst effect. This release may result in prolonged delivery of therapeutically effective amounts of any incorporated therapeutic agent. Sustained release will vary in certain embodiments as described in greater detail below.
- The term “treating” or “treatment” is art-recognized and includes preventing a disease, disorder or condition from occurring in an animal which may be predisposed to the disease, disorder, and/or condition but has not yet been diagnosed as having it; inhibiting the disease, disorder, or condition, impeding its progress; and relieving the disease, disorder, or condition (e.g., causing regression of the disease, disorder, and/or condition). Treating the disease or condition includes ameliorating at least one symptom of the particular disease or condition, even if the underlying pathophysiology is not affected, including treating the pain of a subject by administration of an analgesic agent even though such an agent does not treat the cause of the pain.
- II. Medical Devices
- In one embodiment, the present invention includes a medical device that is configured for controlling the release of an active agent therefrom. This can include release into a blood, organ, tissue, or other body fluid that is directed to circulate within a body. Such a medical device can include a supporting structure, porous body, elution rate controlling matrix, and an active agent. The supporting structure can be configured and dimensioned to be used within a body of an animal, or to be used in contact with a body fluid, organ, tissue, or other fluid that is directed to circulate within a body. The porous body can be disposed on and at least partially covering the supporting structure. Also, the porous body can be comprised of a first biocompatible material that is configured to include a plurality of pores or a porous network. The elution rate controlling matrix can be disposed on at least one surface of the porous body so as to contain the active agent within a portion of the pores. That is, the matrix can be disposed within the pores and adhered or affixed to the wall of a pore. The matrix material can be prepared from a second biocompatible material that determines an elution rate of the active agent from the pores. The active agent can be present in the matrix at a therapeutically effective amount that is being capable of treating and/or preventing a disease in which the medical device is used in an a therapy.
- For example, the porous body has a thickness ranging from about 10 nanometers to about 1 millimeter, more preferably from about 100 nanometers to about 100 microns, more referable from about 1 micron to about 10 microns. Also, the porous body comprises pores having a diameter of from about 10 nanometers to about 1 millimeter, more preferably from about 100 nanometers to about 100 microns, more preferable from about 1 micron to about 10 microns. Also, the porous body can include a relative porosity from about 5% to about 98%, more preferably from about 40% to about 85%, and most preferably from about 50% to about 75%.
- In one embodiment, the present invention is a drug eluting stent allowing for the controlled release of pharmaceutical and therapeutic agents. The stent includes at least one body having a lumen. The body is dimensioned into a desired stent configuration, and has at least one elution rate controlling material and an effective amount of at least one agent. The stent also has a layer of porous material associated with the stent body. The pores of the porous material are dimensioned and configured to house the elution rate controlling materials and agents for a controlled drug release application. The pores and elution rate controlling materials can be configured independently or in combination to control the release of the active agents therefrom.
- In one embodiment, the active agents are homogeneously dispersed within the elution rate controlling matrix within the pores. The active agents may also be non-homogeneously or heterogeneously distributed within the elution rate controlling matrix within the pores. The elution rate controlling matrix provide for controlled release of agents, which includes long-term or sustained release of an agent that is bioactive and that is eluted from pores in a controlled, determined, and configured manner over a desired, often extended, period of time.
- In one embodiment, where the elution rate controlling matrix is a biodegradable polymer, the biodegradation rate of the polymer may be characterized by a release rate of the active agent. In such circumstances, the biodegradation rate depends on not only the chemical identity and physical characteristics of the polymer, but also on the identity of agents incorporated therein.
- In one embodiment, the elution rate controlling matrix is a polymeric formulation that is configured to biodegrade within a period that is acceptable in the desired application. In certain embodiments, including in vivo therapy, such degradation occurs in a period usually less than about five years, one year, six months, three months, one month, fifteen days, five days, three days, or even one day upon exposure to a physiological solution with a pH between 6 and 8 having a temperature of between 25 degrees Celsius and 37 degrees Celsius. In one embodiment, the polymer degrades in a period of between about one hour and several weeks.
-
FIG. 1 is a schematic representation of various embodiments of portions of amedical device 10 in accordance with the present invention. As such, themedical device 10 includes a supportingstructure 12 that has aporous body 14 disposed thereon. In the illustrated embodiment, themedical device 10 is an endoprosthesis where the supportingstructure 12 defines aninternal lumen 11. However, themedical device 10 and supportingstructure 12 can be configured into a wide array of shapes, sizes, and designs commensurate with the vast number of different types of medical devices. - The
porous body 14 is shown to include a plurality ofpores 16 that contain anactive agent 18 and an elutionrate controlling matrix 20. Thepores 16 can have different shapes, sizes, and configurations depending on the process of manufacture as well as the desired functionality and desired elution rate of theactive agent 18 from the matrix. As such,exemplary pore 16,active agent 18, andmatrix 20 configurations are depicted in portions A-E. - Portion A shows that the
active agent 18 can be deposed into apore 16 and then covered withmatrix 20, which forms a protective barrier for the active agent. Also, thematrix 20 serves to control the elution rate from theactive agent 18 from thepore 16. As shown, thematrix 20 is disposed within thepore 16 in a manner such that a portion of thematrix 20 protrudes out of thepore 16. - Portion B shows the
active agent 18 to be included withinmicrospheres 22 that are disposed within thepore 16. Alternatively, themicrospheres 22 can be microparticles, nanoparticles, or the like. Also, themicrospheres 22 can be round, spherical, and symmetrical, or they can be irregular, rough, jagged, or nonsymmetrical. Themicrospheres 22 are then contained within thematrix 20. As such, themicrospheres 22 can elute from thepore 16, and/or the active agent can diffuse out of themicrospheres 22 which are retained within thepore 16. For example, themicrospheres 22 can elute from thepore 16 in the case of abiodegradable matrix 20, where theactive agent 18 diffuses from themicrospheres 22. Alternatively, theactive agent 18 can diffuse from themicrosphere 22 while disposed within thepore 16, through thematrix 20, and then elute from thepore 16. Additionally, other similar configurations that include the use ofmicrospheres 22 can be used. - Portion C is similar to Portion A in that it shows that the
active agent 18 can be deposed into apore 16 and then covered withmatrix 20, which forms a protective barrier for the active agent. However, thematrix 20 is disposed within thepore 16 in a manner such that a portion of thematrix 20 does not protrude out of thepore 16, and thematrix 20 is protected by theporous body 14. - Portion D shows a first
active agent composition 24 and a secondactive agent composition 26 disposed within thepore 16. More particularly, the firstactive agent composition 24 is shown to be disposed at the bottom of thepore 16 and covered with a layer of thematrix 20, which in turn is covered with the secondactive agent composition 26 that is covered with another layer of thematrix 20. Such a configuration can be useful when the firstactive agent composition 24 and secondactive agent composition 26 have different active agents or different formulations. Also, the twodifferent matrix 20 layers can have the same composition or different compositions so as to alter the rate of elution of the active agent from thepore 16. For example, the active agent in the secondactive agent composition 26 can be useful for a first stage of a therapy and the active agent in the firstactive agent composition 24 can be useful for a second stage of a therapy. In another example, the active agent in the firstactive agent composition 24 may diffuse through thematrix 20 at a faster rate, and thereby elute from thepore 16 concomitantly. Also, theouter matrix 20 can be substantially more resilient to forces than theinner matrix 20, and thereby theouter matrix 20 can provide protection to theinner matrix 20 and theactive agent compositions 24, 26). Additionally, other similar configurations that include the use of multiple active agent compositions can be used. - Portion E is similar to Portion B in that it shows a
first microsphere 28 and asecond microsphere 30 disposed within thepore 16. Themicrospheres matrix 20, and atopcoat 32 is applied over thematrix 20 to protect thematrix 20 andmicrospheres microspheres pore 16 as described in connection with Portion B. Also, themicrospheres different microsphere - In any of the portions A-E, the active agent composition can include an elution rate controlling matrix. As such, multiple elution rate controlling matrices can be used. Alternatively, only a single elution rate controlling matrix containing the active agent can be used.
-
FIG. 2 is a schematic representation of a portion of an embodiment of aporous body 50 in accordance with the present invention. Theporous body 50 is comprised of a plurality oflayers 52 that are configured and dimensioned such that theconsecutive layers 52 form a plurality ofpores 54. Such aporous body 50 can be prepared layer-by-layer in a manner that results in a plurality of pores. Exemplary methods of preparing such aporous body 50 comprised of a plurality oflayers 52 can include direct rapid prototyping, metal printing processes, and the like, which are described in more detail below. - In one embodiment, the elution rate controlling matrix can include a combination or mixture of a non-polymeric material and a polymeric material.
- In one embodiment, the elution rate controlling matrix can include the active agent and radiopaque dyes or particles.
- In one embodiment, the medical device can include a topcoat that covers the pores of the porous body. Alternatively, the topcoat can be applied onto the matrix in order to provide additional protection or to confer desirable controlled release characteristics. As such, the topcoat can be configured to include various functions, such as the following: it can provide a smooth outer profile for the porous body; it can minimize loss of the active agent during delivery; it can provide a biocompatible interface with tissue (e.g., blood vessel) after implantation; and it can aide in controlling the release of the active agent from the pores into the surrounding tissue or body fluid upon use. The topcoat may include, or be substantially free of, any active agents. In some instances, the topcoat is applied over the porous body. In other instances, the top coat is disposed substantially within the pores such that the top coat does not protrude from the pores. In other instances, the topcoat is at least partially included in the pores such that the topcoat is anchored into the pore complex. Thus, the adhesion of the topcoat to the surface of the device is improved or even largely achieved by its anchoring into the pores.
- A. Exemplary Medical Devices
- In one embodiment, the medical device can be an endoprosthesis, such as an endovascular and/or intracoronary device. Examples include drug delivery catheters, grafts, drug delivery balloons, guidewires, stents, filters, grafts, valves, occlusive devices, trocars, aneurysm treatment devices, and accessories used in vascular intervention. Additionally, an endoprosthesis can be configured for a variety of intralumenal applications, including vascular, coronary, biliary, esophageal, urological, gastrointestinal, nasal, or the like. When the medical device is an endoprosthesis, multiple configurations of endoprostheses may be utilized including, but not limited to, peripheral endoprostheses, peripheral coronary endoprostheses, degradable coronary endoprostheses, non-degradable coronary endoprostheses, self-expanding endoprostheses, balloon-expanded endoprostheses, and esophageal endoprostheses. However, the drug eluting endoprostheses of the invention may be manufactured into a number of different configurations. These medical devices may have a primary function that is different from the release of the drug. For example, an endoprosthesis may be primarily used for maintaining the patency of a lumen, and also releases a drug to prevent restenosis of a lumen. The medical device may have drug delivery as its primary function, for instance an implantable system for the local delivery of a therapeutic substance like an anti-cancer drug.
- In one embodiment, the medical devices include an implant indwelling device. Examples include orthopedic implants, ocular implants, pharmacotherapeutic implants, dental implants, other prosthetic implants, fixation screws, indwelling catheters, any other indwelling device, and other implant or indwelling medical devices that are deployed so as to be in contact with bodily fluid or tissue.
- In one embodiment, the medical device includes blood-contacting components of extracorporeal devices. Thus, the medical device configured in accordance with the present invention can be a portion of an extracorporeal device that comes into contact with a body part of a body fluid. For example, the medical device can be a portion of a kidney dialysis system that contacts the body fluid.
- In one embodiment, the medical device includes a surgical or medical procedure tool. Examples can include staples, filters, needles, tubes, coils, wires, clips, screws, sensors, plates, conduits, and the like. In fact, the medical device can be any medical tool that is used in a medical procedure in a manner that would allow for the drug to be eluted from the device so as to provide a beneficial function.
- In one embodiment, the medical device can have a delivery orientation and a deployed orientation. For example, a stent has a delivery orientation that has a much narrower cross-sectional profile compared to the deployed orientation. This allows the stent in the delivery orientation to be delivered through the tortuous vasculature pathway before being expanded into the deployed orientation that provides structural support to the vasculature.
- B. Medical Device Compositions
- The supporting structure and/or porous body of the medical devices of the present invention can be made of a variety of materials, such as, but not limited to, those materials which are well known in the art of medical device manufacturing. As such, the supporting structure and/or porous body can be prepared from the same materials or different materials. Generally, the materials for the supporting structure and/or porous body can be selected according to the structural performance and biological characteristics that are desired. Materials well known in the art for preparing medical devices (e.g., endoprostheses), such as polymers, ceramics, and metals, can be employed in preparing the supporting structure and/or porous body.
- In one embodiment, the medical device can include a material made from any of a variety of known suitable materials, such as a shaped memory material (“SMM”) or superelastic material. For example, the SMM can be shaped in a manner that allows for restriction to induce a substantially tubular, linear orientation while within a delivery shaft (e.g., delivery catheter), but can automatically retain the memory shape of the medical device once extended from the delivery shaft. SMMs have a shape memory effect in which they can be made to remember a particular shape. Once a shape has been remembered, the SMM may be bent out of shape or deformed and then returned to its original shape by unloading from strain or heating. SMMs can be shape memory alloys (“SMA”) or superelastic metals comprised of metal alloys, or shape memory plastics (“SMP”) comprised of polymers.
- An SMA can have any non-characteristic initial shape that can then be configured into a memory shape by heating the SMA and conforming the SMA into the desired memory shape. After the SMA is cooled, the desired memory shape can be retained. This allows for the SMA to be bent, straightened, compacted, and placed into various contortions by the application of requisite forces; however, after the forces are released, the SMA can be capable of returning to the memory shape. The main types of SMAs are as follows: copper-zinc-aluminium; copper-aluminium-nickel; nickel-titanium (“NiTi”) alloys known as nitinol; and cobalt-chromium-nickel alloys or cobalt-chromium-nickel-molybdenum alloys known as elgiloy. The nitinol and elgiloy alloys can be more expensive, but have superior mechanical characteristics in comparison with the copper-based SMAs. The temperatures at which the SMA changes its crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios.
- For example, the primary material of the supporting structure and/or porous body can be of a NiTi alloy that forms superelastic nitinol. Nitinol materials can be trained to remember a certain shape, straightened in a shaft, catheter, or other tube, and then released from the catheter or tube to return to its trained shape. Also, additional materials can be added to the nitinol depending on the desired characteristic.
- An SMP is a shape-shifting plastic that can be fashioned into the supporting structure and/or porous body in accordance with the present invention. When an SMP encounters a temperature above the lowest melting point of the individual polymers, the blend makes a transition to a rubbery state. The elastic modulus can change more than two orders of magnitude across the transition temperature (“Ttr”). As such, an SMP can be formed into a desired shape of the supporting structure and/or porous body by heating it above the Ttr, fixing the SMP into the new shape, and cooling the material below Ttr. The SMP can then be arranged into a temporary shape by force and then resume the memory shape once the force has been applied. Examples of SMPs include, but are not limited to, biodegradable polymers, such as oligo(ε-caprolactone)diol, oligo(ρ-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined. As such, any SMP can be used in accordance with the present invention.
- Also, it can be beneficial to include at least one layer of an SMA and at least one layer of an SMP to form a multilayered body; however, any appropriate combination of materials can be used to form a multilayered medical device.
- The supporting structure and/or porous body can be comprised of a variety of known suitable deformable materials, including stainless steel, silver, platinum, tantalum, palladium, cobalt-chromium alloys such as L605, MP35N, or MP20N, niobium, iridium, any equivalents thereof, alloys thereof, and combinations thereof. The alloy L605 is understood to be a trade name for an alloy available from UTI Corporation of Collegeville, Pa., including about 53% cobalt, 20% chromium and 10% nickel. The alloys MP35N and MP20N are understood to be trade names for alloys of cobalt, nickel, chromium and molybdenum available from Standard Press Steel Co., Jenkintown, Pa. More particularly, MP35N generally includes about 35% cobalt, 35% nickel, 20% chromium, and 10% molybdenum, and MP20N generally includes about 50% cobalt, 20% nickel, 20% chromium and 10% molybdenum.
- Also, the supporting structure and/or porous body can include a suitable biocompatible polymer in addition to or in place of a suitable metal. The polymeric supporting structure and/or porous body can include a biocompatible material, such as biostable, biodegradable, or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration. If plastically deformable, the material can be selected to allow the medical device (e.g., stent) to be expanded in a similar manner using an expandable member so as to have sufficient radial strength and scaffolding and also to minimize recoil once expanded. If the polymer is to be set in the deployed configuration, the expandable member can be provided with a heat source or infusion ports to provide the required catalyst to set or cure the polymer. Biocompatible polymers are well known in the art, and examples are recited with respect to the polymeric matrix. Thus, the matrix, supporting structure, and/or porous body can be prepared from a biocompatible polymer.
- Furthermore, the supporting structure and/or porous body can be formed from a ceramic material. In one aspect, the ceramic can be a biocompatible ceramic. Examples of suitable ceramic materials include bioinert ceramic, alumina, surface-bioactive ceramics, silicon carbide, zirconia, hydroxyapatite (HA), bioglasses, resorbable bioactive ceramics, alpha and/or beta tricalcium phosphates (TCP), tetracalcium phosphate (TTCP), octacalcium phosphate, calcium sulfate, dicalcium phosphate dihydrate (DCPD), hydrated calcium phosphates, calcium hydrogen phosphate, dicalcium phosphate anhydrous (DCPA), low-crystallinity HA, calcium pyrophosphates (anhydrous or hydrated), calcium polyphosphates (n≧3), calcium polyphosphate, calcium silicates, calcium carbonate, amorphous calcium salts, whitlockite, zeolites, artificial apatite, brushite, calcite, gypsum, phosphate calcium ore, iron oxides, calcium sulphate, magnesium phosphate, calcium deficient apatites, amorphous calcium phosphates, and combinations thereof. Various ceramics can be crystalline, amorphous, glassy, anhydrous, or hydrated. Ceramics generally contain one or more of titanium, zinc, aluminium, zirconium, magnesium, potassium, calcium, iron, ammonium, and sodium ions or atoms in addition to one or more of an oxide, a phosphate (ortho, pyro, tri, tetra, penta, meta, poly etc), a silicate, a carbonate, a nitride, a carbide, a sulphate, ions thereof, or the like. Also, other materials with similar properties that can be fabricated into a ceramic as described herein can be included in the present invention.
- Preferred ceramics include hydroxylapatite, mullite, crystalline oxides, non-crystalline oxides, carbides, nitrides, silicides, borides, phosphides, sulfides, tellurides, selenides, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, alumina-zirconia, silicon carbide, titanium carbide, titanium boride, aluminum nitride, silicon nitride, ferrites, iron sulfide, and the like.
- Moreover, the supporting structure and/or porous body can include a radiopaque material to increase visibility during placement. Optionally, the radiopaque material can be a layer or coating any portion of the supporting structure and/or porous body. The radiopaque materials can be platinum, tungsten, silver, stainless steel, gold, tantalum, bismuth, barium sulfate, or a similar material.
- In one embodiment, the medical device in the form of a stent or other tubular medical device can be comprised of a shape-memory material, where an outer sheath may be disposed over the medical device to confine the medical device in a contracted state, while retraction of the outer sheath causes the medical device to self-expand to a deployed shape.
- The elution rate controlling matrix can be prepared with at least one polymeric material having the properties of being biocompatible, bioabsorbable, biodegradable, bioerodible, naturally occurring, synthetic, or any combination thereof. Such a polymeric material can include at least one natural or synthetic, homopolymer or copolymer (without limitation to the amount of different monomers), linear, branched or cross-linked, soluble or insoluble, biostable or biodegradable, hydrophilic, hydrophobic, intermediate or amphiphilic, neutral or ionically charged, or polymerized with pendant groups. The polymers can include condensation and addition polymers, macromolecules, thermoplastic elastomers, polyolefin elastomers, biostable plastics, and the like.
- In one embodiment, the polymeric material can include phosphorylcholines, phosphorylcholine linked macromolecules, polyolefins, poly(meth)acrylates, polyurethanes, polyesters, polyanhydrides, polyphosphazenes, polyacrylates, acrylic polymers, pendant phosphoryl groups, poly(lactide-co-glycolide) (PLGA), polycaprolactones, polylactic acids (PLA), poly(hydroxybutyrate), poly(hydroxybutyrate-co-valerate), polydioxanone (PDO), polyorthoester, polyglycolic acid (PGA), polycaprolactone (PCL), poly(glycolic acid-co-trimethylene carbonate), polyphosphoester, polyphosphoester urethane, poly(amino acids), cyanoacrylates, poly(trimethylene carbonate), poly(iminocarbonate), polyalkylene oxalates, polyiminocarbonates, aliphatic polycarbonates, fibrin, fibrinogen, cellulose, starch, collagen, Parylene®, Parylast®, polycarbonate urethanes, polyisoprene, polyisobutylene, polybutadiene, polyethylene, plasticized polyethylene terephthalate, polyethylene terepthalate, polymethylmethacrylate, ethylene ethylacrylate, polyethyl hexylacrylate, plasticized ethylene vinylacetate, polyvinyl acetate, ethylene vinyl acetate, ethylene vinyl alcohol, polyvinyl alcohol, cross-linked polyvinyl alcohol, cross-linked polyvinyl butyrate, polyvinylbutyrate, polybutylmethacrylate, polyvinyl chloride, ethylene vinylchloride copolymer, silicones, polysiloxanes, substituted polysiloxanes, polyethylene oxide, polyethylene glycol (PEG), polybutylene terepthalate-co-PEG, PCL-co-PEG, PLA-co-PEG, polyvinyl acetals, polyvinyl acetates, polyvinyl formal, polyamides, polyvinyl pyrrolidone, polyacrylamide, polyvinyl esters, copolymers thereof, polymer derivatives thereof, and combinations thereof. Also, the polymer can be poly(MPCw:LMAx:UPMAy:TSMAz), where MPC is 2-methacryoyloxyethylphosphorylcholine, LMA is lauryl methacrylate, HPMA is hydroxypropyl methacrylate and TSMA is trimethoxysilylpropyl methacrylate,
- In one embodiment, the elution rate controlling matrix is a biodegradable polymer selected from the group consisting of poly(L-lactic acids), poly(DL-lactic acids), polycaprolactones, polyhydroxybutyrates, polyglycolides, poly(diaxanones), poly(hydroxy valerates), polyorthoesters, poly(lactide-co-glycolides), polyhydroxy(butyrate-co-valerates), polyglycolide-co-trimethylene carbonates, polyanhydrides, polyphosphoesters, polyphosphoester-urethanes, polyamino acids, polycyanoacrylates, biomolecules, fibrin, fibrinogen, cellulose, starch, collagen, hyaluronic acid, mixtures thereof, derivatives thereof, copolymers thereof, and like polymers.
- In one embodiment, the elution rate controlling matrix is a biostable polymer selected from the group consisting of polyurethanes, silicones, polyesters, polyolefins, polyamides, polycaprolactams, polyimides, polyvinyl chlorides, polyvinyl methyl ethers, polyvinyl alcohols, acrylic polymers, polyacrylonitriles, polystyrenes, vinyl polymers, polymers including olefins (e.g., styrene acrylonitrile copolymers, ethylene methyl methacrylate copolymers, ethylene vinyl acetate, and other like polymers), polyethers, rayons, cellulosics (e.g., cellulose acetate, cellulose nitrate, cellulose propionate, and other like polymers), parylene, mixtures thereof, derivatives thereof, copolymers thereof, and like polymers.
- In one embodiment, the elution rate controlling matrix includes a non-polymeric material such as sugars, waxes, and lipids.
- Additionally, the elution rate controlling matrix can be formulated with a pharmaceutically acceptable carrier, which is a non-toxic solid, semi-solid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The compositions that can be included can be comprised of pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, as well as sterile powders for reconstitution into sterile solutions or dispersions just prior to be included with the endoprosthesis. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols (e.g., glycerol, propylene glycol, polyethylene glycol, and the like), carboxymethylcellulose and suitable mixtures thereof, vegetable oils (e.g., olive oil), organic esters such as ethyl oleate, and the like.
- The elution rate controlling matrix may also contain adjuvants such as preservatives, wetting agents, emulsifying agents, and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents such as sugars, sodium chloride, and the like. Prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents that delay absorption such as aluminum monostearate and gelatin.
- In some cases, in order to prolong the effect of the drug, it is desirable to slow the release of the drug from the elution rate controlling matrix. This may be accomplished by the use of crystalline or amorphous materials with poor water solubility. The rate of absorption of the drug can depend upon its rate of dissolution which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed release can be accomplished by dissolving or suspending the drug in an oil or hydrophobic carrier prior to being included with the elution rate controlling matrix.
- Additionally, the elution rate controlling matrix can be formulated to be or to include microencapsule matrices, such as microspheres, before being included with the medical device. Similarly, the elution rate controlling matrix can include in liposomes, microspheres, microparticles, microemulsions, or the like that contain the active agent.
- The elution rate controlling matrix can also include other pharmaceutically acceptable materials, such as any of the following: excipients or carriers such as sodium citrate or dicalcium phosphate; fillers or extenders such as starches, lactose, sucrose, glucose, and mannitol; binders such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, and acacia; humectants such as glycerol; disintegrating agents such as agar, calcium carbonate, starch, alginic acid, certain silicates, and sodium carbonate; solution retarding agents such as paraffin; absorption accelerators such as quaternary ammonium compounds; wetting agents such as cetyl alcohol and glycerol monostearate; absorbents such as kaolin and bentonite clay; and lubricants such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, and sodium lauryl sulfate.
- In one embodiment the porous material of the applied layer includes at least one of biocompatible metals, metal alloys, ceramics, and polymers. Metals include, but are not limited to, pure metals, such as gold or tantalum, metal compositions such as stainless steel, or alloys such as cobalt chromium.
- C. Active Agents
- The active agents of the present invention can include any substance that has a biological activity, such as pharmacological agents. Such active agents include analgesics, antipyretics, antiasthamatics, antibiotics, antidepressants, antidiabetics, antifungal agents, antihypertensive agents, anti-inflammatories including non-steroidal and steroidal, antineoplastics, antianxiety agents, immunosuppressive agents, antimigraine agents, sedatives, hypnotics, antianginal agents, antipsychotic agents, antimanic agents, antiarrhythmics, antiarthritic agents, antigout agents, anticoagulants, thrombolytic agents, antifibrinolytic agents, hemorheologic agents, antiplatelet agents, anticonvulsants, antiparkinson agents, antihistamines, anti-restenosis agents, antipruritics, agents useful for calcium regulation, antibacterial agents, antiviral agents, antimicrobials, anti-infectives, bronchodilators, steroidal compounds and hormones, and combinations thereof. Alternatively, the compounds or agents would be in the form of components of molecular complexes or pharmacologically acceptable salts.
- In one embodiment, the active agent includes at least one of zotarolimus, sirolimus, everolimus, dexamethasone, prednisone, hydrocortisone, estradiol, acetaminophen, ibuprofen, naproxen, sulidac, heparin, taxol, paclitaxel, and any combination thereof.
- In one embodiment, the active agents can be anti-restenosis agents, such as anti-proliferative agents, anti-platelet agents, anti-inflammatory agents, anti-thrombotic agents, and thrombolytic agents. The anti-proliferative agents can be anti-mitotic. Anti-mitotic agents inhibit or affect cell division, whereby processes normally involved in cell division do not take place. One sub-class of anti-mitotic agents includes vinca alkaloids. Representative examples of vinca alkaloids include vincristine, paclitaxel, etoposide, nocodazole, indirubin, anthracycline derivatives, daunorubicin, daunomycin, plicamycin, and the like. Other sub-classes of anti-mitotic agents include anti-mitotic alkylating agents, such as, for example, tauromustine, bofumustine, and fotemustine, and anti-mitotic metabolites, such as methotrexate, fluorouracil, 5-bromodeoxyuridine, 6-azacytidine, and cytarabine. Anti-mitotic alkylating agents affect cell division by covalently modifying DNA, RNA, or proteins, thereby inhibiting DNA replication, RNA transcription, RNA translation, protein synthesis, or combinations of the foregoing.
- Anti-platelet agents are therapeutic entities that act by (1) inhibiting adhesion of platelets to a surface, typically a thrombogenic surface, (2) inhibiting aggregation of platelets, (3) inhibiting activation of platelets, or (4) combinations of the foregoing. Activation of platelets is a process whereby platelets are converted from a quiescent, resting state to one in which platelets undergo a number of morphologic changes induced by contact with a thrombogenic surface. These changes include changes in the shape of the platelets, accompanied by the formation of pseudopods, binding to membrane receptors, and secretion of small molecules and proteins, such as, for example, ADP and platelet factor 4. Anti-platelet agents that act as inhibitors of adhesion of platelets include, but are not limited to, eptifibatide, tirofiban, RGD (Arg-Gly-Asp)-based peptides that inhibit binding to gpIIbIIIa or αvβ3, antibodies that block binding to gpIIaIIIb or αvβ3, anti-P-selectin antibodies, anti-E-selectin antibodies, compounds that block P-selectin or E-selectin binding to their respective ligands, saratin, and anti-von Willebrand factor antibodies. Agents that inhibit ADP-mediated platelet aggregation include, but are not limited to, disagregin and cilostazol.
- Anti-inflammatory agents can also be used. Examples of these include, but are not limited to, prednisone, dexamethasone, hydrocortisone, estradiol, fluticasone, clobetasol, and non-steroidal anti-inflammatories, such as, for example, acetaminophen, ibuprofen, naproxen, and sulindac. Other examples of these agents include those that inhibit binding of cytokines or chemokines to the cognate receptors to inhibit pro-inflammatory signals transduced by the cytokines or the chemokines. Representative examples of these agents include, but are not limited to, anti-IL1, anti-IL2, anti-IL3, anti-IL4, anti-IL8, anti-IL15, anti-IL18, anti-GM-CSF, and anti-TNF antibodies.
- Anti-thrombotic agents include chemical and biological entities that can intervene at any stage in the coagulation pathway. Examples of specific entities include, but are not limited to, small molecules that inhibit the activity of factor Xa. In addition, heparinoid-type agents that can inhibit both FXa and thrombin, either directly or indirectly, such as, for example, heparin, heparin sulfate, low molecular weight heparins, such as, for example, the compound having the trademark Clivarin®, and synthetic oligosaccharides, such as, for example, the compound having the trademark Arixtra®. Also included are direct thrombin inhibitors, such as, for example, melagatran, ximelagatran, argatroban, inogatran, and peptidomimetics of binding site of the Phe-Pro-Arg fibrinogen substrate for thrombin. Another class of anti-thrombotic agents that can be delivered are factor VII/VIIa inhibitors, such as, for example, anti-factor VII/VIIa antibodies, rNAPc2, and tissue factor pathway inhibitor (TFPI).
- Thrombolytic agents, which may be defined as agents that help degrade thrombi (clots), can also be used as adjunctive agents, because the action of lysing a clot helps to disperse platelets trapped within the fibrin matrix of a thrombus. Representative examples of thrombolytic agents include, but are not limited to, urokinase or recombinant urokinase, pro-urokinase or recombinant pro-urokinase, tissue plasminogen activator or its recombinant form, and streptokinase.
- The active agent can also be an immunosuppressant agent. The immunosuppressant agents can include azathioprine sodium, brequinar sodium, gusperimus trihydrochloride (also known as deoxyspergualin), mizoribine (also known as bredinin), mycophenolate mofetil, cylosporin A, tacrolimus (also known as FK-506), sirolimus, leflunomide (also known as HWA-486), glucocorticoids such as prednisolone and its derivatives, antibody therapies such as orthoclone (OKT3), and antithymyocyte globulins, such as thymoglobulins.
- III. Method of Manufacture
- Various different manufacturing techniques are well known and may be used for fabrication of the medical devices of the present invention. For example, and in a preferred embodiment, the medical device is manufactured into an endoprosthesis, such as a stent. As such, the supporting structure and/or porous body in accordance with the present invention can be prepared as described below with respect to the endoprosthesis. That is, references to endoprostheses are intended to broadly encompass the medical devices of the present invention.
- In one embodiment, the present invention includes a method of manufacturing a medical device used for treating and/or preventing a disease in an animal. Such a method can include the following: fabricating a supporting structure, which can include shaping the supporting structure into the medical device, such as an endoprosthesis (e.g., stent); fabricating a porous body onto at least a portion of the supporting structure, said porous body including a first biocompatible material having a plurality of pores; introducing a therapeutically effective amount of an active agent into at least a portion of the pores, said therapeutically effective amount of the active agent being capable of treating and/or preventing a disease; and introducing an elution rate controlling matrix onto at least one surface of the porous body so as to contain the active agent within said at least a portion of the pores, said matrix including a second biocompatible material that controls the elution of the active agent from the pores.
- In one embodiment, the fabrication of the porous body can include dimensioning and configuring the porous body to have a thickness ranging from about 10 nanometers to about 1 millimeter. Also, the fabrication of the porous body can include dimensioning and configuring the pores to have a diameter of from about 10 nanometers to about 1 millimeter.
- In one embodiment, the method of manufacture can include configuring the medical device to be at least one of an endoprosthesis, drug delivery stent, drug delivery catheter, graft, drug delivery balloon, guidewire, orthopedic implant, dental implant, fixation screws, indwelling catheter, ocular implant, pharmacotherapeutic implant, blood-contacting component of extracorporeal device, staple, filter, needle, tube, coil, wire, clip, screw, sensor, plate, conduit, portion thereof, or combination thereof.
- In one embodiment, the method of manufacture can include combining the active agent with the elution rate controlling matrix. This can include combining the active agent and elution rate controlling matrix before, during, or after being introduced into the porous body. As such, the active agent can be absorbed into the elution rate controlling matrix after being introduced into the porous body.
- In one embodiment, the method of manufacture can include any of the following processes, which are provided as examples without limitation: fabricating the supporting structure and/or porous body by sintering; fabricating the supporting structure and/or porous body by a metal printing process; fabricating the supporting structure and/or porous body by a direct rapid prototyping process; shaping the porous structure from a mixture of two components, one of which is leached out after the shaping process, leaving the other, permanent component in a porous form; freeze-drying or other similar process where a solid is removed by sublimation from a phase separated mixture of two or more components; by a process similar to supercritical fluid evaporation or foaming; and/or shaping the supporting structure and/or porous body into an endoprosthesis, such as a stent.
- In one embodiment, the method of manufacture includes configuring the pores of a porous layer disposed upon the endoprosthesis to accommodate at least one elution rate controlling material and at least one agent. Through configuring the size of the orifice, volume and shape of the pores, as well as the amount of elution rate controlling material and agent, the pores are manufactured to control or determine the rate of elution of an agent. The configured shapes and sizes of the pores within the porous material of the invention depend on many variables including, but not limited to: the amount of drug delivery needed, elution rates of the material and how the elution rate controlling material is dispersed, (e.g., encapsulated, co-incorporated, or co-encapsulated, or associated) with the agents; treatment and/or prevention of a particular disease; the agents utilized; the type of medical device and its interactions with other medical devices; the position and location of the medical device in the animal body and body (including tissue and fluid) interactions; and combinations of positions and interactions between the body and medical device.
- In one embodiment, the medical device can be shaped into an endoprosthesis, (e.g., stent) which can be formed from a hollow tube of suitable material using a known technique, such as by laser cutting, EDM, milling, chemical etching, hydro-cutting, and the like. The shaped structure can be mechanically blasted with a media and then electropolished or otherwise finished to remove burrs and eliminate sharp edges and contaminates. An additional de-scaling process may be performed before electropolishing, wherein the de-scaling process involves the use of an acid bath.
- Alternatively, a stent body can be fabricated from a sheet of suitable material using a similar cutting, milling, or etching technique, and then rolled or bent about a longitudinal axis into the desired shape. If desired, the lateral edges of the structure can be joined together, such as by welding or bonding, to form a closed tubular structure, or the lateral edges can remain unattached to form a coiled, rolled sheet or open tubular structure.
- An additional step of passivation can be performed during the manufacturing stage of the endoprosthesis in order to form a homogeneous oxide layer for corrosion resistance. The passivation process may be performed prior to installation of the markers in accordance with the present invention or it may be performed after installation of radiopaque markers. Alternatively, multiple passivation processes may be performed prior to insertion of the markers and again after insertion of the markers.
- A. Shaping and Pore Formation
- Accordingly, a medical device, such as an endoprosthetic material can be shaped by various methods as described in more detail below. Such shaping techniques can utilize streams of energy and/or streams of matter in order to impart shapes and/or pores into the endoprosthetic material. The streams of energy include photons, electromagnetic radiation, atomic, and sub-atomic materials, as described above. On the other hand, the streams of matter are considered to include materials larger than atomic scale particles, and can be microscopic or macroscopic in size. In any event, the shaping can be designed to direct a stream of energy or a stream of matter at the endoprosthetic material to form an endoprosthetic material and/or pores therein. Also, mechanical drills can be used to drill pores into an endoprosthesis.
- In one embodiment, a stream of energy can cut, shape, and/or form pores in the endoprosthetic material by generating heat at the site where the stream intersects the material, as is well known in the art. The thermal interaction can elevate the local temperature to a point which can cut, melt, shape, and/or vaporize portions of the endoprosthetic material from the rest of the material. Accordingly, one embodiment of the stream-cutting apparatus can operate and shape the endoprosthetic material by thermal interactions. As such, any of the thermal processes described herein can be used for thermal-cutting. For example, such thermal interactions can arise from laser beam treatment, laser beam machining, electron beam machining, electrical discharge machining, ion beam machining, and plasma beam machining.
- In one embodiment, by knowing the thermal properties of the endoprosthetic material, precise energy requirements can be calculated so that the thermal beam provides the appropriate or minimum energy for melting and/or vaporizing the material without significantly melting undesirable portions of the material. For example, laser beams are a common form of a stream of energy that can be used to shape or form pores in the endoprosthetic material. Additionally, there are instances where a laser is preferred over all other cutting techniques because of the nature of the resulting endoprosthesis as well as the characteristics of the endoprosthetic material.
- Accordingly, a laser can cut the endoprosthetic material and/or form pores therein, wherein the power of the laser or the heat generated can depend upon the composition of the material to be cut. The ability to vary the laser power arises due to the use of different materials or vary the thickness of the same. The laser power can be defined as the rate of which energy is delivered by the beam and is usually measured in units as joules/second or watts. For example, lasers typically used in cutting hardened steel, such as YAG or eximer lasers, can have a power of about 2,000 watts or greater. Some endoprosthetic materials can be shaped with lasers operating below about 2,000 watts, more preferably below about 1,000 watts, and most preferably below about 500 watts. In one configuration, a femto-second laser can be used to shape the material, optionally including forming pores therein. Use of the femto-second laser also reduces the heated affected zone (HAZ) of the material during manufacturing. Reducing the localized thermal stress upon the material.
- In one embodiment, electrical discharge machining can be used to shape endoprosthetic material and/or form the pores therein. As such, electrical discharge machining is capable of cutting all types of conductive materials such as exotic metals (e.g., titanium, hastaloy, kovar, inconel, hard steels, carbides, and the like). In electrical discharge, the main interaction between the stream of energy and the endoprosthetic material is thermal, where heat is generated by producing electrical discharges. This can lead to the endoprosthetic material being removed by melting and evaporation. Some examples of electrical discharge machining include wire electron discharge machining, CNC-controlled electrical discharge machining, sinker electrical discharge machining, small hole discharge machining, and the like.
- In another embodiment, a charged particle beam can be used for shaping and/or forming pores in the endoprosthetic material, wherein charged particle beams are exemplified by electron beams and ion beams. A charged particle beam is a group of electrically-charged particles that have approximately the same kinetic energy and move in approximately the same direction. Usually, the kinetic energies are much higher than the thermal energies of similar particles at ordinary temperatures. The high kinetic energy and the directionality of these charged beams can be useful for cutting and shaping of the endoprosthetic material, as described herein. Additionally, there are some instances where electron beams or ion beams are preferred over other cutting techniques.
- In one embodiment, a stream of chemical matter can be used in order to shape and/or form pores in the endoprosthetic material such as chemical etching or chemical-jet milling. Chemical-jet milling, for example, provides selective and controlled material removal by jet and chemical action. As such, the process is similar to water-jet cutting, which is described in more detail below. In any event, chemical-jet milling can be useful for shaping or forming pores in various types of endoprosthetic materials, which provides intricate shaping capabilities.
- In another embodiment, electrochemical shaping and/or pore formation can be used, and is based on a controlled electrochemical dissolution process similar to chemical-jet milling an endoprosthetic material. As such, the endoprosthetic material can be attached to an electrical source in order to allow an electrical current to assist in the shaping and/or pore formation.
- In one embodiment, hydro-cutting or water-jet cutting can be used to shape and/or form pores in an endoprosthetic material. Hydro-cutting is essentially a water-jet technology that uses the high force and high pressure of a stream of water directed at the endoprosthetic material in order to cut and shape the material as desired. Hydro-cutting can be preferred over some of the other stream-cutting technologies because it can be free of heat, flame, and chemical reactions, and can provide a precise cold shaping technique. Also, heated water with or without being doped with reactive chemicals can also be used. Hydro-cutting is particularly suitable for a polymeric endoprosthesis, but can be used for some metal materials when combined with abrasive particles, as described below.
- Additionally, hydro-cutting can be enhanced by the introduction of particulate materials into the water feed line. As such, some hydro-cutting techniques utilize garnet or other rigid and strong materials in order to apply an abrasive cutting force along with the force applied by the water itself.
- In one embodiment, sandblasting, which fits into the regime of stream of matter cutting, can be used to shape and/or form pores in an endoprosthetic material by projecting a high energy stream of sand particles at the material. Sandblasting cuts materials similar to hydro-cutting, especially when the water-jet is doped with abrasive particulates. Additionally, various other particulate streams other than sand can be used in the stream-cutting techniques and machinery.
- B. Sintering
- In one embodiment, a method of making a supporting structure and/or porous body in accordance with the present invention can include sintering sinterable particles to provide a sintered article having the shape of the medical device, such as an endoprosthesis. Briefly, the sintered body can be obtained from a green body prepared by molding a mixture of sinterable particles with or without a binder into the shape of an endoprosthesis or body intermediate. The molded green body may have the shape of the endoprosthesis with or without pores. After the green body has been formed in the mold and sintered into a hardened endoprosthesis, the process can include shaping the sintered body with a stream of energy and/or matter in order to obtain a desired shape. In any event, sintering a green body in a mold can result in an endoprosthesis that is either ready for use, or requires additional processing or finishing such as shaping and/or pore forming.
- In one embodiment, a de-binding process can be carried out to remove the binder prior to sintering the green body. As such, the de-binding can be performed by heat treatment in an oxidizing or non-oxidizing atmosphere, for instance, under a vacuum or low pressure. Such debinding can be utilized in order to form pores in the finished product.
- When the green body is sintered, the volume can either shrink as the porosity decreases and the density increases or stay roughly the same with an increase in porosity. This is especially true when the sinterable particles are held together with a binder and can happen as the majority of the binder is melting and/or evaporating so as to draw the individual sinterable particles closer together or create voids between particles. As such, the green body can be fabricated, molded, and/or shaped to be larger than the resultant sintered article in order to accommodate for the volume lost or pore enlargement during sintering.
- Accordingly, the sintered body can be shaped into a supporting structure and/or porous body with pores as described herein. Also, the endoprosthesis can be further processed after sintering and/or shaping such as by grinding, sanding, or the like to provide enhanced surface characteristics.
- Further, the method can include depositing the elution rate controlling material, such as a biodegradable material or a material impregnated with an active agent, onto the pores. The deposited material can partially or substantially fill the pores.
- C. Direct Rapid Prototyping
- Additionally, the medical devices of the present invention can be prepared using a direct rapid prototyping system and process to manufacture the supporting structure and/or porous body. This can include a system and process that employs the direct rapid prototyping system and process to print the metal and/or ceramic to form the supporting structure and/or porous body.
- In one embodiment, the system and process for preparing the supporting structure and/or porous body can include direct three-dimensional (3D) printing. Direct 3D powder printing can be used for rapid prototyping or r large-scale manufacturing. As such, the supporting structure and/or porous body can be custom made or prepared in an assembly line manner. Rapid prototyping commonly refers to a class of technologies that can automatically construct physical models in 3D from Computer-Aided Design (CAD) files. Rapid prototyping machines can be considered to be three dimensional printers that allow for prototypes or functional products to be quickly created and manufactured. In addition to prototypes, rapid prototyping systems and processes can also be used to make production-quality objects and is sometimes referred to as rapid manufacturing. For small production runs and complicated objects, rapid prototyping can be advantageous over other manufacturing processes. This is especially true given that the systems and processes can be modulated to account for various temperatures, pressures, or other processing limitations that may be imposed by a particular product or reagent (e.g., temperature sensitive bioactive substance). While the process is relatively fast, some supporting structure and/or porous body may require from three to seventy-two hours to build, depending on the size and complexity of the medical device.
- In order to design a supporting structure and/or porous body, a software package virtually-slices a CAD model into a number of thin (about 100 microns) layers so that the direct inkjet printing component can then built up one layer atop another in order to form the endoprosthesis. As such, direct inkjet printing is an additive process that combines successive layers of ceramic and/or bioactive substance to create a solid endoprosthesis. Generally, direct inkjet printing can include the following steps: create a CAD model of the design using a computing system; convert the CAD model to STL format or other appropriate format using the computing system; slice the STL file into virtual thin cross-sectional layers using the computing system; physically construct the model one layer atop another layer by sequentially inkjet printing each layer in successive steps; and clean and finish the endoprosthesis.
-
FIG. 3 illustrates an embodiment of a direct rapid prototyping inkjet printing system and process for using inkjet technologies in order to prepare a supporting structure and/or porous body (i.e., endoprosthesis). Generally, direct rapid prototyping inkjet systems and methods that are well known in the art can be configured to operate under the present invention. Optionally, direct rapid prototyping systems and processes can be configured to eliminate a sintering step or other step that causes excessive heat and/or pressure. Otherwise, the endprosthesis prepared by direct rapid prototyping can be sintered as is well known in the art. As used herein, direct inkjet printing refers to an entire class of machines that employ inkjet technology to sequentially build an endoprosthesis layer-by-layer. An example of such a direct inkjet printer capable of operating under the present invention is a ZCorp 3D printer, produced by Z Corporation of Burlington, Mass. -
FIG. 3 depicts an embodiment of a directinkjet printing system 110 and process in accordance with the present invention. The directinkjet printing system 110 includes aninkjet printer 112, apowder delivery system 120, aroller 140, and afabrication system 130. - The
inkjet printer 112 has at least oneinkjet cartridge 114 that can include any composition capable of being inkjet printed. Additionally, theinkjet printer 112 includes aninkjet line 116 that routes the inkjet composition from theinkjet reservoir 114 to aninkjet printer head 118. Also, theinkjet printer 112 can be configured to include any number ofcartridges 114,lines 116, or printer heads 118. Usually, theinkjet printer 112 includes at least one binder cartridge. - The
powder delivery system 120 has at least onepowder delivery chamber 122 that provides a chamber for apowder delivery piston 124. In combination, thepowder delivery chamber 122 andpowder delivery piston 124 cooperate to contain the metal and/orceramic powder 126. Thepowder delivery piston 124 is configured to move upward as shown by the arrows after each layer of powder is used in the direct inkjet printing process. - The
roller 140 is depicted to be a conventional rolling object, such as one rolling part of a calender, which can roll alayer 142 of thepowder 126 from thepowder delivery system 120 to thefabrication system 130. However, a squeegee or other similar mechanical instruments can be used to scrape or move a top layer of powder from thepowder delivery system 120 to thefabrication system 130. - The
fabrication system 130 has at least onefabrication chamber 132 that provides a chamber for afabrication piston 134. In combination, thefabrication chamber 132 andfabrication piston 134 cooperate to contain theendoprosthesis 136 as it is being fabricated. Thefabrication piston 124 is configured to move downward as shown by the arrows after each layer of powder is deposited onto theendoprosthesis 136 and fixed by a binder solution contained in aninkjet cartridge 114. - As shown, the
endoprosthesis 136 is built in thefabrication chamber 132 on a substrate or platform situated on or integral with thefabrication piston 134. As such, thepowder delivery piston 124 rises so that atop layer 142 of thepowder 126 in thepowder delivery chamber 122 is rolled by theroller 140 into thefabrication chamber 132. After thetop layer 142 of thepowder 126 is deposited onto thefabrication piston 134, theinkjet printing head 118 selectively deposits or inkjet prints a binder fluid to cure or otherwise fuse thepowder 126 together in the desired areas. Unbound powder can remain to support the part or bound layer of the 136 endoprosthesis that has been hardened. After hardening the bound layer, thefabrication piston 134 is lowered,more powder 126 is added from thepowder delivery chamber 122 to thefabrication chamber 134 and leveled, and the process is repeated. Typical layer thicknesses are on the order of 100 microns. During this procedure, the deposition and binding can be configured so as to leavepores 138 within theendoprosthesis 136. When finished, theendoprosthesis 136 is considered to be a greenbody having pores 138 that is then removed from the unbound ceramic powder, and excess unbound powder is blown off or washed away. Also, the removal of the unbound powder can form thepores 138. - The printed body can then be cured (e.g., sintered) or otherwise finished into an endoprosthesis. While the printed body can be partially cured or hardened during printing, an additional curing step can be advantageous to finish the product. Optionally, such curing or finishing can be performed at low temperatures by immersing the printed body into a curing solution or hardening solution that causes the powder to react and harden to its fully hardened state.
- In one embodiment, a metal printing process (MPP) can be used in a method of manufacturing the porous body. The MPP technique produces three-dimensional objects from powder material, utilizing photo-masking and electrostatic attraction, similar to a photocopy machine. The MPP technique uses the same fundamental methods as a photocopy machine to build solid objects; on a layer-by-layer basis. MPP is able to fabricate porous metal bodies with controlled porosity. MPP techniques are well known in the art.
- In one embodiment, each layer is deposited on a building table where it is sintered with the aid of electric discharge sintering or microwaves. Sintering happens when particles fuse by atomic transport events below their melting points. Sintering enables a manufacturer to choose amongst a large assortment of appropriate powders to use in building endoprostheses. Common powders for sintering include iron and steel as well as more exotic materials such as titanium, nickel-based superelastic alloys, and the like. Sintering needs to be achieved in both materials simultaneously without distortion or the formation of defects. Co-sintering requires that the two materials follow the same shrinkage pathway, even though they may exhibit differences in basic properties. Additionally, the inkjet printing and metal printing processes can be combined and features thereof can be used together so that the direct rapid prototyping procedures can utilize for non-metals, such as ceramics. When ceramics are used, the process can be considered a powder printing process.
- D. Depositing Matrix/Agent
- The elution rate controlling matrix can be deposited in the pores of the porous body by various processes well known in the art for applying polymers to substrates. The polymer matrix that is deposited into the pores usually includes the active agent mixed therein. However, the active agent can be absorbed into the matrix after being deposited into the pores. Alternatively, the active agent can be deposited into the pore and then covered with the polymeric matrix. For example, some methods of depositing the polymeric matrix and/or the active agent into the pores can be conducted by spraying, dipping, rolling, brush application, vapor phase deposition, sputtering, and the like. Typically, a polymeric solution is deposited into the pores and cured and/or dried. There are many additional possible and well known ways in the art, of incorporating the polymer and/or active agents substantially within the pores of a porous body.
- For example, the active agent can be incorporated into a polymer solution that cures into the polymer matrix and then is applied into the pores of the endoprosthesis and allowed to cure. Alternatively, incorporation of the active agent into the polymer matrix can be carried out by dipping the endoprosthesis having the polymer matrix disposed within the pores into a solution containing the active agent for a sufficient period of time (such as, for example, five minutes) and then drying the endoprosthesis for a sufficient period of time (e.g., 10, 15, or 30 minutes).
- E. Additional Manufacturing Techniques
- Various processes of producing porous coatings on substrates is well known in the art and has been described in numerous patents and publications. Commercial operations providing technology to apply porous coatings exist as well. For an endoprosthesis, the porous coating can be applied to the supporting structure from which the endoprosthesis is eventually cut, or to the shaped endoprosthesis. A porous coating may be applied to the supporting structure at the luminal side and/or the side opposite of the lumen.
- The elution rate controlling matrix with or without the active agent can be disposed into the pores of the porous body with solutions that contain the polymer that is cured or solidified to form the matrix. A vacuum may be applied to the porous body to remove trapped air from the pores in order increase the loading efficiency. Also, a wiping step may remove excess polymeric material from outside the pores.
- For example, a supporting structure can be coated with a porous metal coating according to U.S. Pat. No. 4,612,160, and an endoprosthesis is cut from the supporting structure having the porous coating thereon. The endoprosthesis is submerged in a mixture of poly-lactide-co-glycolide and zotarolimus (e.g., a rapamycin analog, ABT-578) in acetone (10% polymer, 10% drug), and a vacuum is applied to remove air from the pores before the endoprosthesis is removed from the solution. The excess liquid is blown off of the endoprosthesis with a stream of gas directed axially to the endoprosthesis and the endoprosthesis is dried. The process may be repeated several times to build up a sufficient quantity of drugs and polymer in the pores, provided the exposure time to the drug polymer solution is sufficiently short that the pre-deposited drug does not dissolve. As an alternative to the air removal of excess drug and polymer, a wipe with a brush or other wiping device constructed to leave the drug and polymers in the pores undisturbed can be used.
- In another example, a supporting structure can be coated with a porous metal coating according to U.S. Pat. No. 4,612,160, and an endoprosthesis is cut from the supporting structure having the porous coating thereon. The endoprosthesis is mounted on a snug-fitting mandrel. The endoprosthesis-mandrel assembly is coated with a polymer-drug mixture using an extrusion technology analogous to wire coating, with high pressure on the mixture to force it into the pores. A die of a size that allows little or no polymer to remain or be deposited on the outer diameter of the endoprosthesis is used. The “islands” of drug-polymer mix that get stuck on the outside of the endoprosthesis can be easily removed after cooling of the mixture.
- There are multiple techniques for applying a porous layer to endoprostheses. For example, the sputter deposition process can be used to create nanostructured materials that possess continuous open porosity. In general, structural morphologies found for conventionally sputtered coatings can range from porous columnar to dense polycrystalline. The transition in morphology through four zones of growths occurs with increasing substrate temperature and sputter gas pressure. A three-dimensional polycrystalline deposit with continuous open porosity is produced under conditions of increased working gas pressure and a substrate temperature at approximately half its absolute melting point.
- One method for applying a porous layer to an endoprostheses, as described by Astro Met, Inc., includes a complete porous metal beaded coating in titanium and cobalt-chromoly materials being applied to medical devices.
- Another method for applying a porous metal layer to a dense metal substrate is described in U.S. Pat. No. 6,945,448. The method includes the following: providing a structured porous layer; providing a dense metal substrate; providing a binding mixture; applying the binding mixture to the exterior of the substrate; placing the porous layer against the substrate such that the binding mixture is disposed therebetween, thus forming an assembly; and heat treating the assembly in order to metallurgically bond the porous layer to the substrate.
- Another method for applying a porous metal layer to a supporting structure is described in US Patent Application No. 20050048193. This method includes layers built up of strata of flat or non-flat layers. A layer with external or internal discontinuities or a layer of non-planar form, or characterized by a layer of regularly arranged cells whether integral or formed individually, or by conjunction of separate strips (e.g. a honeycomb structure).
- Yet another method that would be utilized for manufacturing a porous layer, in part, is the MPP technique. For example, using the MPP technique, a porous coating to a medical device is manufactured when a ceramic and metal are combined; the ceramic functions as the insulator and the metal provides electrical interconnections in a three-dimensional array.
- Certain exemplary polymers used in the methods for applying a porous coating include, but are not limited to, Dexon, Vicryl, natural rubber, silicone rubbers, medical grade polydimethylsiloxanes, and silicone-carbonate copolymers. Non-limiting examples of other suitable polymers include EPDM rubbers, nylon, and epoxies. Polymers including pendant phosphoryl groups are disclosed in U.S. Pat. Nos. 5,705,583 and 6,090,901 and U.S. Pat. No. 6,083,257 which are all incorporated herein by reference.
- IV. Method of Treating and Preventing Diseases
- In one embodiment, the invention relates to methods of using the medical device for treating and/or preventing at least one animal disease. The medical device has at least one elution rate controlling material and also provides an effective amount of at least one agent within at least one porous material associated with the medical device. The pores of the at least one porous layer are dimensioned and configured to house the elution rate controlling material and the agents for controlled release applications of agents into an animal for the treatment and prevention of diseases.
- In one embodiment, the present invention includes a method of treating and/or preventing a disease in an animal. Such as method can include the following: providing a medical device configured and dimensioned to be used within a body of an animal, as described herein; deploying the medical device into the body of the animal; and allowing the active agent to elute from the pores into the body of the animal, where the elution rate controlling matrix controls the elution of the active agent from the pores. Accordingly, the medical device can be placed into or in contact with a body or fluid of an animal. This can include placing the medical device within the vascular system of an animal. The medical device can then elute a therapeutically effective amount of the active agent to treat and/or prevent a disease in which said active agent is useful as a therapy. For example, the medical device can treat a vascular disease, such as restenosis.
- When used in the above or other treatments, a therapeutically effective amount of one of the active agent may be employed. It will be understood, however, that the total daily usage of the active agents will be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; route of administration; and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts. For example, it is well within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved.
- In one embodiment, the active agent can be delivered in an amount that generates a local concentration of the analog in the tissues, cells, cellular matrices, body fluids, blood, or the like adjacent or proximal to the endoprosthesis. This can include achieving a concentration of the active agent that inhibits and/or treats a disease in which the active agent can be used as part of a therapeutic regimen. For example, the active agent (e.g., rapamycin analog) can be delivered to produce a local concentration of about 10 pg/ml to about 10 mg/ml. More preferably, active agent can produce a local concentration of about 100 pg/ml to about 1 mg/ml. Even more preferably, the active agent can produce a local concentration of about 1 ng/ml to about 100 ug/ml. Still more preferably, the active agent can produce a local concentration of about 10 ng/ml to about 10 ug/ml. Still more preferably, the active agent can produce a local concentration of about 100 ng/ml to about 1 ug/ml. Most preferably, the active agent can produce a local concentration of about 500 ug/ml.
- In one embodiment, the active agent can be delivered in an amount that generates a sustained local concentration of the active agent in the tissues, cells, cellular matrices, body fluids, blood, or the like proximate to the medical device that is expressed as molarity. As such, delivery of the active agent (e.g., rapamycin analog) can produce a sustained local concentration of about 10 pM to about 10 mM. More preferably, the active agent can produce a sustained local concentration of about 100 pM to about 1 mM. Even more preferably, the active agent can produce a sustained local concentration of about 1 nM to about 100 uM. Still more preferably, the active agent can produce a sustained local concentration of about 10 nM to about 10 uM. Still more preferably, the active agent can produce a sustained local concentration of about 100 nM to about 1 uM. Most preferably, the active agent can produce a sustained local concentration at about 300 nM.
- The total daily dose of the active agent eluted from the medical device into a human or lower animal may range from about 0.01 to about 10 mg/kg/day. For the purposes of local delivery from a stent, the daily dose that a patient will receive depends on the length of the stent. For example, a 15 mm coronary stent may contain a drug in an amount ranging from about 1 to about 120 mg and may deliver that drug over a time period ranging from several hours to several weeks.
- In some instances, the elution rate controlling matrix can be configured to modulate the rate of elution of the active agent, which can include a substantially constant or steady-state rate. Also, this can include being released with or without an initial burst followed by 0, 1st, or 2nd order delivery kinetics.
- The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the invention is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope. Additionally, all references recited herein are included herein in their entirety by specific reference.
Claims (30)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/839,121 US20080057103A1 (en) | 2006-08-21 | 2007-08-15 | Methods of using medical devices for controlled drug release |
US11/839,104 US20080057102A1 (en) | 2006-08-21 | 2007-08-15 | Methods of manufacturing medical devices for controlled drug release |
US11/839,093 US9248121B2 (en) | 2006-08-21 | 2007-08-15 | Medical devices for controlled drug release |
PCT/US2007/076092 WO2008024669A2 (en) | 2006-08-21 | 2007-08-16 | Medical devices for controlled drug release |
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US82306306P | 2006-08-21 | 2006-08-21 | |
US82306706P | 2006-08-21 | 2006-08-21 | |
US82306906P | 2006-08-21 | 2006-08-21 | |
US82307106P | 2006-08-21 | 2006-08-21 | |
US82306106P | 2006-08-21 | 2006-08-21 | |
US82305706P | 2006-08-21 | 2006-08-21 | |
US11/839,121 US20080057103A1 (en) | 2006-08-21 | 2007-08-15 | Methods of using medical devices for controlled drug release |
US11/839,104 US20080057102A1 (en) | 2006-08-21 | 2007-08-15 | Methods of manufacturing medical devices for controlled drug release |
US11/839,093 US9248121B2 (en) | 2006-08-21 | 2007-08-15 | Medical devices for controlled drug release |
Publications (2)
Publication Number | Publication Date |
---|---|
US20080057101A1 true US20080057101A1 (en) | 2008-03-06 |
US9248121B2 US9248121B2 (en) | 2016-02-02 |
Family
ID=39107542
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/839,104 Abandoned US20080057102A1 (en) | 2006-08-21 | 2007-08-15 | Methods of manufacturing medical devices for controlled drug release |
US11/839,093 Expired - Fee Related US9248121B2 (en) | 2006-08-21 | 2007-08-15 | Medical devices for controlled drug release |
US11/839,121 Abandoned US20080057103A1 (en) | 2006-08-21 | 2007-08-15 | Methods of using medical devices for controlled drug release |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/839,104 Abandoned US20080057102A1 (en) | 2006-08-21 | 2007-08-15 | Methods of manufacturing medical devices for controlled drug release |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/839,121 Abandoned US20080057103A1 (en) | 2006-08-21 | 2007-08-15 | Methods of using medical devices for controlled drug release |
Country Status (2)
Country | Link |
---|---|
US (3) | US20080057102A1 (en) |
WO (1) | WO2008024669A2 (en) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060029637A1 (en) * | 2004-08-04 | 2006-02-09 | Tice Thomas R | Methods for manufacturing delivery devices and devices thereof |
US20070088255A1 (en) * | 2004-03-19 | 2007-04-19 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
US20090130056A1 (en) * | 2007-11-21 | 2009-05-21 | Bristol-Myers Squibb Company | Compounds for the Treatment of Hepatitis C |
US20090138075A1 (en) * | 2007-11-28 | 2009-05-28 | Boston Scientific Scimed, Inc. | Bifurcated Stent with Drug Wells for Specific Ostial, Carina, and Side Branch Treatment |
US20090163958A1 (en) * | 2007-12-20 | 2009-06-25 | Peter Tarcha | Compositions, devices, systems, and methods for inhibiting an inflammatory response |
US20090163919A1 (en) * | 2007-12-19 | 2009-06-25 | Peter Tarcha | Devices, systems, and methods for delivery of a pharmaceutical to a subject's spine |
US20100023115A1 (en) * | 2008-07-23 | 2010-01-28 | Boston Scientific Scimed, Inc. | Drug-eluting stent |
US20100030183A1 (en) * | 2004-03-19 | 2010-02-04 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
WO2010037144A2 (en) * | 2008-09-29 | 2010-04-01 | Robert Ndondo-Lay | Matrix coated stent |
US20100161030A1 (en) * | 2008-12-18 | 2010-06-24 | Biotronik Vi Patent Ag | Device and Method for Producing Same |
US20100278931A1 (en) * | 2009-05-04 | 2010-11-04 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
US20110144577A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Hydrophilic coatings with tunable composition for drug coated balloon |
US20110144582A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Coatings with tunable solubility profile for drug-coated balloon |
US20110143014A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Coatings with tunable molecular architecture for drug-coated balloon |
WO2012061377A1 (en) * | 2010-11-01 | 2012-05-10 | Psivida Us, Inc. | Bioerodible silicon-based devices for delivery of therapeutic agents |
US8501213B2 (en) | 2004-03-19 | 2013-08-06 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
US8663194B2 (en) | 2008-05-12 | 2014-03-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US8728528B2 (en) | 2007-12-20 | 2014-05-20 | Evonik Corporation | Process for preparing microparticles having a low residual solvent volume |
US8765166B2 (en) | 2010-05-17 | 2014-07-01 | Novaer Holdings, Inc. | Drug delivery devices for delivery of ocular therapeutic agents |
WO2014204634A1 (en) * | 2013-05-31 | 2014-12-24 | University Of Massachusetts Medical School | Elastomeric and degradable polymer mineral composite scaffolds |
US9095404B2 (en) | 2008-05-12 | 2015-08-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US9566235B2 (en) | 1998-04-17 | 2017-02-14 | Psimedica Limited | Implants for administering substances and methods of producing implants |
US9603738B2 (en) | 2013-03-15 | 2017-03-28 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US9603801B2 (en) | 2013-03-15 | 2017-03-28 | Psivida Us, Inc. | Bioerodible silicon-based compositions for delivery of therapeutic agents |
US9615902B2 (en) | 2010-11-22 | 2017-04-11 | Biocad Medical Inc. | Method and device for producing a dental component |
US9636255B2 (en) | 2009-02-13 | 2017-05-02 | Dose Medical Corporation | Uveoscleral drug delivery implant and methods for implanting the same |
US9668915B2 (en) | 2010-11-24 | 2017-06-06 | Dose Medical Corporation | Drug eluting ocular implant |
US20170281824A1 (en) * | 2016-03-29 | 2017-10-05 | Rymed Technologies, Llc | Anti-Microbial Medical Materials and Devices |
US9801983B2 (en) | 2014-12-18 | 2017-10-31 | Cook Medical Technologies Llc | Medical devices for delivering a bioactive to a point of treatment and methods of making medical devices |
US9877973B2 (en) | 2008-05-12 | 2018-01-30 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US10064819B2 (en) | 2008-05-12 | 2018-09-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
US10406029B2 (en) | 2001-04-07 | 2019-09-10 | Glaukos Corporation | Ocular system with anchoring implant and therapeutic agent |
US10683381B2 (en) | 2014-12-23 | 2020-06-16 | Bridgestone Americas Tire Operations, Llc | Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes |
US10959941B2 (en) | 2014-05-29 | 2021-03-30 | Glaukos Corporation | Implants with controlled drug delivery features and methods of using same |
US11097531B2 (en) | 2015-12-17 | 2021-08-24 | Bridgestone Americas Tire Operations, Llc | Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing |
US11318043B2 (en) | 2016-04-20 | 2022-05-03 | Dose Medical Corporation | Bioresorbable ocular drug delivery device |
US11453161B2 (en) | 2016-10-27 | 2022-09-27 | Bridgestone Americas Tire Operations, Llc | Processes for producing cured polymeric products by additive manufacturing |
US11559430B2 (en) | 2013-03-15 | 2023-01-24 | Glaukos Corporation | Glaucoma stent and methods thereof for glaucoma treatment |
US11564833B2 (en) | 2015-09-25 | 2023-01-31 | Glaukos Corporation | Punctal implants with controlled drug delivery features and methods of using same |
JP2023536107A (en) * | 2020-08-28 | 2023-08-23 | メディンテル コー リミティッド | Porous multi-layer tubular structure containing physiologically active substance in pores |
US11839698B2 (en) | 2014-03-13 | 2023-12-12 | W. L. Gore & Associates, Inc. | Drug composition and coating |
US11925578B2 (en) | 2015-09-02 | 2024-03-12 | Glaukos Corporation | Drug delivery implants with bi-directional delivery capacity |
Families Citing this family (80)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306166B1 (en) * | 1997-08-13 | 2001-10-23 | Scimed Life Systems, Inc. | Loading and release of water-insoluble drugs |
US7713297B2 (en) | 1998-04-11 | 2010-05-11 | Boston Scientific Scimed, Inc. | Drug-releasing stent with ceramic-containing layer |
WO2007001448A2 (en) * | 2004-11-04 | 2007-01-04 | Massachusetts Institute Of Technology | Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals |
WO2007070682A2 (en) | 2005-12-15 | 2007-06-21 | Massachusetts Institute Of Technology | System for screening particles |
US20070224235A1 (en) | 2006-03-24 | 2007-09-27 | Barron Tenney | Medical devices having nanoporous coatings for controlled therapeutic agent delivery |
US8187620B2 (en) | 2006-03-27 | 2012-05-29 | Boston Scientific Scimed, Inc. | Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents |
WO2008105773A2 (en) | 2006-03-31 | 2008-09-04 | Massachusetts Institute Of Technology | System for targeted delivery of therapeutic agents |
US20070258903A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US20110052697A1 (en) * | 2006-05-17 | 2011-03-03 | Gwangju Institute Of Science & Technology | Aptamer-Directed Drug Delivery |
WO2007150030A2 (en) * | 2006-06-23 | 2007-12-27 | Massachusetts Institute Of Technology | Microfluidic synthesis of organic nanoparticles |
US8815275B2 (en) | 2006-06-28 | 2014-08-26 | Boston Scientific Scimed, Inc. | Coatings for medical devices comprising a therapeutic agent and a metallic material |
US8771343B2 (en) | 2006-06-29 | 2014-07-08 | Boston Scientific Scimed, Inc. | Medical devices with selective titanium oxide coatings |
WO2008019142A2 (en) * | 2006-08-04 | 2008-02-14 | Massachusetts Institute Of Technology | Oligonucleotide systems for targeted intracellular delivery |
US20080057102A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of manufacturing medical devices for controlled drug release |
CA2662808A1 (en) | 2006-09-14 | 2008-03-20 | Boston Scientific Limited | Medical devices with drug-eluting coating |
US7981150B2 (en) | 2006-11-09 | 2011-07-19 | Boston Scientific Scimed, Inc. | Endoprosthesis with coatings |
WO2008147456A2 (en) * | 2006-11-20 | 2008-12-04 | Massachusetts Institute Of Technology | Drug delivery systems using fc fragments |
EP2491962A1 (en) | 2007-01-21 | 2012-08-29 | Hemoteq AG | Medical product for treating closures of bodily passages and preventing reclosures |
US9217129B2 (en) | 2007-02-09 | 2015-12-22 | Massachusetts Institute Of Technology | Oscillating cell culture bioreactor |
US8431149B2 (en) | 2007-03-01 | 2013-04-30 | Boston Scientific Scimed, Inc. | Coated medical devices for abluminal drug delivery |
US8070797B2 (en) | 2007-03-01 | 2011-12-06 | Boston Scientific Scimed, Inc. | Medical device with a porous surface for delivery of a therapeutic agent |
US20090074828A1 (en) * | 2007-04-04 | 2009-03-19 | Massachusetts Institute Of Technology | Poly(amino acid) targeting moieties |
US8067054B2 (en) | 2007-04-05 | 2011-11-29 | Boston Scientific Scimed, Inc. | Stents with ceramic drug reservoir layer and methods of making and using the same |
US7976915B2 (en) | 2007-05-23 | 2011-07-12 | Boston Scientific Scimed, Inc. | Endoprosthesis with select ceramic morphology |
US9192697B2 (en) | 2007-07-03 | 2015-11-24 | Hemoteq Ag | Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis |
US7942926B2 (en) * | 2007-07-11 | 2011-05-17 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US8002823B2 (en) | 2007-07-11 | 2011-08-23 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US9284409B2 (en) | 2007-07-19 | 2016-03-15 | Boston Scientific Scimed, Inc. | Endoprosthesis having a non-fouling surface |
US7931683B2 (en) | 2007-07-27 | 2011-04-26 | Boston Scientific Scimed, Inc. | Articles having ceramic coated surfaces |
US8815273B2 (en) | 2007-07-27 | 2014-08-26 | Boston Scientific Scimed, Inc. | Drug eluting medical devices having porous layers |
WO2009018340A2 (en) | 2007-07-31 | 2009-02-05 | Boston Scientific Scimed, Inc. | Medical device coating by laser cladding |
JP2010535541A (en) | 2007-08-03 | 2010-11-25 | ボストン サイエンティフィック リミテッド | Coating for medical devices with large surface area |
EP2644192B1 (en) | 2007-09-28 | 2017-05-10 | Pfizer Inc | Cancer Cell Targeting Using Nanoparticles |
MX350501B (en) * | 2007-10-12 | 2017-09-07 | Massachusetts Inst Technology | Vaccine nanotechnology. |
US8216632B2 (en) | 2007-11-02 | 2012-07-10 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
US20090118818A1 (en) * | 2007-11-02 | 2009-05-07 | Boston Scientific Scimed, Inc. | Endoprosthesis with coating |
US7938855B2 (en) * | 2007-11-02 | 2011-05-10 | Boston Scientific Scimed, Inc. | Deformable underlayer for stent |
US8029554B2 (en) | 2007-11-02 | 2011-10-04 | Boston Scientific Scimed, Inc. | Stent with embedded material |
MY155410A (en) * | 2008-02-08 | 2015-10-15 | Colgate Palmolive Co | Compositions and devices |
EP2271380B1 (en) * | 2008-04-22 | 2013-03-20 | Boston Scientific Scimed, Inc. | Medical devices having a coating of inorganic material |
WO2009132176A2 (en) | 2008-04-24 | 2009-10-29 | Boston Scientific Scimed, Inc. | Medical devices having inorganic particle layers |
WO2010005725A2 (en) | 2008-06-16 | 2010-01-14 | Bind Biosciences, Inc. | Therapeutic polymeric nanoparticles comprising vinca alkaloids and methods of making and using same |
ES2765240T3 (en) | 2008-06-16 | 2020-06-08 | Pfizer | Drug-loaded polymeric nanoparticles and manufacturing procedures and use thereof |
US8613951B2 (en) * | 2008-06-16 | 2013-12-24 | Bind Therapeutics, Inc. | Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same |
EP2303350A2 (en) | 2008-06-18 | 2011-04-06 | Boston Scientific Scimed, Inc. | Endoprosthesis coating |
JP2012501806A (en) * | 2008-09-12 | 2012-01-26 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Stent layer manufacturing of stents |
US8076529B2 (en) * | 2008-09-26 | 2011-12-13 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix for intraluminal drug delivery |
US8049061B2 (en) | 2008-09-25 | 2011-11-01 | Abbott Cardiovascular Systems, Inc. | Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery |
US8226603B2 (en) * | 2008-09-25 | 2012-07-24 | Abbott Cardiovascular Systems Inc. | Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery |
US8591905B2 (en) | 2008-10-12 | 2013-11-26 | The Brigham And Women's Hospital, Inc. | Nicotine immunonanotherapeutics |
US8277812B2 (en) | 2008-10-12 | 2012-10-02 | Massachusetts Institute Of Technology | Immunonanotherapeutics that provide IgG humoral response without T-cell antigen |
US8231980B2 (en) | 2008-12-03 | 2012-07-31 | Boston Scientific Scimed, Inc. | Medical implants including iridium oxide |
WO2010068866A2 (en) | 2008-12-12 | 2010-06-17 | Bind Biosciences | Therapeutic particles suitable for parenteral administration and methods of making and using same |
JP2012512175A (en) * | 2008-12-15 | 2012-05-31 | バインド バイオサイエンシズ インコーポレイテッド | Long-circulating nanoparticles for sustained release of therapeutic agents |
US8071156B2 (en) | 2009-03-04 | 2011-12-06 | Boston Scientific Scimed, Inc. | Endoprostheses |
US8287937B2 (en) | 2009-04-24 | 2012-10-16 | Boston Scientific Scimed, Inc. | Endoprosthese |
US20100285085A1 (en) * | 2009-05-07 | 2010-11-11 | Abbott Cardiovascular Systems Inc. | Balloon coating with drug transfer control via coating thickness |
US20100324645A1 (en) * | 2009-06-17 | 2010-12-23 | John Stankus | Drug coated balloon catheter and pharmacokinetic profile |
ES2550634T3 (en) | 2009-07-10 | 2015-11-11 | Boston Scientific Scimed, Inc. | Use of nanocrystals for a drug delivery balloon |
US10080821B2 (en) | 2009-07-17 | 2018-09-25 | Boston Scientific Scimed, Inc. | Nucleation of drug delivery balloons to provide improved crystal size and density |
KR101472402B1 (en) * | 2009-07-31 | 2014-12-12 | 엘지전자 주식회사 | Diagnostic system and method for home appliance |
EP2509634B1 (en) | 2009-12-11 | 2019-03-06 | Pfizer Inc | Stable formulations for lyophilizing therapeutic particles |
JP5965844B2 (en) | 2009-12-15 | 2016-08-10 | バインド セラピューティックス インコーポレイテッド | Therapeutic polymer nanoparticle compositions having high glass transition temperature or high molecular weight copolymers |
WO2011119536A1 (en) | 2010-03-22 | 2011-09-29 | Abbott Cardiovascular Systems Inc. | Stent delivery system having a fibrous matrix covering with improved stent retention |
US8562670B2 (en) | 2010-04-01 | 2013-10-22 | Abbott Cardiovascular Systems Inc. | Implantable prosthesis with depot retention feature |
US8551159B2 (en) | 2010-04-01 | 2013-10-08 | Abbott Cardiovascular Systems Inc. | Implantable prosthesis having through-holes |
WO2011138689A2 (en) * | 2010-05-03 | 2011-11-10 | Izhar Halahmi | Releasing device for administering a bio-active agent |
CN101862477B (en) * | 2010-06-12 | 2013-05-01 | 上海交通大学医学院附属新华医院 | Bracket with drug temperature-sensitive controlled-release function and application thereof |
US8889211B2 (en) | 2010-09-02 | 2014-11-18 | Boston Scientific Scimed, Inc. | Coating process for drug delivery balloons using heat-induced rewrap memory |
EP2685974A2 (en) * | 2011-03-18 | 2014-01-22 | Katholieke Universiteit Leuven KU Leuven Research & Development | Inhibition and treatment of biofilms |
US20120303115A1 (en) * | 2011-05-25 | 2012-11-29 | Dadino Ronald C | Expandable devices coated with a rapamycin composition |
US20120302954A1 (en) * | 2011-05-25 | 2012-11-29 | Zhao Jonathon Z | Expandable devices coated with a paclitaxel composition |
WO2013022458A1 (en) | 2011-08-05 | 2013-02-14 | Boston Scientific Scimed, Inc. | Methods of converting amorphous drug substance into crystalline form |
WO2013028208A1 (en) | 2011-08-25 | 2013-02-28 | Boston Scientific Scimed, Inc. | Medical device with crystalline drug coating |
US20130307201A1 (en) * | 2012-05-18 | 2013-11-21 | Bryan William McEnerney | Ceramic article and additive processing method therefor |
EP2895156B1 (en) | 2012-09-17 | 2019-05-08 | Pfizer Inc. | Process for preparing therapeutic nanoparticles |
TWI487542B (en) | 2012-12-06 | 2015-06-11 | Ind Tech Res Inst | Bioresorbable porous film |
TWI693937B (en) | 2014-03-14 | 2020-05-21 | 美商輝瑞大藥廠 | Therapeutic nanoparticles comprising a therapeutic agent and methods of making and using same |
DE102015220046A1 (en) * | 2015-10-15 | 2017-04-20 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method of making stents and stents made therewith |
US11633307B2 (en) * | 2019-01-29 | 2023-04-25 | L'oreal | Porous formulation storage cushion, formulation delivery system, and method of manufacturing a porous formulation storage cushion |
Citations (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612160A (en) * | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
US5705583A (en) * | 1991-07-05 | 1998-01-06 | Biocompatibles Limited | Polymeric surface coatings |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US6083257A (en) * | 1995-11-01 | 2000-07-04 | Biocompatibles Limited | Braided stent |
US6090901A (en) * | 1991-07-05 | 2000-07-18 | Biocompatibles Limited | Polymeric surface coatings |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US6287628B1 (en) * | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6379381B1 (en) * | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US20020133224A1 (en) * | 2001-03-13 | 2002-09-19 | Clara Bajgar | Drug eluting encapsulated stent |
US6527938B2 (en) * | 2001-06-21 | 2003-03-04 | Syntheon, Llc | Method for microporous surface modification of implantable metallic medical articles |
US6652581B1 (en) * | 1998-07-07 | 2003-11-25 | Boston Scientific Scimed, Inc. | Medical device with porous surface for controlled drug release and method of making the same |
US6663662B2 (en) * | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
US20040088038A1 (en) * | 2002-10-30 | 2004-05-06 | Houdin Dehnad | Porous metal for drug-loaded stents |
US20040143322A1 (en) * | 2002-11-08 | 2004-07-22 | Conor Medsystems, Inc. | Method and apparatus for treating vulnerable artherosclerotic plaque |
US20050048193A1 (en) * | 2001-02-19 | 2005-03-03 | Isotis N.V. | Porous metals and metal coatings for implants |
US20050107869A1 (en) * | 2000-12-22 | 2005-05-19 | Avantec Vascular Corporation | Apparatus and methods for controlled substance delivery from implanted prostheses |
US20050119723A1 (en) * | 2003-11-28 | 2005-06-02 | Medlogics Device Corporation | Medical device with porous surface containing bioerodable bioactive composites and related methods |
US6945448B2 (en) * | 2002-06-18 | 2005-09-20 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20050209680A1 (en) * | 1997-04-15 | 2005-09-22 | Gale David C | Polymer and metal composite implantable medical devices |
US20050220853A1 (en) * | 2004-04-02 | 2005-10-06 | Kinh-Luan Dao | Controlled delivery of therapeutic agents from medical articles |
US20050283229A1 (en) * | 1997-04-15 | 2005-12-22 | Steve Dugan | Coatings for controlling erosion of a substrate of an implantable medical device |
US20060026815A1 (en) * | 2002-09-04 | 2006-02-09 | Orlando Padilla | Slide and lock stent and method of manufacture from a single piece shape |
US20060121080A1 (en) * | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
US20070003749A1 (en) * | 2005-07-01 | 2007-01-04 | Soheil Asgari | Process for production of porous reticulated composite materials |
US7179288B2 (en) * | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US7208010B2 (en) * | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
US20070259101A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Microporous coating on medical devices |
US20070258903A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US7335314B2 (en) * | 2000-09-28 | 2008-02-26 | Advanced Cardiovascular Systems Inc. | Method of making an implantable medical device |
US20080051335A1 (en) * | 2006-05-02 | 2008-02-28 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US20080057102A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of manufacturing medical devices for controlled drug release |
US7699832B2 (en) * | 2004-05-27 | 2010-04-20 | Medtronic, Inc. | Medical device having a surface including a biologically active agent therein, and methods |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050187607A1 (en) * | 2004-02-20 | 2005-08-25 | Akhtar Adil J. | Drug delivery device |
US20050266040A1 (en) | 2004-05-28 | 2005-12-01 | Brent Gerberding | Medical devices composed of porous metallic materials for delivering biologically active materials |
-
2007
- 2007-08-15 US US11/839,104 patent/US20080057102A1/en not_active Abandoned
- 2007-08-15 US US11/839,093 patent/US9248121B2/en not_active Expired - Fee Related
- 2007-08-15 US US11/839,121 patent/US20080057103A1/en not_active Abandoned
- 2007-08-16 WO PCT/US2007/076092 patent/WO2008024669A2/en active Application Filing
Patent Citations (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4612160A (en) * | 1984-04-02 | 1986-09-16 | Dynamet, Inc. | Porous metal coating process and mold therefor |
US6090901A (en) * | 1991-07-05 | 2000-07-18 | Biocompatibles Limited | Polymeric surface coatings |
US5705583A (en) * | 1991-07-05 | 1998-01-06 | Biocompatibles Limited | Polymeric surface coatings |
US6083257A (en) * | 1995-11-01 | 2000-07-04 | Biocompatibles Limited | Braided stent |
US20050283229A1 (en) * | 1997-04-15 | 2005-12-22 | Steve Dugan | Coatings for controlling erosion of a substrate of an implantable medical device |
US6240616B1 (en) * | 1997-04-15 | 2001-06-05 | Advanced Cardiovascular Systems, Inc. | Method of manufacturing a medicated porous metal prosthesis |
US20010013166A1 (en) * | 1997-04-15 | 2001-08-16 | Yan John Y. | Method of manufacturing a medicated porous metal prosthesis |
US7931931B2 (en) * | 1997-04-15 | 2011-04-26 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis and a method of making the same |
US20050209680A1 (en) * | 1997-04-15 | 2005-09-22 | Gale David C | Polymer and metal composite implantable medical devices |
US5843172A (en) * | 1997-04-15 | 1998-12-01 | Advanced Cardiovascular Systems, Inc. | Porous medicated stent |
US20080288058A1 (en) * | 1997-04-15 | 2008-11-20 | Advanced Cardovascular Systems | Medicated porous metal prosthesis and a method of making the same |
US7699890B2 (en) * | 1997-04-15 | 2010-04-20 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis and a method of making the same |
US6723120B2 (en) * | 1997-04-15 | 2004-04-20 | Advanced Cardiovascular Systems, Inc. | Medicated porous metal prosthesis |
US6273913B1 (en) * | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut |
US7179288B2 (en) * | 1998-03-30 | 2007-02-20 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US6652581B1 (en) * | 1998-07-07 | 2003-11-25 | Boston Scientific Scimed, Inc. | Medical device with porous surface for controlled drug release and method of making the same |
US6379381B1 (en) * | 1999-09-03 | 2002-04-30 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US6287628B1 (en) * | 1999-09-03 | 2001-09-11 | Advanced Cardiovascular Systems, Inc. | Porous prosthesis and a method of depositing substances into the pores |
US7335314B2 (en) * | 2000-09-28 | 2008-02-26 | Advanced Cardiovascular Systems Inc. | Method of making an implantable medical device |
US7208010B2 (en) * | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent |
US20050107869A1 (en) * | 2000-12-22 | 2005-05-19 | Avantec Vascular Corporation | Apparatus and methods for controlled substance delivery from implanted prostheses |
US7077859B2 (en) * | 2000-12-22 | 2006-07-18 | Avantec Vascular Corporation | Apparatus and methods for variably controlled substance delivery from implanted prostheses |
US6663662B2 (en) * | 2000-12-28 | 2003-12-16 | Advanced Cardiovascular Systems, Inc. | Diffusion barrier layer for implantable devices |
US20050048193A1 (en) * | 2001-02-19 | 2005-03-03 | Isotis N.V. | Porous metals and metal coatings for implants |
US20020133224A1 (en) * | 2001-03-13 | 2002-09-19 | Clara Bajgar | Drug eluting encapsulated stent |
US6527938B2 (en) * | 2001-06-21 | 2003-03-04 | Syntheon, Llc | Method for microporous surface modification of implantable metallic medical articles |
US6945448B2 (en) * | 2002-06-18 | 2005-09-20 | Zimmer Technology, Inc. | Method for attaching a porous metal layer to a metal substrate |
US20060026815A1 (en) * | 2002-09-04 | 2006-02-09 | Orlando Padilla | Slide and lock stent and method of manufacture from a single piece shape |
US20040088038A1 (en) * | 2002-10-30 | 2004-05-06 | Houdin Dehnad | Porous metal for drug-loaded stents |
US20070189915A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Method of integrating therapeutic agent into a bioerodible medical device |
US20070191943A1 (en) * | 2002-11-07 | 2007-08-16 | Sanjay Shrivastava | Integration Of Therapeutic Agent Into A Bioerodible Medical Device |
US20040143322A1 (en) * | 2002-11-08 | 2004-07-22 | Conor Medsystems, Inc. | Method and apparatus for treating vulnerable artherosclerotic plaque |
US20060121080A1 (en) * | 2002-11-13 | 2006-06-08 | Lye Whye K | Medical devices having nanoporous layers and methods for making the same |
US20050119723A1 (en) * | 2003-11-28 | 2005-06-02 | Medlogics Device Corporation | Medical device with porous surface containing bioerodable bioactive composites and related methods |
US20050220853A1 (en) * | 2004-04-02 | 2005-10-06 | Kinh-Luan Dao | Controlled delivery of therapeutic agents from medical articles |
US7699832B2 (en) * | 2004-05-27 | 2010-04-20 | Medtronic, Inc. | Medical device having a surface including a biologically active agent therein, and methods |
US20070003749A1 (en) * | 2005-07-01 | 2007-01-04 | Soheil Asgari | Process for production of porous reticulated composite materials |
US20070258903A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US20080051335A1 (en) * | 2006-05-02 | 2008-02-28 | Kleiner Lothar W | Methods, compositions and devices for treating lesioned sites using bioabsorbable carriers |
US20070259101A1 (en) * | 2006-05-02 | 2007-11-08 | Kleiner Lothar W | Microporous coating on medical devices |
US20080057103A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of using medical devices for controlled drug release |
US20080057102A1 (en) * | 2006-08-21 | 2008-03-06 | Wouter Roorda | Methods of manufacturing medical devices for controlled drug release |
Cited By (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9566235B2 (en) | 1998-04-17 | 2017-02-14 | Psimedica Limited | Implants for administering substances and methods of producing implants |
US10406029B2 (en) | 2001-04-07 | 2019-09-10 | Glaukos Corporation | Ocular system with anchoring implant and therapeutic agent |
US20100030183A1 (en) * | 2004-03-19 | 2010-02-04 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
US20070088255A1 (en) * | 2004-03-19 | 2007-04-19 | Toner John L | Method of treating vascular disease at a bifurcated vessel using a coated balloon |
US8956639B2 (en) | 2004-03-19 | 2015-02-17 | Abbott Laboratories | Multiple drug delivery from a balloon and prosthesis |
US8501213B2 (en) | 2004-03-19 | 2013-08-06 | Abbott Laboratories | Multiple drug delivery from a balloon and a prosthesis |
US20060029637A1 (en) * | 2004-08-04 | 2006-02-09 | Tice Thomas R | Methods for manufacturing delivery devices and devices thereof |
US8541028B2 (en) | 2004-08-04 | 2013-09-24 | Evonik Corporation | Methods for manufacturing delivery devices and devices thereof |
US20090130056A1 (en) * | 2007-11-21 | 2009-05-21 | Bristol-Myers Squibb Company | Compounds for the Treatment of Hepatitis C |
US20090138075A1 (en) * | 2007-11-28 | 2009-05-28 | Boston Scientific Scimed, Inc. | Bifurcated Stent with Drug Wells for Specific Ostial, Carina, and Side Branch Treatment |
US7833266B2 (en) | 2007-11-28 | 2010-11-16 | Boston Scientific Scimed, Inc. | Bifurcated stent with drug wells for specific ostial, carina, and side branch treatment |
US20090163919A1 (en) * | 2007-12-19 | 2009-06-25 | Peter Tarcha | Devices, systems, and methods for delivery of a pharmaceutical to a subject's spine |
US8728528B2 (en) | 2007-12-20 | 2014-05-20 | Evonik Corporation | Process for preparing microparticles having a low residual solvent volume |
US20090163958A1 (en) * | 2007-12-20 | 2009-06-25 | Peter Tarcha | Compositions, devices, systems, and methods for inhibiting an inflammatory response |
US9877973B2 (en) | 2008-05-12 | 2018-01-30 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US8663194B2 (en) | 2008-05-12 | 2014-03-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US9095404B2 (en) | 2008-05-12 | 2015-08-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US10064819B2 (en) | 2008-05-12 | 2018-09-04 | University Of Utah Research Foundation | Intraocular drug delivery device and associated methods |
US7951193B2 (en) | 2008-07-23 | 2011-05-31 | Boston Scientific Scimed, Inc. | Drug-eluting stent |
US20100023115A1 (en) * | 2008-07-23 | 2010-01-28 | Boston Scientific Scimed, Inc. | Drug-eluting stent |
CN102137642A (en) * | 2008-09-29 | 2011-07-27 | 斯特灵血管系统股份有限公司 | Matrix coated stent |
WO2010037144A3 (en) * | 2008-09-29 | 2010-06-10 | Robert Ndondo-Lay | Matrix coated stent |
WO2010037144A2 (en) * | 2008-09-29 | 2010-04-01 | Robert Ndondo-Lay | Matrix coated stent |
EP2198899A3 (en) * | 2008-12-18 | 2013-10-23 | Biotronik VI Patent AG | Device and method for producing same |
US20100161030A1 (en) * | 2008-12-18 | 2010-06-24 | Biotronik Vi Patent Ag | Device and Method for Producing Same |
US8992596B2 (en) | 2008-12-18 | 2015-03-31 | Biotronik Vi Patent Ag | Device and method for producing an endoprosthesis |
US9636255B2 (en) | 2009-02-13 | 2017-05-02 | Dose Medical Corporation | Uveoscleral drug delivery implant and methods for implanting the same |
US9962396B2 (en) | 2009-05-04 | 2018-05-08 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
US20100278931A1 (en) * | 2009-05-04 | 2010-11-04 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
US9486459B2 (en) | 2009-05-04 | 2016-11-08 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
US9023896B2 (en) | 2009-05-04 | 2015-05-05 | Psivida Us, Inc. | Porous silicon drug-eluting particles |
US10813789B2 (en) | 2009-05-18 | 2020-10-27 | Dose Medical Corporation | Drug eluting ocular implant |
US10206813B2 (en) | 2009-05-18 | 2019-02-19 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US11426306B2 (en) | 2009-05-18 | 2022-08-30 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US20110144582A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Coatings with tunable solubility profile for drug-coated balloon |
US8951595B2 (en) * | 2009-12-11 | 2015-02-10 | Abbott Cardiovascular Systems Inc. | Coatings with tunable molecular architecture for drug-coated balloon |
US20110143014A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Coatings with tunable molecular architecture for drug-coated balloon |
US8480620B2 (en) | 2009-12-11 | 2013-07-09 | Abbott Cardiovascular Systems Inc. | Coatings with tunable solubility profile for drug-coated balloon |
US20110144577A1 (en) * | 2009-12-11 | 2011-06-16 | John Stankus | Hydrophilic coatings with tunable composition for drug coated balloon |
US8765166B2 (en) | 2010-05-17 | 2014-07-01 | Novaer Holdings, Inc. | Drug delivery devices for delivery of ocular therapeutic agents |
US9333173B2 (en) | 2010-11-01 | 2016-05-10 | Psivida Us, Inc. | Bioerodible silicon-based devices for delivery of therapeutic agents |
US9808421B2 (en) | 2010-11-01 | 2017-11-07 | Psivida Us, Inc. | Bioerodible silicon-based devices for delivery of therapeutic agents |
US11026885B2 (en) | 2010-11-01 | 2021-06-08 | Eyepoint Pharmaceuticas, Inc. | Bioerodible silicon-based devices for delivery of therapeutic agents |
WO2012061377A1 (en) * | 2010-11-01 | 2012-05-10 | Psivida Us, Inc. | Bioerodible silicon-based devices for delivery of therapeutic agents |
US9615902B2 (en) | 2010-11-22 | 2017-04-11 | Biocad Medical Inc. | Method and device for producing a dental component |
US9668915B2 (en) | 2010-11-24 | 2017-06-06 | Dose Medical Corporation | Drug eluting ocular implant |
US10245178B1 (en) | 2011-06-07 | 2019-04-02 | Glaukos Corporation | Anterior chamber drug-eluting ocular implant |
US9980911B2 (en) | 2013-03-15 | 2018-05-29 | Psivida Us, Inc. | Bioerodible silicon-based compositions for delivery of therapeutic agents |
US9603738B2 (en) | 2013-03-15 | 2017-03-28 | Dose Medical Corporation | Implants with controlled drug delivery features and methods of using same |
US9603801B2 (en) | 2013-03-15 | 2017-03-28 | Psivida Us, Inc. | Bioerodible silicon-based compositions for delivery of therapeutic agents |
US11559430B2 (en) | 2013-03-15 | 2023-01-24 | Glaukos Corporation | Glaucoma stent and methods thereof for glaucoma treatment |
US11253394B2 (en) | 2013-03-15 | 2022-02-22 | Dose Medical Corporation | Controlled drug delivery ocular implants and methods of using same |
WO2014204634A1 (en) * | 2013-05-31 | 2014-12-24 | University Of Massachusetts Medical School | Elastomeric and degradable polymer mineral composite scaffolds |
US11839698B2 (en) | 2014-03-13 | 2023-12-12 | W. L. Gore & Associates, Inc. | Drug composition and coating |
US11992551B2 (en) | 2014-05-29 | 2024-05-28 | Glaukos Corporation | Implants with controlled drug delivery features and methods of using same |
US10959941B2 (en) | 2014-05-29 | 2021-03-30 | Glaukos Corporation | Implants with controlled drug delivery features and methods of using same |
US10159769B2 (en) | 2014-12-18 | 2018-12-25 | Cook Medical Technologies Llc | Medical devices for delivering a bioactive to a point of treatment and methods of making medical devices |
US9801983B2 (en) | 2014-12-18 | 2017-10-31 | Cook Medical Technologies Llc | Medical devices for delivering a bioactive to a point of treatment and methods of making medical devices |
US10683381B2 (en) | 2014-12-23 | 2020-06-16 | Bridgestone Americas Tire Operations, Llc | Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes |
US11261279B2 (en) | 2014-12-23 | 2022-03-01 | Bridgestone Americas Tire Operations, Llc | Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes |
US11926688B2 (en) | 2014-12-23 | 2024-03-12 | Bridgestone Americas Tire Operations, Llc | Actinic radiation curable polymeric mixtures, cured polymeric mixtures and related processes |
US11925578B2 (en) | 2015-09-02 | 2024-03-12 | Glaukos Corporation | Drug delivery implants with bi-directional delivery capacity |
US11564833B2 (en) | 2015-09-25 | 2023-01-31 | Glaukos Corporation | Punctal implants with controlled drug delivery features and methods of using same |
US11097531B2 (en) | 2015-12-17 | 2021-08-24 | Bridgestone Americas Tire Operations, Llc | Additive manufacturing cartridges and processes for producing cured polymeric products by additive manufacturing |
US20170281824A1 (en) * | 2016-03-29 | 2017-10-05 | Rymed Technologies, Llc | Anti-Microbial Medical Materials and Devices |
US11318043B2 (en) | 2016-04-20 | 2022-05-03 | Dose Medical Corporation | Bioresorbable ocular drug delivery device |
US11453161B2 (en) | 2016-10-27 | 2022-09-27 | Bridgestone Americas Tire Operations, Llc | Processes for producing cured polymeric products by additive manufacturing |
JP2023536107A (en) * | 2020-08-28 | 2023-08-23 | メディンテル コー リミティッド | Porous multi-layer tubular structure containing physiologically active substance in pores |
JP7496494B2 (en) | 2020-08-28 | 2024-06-07 | メディンテル コー リミティッド | Multi-layered tubular structure containing biologically active substances within its pores |
Also Published As
Publication number | Publication date |
---|---|
US9248121B2 (en) | 2016-02-02 |
WO2008024669A2 (en) | 2008-02-28 |
US20080057102A1 (en) | 2008-03-06 |
US20080057103A1 (en) | 2008-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9248121B2 (en) | Medical devices for controlled drug release | |
JP5102029B2 (en) | Metallic drug release medical device and method for producing the same | |
EP1517713B1 (en) | Stent coatings with sustained drug release rate | |
ES2334375T3 (en) | MULTIPLE LAYERS ABLUMINAL COATING CONSTRUCTIONS FOR ADMINISTRATION STORES OF PHARMACOS. | |
EP1981578B1 (en) | Biodegradable device | |
JP5335244B2 (en) | Medical member using improved metal alloy | |
US9358096B2 (en) | Methods of treatment with drug eluting stents with prolonged local elution profiles with high local concentrations and low systemic concentrations | |
US20030088307A1 (en) | Potent coatings for stents | |
US8524148B2 (en) | Method of integrating therapeutic agent into a bioerodible medical device | |
JP2008509742A (en) | Medical device comprising a nanoporous layer and method for making the same | |
US20080243240A1 (en) | Biodegradable Metal Barrier Layer for a Drug-Eluting Stent | |
US20120177910A1 (en) | Coated Medical Devices | |
JP2010508909A (en) | Ion bombardment of medical equipment | |
WO2009059129A2 (en) | Endoprosthesis with porous reservoir and non-polymer diffusion layer | |
AU2005289741A1 (en) | Drug-delivery endovascular stent and method for treating restenosis | |
AU2009295963A1 (en) | Matrix coated stent | |
JP2010523273A (en) | Dissolution-related drug delivery for drug-eluting stents and coatings for medical devices | |
WO2004016298A1 (en) | Microarray drug delivery coatings | |
AU2008226624B2 (en) | Bioabsorbable coatings for medical devices | |
EP2967938B1 (en) | Method for manufacturing a stent and stent manufactured thereby | |
EP2381963A2 (en) | A medical device loaded with formulations for targeted delivery of biologically active material/s and method of manufacture thereof | |
EP2421573B1 (en) | Endoprosthesis with selective drug coatings | |
WO2006044989A1 (en) | Devices and methods for delivery of pimecrolimus and other therapeutic agents |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ABBOTT LABORATORIES, ILLINOIS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROORDA, WOUTER;REEL/FRAME:020165/0489 Effective date: 20071102 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20200202 |