US10072211B2 - Alignment layer composition, liquid crystal display including the same, and method of manufacturing the liquid crystal display - Google Patents

Alignment layer composition, liquid crystal display including the same, and method of manufacturing the liquid crystal display Download PDF

Info

Publication number
US10072211B2
US10072211B2 US15/240,294 US201615240294A US10072211B2 US 10072211 B2 US10072211 B2 US 10072211B2 US 201615240294 A US201615240294 A US 201615240294A US 10072211 B2 US10072211 B2 US 10072211B2
Authority
US
United States
Prior art keywords
chemical formula
alignment layer
carbon atoms
repeating unit
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US15/240,294
Other languages
English (en)
Other versions
US20170306235A1 (en
Inventor
Jong Hwan Jeon
Suk Hoon KANG
In Ok Kim
Baek Kyun Jeon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Display Co Ltd
Original Assignee
Samsung Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Display Co Ltd filed Critical Samsung Display Co Ltd
Assigned to SAMSUNG DISPLAY CO., LTD. reassignment SAMSUNG DISPLAY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JEON, BAEK KYUN, JEON, JONG HWAN, KANG, SUK HOON, KIM, IN OK
Publication of US20170306235A1 publication Critical patent/US20170306235A1/en
Application granted granted Critical
Publication of US10072211B2 publication Critical patent/US10072211B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/16Polyester-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/025Polyamide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/02Alignment layer characterised by chemical composition
    • C09K2323/027Polyimide
    • Y10T428/10
    • Y10T428/1018
    • Y10T428/1023

Definitions

  • the present disclosure relates to an alignment layer composition, a liquid crystal display (LCD) including the same, and a method of manufacturing the LCD.
  • LCD liquid crystal display
  • LCDs are one of the most widely used types of flat panel displays.
  • an LCD includes a pair of substrates having field generating electrodes, such as pixel electrodes and a common electrode, and a liquid crystal layer interposed between the two substrates.
  • an LCD In an LCD, voltage is applied to field generating electrodes to generate an electric field in a liquid crystal layer. Accordingly, the alignment direction of liquid crystal molecules of the liquid crystal layer is determined, and polarization of incident light is controlled. As a result, a desired image is displayed on the LCD.
  • liquid crystal molecules should be aligned in a specified direction at an interface between the liquid crystal molecules of a liquid crystal layer and a field generating electrode.
  • the degree of uniformity in the alignment of the liquid crystal molecules is an important factor that determines the image quality of the LCD. Therefore, an alignment layer having anisotropy is formed between the liquid crystal layer and the field generating electrode to arrange the liquid crystal molecules in a direction.
  • aspects of the present disclosure provide an alignment layer composition which includes a new photo-alignment polymer material.
  • aspects of the present disclosure also provide an alignment layer composition which can improve alignment properties and hardness of an alignment layer, reduce afterimage defects, and increase contrast ratio.
  • aspects of the present disclosure further provide a liquid crystal display (LCD) including the above alignment layer composition and a method of manufacturing the LCD.
  • LCD liquid crystal display
  • an alignment layer composition including, a copolymer of a dianhydride compound and a diamine compound, including:
  • Z is an alkylene group having 2 to 8 carbon atoms
  • X is an aromatic group having 6 to 30 carbon atoms or an alicyclic group having 4 to 20 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • m may be 0,
  • n may be 1, and
  • X may be an alicyclic group having 4 to 20 carbon atoms.
  • n 1
  • n may be 0, and
  • Y may be an aromatic group having 6 to 30 carbon atoms.
  • each of n and m may be 1,
  • X may be an alicyclic group having 4 to 20 carbon atoms
  • Y may be an aromatic group having 6 to 30 carbon atoms.
  • each of n and m may be 1,
  • Y may be an alicyclic group having 4 to 20 carbon atoms
  • X may be an aromatic group having 6 to 30 carbon atoms.
  • the copolymer may be represented by a repeating unit of chemical formula (3):
  • the ratio of the diamine compound and the dianhydride compound may be about 1:1.
  • a liquid crystal display including:
  • a first alignment layer disposed on a surface of the first substrate facing the second substrate;
  • a second alignment layer disposed on a surface of the second substrate facing the first substrate
  • first alignment layer and the second alignment layer includes a copolymer of a dianhydride compound and a diamine compound, having a repeating unit represented by chemical formula (1) and a repeating unit represented by chemical formula (2):
  • Z is an alkylene group having 2 to 8 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • chemical formula (2) may be represented by chemical formula (2-1):
  • Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the copolymer may be represented by a repeating unit of chemical formula (1-1):
  • the copolymer may be represented by a repeating unit of chemical formula (3-1):
  • Z, X, Y, n and m are identical to those in chemical formula (1), and Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the copolymer may include a repeating unit represented by chemical formula (3):
  • the copolymer may further include a repeating unit of chemical formula (4-1):
  • the copolymer may further include a repeating unit represented by chemical formula (4):
  • the amount of the copolymer including a repeating unit of chemical formula (4-1) may be from about 5 mole percent to about 30 mole percent based on the total amount of the repeating unit of chemical formula (3-1) and the repeating unit of chemical formula (4-1).
  • a method of manufacturing an LCD including:
  • the alignment layer composition includes a copolymer of a dianhydride compound and a diamine compound, including a repeating unit represented by chemical formula (1) and a repeating unit represented by chemical formula (2):
  • Z is an alkylene group having 2 to 8 carbon atoms
  • X is an aromatic group having 6 to 30 carbon atoms or an alicyclic group having 4 to 20 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • the copolymer may include a repeating unit represented by chemical formula (3):
  • At least one of the repeating unit represented by chemical formula (3) may be converted to a repeating unit represented by chemical formula (4) by the irradiating the alignment layer composition with the linearly polarized light:
  • the at least one of the repeating unit represented by chemical formula (3) in a polarization direction of the linearly polarized light may be converted to the repeating unit represented by chemical formula (4).
  • the heat-treating of the alignment layer composition may be performed in a temperature range of 210 to 240° C. for 20 to 45 minutes.
  • the method may further include pre-treating the alignment layer composition in a temperature range of 60 to 80° C. for 50 to 100 seconds before the irradiating of the linearly polarized light.
  • An alignment layer composition according to an embodiment can provide a photo-alignment layer having anisotropy given by a new photoreaction.
  • an alignment layer composition which can improve alignment properties and hardness of an alignment layer, reduce afterimage defects and increase contrast ratio and a liquid crystal display including the alignment layer composition.
  • liquid crystal display Further, a method of manufacturing the liquid crystal display can be provided.
  • FIG. 1 is a schematic exploded perspective view of a liquid crystal display (LCD) according to an embodiment
  • FIG. 2 is a schematic layout view of a pixel included in the LCD of FIG. 1 ;
  • FIG. 3 is a cross-sectional view taken along the line I-I′ of FIG. 2 ;
  • FIGS. 4 through 12 are schematic illustrations of a process of manufacturing an LCD according to an embodiment
  • FIG. 13 is a illustrating alternating current (AC) afterimage quantification results (percent, %) of Experimental Example 1;
  • FIG. 14 is a illustrating black luminance results (candelas per square meter, cd/m 2 ) of Experimental Example 2;
  • FIG. 15 is a diagram illustrating contrast ratio results of Experimental Example 3.
  • FIGS. 16 through 23 are photographs showing results of Experimental Example 4.
  • FIGS. 24 through 26 are photographs showing results of Experimental Example 5.
  • FIGS. 27 through 29 are photographs showing results of Experimental Example 6.
  • FIGS. 30 through 32 are photographs showing results of Experimental Example 7.
  • inventive concept may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concept of the inventive concept to those skilled in the art, and the inventive concept will only be defined by the appended claims.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the disclosure.
  • spatially relative terms such as “bottom,” “below,” “lower,” “under,” “above,” “upper,” “top” and the like, may be used herein for ease of description to describe the relationship of one element or feature to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation, in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” relative to other elements or features would then be oriented “above” relative to the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • “About” or “approximately” as used herein is inclusive of the stated value and means within an acceptable range of deviation for the particular value as determined by one of ordinary skill in the art, considering the measurement in question and the error associated with measurement of the particular quantity (i.e., the limitations of the measurement system). For example, “about” can mean within one or more standard deviations, or within ⁇ 30%, 20%, 10%, 5% of the stated value.”
  • Exemplary embodiments are described herein with reference to cross section illustrations that are schematic illustrations of idealized embodiments. As such, variations from the shapes of the illustrations as a result, for example, of manufacturing techniques and/or tolerances, are to be expected. Thus, embodiments described herein should not be construed as limited to the particular shapes of regions as illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. For example, a region illustrated or described as flat may, typically, have rough and/or nonlinear features. Moreover, sharp angles that are illustrated may be rounded. Thus, the regions illustrated in the figures are schematic in nature and their shapes are not intended to illustrate the precise shape of a region and are not intended to limit the scope of the present claims.
  • FIG. 1 is a schematic exploded perspective view of a liquid crystal display (LCD) according to an embodiment.
  • LCD liquid crystal display
  • an LCD manufactured according to an embodiment includes a first substrate 100 , a first alignment layer (not illustrated) which is disposed on the first substrate 100 , a second substrate 200 which is separated from to face the first substrate 100 , and a liquid crystal layer 300 which is interposed between the first substrate 100 and the second substrate 200 .
  • the first substrate 100 may be a lower display substrate
  • the second substrate 200 may be an upper display substrate.
  • Each of the first substrate 100 and the second substrate 200 includes a display area DA and a non-display area NA.
  • the display area DA is an area in which an image is displayed
  • the non-display area NA is an area in which no image is displayed.
  • the display area DA is surrounded by the non-display area NA.
  • the display area DA includes a plurality of data lines DL extending in a first direction x (e.g., a column direction), a plurality of gate lines GL extending in a second direction y (e.g., a row direction) intersecting the first direction x, and a plurality of pixels PX formed at intersections of the gate lines GL and the data lines DL.
  • the pixels PX may be arranged in the first direction x and the second direction y in a substantially matrix pattern.
  • Each of the pixels PX may uniquely display one of primary colors.
  • the primary colors may be, for example, red, green, and blue.
  • the non-display area NA may be a light-blocking area.
  • a driver (not illustrated) which provides gate driving signals, data driving signals, etc. to the pixels PX of the display area DA may be disposed in the non-display area NA of the first substrate 100 .
  • the gate lines GL and the data lines DL may extend from the display area DA to the non-display area NA and may be electrically connected to the driver.
  • the liquid crystal layer 300 may be interposed between the first substrate 100 and the second substrate 200 .
  • the liquid crystal layer 300 may include liquid crystal molecules LC having positive dielectric anisotropy.
  • the present disclosure is not limited thereto, and the liquid crystal layer 300 can also include liquid crystal molecules having negative dielectric anisotropy.
  • FIG. 2 is a schematic plan view of a pixel included in the LCD of FIG. 1 .
  • FIG. 3 is a cross-sectional view taken along the line I-I′ of FIG. 2 .
  • the first substrate 100 includes a first base substrate 101 , one or more thin-film transistors (TFTs) 110 , a common electrode 150 , a pixel electrode 180 , and a plurality of passivation/insulation layers.
  • TFTs thin-film transistors
  • a gate wiring layer may be disposed on the first base substrate 101 .
  • the gate wiring layer may include a gate line GL and a gate electrode 111 .
  • the gate line GL may extend along substantially the second direction y.
  • the gate electrode 111 may protrude upward from the gate line GL.
  • the gate electrode 111 and the gate line GL may be integrally formed with each other without a physical boundary therebetween.
  • a gate signal received through the gate line GL may be provided to the gate electrode 111 .
  • a first insulation layer 131 may be disposed on the gate wiring layer and over the whole surface of the first base substrate 101 .
  • the first insulation layer 131 may be made of an insulating material to electrically insulate a layer located thereon and a layer located thereunder.
  • the first insulation layer 131 may have a multilayer structure including at least two insulation layers having different physical characteristics.
  • a semiconductor layer 112 is disposed on the first insulation layer 131 . At least a portion of the semiconductor layer 112 is disposed in an area which overlaps the gate electrode 111 .
  • the semiconductor layer 112 may serve as a channel of a TFT 110 and turn on or off the channel according to a voltage provided to the gate electrode 111 .
  • a data wiring layer may be disposed on the semiconductor layer 112 .
  • the data wiring layer may include a data line DL, a source electrode 113 , and a drain electrode 114 .
  • the data line DL may extend along substantially the first direction x to intersect the gate line GL.
  • a data signal may be transmitted to the data line DL.
  • a pixel area PX may be defined at an intersection of the data line DL and the gate line GL.
  • the source electrode 113 and the drain electrode 114 may be disposed on the gate electrode 111 and the semiconductor layer 112 to be separated from each other.
  • the source electrode 113 may be integrally formed with the data line DL without a physical boundary therebetween. In the drawings including FIG. 2 , the source electrode 113 is a part of the data line DL. However, the source electrode 113 can also protrude from the data line DL toward the gate electrode 111 .
  • the drain electrode 114 may be electrically connected to the pixel electrode 180 by a contact hole 160 which will be described later.
  • An ohmic contact layer 115 may be disposed between the semiconductor layer 112 and the data wiring layer.
  • the ohmic contact layer 115 may be made of an n+ hydrogenated amorphous silicon material heavily doped with an n-type impurity or may be made of silicide.
  • a passivation layer 132 may be disposed on the data wiring layer and over the whole surface of the first base substrate 101 .
  • the passivation layer 132 may be made of an inorganic layer and have a single-layer structure or a multilayer structure.
  • the passivation layer 132 can prevent wiring layers and electrodes formed thereunder from being exposed and thus directly contacting an organic material.
  • a planarization layer 133 is disposed on the passivation layer 132 and over the whole surface of the first base substrate 101 .
  • the planarization layer 133 may be made of an organic material.
  • the planarization layer 133 can be made of a plurality of components stacked on the first base substrate 101 and having equal heights.
  • the common electrode 150 may be disposed on the planarization layer 133 .
  • the common electrode 150 may be a transparent electrode.
  • a common electrode is applied to the common electrode 150 .
  • the common electrode 150 forms an electric field together with the pixel electrode 180 to which a data voltage is applied, thereby controlling the alignment direction of the liquid crystal molecules LC in the liquid crystal layer 300 .
  • a second insulation layer 134 may be disposed on the common electrode 150 to insulate the common electrode 150 thereunder from the pixel electrode 180 thereon.
  • the contact hole 160 may be formed in the passivation layer 132 , the planarization layer 133 , and the second insulation layer 134 to partially expose the drain electrode 114 .
  • the drain electrode 114 may be electrically connected to the pixel electrode 180 by the contact hole 160 .
  • the pixel electrode 180 is disposed on the second insulation layer 134 in the pixel area PX and on a portion of the drain electrode 114 which is exposed by the control hole 160 .
  • the pixel electrode 180 may be a transparent electrode.
  • the pixel electrode 180 may be a patterned electrode including a plurality of branch electrodes 181 , a plurality of slits 182 , each being formed between adjacent branch electrodes 181 , a connecting electrode 183 which connects the branch electrodes 181 at at least one end of the branch electrodes 181 , and a protruding electrode 184 which protrudes from the connecting electrode 183 toward the contact hole 160 .
  • the branch electrodes 181 and the slits 182 may be shaped like bent bars which are symmetrical with respect to roughly a central part of the pixel area PX. At least two domains may be formed in one pixel area. Accordingly, this may cause long axes of the liquid crystal molecules LC to be disposed differently in each domain, thereby suppressing a color shift phenomenon at a certain azimuthal angle.
  • the protruding electrode 184 may be electrically connected to the drain electrode 114 by the contact hole 160 and receive a data voltage from the drain electrode 114 .
  • the connecting electrode 183 may connect the protruding electrode 184 and the branch electrodes 181 . Thus, the connecting electrode 183 can evenly provide a voltage received from the protruding electrode 184 to the branch electrodes 181 .
  • a first alignment layer 410 may be disposed on the first substrate 100 .
  • the first alignment layer 410 may be a horizontal alignment layer.
  • the first alignment layer 410 may have anisotropy and cause the long axes of the liquid crystal molecules LC in the liquid crystal layer 300 adjacent to the first alignment layer 410 to face a certain direction in a plane.
  • the first alignment layer 410 may be a photoalignment layer made of a material containing a photoreactive functional group that can induce a photoreaction.
  • the first alignment layer 410 will be described in detail later together with a second alignment layer 420 .
  • the second substrate 200 may include a second base substrate 201 , a light-blocking member 210 , a color filter 220 , and an overcoat layer 230 .
  • the second base substrate 201 may be a transparent insulating substrate.
  • the light-blocking member 210 is disposed on the second base substrate 201 .
  • the light-blocking member 210 may be, for example, a black matrix.
  • the light-blocking member 210 may be disposed in a boundary area between a plurality of pixel areas, that is, in an area that overlaps the data lines DL and the gate lines GL and an area that overlaps the TFT 110 .
  • the light-blocking member 210 may be disposed at a boundary between adjacent pixel areas PX through which light incident from a backlight unit (not illustrated) under the first substrate 100 is transmitted substantially.
  • the light-blocking member 210 can prevent the intended mixing of colors or the leakage of light.
  • the color filter 220 may be disposed on the light-blocking member 210 in an area that overlaps the pixel area PX.
  • the color filter 220 may transmit light of a particular wavelength band only.
  • the color filter 220 may be disposed between two neighboring data lines DL and occupy most of the pixel area PX in a plane.
  • Color filters which have different colors and transmit light of different wavelength bands may be disposed in adjacent pixel areas. Alternatively, no color filters may be disposed.
  • the color filter 220 has a color filter-on-array structure in which a color filter is disposed on a TFT.
  • the color filter 220 can also be disposed under the TFT 110 or on the first substrate 100 .
  • the overcoat layer 230 is disposed on the light-blocking member 210 and the color filter 220 and over the whole surface of the second base substrate 201 .
  • the overcoat layer 230 may be an organic layer made of an organic material.
  • the overcoat layer 230 can prevent the light-blocking member 210 and the color filter 220 from moving out of position from the second base substrate 201 and can be made of components stacked on the second base substrate 201 and having uniform heights.
  • the overcoat layer 230 can prevent defects (such as afterimages) which may occur during screen driving by suppressing the liquid crystal layer 300 from being contaminated by a compound such as a solvent introduced from the color filter 220 .
  • the second alignment layer 420 may be disposed on the second substrate 200 . Like the first alignment layer 410 , the second alignment layer 420 may be a horizontal alignment layer. The first alignment layer 410 and the second alignment layer 420 will hereinafter be described in detail.
  • the first alignment layer 410 and/or the second alignment layer 420 may be formed using an alignment layer composition.
  • the alignment layer composition is a copolymer of a dianhydride compound and a diamine compound.
  • the alignment layer composition may be a copolymer made of a polyamic acid having a photoreactive group in a repeating unit, a polymer obtained by partial imidization of the polyamic acid having a photoreactive group in a repeating unit, polyimide obtained by dehydrative cyclization of the polyamic acid having a photoreactive group in a repeating unit, or a combination thereof.
  • the copolymer of the alignment layer composition includes a repeating unit derived from a diamine compound and represented by formula (1) below:
  • Z is an alkylene group having 2 to 8 carbon atoms
  • X is an aromatic group having 6 to 30 carbon atoms or an alicyclic group having 4 to 20 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0.
  • the copolymer of the alignment layer composition includes a repeating unit having a photoreactive phenyl ester group (—C( ⁇ O)—O—).
  • the repeating unit having a photoreactive group may be derived from a dianhydride compound.
  • the repeating unit including a photoreactive phenyl ester group has a structure represented by formula (2) below:
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • chemical formula (2) may be represented by chemical formula (2-1):
  • Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the repeating unit of formula (2) undergoes photorearrangement as a result of the Fries photoreaction, thus causing the liquid crystal molecules LC to be arranged in one direction. This will be described in greater detail later.
  • n and m may be 1, X may be an alicyclic group having 4 to 20 carbon atoms, and Y may be an aromatic group having 6 to 30 carbon atoms.
  • n and m may be 1, Y may be an alicyclic group having 4 to 20 carbon atoms, and X may be an aromatic group having 6 to 30 carbon atoms.
  • m may be 1, n may be 0, and Y may be an aromatic group having 6 to 30 carbon atoms. In another embodiment, in chemical formula (1), m may be 0, n may be 1, and X may be an alicyclic group having 4 to 20 carbon atoms.
  • Chemical formulas (1) and (2) may be combined with each other and repeated.
  • a chain-like group such as Z may be included in a repeating unit so as to provide fluidity in an alignment layer.
  • an aromatic or alicyclic groups such as X or Y may be included in chemical formula (1) to increase the alignment capability by increasing the interaction between an alignment layer and liquid crystals, enhance black luminance, and reduce an alternating current (AC) afterimage effect. Further, packability within the alignment layer may be increased using X or Y, thereby improving the hardness of the alignment layer.
  • the ratio of the repeating unit represented by formula (1) and the repeating unit represented by formula (2) may be about one to one.
  • the repeating unit of formula (1) is originated from a diamine compound
  • the repeating unit of formula (2) is originated from a dianhydride compound.
  • the ratio of the diamine compound and the dianhydride compound may be about 1:1.
  • the copolymer may be represented by a repeating unit of chemical formula (1-1):
  • the copolymer may be represented by a repeating unit of chemical formula (3-1):
  • Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the copolymer may be represented by a repeating unit of chemical formula (3) below:
  • the copolymer may further include a repeating unit of chemical formula (4-1):
  • the amount of the copolymer including a repeating unit of chemical formula (4-1) may be from about 5 mole percent to about 30 mole percent based on the total amount of the repeating unit of chemical formula (3-1) and the repeating unit of chemical formula (4-1).
  • a photoreaction may occur as follows. While not wishing to be bound by theory, it is understood that, in the structure of chemical formula (3), a C—O bond in an O ⁇ C—O bond may be homolytically cleaved by absorption of polarized light to form an acyl radical O ⁇ C. and a quinone-like aromatic radical system. The acyl radical O ⁇ C. and the quinone-like aromatic radical system may then recombine to form a carbon-carbon single bond, thereby producing a repeating unit represented by chemical formula (4) below. As a result of this process, at least one the repeating unit represented by chemical formula (3) may be converted to chemical formula (4) below.
  • the above process may proceed by a concerted mechanism, in which the old bonds break and the new bonds form simultaneously.
  • the mechanisms of the Fries reaction are well within the knowledge of one of ordinary skill in the art. This will be described in greater detail later in a method of manufacturing an LCD.
  • the LCD includes alignment layers using the above alignment layer composition.
  • the LCD includes the first substrate 100 and the second substrate 200 which face each other, the first alignment layer 410 and the second alignment layer 420 which are disposed on the facing surfaces of the first substrate 100 and the second substrate 200 , and the liquid crystal layer 300 which is interposed between the first substrate 100 and the second substrate 200 .
  • the first alignment layer 410 and the second alignment layer 420 is a copolymer of a dianhydride compound and a diamine compound, which includes a repeating unit of chemical formula (1) and a repeating unit of chemical formula (2) below:
  • Z is an alkylene group having 2 to 8 carbon atoms
  • X is an aromatic group having 6 to 30 carbon atoms or an alicyclic group having 4 to 20 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • chemical formula (2) may be represented by chemical formula (2-1):
  • Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the copolymer may be represented by a repeating unit of chemical formula (1-1):
  • the copolymer may be represented by a repeating unit of chemical formula (3-1):
  • Z, X, Y, n and m are identical to those in chemical formula (1), and Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the ratio of the repeating unit represented by chemical formula (1) and the repeating unit represented by chemical formula (2) may be about one to one, and the copolymer may be represented by chemical formula (3) below:
  • the copolymer may further include a repeating unit of chemical formula (4-1):
  • the amount of the copolymer including a repeating unit of chemical formula (4-1) may be from about 5 mole percent to about 30 mole percent based on the total amount of the repeating unit of chemical formula (3-1) and the repeating unit of chemical formula (4-1).
  • the copolymer may further include a repeating unit represented by chemical formula (4) below:
  • first alignment layer 410 and/or the second alignment layer 420 may include both the repeating unit of chemical formula (3) and the repeating unit of chemical formula (4).
  • At least one of the repeating unit of chemical formula (3) may be changed to the repeating unit of chemical formula (4) by the irradiating the first alignment layer 410 and/or the second alignment layer 420 with polarized light in the process of manufacturing an LCD, which will be described later.
  • the amount of the at least one of the repeating unit of chemical formula (3), which is changed to the repeating unit of chemical formula (4) may be smaller than the repeating unit of chemical formula (3). For example, approximately 5 to 30 mole percent (mole %) of the repeating unit of chemical formula (3) may be converted to the repeating unit of chemical formula (4).
  • the repeating unit of chemical formula (3) is converted to the repeating unit of chemical formula (4) by a photoreactive group composed of a phenyl ester group included in the repeating unit of chemical formula (2). That is, the amount of the repeating unit of chemical formula (3) is reduced by a portion that is converted to chemical formula (4).
  • repeating unit of chemical formula (3) and the repeating unit of chemical formula (4) may be both included in the first alignment layer 410 and/or the second alignment layer 420 .
  • FIGS. 4 through 12 schematically illustrate a method of manufacturing an LCD. The method of manufacturing an LCD will now be described with reference to FIGS. 4 through 12 .
  • the method of manufacturing an LCD includes preparing a substrate 500 .
  • the substrate 500 may correspond to the first substrate 100 or the second substrate 200 described above.
  • the substrate 500 may be a thin-film transistor (TFT) substrate including a first base substrate, a gate wiring layer, a semiconductor layer, a data wiring layer, a common electrode, pixel electrodes and a plurality of passivation/insulation layers or a counter substrate including a second base substrate, a light-blocking member, color filters and an overcoat layer.
  • TFT thin-film transistor
  • the method of manufacturing an LCD includes forming a pre-alignment layer 600 by disposing an alignment layer composition onto the substrate 500 .
  • the forming of the pre-alignment layer 600 by disposing the alignment layer composition onto the substrate 500 may be accomplished by coating the alignment layer composition on the substrate 500 using spin coating, slit coating, etc., but is not limited thereto.
  • the alignment layer composition is a copolymer of a dianhydride compound and a diamine compound.
  • the alignment layer composition may include a solvent in addition to a repeating unit represented by chemical formula (1) and a repeating unit of chemical formula (2):
  • Z is an alkylene group having 2 to 8 carbon atoms
  • X is an aromatic group having 6 to 30 carbon atoms or an alicyclic group having 4 to 20 carbon atoms
  • Y is an alicyclic group having 4 to 20 carbon atoms or an aromatic group having 6 to 30 carbon atoms
  • n 0 or 1
  • n 1 or 0
  • R 1 is a tetravalent organic group derived from an alicyclic dianhydride or an aromatic dianhydride, and wherein R 1 includes a phenyl ester group.
  • chemical formula (2) may be represented by chemical formula (2-1):
  • Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • the copolymer may be represented by a repeating unit of chemical formula (1-1):
  • the copolymer may be represented by a repeating unit of chemical formula (3-1):
  • Z, X, Y, n and m are identical to those in chemical formula (1), and Ar 1 and Ar 2 are each independently an aromatic group comprising 6 to 30 carbon atoms.
  • copolymer may be represented by chemical formula (3) below:
  • pre-alignment layer may refer to a layer including an alignment layer composition before the layer acquires alignment properties.
  • the copolymer may include first polymer chains 600 b having directionality toward an arbitrary first direction x and second polymer chains 600 a having directionality toward a second direction y perpendicular to the first direction x. Further, the first polymer chains 600 b having a specified length and the second polymer chains 600 a having a specified length may be repeatedly arranged in the first direction x and the second direction y and may be substantially treated as continua, respectively.
  • another embodiment of a method of manufacturing an LCD may include pre-treating H 1 the pre-alignment layer 610 in a temperature range of 60 to 80° C. for 50 to 100 seconds before light irradiation which will be described later.
  • the pre-treating H 1 of the pre-alignment layer 610 may be a process of removing the solvent contained in the alignment layer composition.
  • the pre-treating H 1 of the pre-alignment layer 610 can reduce the fluidity of the pre-alignment layer 610 and the dispersibility of the alignment layer composition in the pre-alignment layer 610 .
  • the pre-treating H 1 of the pre-alignment layer 610 is designed to volatilize a solvent contained in some alignment layer composition, but this process can be omitted, when desired.
  • the method of manufacturing an LCD includes irradiating linearly polarized light PUV to the pre-alignment layer 620 .
  • the light linearly polarized in the first direction x is irradiated.
  • the polarization direction is not limited to the first direction x and can be changed as desired.
  • the irradiating of the linearly polarized light PUV to the pre-alignment layer 620 may be designed to give anisotropy to the pre-alignment layer 620 .
  • the light PUV may be at least one of ultraviolet light, infrared light, far infrared light, electron rays, and radioactive rays.
  • the light PUV may be ultraviolet light having a wavelength of approximately 250 to 330 nanometers (nm), ultraviolet light having a wavelength of approximately 254 nm, or ultraviolet light having a wavelength of approximately 313 nm.
  • the first polymer chains 620 b which have directionality toward the first direction x, in the pre-alignment layer 620 may absorb the linearly polarized light PUV, and a C—O bond in an O ⁇ C—O bond of the phenyl ester group of the copolymer may be homolytically cleaved by absorption of polarized light to form an acyl radical O ⁇ C. and a quinone-like aromatic radical system.
  • the acyl radical O ⁇ C is irradiated, at least some of the first polymer chains 620 b , which have directionality toward the first direction x, in the pre-alignment layer 620 may absorb the linearly polarized light PUV, and a C—O bond in an O ⁇ C—O bond of the phenyl ester group of the copolymer may be homolytically cleaved by absorption of polarized light to form an acyl radical O ⁇ C. and a quinone-like aromatic radical system.
  • the quinone-like aromatic radical system may then recombine to form a carbon-carbon double bond, thereby producing a repeating unit represented by chemical formula (4) below.
  • the main chains of the at least some of the first polymer chains 620 b may be bent (tilted).
  • the copolymer may further include a repeating unit of chemical formula (4-1):
  • the amount of the copolymer including a repeating unit of chemical formula (4-1) may be from about 5 mole percent to about 30 mole percent based on the total amount of the repeating unit of chemical formula (3-1) and the repeating unit of chemical formula (4-1).
  • the first polymer chains 620 b may absorb the linearly polarized light PUV and may be rearranged as in chemical formula (4) by a photo-Fries reaction to produce tilted main chains:
  • some of the first polymer chains 620 b having directionality toward the first direction x may be converted to modified polymer chains 620 b ′ bent in a certain direction.
  • the unchanged main chains of the first polymer chains 620 b or the second polymer chains 620 a may include the repeating unit of chemical formula (3)
  • the changed main chains 620 b ′ of the first polymer chains 620 b may include the repeating unit of chemical formula (4).
  • polymer chains in the pre-alignment layer 620 may absorb the linearly polarized light PUV and be arranged as follows. At least some of the first polymer chains 620 b having linearity or directionality roughly toward the first direction x may undergo a photo-Fries reaction. The photo-Fries reaction may result in main chains of the at least some of the first polymer chains 620 b to be bent in a direction (that is, partially oriented toward the second direction y from the first direction x) different from the first direction x. Accordingly, the at least some of the first polymer chains 620 b may be rearranged and stabilized to be changed to the modified polymer chains 620 b ′.
  • the continuity of the first polymer chains 620 b in the first direction x is reduced.
  • the second polymer chains 620 a having linearity in the second direction y does not undergo a photoreaction.
  • the second polymer chains 620 a can give anisotropy to the whole of the pre-alignment layer 620 .
  • the linearly polarized light PUV may be irradiated at an exposure dose of approximately 0.1 to 3.0 Joules per square centimeter (J/cm 2 ).
  • the exposure dose may be controlled by the duration of light irradiation to the pre-alignment layer 620 or the output of light. However, the exposure dose may vary according to the driving mode of an LCD or physical properties of a main material that forms the photo-alignment layer.
  • the alignment layer composition does not require a cleaning process because it does not generate byproducts as a result of a photoreaction such as a photolytic reaction.
  • the omission of the cleaning process can prevent the damage or adhesion of a foreign matter to an alignment layer having anisotropy which can occur during the cleaning process and improve process efficiency.
  • the cleaning process may be performed.
  • the cleaning process may be a dry cleaning process or a wet cleaning process.
  • the method of manufacturing an LCD includes heat-treating H 2 the pre-alignment layer 630 .
  • the heat-treating H 2 of the pre-alignment layer 630 may be designed to further improve alignment capability by stabilizing unstable reactive groups and rearranging the first and/or second polymer chains 630 b and/or 630 a after the irradiating of the linearly polarized light PUV.
  • the heat-treating H 2 of the pre-alignment layer 630 may be designed to increase heat resistance of the pre-alignment layer 630 by finally removing the remaining solvent.
  • the pre-alignment layer 630 includes the modified polymer chains 630 b ′ partially oriented toward the second direction y perpendicular to the linearly polarized light PUV through the absorption of the linearly polarized light PUV.
  • polymers within the alignment layer composition come to have fluidity through the heat-treating H 2 of the pre-alignment layer 630 . Therefore, referring to FIG. 11 , as the modified first polymer chains 630 b ′ located in the second direction y, the first polymer chains 630 b having directionality toward the first direction x can move easily due to the fluidity obtained by the heat-treating H 2 of the pre-alignment layer 630 .
  • the first polymer chains 630 b can be moved toward the second direction y by the second polymer chains 620 a arranged adjacent to the first polymer chains 630 b.
  • the polymer chains 630 b are gradually aligned toward the second direction y by portions of the modified polymer chains 630 b ′ which are oriented toward the second direction y and the second polymer chains 620 a which are arranged in the second direction y.
  • the pre-alignment layer 630 may be manufactured into an alignment layer 640 having alignment properties toward the second direction y.
  • the irradiating of the linearly polarized light PUV to the pre-alignment layer 630 causes partial discontinuity of the first polymer chains 630 b in the first direction x.
  • the partial discontinuity of the first polymer chains 630 b weakens the interaction force between adjacent first polymer chains 630 b , which, in turn, makes it easy to rearrange the first polymer chains 630 b .
  • the second polymer chains 630 a can resist rearrangement due to a strong interface force between the second polymer chains 630 a.
  • the second polymer chains 630 a maintain directionality toward the second direction y without being rearranged. Therefore, the overall directionalities of the first polymer chains 630 b and the second polymer chains 630 a may converge on the second direction y. This can further give anisotropy to the pre-alignment layer 630 .
  • the heat-treating H 2 of the pre-alignment layer 630 may be performed at a temperature of 210 to 240° C. for 20 to 45 minutes, but the present embodiments are not limited thereto.
  • a liquid crystal layer including liquid crystal molecules LC is formed on the substrate 500 , and the substrate 500 and another substrate which faces the substrate 500 may be bonded together. Long axes of the liquid crystal molecules LC may be aligned roughly toward the second direction y by anisotropy formed by polymer chains within the alignment layer 640 .
  • the forming of the liquid crystal layer may be a process of placing (for example, dropping) a liquid crystal composition onto the substrate 500 and/or a counter substrate (not illustrated) and then bonding the substrate 500 and the counter substrate (not illustrated) together.
  • the forming of the liquid crystal layer may also be a process of injecting the liquid crystal composition after bonding the substrate 500 and the counter substrate (not illustrated) together.
  • An LCD was manufactured by forming an alignment layer using an alignment layer composition which includes a copolymer of a repeating unit of chemical formula (5) below and a repeating unit having a photoreactive group composed of a phenyl ester group:
  • An LCD was manufactured by forming an alignment layer using an alignment layer composition which includes a copolymer of a repeating unit of chemical formula (6) below and a repeating unit having a photoreactive group composed of a phenyl ester group:
  • An LCD was manufactured by forming an alignment layer using a decomposing alignment layer composition which includes a repeating unit of chemical formula (8) originated from a diamine compound of chemical formula (7) below:
  • An LCD was manufactured by forming an alignment layer using an alignment layer composition which includes a copolymer of a repeating unit of chemical formula (9) below and a repeating unit having a photoreactive group composed of a phenyl ester group:
  • the AC afterimage quantification evaluation of the LCDs manufactured in Embodiments 1 and 2, Control Group and Comparative Example 1 was performed, and the evaluation results were plotted on a graph shown in FIG. 13 .
  • the AC afterimage quantification evaluation was performed by measuring, using Minolta CA-210, a difference between 8 Grey initial luminance of a 2.5-inch test cell and luminance obtained after the application of 4.5 volts (V) AC for one hour.
  • Embodiments 1 and 2 show a reduced AC afterimage effect compared with Control Group using the photolytic alignment layer and a far reduced AC afterimage effect compared Comparative Example 1.
  • Black luminance levels of Embodiments 1 and 2 and Control Group were evaluated, and the evaluation results were plotted on a graph shown in FIG. 14 .
  • the evaluation of the black luminance levels was performed by measuring luminance of a 2.5-inch PLS test cell in an initial, undriven state using CA-210 and ELABO-230CF.
  • Embodiments 1 and 2 of the present disclosure show black luminance levels equivalent to that of Control Group using the photolytic alignment layer. Therefore, it can be understood that an alignment layer including a photoreactive group has alignment properties equivalent to those of a photolytic alignment layer.
  • Contrast ratios of Embodiments 1 and 2 and Control Group were measured, and the measurement results were plotted on a graph shown in FIG. 15 .
  • the contrast ratios were measured by measuring a difference between black luminance and white luminance of a 12.9-inch PLS test cell using CA-210.
  • Embodiments 1 and 2 of the present disclosure show contrast ratios equivalent to or higher than that of Control Group using the photolytic alignment layer.
  • Embodiments 1 and 2 show an alignment capability equivalent to or higher than that of Control Group using the photolytic alignment layer.
  • Comparative Example 1 shows a very low alignment capability.
  • Embodiments 1 and 2 show black luminance characteristics equivalent to or better than those of Control Group using the photolytic alignment layer.
  • Comparative Example 1 shows degraded black luminance characteristics due to a very low alignment capability.
  • the scratch resistance of the LCDs manufactured in Embodiment 1, Control Group, and Comparative Example 1 was tested.
  • the scratch resistance test included preparing a single substrate having an alignment layer printed to a thickness of 300 nm, rubbing the substrate to a rubbing depth of 13.5 nm and at a rubbing roll speed of 750 revolutions per minute (rpm), and then checking scratches formed on the alignment layer.
  • the alignment layers hardly have any scratches and show very high scratch resistance equivalent to that of Control Group. Therefore, it can be understood that a chain-like group and an alicyclic or aromatic group included in the repeating unit of formula (1) contributes to an improvement of the layer hardness.
  • the alignment layer of Comparative Example 1 has a substantial number of scratches, indicating that it has relatively low hardness.
  • the wear resistance of the LCDs manufactured in Embodiment 1, Control Group, and Comparative Example 1 was tested.
  • the wear resistance test included performing a backpack vibration test 800 times on a 12.9-inch PLS test cell using a weight of 750 grams (g), a backpack of 3 kilograms (kg), and a stage speed of 40 rpm and then measuring layer hardness using a layer hardness tester.
  • the alignment layers have some wear, but were only slightly different in wear from the alignment layer of Control Group.
  • Comparative Example 1 has a lot of wear. Therefore, it can be understood that the alignment layer of Embodiment 1 has wear resistance characteristics equivalent to those of the photolytic alignment layer and better than those of the alignment layer of Comparative Example 1.
  • this can be understood that a chain-like group and an alicyclic or aromatic group included in the repeating unit of formula (1) contributes to an improvement in layer hardness.
  • a light leak defect test was performed on the LCDs manufactured in Embodiments 1 and 2 and Control Group.
  • the light leak defect test included aging a 2.5-inch PLS test cell and a 12.9-inch PLS test cell in an oven at a temperature of 70° C. and then performing a high temperature storage (FITS) test.
  • FITS high temperature storage
  • Embodiments 1 and 2 hardly have light leak defects.
  • Control Group using the photolytic alignment layer suffers from quite a substantial number of light leaks due to the byproducts produced by photolysis.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Liquid Crystal (AREA)
US15/240,294 2016-04-20 2016-08-18 Alignment layer composition, liquid crystal display including the same, and method of manufacturing the liquid crystal display Active US10072211B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160047936A KR102621459B1 (ko) 2016-04-20 2016-04-20 배향막 조성물, 이를 포함하는 액정 표시 장치 및 액정 표시 장치 제조방법
KR10-2016-0047936 2016-04-20

Publications (2)

Publication Number Publication Date
US20170306235A1 US20170306235A1 (en) 2017-10-26
US10072211B2 true US10072211B2 (en) 2018-09-11

Family

ID=60088433

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/240,294 Active US10072211B2 (en) 2016-04-20 2016-08-18 Alignment layer composition, liquid crystal display including the same, and method of manufacturing the liquid crystal display

Country Status (3)

Country Link
US (1) US10072211B2 (ko)
KR (1) KR102621459B1 (ko)
CN (1) CN107304361B (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226943B (zh) * 2016-10-11 2021-08-31 京东方科技集团股份有限公司 用于制造量子点显示器件的方法以及对应的量子点显示器件

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061509A (en) * 1989-08-25 1991-10-29 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
US6063829A (en) 1996-03-05 2000-05-16 Nissan Chemical Industries, Ltd. Method for liquid crystal alignment
JP2008116809A (ja) 2006-11-07 2008-05-22 Nissan Chem Ind Ltd 液晶配向層形成用樹脂組成物
JP2012093642A (ja) 2010-10-28 2012-05-17 Nissan Chem Ind Ltd 液晶配向剤、液晶配向膜、及び液晶表示素子
US20140024786A1 (en) * 2012-07-19 2014-01-23 Samsung Electronics Co., Ltd. Polyimide precursor composition, article prepared by using same, and display device including the article
JP2014029465A (ja) 2012-06-29 2014-02-13 Jsr Corp 光配向用液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、化合物、並びに重合体
JP2014130366A (ja) 2009-02-19 2014-07-10 Jsr Corp 液晶配向剤、液晶配向膜および液晶表示素子
US20160070142A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1175082C (zh) * 2001-10-26 2004-11-10 中国科学院长春应用化学研究所 由含有光敏封端剂的聚酰亚胺制备液晶取向膜的方法
US7438957B2 (en) * 2005-07-18 2008-10-21 Akon Polymer Systems Poly(aryletherimides) for negative birefringent films for LCDs
KR101184319B1 (ko) * 2009-01-29 2012-09-19 제이엔씨 주식회사 배향제 및 이것에 사용되는 액정성 폴리이미드
DE102011108708A1 (de) * 2010-09-25 2012-03-29 Merck Patent Gmbh Flüssigkristallanzeigen und flüssigkristalline Medien mit homöotroper Ausrichtung
JP5929298B2 (ja) * 2011-03-02 2016-06-01 Jnc株式会社 ジアミン、これを用いた液晶配向剤、液晶表示素子および液晶配向膜の形成方法
JP6160610B2 (ja) * 2012-03-21 2017-07-12 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
CN107589595A (zh) * 2012-10-31 2018-01-16 捷恩智株式会社 液晶显示元件
JP6252009B2 (ja) * 2013-07-24 2017-12-27 Jnc株式会社 新規ジアミン、これを用いたポリマー、液晶配向剤、液晶配向膜、および液晶表示素子
KR102071632B1 (ko) * 2013-09-26 2020-01-31 삼성디스플레이 주식회사 액정 광배향제, 이를 포함하는 액정 표시 장치 및 그 제조 방법
KR20150063804A (ko) * 2013-12-02 2015-06-10 삼성디스플레이 주식회사 액정 표시 장치 및 이의 제조방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061509A (en) * 1989-08-25 1991-10-29 Kabushiki Kaisha Toshiba Method of manufacturing polyimide thin film and method of manufacturing liquid crystal orientation film of polyimide
US6063829A (en) 1996-03-05 2000-05-16 Nissan Chemical Industries, Ltd. Method for liquid crystal alignment
JP2008116809A (ja) 2006-11-07 2008-05-22 Nissan Chem Ind Ltd 液晶配向層形成用樹脂組成物
JP2014130366A (ja) 2009-02-19 2014-07-10 Jsr Corp 液晶配向剤、液晶配向膜および液晶表示素子
JP2012093642A (ja) 2010-10-28 2012-05-17 Nissan Chem Ind Ltd 液晶配向剤、液晶配向膜、及び液晶表示素子
JP2014029465A (ja) 2012-06-29 2014-02-13 Jsr Corp 光配向用液晶配向剤、液晶配向膜及びその製造方法、液晶表示素子、化合物、並びに重合体
US20140024786A1 (en) * 2012-07-19 2014-01-23 Samsung Electronics Co., Ltd. Polyimide precursor composition, article prepared by using same, and display device including the article
US20160070142A1 (en) * 2014-09-04 2016-03-10 Samsung Display Co., Ltd. Photoalignment agent, photoalignment layer, liquid crystal display device, and method of manufacturing the same

Also Published As

Publication number Publication date
KR102621459B1 (ko) 2024-01-05
CN107304361A (zh) 2017-10-31
US20170306235A1 (en) 2017-10-26
CN107304361B (zh) 2022-05-31
KR20170120222A (ko) 2017-10-31

Similar Documents

Publication Publication Date Title
US10613390B2 (en) Liquid crystal display device and manufacturing method thereof
US20190250467A1 (en) Liquid crystal display and manufacturing method thereof
US8906474B2 (en) Alignment film, composition for forming alignment film and liquid crystal display device
US20180180947A1 (en) Liquid crystal display device and manufacturing method thereof
US11409165B2 (en) Liquid crystal display device and manufacturing method thereof
US8580357B2 (en) Liquid crystal display device
JP5439077B2 (ja) 液晶表示装置及びその製造方法
KR20130048297A (ko) 액정표시장치, 배향막 및 이들을 제조하는 방법들
JP2005351924A (ja) 液晶表示装置
KR20120125141A (ko) 액정표시장치, 배향막 및 이들을 제조하는 방법들
KR20110111212A (ko) 화소전극 표시판, 액정표시판 조립체 및 이들을 제조하는 방법들
US10072211B2 (en) Alignment layer composition, liquid crystal display including the same, and method of manufacturing the liquid crystal display
US10557084B2 (en) Alignment film composition, liquid crystal display device, and method of manufacturing liquid crystal display device
KR100646982B1 (ko) 액정 표시 장치의 배향막 형성 방법
US20080225212A1 (en) Pixel designs for multi-domain vertical alignment liquid crystal display
US10745622B2 (en) Alignment layer composition, liquid crystal display including the alignment layer composition, and manufacturing method of the liquid crystal display
KR100437822B1 (ko) 액정표시소자 및 그 제조방법
KR101222538B1 (ko) 액정표시패널 및 그 제조방법
JP2022054005A (ja) 液晶表示装置
WO2012077644A1 (ja) 液晶表示装置、及び、液晶表示装置の製造方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JEON, JONG HWAN;KANG, SUK HOON;KIM, IN OK;AND OTHERS;REEL/FRAME:039671/0618

Effective date: 20160803

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4