US10029247B2 - Chabazite-type zeolite and process for producing the same - Google Patents
Chabazite-type zeolite and process for producing the same Download PDFInfo
- Publication number
- US10029247B2 US10029247B2 US13/139,591 US200913139591A US10029247B2 US 10029247 B2 US10029247 B2 US 10029247B2 US 200913139591 A US200913139591 A US 200913139591A US 10029247 B2 US10029247 B2 US 10029247B2
- Authority
- US
- United States
- Prior art keywords
- chabazite
- sio
- zeolite
- type zeolite
- particle diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J39/00—Cation exchange; Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/08—Use of material as cation exchangers; Treatment of material for improving the cation exchange properties
- B01J39/14—Base exchange silicates, e.g. zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/16—Alumino-silicates
- B01J20/18—Synthetic zeolitic molecular sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28004—Sorbent size or size distribution, e.g. particle size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7015—CHA-type, e.g. Chabazite, LZ-218
-
- B01J32/00—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/031—Precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/036—Precipitation; Co-precipitation to form a gel or a cogel
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/04—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B39/00—Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
- C01B39/02—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
- C01B39/46—Other types characterised by their X-ray diffraction pattern and their defined composition
- C01B39/48—Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
- B01D2253/1085—Zeolites characterized by a silicon-aluminium ratio
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/30—Physical properties of adsorbents
- B01D2253/302—Dimensions
- B01D2253/304—Linear dimensions, e.g. particle shape, diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
Definitions
- the present invention relates to a chabazite-type zeolite having a high silica content and a large crystal size, and a process for producing the zeolite.
- Chabazite-type zeolites are zeolites having a three-dimensional pore structure constructed of 8-membered oxygen rings of 3.8 ⁇ 3.8 ⁇ , and are designated and classified as the structure type code CHA, as zeolites having a fully identified crystal structure, by International Zeolite Association (non-patent document 1).
- Chabazite-type zeolites are known as naturally occurring zeolites and typically have the composition Ca 6 2+ [Si 24 Al 12 O 72 ] (non-patent document 2).
- Examples of synthetic zeolites of the chabazite type include zeolite D disclosed in patent document 1 and zeolite R disclosed in patent document 2, each zeolite having an SiO 2 /Al 2 O 3 ratio of 3.45-4.9.
- patent document 3 and patent document 4 are disclosed a zeolite of the so-called high-silica chabazite type having an SiO 2 /Al 2 O 3 ratio of 5-50, which is designated as SSZ-13, and methods for synthesizing the zeolite.
- patent document 5 a chabazite-type zeolite having an SiO 2 /Al 2 O 3 ratio of 20-50 and a crystal diameter of 0.5 ⁇ m or less, which is designated as SSZ-62. Furthermore, patent document 6 and non-patent document 3 disclose that a chabazite-type zeolite having an SiO 2 /Al 2 O 3 ratio of 100 or greater can be synthesized by adding fluorine.
- Synthetic zeolites have regularly arranged pores having a uniform size which are due to the crystal structure thereof. Using the pore structures, synthetic zeolites are industrially used as desiccants, adsorbents for adsorbing various inorganic or organic molecules on the basis of differences in polarity and molecular diameter, solid acid catalysts, etc. For example, chabazite-type zeolites also are known to be usable as catalysts for chemically converting an oxygenic organic compound, e.g., an alcohol, into a lower olefin (patent document 6 and patent document 7).
- an oxygenic organic compound e.g., an alcohol
- HFA134a 1,1,1,2-tetrafluoroethane
- HCFC 1122 1-chloro-2,2-difluoroethylene
- pattern 9 an adsorptive separating agent for separating the propylene from the propane by adsorbing propylene on the zeolite from a mixture of propylene and propane
- an adsorptive separating agent for separating oxygen, carbon dioxide, or helium from a mixture thereof with nitrogen (patent document 10)
- a catalyst for synthesizing a methylamine compound (patent document 11), a catalyst for producing acetonitrile through ammoxidation of ethane (patent document 12), a catalyst for selective reduction of nitrogen oxides with hydrocarbon in automobile exhaust gas (patent document 13), an odor absorbent for use in fibrous members constituting sanitary articles (patent document 14), etc.
- chabazite-type zeolites are expected to be utilized in a variety of application, in particular, as adsorbents and catalyst supports.
- the zeolites must have durability required of adsorbents or catalyst supports.
- the zeolites are required not to decrease in adsorption performance even when repeatedly heated.
- the catalysts for use in exhaust gas purification are required to have thermal durability which enables the catalysts to retain their catalytic performance at high temperatures.
- An object of the invention is to provide a chabazite-type zeolite which, when used as a catalyst support or adsorbent base material, has high durability and high thermal resistance and a process for producing the zeolite.
- the present inventors diligently made investigations on improvements in the durability and thermal resistance of chabazite-type zeolites and on processes for the production. As a result, the inventors have found that a chabazite-type zeolite having an SiO 2 /Al 2 O 3 molar ratio of 15-50 and an average particle diameter of 1.5 ⁇ m or more has high durability and thermal resistance and that such a chabazite-type zeolite can be produced under conditions different from conventional conditions, and the invention has been thus completed.
- the chabazite-type zeolite of the invention has the high durability and high thermal resistance which are required of catalyst supports and adsorbent base materials. Furthermore, the chabazite-type zeolite having high durability and thermal resistance can be produced using conditions under which an organic structure-directing agent, which is expensive, is used in a small amount.
- FIG. 1 is photograph of zeolite 3 taken with a scanning electron microscope (hereinafter referred to as “SEM”).
- FIG. 2 is an SEM photograph of comparative zeolite 1.
- the chabazite-type zeolite of the invention is high-silica chabazite having an SiO 2 /Al 2 O 3 molar ratio of 15-50.
- SiO 2 /Al 2 O 3 molar ratio thereof is less than 15, the durability and thermal resistance which render the zeolite useful as an adsorbent or catalyst support are difficult to obtain.
- SiO 2 /Al 2 O 3 ratio thereof exceeds 50, this zeolite is insufficient in solid acidity, which renders the zeolite useful as an adsorbent or catalyst support.
- the chabazite-type zeolite of the invention should have an average particle diameter of 1.5 ⁇ m or more. From the standpoints of techniques for industrially producing the synthetic zeolite and of use of the zeolite as an adsorbent or catalyst support, it is preferred that the average particle diameter thereof should be 1.5 ⁇ m to 10 ⁇ m. Crystal particles smaller than 1.5 ⁇ m which have been reported, in particular, crystal particles smaller than 1.0 ⁇ m, have reduced durability and thermal resistance when used as an adsorbent or catalyst support.
- Average particle diameter in the invention can be evaluated by a 10% particle diameter and a 50% particle diameter which are obtained through particle diameter distribution analysis (volumetric distribution) by the laser diffraction and scattering method, or through an observation with an SEM.
- the zeolite is dispersed in water and this dispersion is subjected to a treatment in which the crystal particles are brought into a homogeneously dispersed state with an ultrasonic homogenizer, before being measured.
- the particle diameter can be determined with good reproducibility.
- the chabazite-type zeolite of the invention has the crystal particle morphology in which the rhombohedral faces can be clearly observed. Consequently, the zeolite can be evaluated for particle diameter, for example, by arbitrarily selecting 50 crystal particle images from one or more SEM photographs taken at 5.000-fold magnifications, measuring the 50 crystal particle diameters thereof, and calculating a weighted average thereof.
- the chabazite-type zeolite of the invention is in the state of being dispersed as primary particles and, hence, there is a good correlation between the average particle diameter and the 10% particle diameter obtained through the particle diameter distribution analysis measurement by the laser diffraction and scattering method.
- the chabazite-type zeolite of the invention is produced from starting materials which are composed basically of a silica source, an alumina source, an alkali source, a structure-directing agent (hereinafter referred to as “SDA”), and water.
- SDA structure-directing agent
- An ingredient having the function of accelerating crystallization, such as, e.g., seed crystals, may be added.
- silica source use can be made of colloidal silica, amorphous silica, sodium silicate, tetraethyl orthosilicate, an aluminosilicate gel, or the like.
- alumina source use can be made of aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, an aluminosilicate gel, aluminum metal, or the like. It is desirable to use a silica source and an alumina source which are in such a form that they can be sufficiently evenly mixed with the other ingredients.
- alkali source use can be made of sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, the alkali components of an aluminate and silicate, the alkali component of an aluminosilicate gel, or the like.
- the SDA use is made of at least one member selected from the group consisting of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trialkyladamantylammonium as a cation and of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trimethylbenzylammonium ion, an N-alkyl-3-quinuclidinol ion, or an N,N,N-trialkyl-2-ammonium exonorbornane as a cation.
- TMADAOH N,N,N-trimethyladamantylammonium hydroxide
- TMADAOH N,N,N-trimethyladamantylammonium halides
- N,N,N-trimethyladamantylammonium carbonate N,N,N-trimethyladamantylammonium methyl carbonate
- N,N,N-trimethyladamantylammonium sulfate N,N,N-trimethyladamantylammonium hydroxide
- the chabazite-type zeolite of the invention can be produced so that the SDA/SiO 2 ratio is 0.05 or greater but less than 0.13 and the H 2 O/SiO 2 ratio is 5 or greater but less than 30.
- the chabazite-type zeolite which can be obtained is limited to one having an average crystal particle diameter less than 1.5 ⁇ m as in conventional techniques. Furthermore, since the SDA is expensive, use of such a higher SDA/SiO 2 ratio is uneconomical. On the other hand, in the case where the SDA/SiO 2 ratio is less than 0.05, the crystallization of the chabazite-type zeolite is insufficient and by-products (impurities) are generated.
- the starting-material composition in the invention should have an SiO 2 /Al 2 O 3 ratio of 16-100.
- SiO 2 /Al 2 O 3 ratio is less than 16 or greater than 100, it is difficult to synthesize a chabazite-type zeolite having a SiO 2 /Al 2 O 3 ratio of 15-50.
- the OH/SiO 2 ratio which is an index to the amount of hydroxide ions, is preferably 0.1 or greater but less than 0.9, and is more preferably 0.15-0.5. In the case where the OH/SiO 2 ratio is less than 0.1, the crystallization of zeolite is difficult to proceed. In the case where the OH/SiO 2 ratio is 0.9 or greater, dissolution of the silica component is accelerated and, hence, it is difficult to obtain a chabazite-type zeolite having the SiO 2 /Al 2 O 3 ratio and particle diameter according to the invention.
- the chabazite-type zeolite of the invention is produced, the chabazite-type zeolite is crystallized in the presence of at least one element selected from the group consisting of K, Rb, and Cs, as alkali metal ions having the function of mineralizing.
- the chabazite-type zeolite is crystallized in the presence of at least one element selected from the group consisting of K, Rb, and Cs, as alkali metal ions having the function of mineralizing.
- K, Rb, and Cs as alkali metal ions having the function of mineralizing.
- by-products impurity crystals
- the starting-material composition constituted of water, a silica source, an alumina source, an alkali ingredient, and an SDA is crystallized at any desired temperature of 100-200° C. over a sufficiently long period in a closed vessel.
- the chabazite-type zeolite can be produced.
- the starting-material composition may be allowed to remain static. It is, however, preferred that the starting-material composition should be kept being stirred and mixed.
- the resultant mixture is allowed to cool sufficiently and subjected to solid-liquid separation. The solid matter is washed with a sufficient amount of pure water and dried at any desired temperature of 100-150° C.
- a chabazite-type zeolite according to the invention is obtained.
- the chabazite-type zeolite, as obtained, can be used as an adsorbent, a catalyst support, or an ion exchanger body.
- the chabazite-type zeolite obtained contains the SDA and/or the alkali metal within the pores, and can be used after these ingredients are removed according to need.
- For removing the SDA and/or the alkali metal use can be made of a liquid-phase treatment with an acidic solution or with a chemical including an SDA-decomposing ingredient, an exchange treatment with a resin or the like, or thermal decomposition. A combination of these treatments may also be used. It is also possible to utilize the ion-exchange ability of the zeolite to convert the zeolite to the H form or NH 4 form before the zeolite is used. For this conversion, a known technique can be used.
- aqueous TMADAOH solution N,N,N-trimethyladamantylammonium hydroxide
- TMADAOH solution a 13% aqueous solution of N,N,N-trimethyladamantylammonium hydroxide
- 17.4 g of pure water 17.4 g of pure water
- 3.5 g of 48% aqueous potassium hydroxide solution 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.11TMADAOH:0.04Na 2 O:0.13K 2 O:18H 2 O.
- the starting-material composition was placed in a stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had SiO 2 /Al 2 O 3 ratio of 18.7. Pure water was added to this chabazite-type zeolite to prepare a slurry having a solid content of 1%.
- This slurry was subjected to an ultrasonic dispersion treatment for 2 minutes and then to particle diameter distribution analysis (volumetric average) by the laser diffraction and scattering method.
- the zeolite was found to have a 10% particle diameter of 1.35 ⁇ m and a 50% particle diameter of 1.93 ⁇ m.
- 50 crystal particle images were arbitrarily selected from an SEM photograph taken at 5,000-fold magnifications, and a particle diameter (hereinafter referred to as “SEM diameter”) was obtained by averaging the diameters of those particles.
- the SEM diameter thereof was 1.64 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 1.
- Example 2 The same procedure as in Example 1 was conducted, except that an amorphous silica powder was used as a silica source and aluminum hydroxide was used as an alumina source.
- aqueous TMADAOH solution To 22.1 g of 13% aqueous TMADAOH solution were added 18.4 g of pure water, 0.8 g of 48% aqueous sodium hydroxide solution, 3.6 g of 48% aqueous potassium hydroxide solution, 0.6 g of aluminum hydroxide, and 8.1 g of an amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together.
- Nipsil VN-3 amorphous silica powder
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 19.5.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.41 ⁇ m and a 50% particle diameter of 1.99 ⁇ m. The SEM diameter thereof was 1.65 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 2.
- TMADAOH TMADAOH
- pure water 1.7 g
- 48% aqueous potassium hydroxide solution 7.9 g
- an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.10TMADAOH:0.04Na 2 O:0.06K 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had SiO 2 /Al 2 O 3 ratio of 23.7.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.83 ⁇ m and a 50% particle diameter of 3.09 ⁇ m. The SEM diameter thereof was 1.93 ⁇ m. This chabazite-type zeolite is referred to as zeolite 3.
- TMADAOH TMADAOH
- pure water 1.3 g of 48% aqueous potassium hydroxide solution
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.08TMADAOH:0.04Na 2 O:0.04K 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 25.2.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.21 ⁇ m and a 50% particle diameter of 4.48 ⁇ m. The SEM diameter thereof was 2.08 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 4.
- TMADAOH TMADAOH
- pure water 2.0 g of 48% aqueous potassium hydroxide solution
- 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.021Al 2 O 3 :0.10TMADAOH:0.04Na 2 O:0.04K 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 38.0.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.02 ⁇ m and a 50% particle diameter of 3.75 ⁇ m. The SEM diameter thereof was 2.01 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 5.
- TMADAOH TMADAOH
- aqueous potassium hydroxide solution 2.8 g of 48% aqueous potassium hydroxide solution
- 7.6 g of an amorphous aluminosilicate gel which had undergone a sodium removal treatment, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.034Al 2 O 3 :0.10TMADAOH:0.10K 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 25.4.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.98 ⁇ m and a 50% particle diameter of 3.48 ⁇ m. The SEM diameter thereof was 1.92 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 6.
- TMADAOH TMADAOH
- pure water 19.6 g
- cesium hydroxide solution 4.3 g
- an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.10TMADAOH:0.04Na 2 O:0.06Cs 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 182 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 22.9.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.17 ⁇ m and a 50% particle diameter of 4.22 ⁇ m. The SEM diameter thereof was 2.03 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 7.
- TMADABr N,N,N-trimethyladamantylammonium bromide
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 25.8.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.29 ⁇ m and a 50% particle diameter of 5.78 ⁇ m. The SEM diameter thereof was 1.85 ⁇ m.
- This chabazite-type zeolite is referred to as zeolite 8.
- a chabazite-type zeolite was synthesized with reference to the method disclosed in U.S. Pat. No. 4,665,110, description.
- TMADAOH TMADAOH
- pure water 0.9 g of 48% aqueous sodium hydroxide solution
- aluminum hydroxide 0.29 g of aluminum hydroxide
- amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.20TMADAOH:0.10Na 2 O:44H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 22.3.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.71 ⁇ m and a 50% particle diameter of 1.25 ⁇ m. The SEM diameter thereof was 0.48 ⁇ m.
- This chabazite-type zeolite is referred to as comparative zeolite 1.
- TMADAOH TMADAOH
- pure water 1.2 g of 48% aqueous sodium hydroxide solution
- aluminum hydroxide 0.40 g of aluminum hydroxide
- amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.20TMADAOH:0.10Na 2 O:30H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry revealed that the product consisted only of an amorphous product.
- TMADAOH TMADAOH
- pure water 3.1 g of 48% aqueous sodium hydroxide solution
- 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.035Al 2 O 3 :0.13TMADAOH:0.20Na 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 18.5.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.65 ⁇ m and a 50% particle diameter of 1.26 ⁇ m. The SEM diameter thereof was 0.39 ⁇ m.
- This chabazite-type zeolite is referred to as comparative zeolite 3.
- TMADAOH aqueous TMADAOH solution
- 18.1 g of pure water 2.6 g of 48% aqueous sodium hydroxide solution
- 7.8 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together.
- the resultant starting-material composition was constituted of SiO 2 :0.035Al 2 O 3 :0.11TMADAOH:0.17Na 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry revealed that the product consisted only of a mordenite-type zeolite.
- TMADAOH TMADAOH
- aqueous sodium hydroxide solution aqueous sodium hydroxide solution
- the resultant starting-material composition was constituted of SiO 2 :0.035Al 2 O 3 :0.11TMADAOH:0.12Na 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 24.2.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.23 ⁇ m and a 50% particle diameter of 0.38 ⁇ m. The SEM diameter thereof was 0.18 ⁇ m.
- This chabazite-type zeolite is referred to as comparative zeolite 5.
- TMADAOH TMADAOH
- pure water 1.2 g of 48% aqueous sodium hydroxide solution
- the resultant starting-material composition was constituted of SiO 2 :0.036Al 2 O 3 :0.10TMADAOH:0.10Na 2 O:18H 2 O.
- This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours.
- the product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C.
- Powder X-ray diffraction and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO 2 /Al 2 O 3 ratio of 24.4.
- This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.33 ⁇ m and a 50% particle diameter of 1.49 ⁇ m. The SEM diameter thereof was 0.32 ⁇ m.
- This chabazite-type zeolite is referred to as comparative zeolite 6.
- Table 2 In the following Table 2 are shown the starting-material compositions prepared in Examples 1 to 8 and Comparative Examples 1 to 6 and the products obtained therein.
- Table 3 In Table 3 are shown the SiO 2 /Al 2 O 3 ratios of the products, the particle diameters thereof determined through particle diameter distribution analysis, and the particle diameters thereof determined from SEM photographs.
- Dry powders of zeolite 3 and comparative zeolite 1 were calcined at 600° C. for 2 hours in an air stream. Thereafter, each powder was press-molded and then pulverized to obtain a powder regulated so as to be composed of 12- to 20-mesh particles. 3 ml of each zeolite having the regulated particle sizes was filled into an ordinary-pressure fixed-bed flow-through type reaction tube. While air containing 10% by volume moisture was being passed at 300 mL/min, the zeolite was treated at 900° C. for two levels of periods, i.e., 1 hour and 16 hours. The hydrothermal resistance of each zeolite was evaluated in terms of crystallinity as determined after the hydrothermal treatment.
- Table 4 is shown the values of crystallinity (%) of each zeolite which had undergone the hydrothermal treatment. The results show that the chabazite-type zeolite of the invention had higher retentions of crystallinity than the conventional chabazite-type zeolite and had excellent thermal resistance.
- the chabazite-type zeolite of the invention has high durability and hydrothermal resistance, this zeolite is expected to be utilized in a wide range of fields as catalyst supports for exhaust gas purification catalysts and as the bases of adsorbents.
- the invention has a significant industrial value.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Dispersion Chemistry (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
- Catalysts (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
A subject for the invention is to provide a chabazite-type zeolite that is expected to have durability and thermal resistance, which are practical properties required of catalyst supports and adsorbent bases, and that has profitability. A chabazite-type zeolite having an SiO2/Al2O3 molar ratio of 15-50 and an average particle diameter size of 1.5 μm or more has high durability and high thermal resistance. Such a chabazite-type zeolite can be produced by crystallizing a starting-material composition in which the molar ratios of a structure-directing agent and water to SiO2 satisfy
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30,
in the presence of at least one kind of alkali metal ions selected from the group consisting of K, Rb, and Cs. The structure-directing agent preferably is an N,N,N-trimethyladamantaneammonium salt.
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30,
in the presence of at least one kind of alkali metal ions selected from the group consisting of K, Rb, and Cs. The structure-directing agent preferably is an N,N,N-trimethyladamantaneammonium salt.
Description
The present invention relates to a chabazite-type zeolite having a high silica content and a large crystal size, and a process for producing the zeolite.
Chabazite-type zeolites are zeolites having a three-dimensional pore structure constructed of 8-membered oxygen rings of 3.8×3.8 Å, and are designated and classified as the structure type code CHA, as zeolites having a fully identified crystal structure, by International Zeolite Association (non-patent document 1).
Chabazite-type zeolites are known as naturally occurring zeolites and typically have the composition Ca6 2+[Si24Al12O72] (non-patent document 2). Examples of synthetic zeolites of the chabazite type include zeolite D disclosed in patent document 1 and zeolite R disclosed in patent document 2, each zeolite having an SiO2/Al2O3 ratio of 3.45-4.9.
In patent document 3 and patent document 4 are disclosed a zeolite of the so-called high-silica chabazite type having an SiO2/Al2O3 ratio of 5-50, which is designated as SSZ-13, and methods for synthesizing the zeolite.
In patent document 5 is disclosed a chabazite-type zeolite having an SiO2/Al2O3 ratio of 20-50 and a crystal diameter of 0.5 μm or less, which is designated as SSZ-62. Furthermore, patent document 6 and non-patent document 3 disclose that a chabazite-type zeolite having an SiO2/Al2O3 ratio of 100 or greater can be synthesized by adding fluorine.
Synthetic zeolites have regularly arranged pores having a uniform size which are due to the crystal structure thereof. Using the pore structures, synthetic zeolites are industrially used as desiccants, adsorbents for adsorbing various inorganic or organic molecules on the basis of differences in polarity and molecular diameter, solid acid catalysts, etc. For example, chabazite-type zeolites also are known to be usable as catalysts for chemically converting an oxygenic organic compound, e.g., an alcohol, into a lower olefin (patent document 6 and patent document 7). Other uses thereof which have been disclosed include an adsorptive separating agent for purifying 1,1,1,2-tetrafluoroethane (HFA134a) contained in a mixture of HFA134a and 1-chloro-2,2-difluoroethylene (HCFC 1122) (patent document 8), an adsorptive separating agent for separating the propylene from the propane by adsorbing propylene on the zeolite from a mixture of propylene and propane (patent document 9), an adsorptive separating agent for separating oxygen, carbon dioxide, or helium from a mixture thereof with nitrogen (patent document 10), a catalyst for synthesizing a methylamine compound (patent document 11), a catalyst for producing acetonitrile through ammoxidation of ethane (patent document 12), a catalyst for selective reduction of nitrogen oxides with hydrocarbon in automobile exhaust gas (patent document 13), an odor absorbent for use in fibrous members constituting sanitary articles (patent document 14), etc.
As described above, chabazite-type zeolites are expected to be utilized in a variety of application, in particular, as adsorbents and catalyst supports. However, for industrial uses, the zeolites must have durability required of adsorbents or catalyst supports. For example, for use in an adsorption/desorption process involving a thermal regeneration step, the zeolites are required not to decrease in adsorption performance even when repeatedly heated. Meanwhile, the catalysts for use in exhaust gas purification are required to have thermal durability which enables the catalysts to retain their catalytic performance at high temperatures. There has hence been a desire for a chabazite-type zeolite which has even better durability and heat resistance that have not been obtained so far.
- Patent Document 1: British Patent No. 868,846, description
- Patent Document 2: U.S. Pat. No. 3,030,181, description
- Patent Document 3: U.S. Pat. No. 4,544,538, description
- Patent Document 4: U.S. Pat. No. 4,665,110, description
- Patent Document 5: U.S. Pat. No. 6,709,644, description
- Patent Document 6: JP-T-2007-534582
- Patent Document 7: JP-A-60-92221
- Patent Document 8: JP-A-5-78266
- Patent Document 9: U.S. Pat. No. 6,488,741, description
- Patent Document 10: JP-T-2005-503260
- Patent Document 11: JP-A-8-59566
- Patent Document 12: JP-A-9-124578
- Patent Document 13: JP-T-2001-525241
- Patent Document 14: JP-T-2002-512083
- Non-Patent Document 1: ATLAS OF ZEOLITE FRAMEWORK TYPES, fifth revised edition, p. 102 (2001)
- Non-Patent Document 2: Nature, Vol. 181, p. 1794 (1957)
- Non-Patent Document 3: Chem. Commun., p. 1881 (1998)
An object of the invention is to provide a chabazite-type zeolite which, when used as a catalyst support or adsorbent base material, has high durability and high thermal resistance and a process for producing the zeolite.
The present inventors diligently made investigations on improvements in the durability and thermal resistance of chabazite-type zeolites and on processes for the production. As a result, the inventors have found that a chabazite-type zeolite having an SiO2/Al2O3 molar ratio of 15-50 and an average particle diameter of 1.5 μm or more has high durability and thermal resistance and that such a chabazite-type zeolite can be produced under conditions different from conventional conditions, and the invention has been thus completed.
Essential points of the invention reside in the following (1) to (3).
- (1) A chabazite-type zeolite characterized by having an SiO2/Al2O3 molar ratio of 15-50 and an average particle diameter of 1.5 μm or more.
- (2) A process for producing the chabazite-type zeolite according to (1) above, characterized in that a starting-material composition in which the molar ratios of a structure-directing agent and water to SiO2 satisfy
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30
is crystallized in the presence of at least one kind of alkali metal ions selected from the group consisting of K, Rb, and Cs, and that
the structure-directing agent comprises at least one member selected from the group consisting of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trialkyladamantylammonium as a cation and of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trimethylbenzylammonium ion, an N-alkyl-3-quinuclidinol ion, or an N,N,N-trialkyl-2-ammonium exonorbornane as a cation. - (3) The process for chabazite-type zeolite production according to (2) above, characterized in that the structure-directing agent comprises at least one member selected from the group consisting of N,N,N-trialkyladamantylammonium hydroxide, N,N,N-trimethyladamantylammonium halides, N,N,N-trimethyladamantylammonium carbonate, N,N,N-trimethyladamantylammonium methyl carbonate, and N,N,N-trimethyladamantylammonium sulfate.
The chabazite-type zeolite of the invention has the high durability and high thermal resistance which are required of catalyst supports and adsorbent base materials. Furthermore, the chabazite-type zeolite having high durability and thermal resistance can be produced using conditions under which an organic structure-directing agent, which is expensive, is used in a small amount.
The chabazite-type zeolite of the invention is high-silica chabazite having an SiO2/Al2O3 molar ratio of 15-50. In the case where the SiO2/Al2O3 molar ratio thereof is less than 15, the durability and thermal resistance which render the zeolite useful as an adsorbent or catalyst support are difficult to obtain. In the case where the SiO2/Al2O3 ratio thereof exceeds 50, this zeolite is insufficient in solid acidity, which renders the zeolite useful as an adsorbent or catalyst support.
The chabazite-type zeolite of the invention should have an average particle diameter of 1.5 μm or more. From the standpoints of techniques for industrially producing the synthetic zeolite and of use of the zeolite as an adsorbent or catalyst support, it is preferred that the average particle diameter thereof should be 1.5 μm to 10 μm. Crystal particles smaller than 1.5 μm which have been reported, in particular, crystal particles smaller than 1.0 μm, have reduced durability and thermal resistance when used as an adsorbent or catalyst support.
Average particle diameter in the invention can be evaluated by a 10% particle diameter and a 50% particle diameter which are obtained through particle diameter distribution analysis (volumetric distribution) by the laser diffraction and scattering method, or through an observation with an SEM.
In the laser diffraction and scattering method, the zeolite is dispersed in water and this dispersion is subjected to a treatment in which the crystal particles are brought into a homogeneously dispersed state with an ultrasonic homogenizer, before being measured. Thus, the particle diameter can be determined with good reproducibility.
The chabazite-type zeolite of the invention has the crystal particle morphology in which the rhombohedral faces can be clearly observed. Consequently, the zeolite can be evaluated for particle diameter, for example, by arbitrarily selecting 50 crystal particle images from one or more SEM photographs taken at 5.000-fold magnifications, measuring the 50 crystal particle diameters thereof, and calculating a weighted average thereof. The chabazite-type zeolite of the invention is in the state of being dispersed as primary particles and, hence, there is a good correlation between the average particle diameter and the 10% particle diameter obtained through the particle diameter distribution analysis measurement by the laser diffraction and scattering method.
Next, the process for producing the chabazite-type zeolite of the invention is explained.
The chabazite-type zeolite of the invention is produced from starting materials which are composed basically of a silica source, an alumina source, an alkali source, a structure-directing agent (hereinafter referred to as “SDA”), and water. An ingredient having the function of accelerating crystallization, such as, e.g., seed crystals, may be added.
As the silica source, use can be made of colloidal silica, amorphous silica, sodium silicate, tetraethyl orthosilicate, an aluminosilicate gel, or the like. As the alumina source, use can be made of aluminum sulfate, sodium aluminate, aluminum hydroxide, aluminum chloride, an aluminosilicate gel, aluminum metal, or the like. It is desirable to use a silica source and an alumina source which are in such a form that they can be sufficiently evenly mixed with the other ingredients.
As the alkali source, use can be made of sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, the alkali components of an aluminate and silicate, the alkali component of an aluminosilicate gel, or the like.
As the SDA, use is made of at least one member selected from the group consisting of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trialkyladamantylammonium as a cation and of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trimethylbenzylammonium ion, an N-alkyl-3-quinuclidinol ion, or an N,N,N-trialkyl-2-ammonium exonorbornane as a cation.
In particular, as the SDA, use can be made of at least one member selected from the group consisting of N,N,N-trimethyladamantylammonium hydroxide (hereinafter abbreviated to “TMADAOH”), N,N,N-trimethyladamantylammonium halides, N,N,N-trimethyladamantylammonium carbonate, N,N,N-trimethyladamantylammonium methyl carbonate, and N,N,N-trimethyladamantylammonium sulfate.
The chabazite-type zeolite of the invention can be produced so that the SDA/SiO2 ratio is 0.05 or greater but less than 0.13 and the H2O/SiO2 ratio is 5 or greater but less than 30.
In the case where the SDA/SiO2 ratio is 0.13 or greater, the chabazite-type zeolite which can be obtained is limited to one having an average crystal particle diameter less than 1.5 μm as in conventional techniques. Furthermore, since the SDA is expensive, use of such a higher SDA/SiO2 ratio is uneconomical. On the other hand, in the case where the SDA/SiO2 ratio is less than 0.05, the crystallization of the chabazite-type zeolite is insufficient and by-products (impurities) are generated.
In the case where the H2O/SiO2 ratio is 30 or greater, the result is a reduced yield and the process is hence uneconomical. On the other hand, in the case where the H2O/SiO2 ratio is less than 5, the viscosity of starting material increased and hence results in no fluidity, making industrial production difficult. In either case, by-products (impurities and unreacted reactants) can be easily generated.
It is preferred that the starting-material composition in the invention should have an SiO2/Al2O3 ratio of 16-100. In the case where the SiO2/Al2O3 ratio is less than 16 or greater than 100, it is difficult to synthesize a chabazite-type zeolite having a SiO2/Al2O3 ratio of 15-50.
The OH/SiO2 ratio, which is an index to the amount of hydroxide ions, is preferably 0.1 or greater but less than 0.9, and is more preferably 0.15-0.5. In the case where the OH/SiO2 ratio is less than 0.1, the crystallization of zeolite is difficult to proceed. In the case where the OH/SiO2 ratio is 0.9 or greater, dissolution of the silica component is accelerated and, hence, it is difficult to obtain a chabazite-type zeolite having the SiO2/Al2O3 ratio and particle diameter according to the invention.
When the chabazite-type zeolite of the invention is produced, the chabazite-type zeolite is crystallized in the presence of at least one element selected from the group consisting of K, Rb, and Cs, as alkali metal ions having the function of mineralizing. In the case where such alkali metal ions are not contained, crystallization proceeds insufficiently and by-products (impurity crystals) are generated, when the starting-material composition has an SDA/SiO2 ratio less than 0.13. In addition, it is difficult to obtain a chabazite-type zeolite having an average particle diameter of 1.5 μm or more according to the invention. From the standpoint of economical rationality, K ions are preferred.
The starting-material composition constituted of water, a silica source, an alumina source, an alkali ingredient, and an SDA is crystallized at any desired temperature of 100-200° C. over a sufficiently long period in a closed vessel. Thus, the chabazite-type zeolite can be produced. During the crystallization, the starting-material composition may be allowed to remain static. It is, however, preferred that the starting-material composition should be kept being stirred and mixed. After completion of the crystallization, the resultant mixture is allowed to cool sufficiently and subjected to solid-liquid separation. The solid matter is washed with a sufficient amount of pure water and dried at any desired temperature of 100-150° C. Thus, a chabazite-type zeolite according to the invention is obtained.
The chabazite-type zeolite, as obtained, can be used as an adsorbent, a catalyst support, or an ion exchanger body. The chabazite-type zeolite obtained contains the SDA and/or the alkali metal within the pores, and can be used after these ingredients are removed according to need. For removing the SDA and/or the alkali metal, use can be made of a liquid-phase treatment with an acidic solution or with a chemical including an SDA-decomposing ingredient, an exchange treatment with a resin or the like, or thermal decomposition. A combination of these treatments may also be used. It is also possible to utilize the ion-exchange ability of the zeolite to convert the zeolite to the H form or NH4 form before the zeolite is used. For this conversion, a known technique can be used.
The invention will be explained in detail by reference to the following Examples and Comparative Examples, but the invention should not be construed as being limited to the Examples.
To 21.3 g of a 13% aqueous solution of N,N,N-trimethyladamantylammonium hydroxide (hereinafter referred to as “13% aqueous TMADAOH solution”) were added 17.4 g of pure water, 3.5 g of 48% aqueous potassium hydroxide solution, and 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.11TMADAOH:0.04Na2O:0.13K2O:18H2O.
The starting-material composition was placed in a stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had SiO2/Al2O3 ratio of 18.7. Pure water was added to this chabazite-type zeolite to prepare a slurry having a solid content of 1%. This slurry was subjected to an ultrasonic dispersion treatment for 2 minutes and then to particle diameter distribution analysis (volumetric average) by the laser diffraction and scattering method. As a result, the zeolite was found to have a 10% particle diameter of 1.35 μm and a 50% particle diameter of 1.93 μm. Furthermore, 50 crystal particle images were arbitrarily selected from an SEM photograph taken at 5,000-fold magnifications, and a particle diameter (hereinafter referred to as “SEM diameter”) was obtained by averaging the diameters of those particles. The SEM diameter thereof was 1.64 μm. This chabazite-type zeolite is referred to as zeolite 1.
The same procedure as in Example 1 was conducted, except that an amorphous silica powder was used as a silica source and aluminum hydroxide was used as an alumina source.
To 22.1 g of 13% aqueous TMADAOH solution were added 18.4 g of pure water, 0.8 g of 48% aqueous sodium hydroxide solution, 3.6 g of 48% aqueous potassium hydroxide solution, 0.6 g of aluminum hydroxide, and 8.1 g of an amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 19.5. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.41 μm and a 50% particle diameter of 1.99 μm. The SEM diameter thereof was 1.65 μm. This chabazite-type zeolite is referred to as zeolite 2.
To 19.0 g of 13% aqueous TMADAOH solution were added 21.4 g of pure water, 1.7 g of 48% aqueous potassium hydroxide solution, and 7.9 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.10TMADAOH:0.04Na2O:0.06K2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had SiO2/Al2O3 ratio of 23.7.
In the following Table 1 is shown a comparison between an X-ray diffraction pattern of a chabazite-type zeolite (U.S. Pat. No. 4,544,538, description) and an X-ray diffraction pattern of the product obtained in Example 3.
TABLE 1 | |||
X-ray diffraction pattern of | |||
chabazite-type zeolite | X-ray diffraction pattern | ||
(U.S. Pat. No. 4,544,538, | of the product of Example 3 | ||
description) | (dried at 110° C.) |
Lattice spacing d | Relative | Lattice spacing d | Relative | ||
(Å) | intensity | (Å) | intensity | ||
9.24 | 61 | 9.22 | 44 | ||
6.30 | 21 | 6.29 | 18 | ||
5.46 | 80 | 5.46 | 73 | ||
4.98 | 24 | 4.97 | 23 | ||
4.26 | 100 | 4.25 | 100 | ||
4.01 | 9 | 4.01 | 9 | ||
3.91 | 8 | 3.90 | 7 | ||
3.56 | 69 | 3.55 | 46 | ||
3.389 | 18 | 3.38 | 21 | ||
2.885 | 47 | 2.87 | 41 | ||
2.859 | 21 | 2.85 | 18 | ||
This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.83 μm and a 50% particle diameter of 3.09 μm. The SEM diameter thereof was 1.93 μm. This chabazite-type zeolite is referred to as zeolite 3.
To 16.0 g of 13% aqueous TMADAOH solution were added 24.7 g of pure water, 1.3 g of 48% aqueous potassium hydroxide solution, and 8.0 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.08TMADAOH:0.04Na2O:0.04K2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 25.2. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.21 μm and a 50% particle diameter of 4.48 μm. The SEM diameter thereof was 2.08 μm. This chabazite-type zeolite is referred to as zeolite 4.
To 19.0 g of 13% aqueous TMADAOH solution were added 21.3 g of pure water, 2.0 g of 48% aqueous potassium hydroxide solution, and 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.021Al2O3:0.10TMADAOH:0.04Na2O:0.04K2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 38.0. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.02 μm and a 50% particle diameter of 3.75 μm. The SEM diameter thereof was 2.01 μm. This chabazite-type zeolite is referred to as zeolite 5.
To 18.9 g of 13% aqueous TMADAOH solution were added 20.7 g of pure water, 2.8 g of 48% aqueous potassium hydroxide solution, and 7.6 g of an amorphous aluminosilicate gel which had undergone a sodium removal treatment, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.034Al2O3:0.10TMADAOH:0.10K2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 25.4. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 1.98 μm and a 50% particle diameter of 3.48 μm. The SEM diameter thereof was 1.92 μm. This chabazite-type zeolite is referred to as zeolite 6.
To 18.5 g of 13% aqueous TMADAOH solution were added 19.6 g of pure water, 4.3 g of 50% aqueous cesium hydroxide solution, and 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.10TMADAOH:0.04Na2O:0.06Cs2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 182 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 22.9. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.17 μm and a 50% particle diameter of 4.22 μm. The SEM diameter thereof was 2.03 μm. This chabazite-type zeolite is referred to as zeolite 7.
To 10.6 g of a 25% aqueous solution of N,N,N-trimethyladamantylammonium bromide (hereinafter abbreviated to “TMADABr”) were added 29.7 g of pure water, 1.7 g of 48% aqueous potassium hydroxide solution, 0.1 g of 48% aqueous sodium hydroxide solution, and 7.9 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.034Al2O3:0.08TMADABr:0.05Na2O:0.06K2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 70 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 25.8. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 2.29 μm and a 50% particle diameter of 5.78 μm. The SEM diameter thereof was 1.85 μm. This chabazite-type zeolite is referred to as zeolite 8.
A chabazite-type zeolite was synthesized with reference to the method disclosed in U.S. Pat. No. 4,665,110, description.
To 17.9 g of 13% aqueous TMADAOH solution were added 27.2 g of pure water, 0.9 g of 48% aqueous sodium hydroxide solution, 0.29 g of aluminum hydroxide, and 3.7 g of an amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.20TMADAOH:0.10Na2O:44H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 22.3. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.71 μm and a 50% particle diameter of 1.25 μm. The SEM diameter thereof was 0.48 μm. This chabazite-type zeolite is referred to as comparative zeolite 1.
To 24.8 g of 13% aqueous TMADAOH solution were added 18.5 g of pure water, 1.2 g of 48% aqueous sodium hydroxide solution, 0.40 g of aluminum hydroxide, and 5.1 g of an amorphous silica powder (trade name: Nipsil VN-3) manufactured by Tosoh Silica Corp., and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.20TMADAOH:0.10Na2O:30H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry revealed that the product consisted only of an amorphous product.
To 24.6 g of 13% aqueous TMADAOH solution were added 14.7 g of pure water, 3.1 g of 48% aqueous sodium hydroxide solution, and 7.7 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.035Al2O3:0.13TMADAOH:0.20Na2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 18.5. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.65 μm and a 50% particle diameter of 1.26 μm. The SEM diameter thereof was 0.39 μm. This chabazite-type zeolite is referred to as comparative zeolite 3.
To 21.5 g of 13% aqueous TMADAOH solution were added 18.1 g of pure water, 2.6 g of 48% aqueous sodium hydroxide solution, and 7.8 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.035Al2O3:0.11TMADAOH:0.17Na2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry revealed that the product consisted only of a mordenite-type zeolite.
To 22.0 g of 13% aqueous TMADAOH solution were added 18.6 g of pure water, 1.6 g of 48% aqueous sodium hydroxide solution, and 7.8 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.035Al2O3:0.11TMADAOH:0.12Na2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. X-ray powder diffractometry and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 24.2. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.23 μm and a 50% particle diameter of 0.38 μm. The SEM diameter thereof was 0.18 μm. This chabazite-type zeolite is referred to as comparative zeolite 5.
To 19.1 g of 13% aqueous TMADAOH solution were added 21.8 g of pure water, 1.2 g of 48% aqueous sodium hydroxide solution, and 8.0 g of an amorphous aluminosilicate gel prepared from sodium silicate and aluminum sulfate, and the ingredients were sufficiently mixed together. The resultant starting-material composition was constituted of SiO2:0.036Al2O3:0.10TMADAOH:0.10Na2O:18H2O.
This starting-material composition was placed in a closed stainless-steel autoclave and heated at 150° C. for 158 hours. The product yielded through the heating was taken out by solid-liquid separation, washed with a sufficient amount of pure water, and dried at 110° C. Powder X-ray diffraction and fluorescent X-ray spectroscopy revealed that the product was a pure chabazite-type zeolite and had an SiO2/Al2O3 ratio of 24.4. This chabazite-type zeolite was subjected to particle diameter distribution analysis in the same manner as in Example 1. As a result, the zeolite was found to have a 10% particle diameter of 0.33 μm and a 50% particle diameter of 1.49 μm. The SEM diameter thereof was 0.32 μm. This chabazite-type zeolite is referred to as comparative zeolite 6.
In the following Table 2 are shown the starting-material compositions prepared in Examples 1 to 8 and Comparative Examples 1 to 6 and the products obtained therein. In Table 3 are shown the SiO2/Al2O3 ratios of the products, the particle diameters thereof determined through particle diameter distribution analysis, and the particle diameters thereof determined from SEM photographs.
TABLE 2 | |||||
SiO2/ | (TMADAOH or | ||||
Al2O3 | TMADABr)/ | H2O/SiO2 | Alkali | ||
Example | ratio | SiO2 Ratio | ratio | metal | Product |
Example 1 | 28 | 0.11 | 18 | Na, K | Chabazite |
Example 2 | 28 | 0.11 | 18 | Na, K | Chabazite |
Example 3 | 28 | 0.10 | 18 | Na, K | Chabazite |
Example 4 | 28 | 0.08 | 18 | Na, K | Chabazite |
Example 5 | 48 | 0.10 | 18 | Na, K | Chabazite |
Example 6 | 29 | 0.10 | 18 | K | Chabazite |
Example 7 | 28 | 0.10 | 18 | Na, Cs | Chabazite |
Example 8 | 29 | 0.08 | 18 | Na, K | Chabazite |
Comparative | 28 | 0.20 | 44 | Na | Chabazite |
Example 1 | |||||
Comparative | 28 | 0.20 | 30 | Na | Amorphous |
Example 2 | |||||
Comparative | 29 | 0.13 | 18 | Na | Chabazite |
Example 3 | |||||
Comparative | 29 | 0.11 | 18 | Na | Mordenite |
Example 4 | |||||
Comparative | 29 | 0.11 | 18 | Na | Chabazite |
Example 5 | |||||
Comparative | 28 | 0.10 | 18 | Na | Chabazite |
Example 6 | |||||
TABLE 3 | ||||
10% particle | 50% particle | SEM | ||
SiO2/Al2O3 | diameter | diameter | diameter | |
Zeolite | ratio | (μm) | (μm) | (μm) |
Zeolite 1 | 18.7 | 1.35 | 1.93 | 1.64 |
Zeolite 2 | 19.5 | 1.42 | 1.99 | 1.65 |
Zeolite 3 | 23.7 | 1.83 | 3.09 | 1.93 |
Zeolite 4 | 25.2 | 2.21 | 4.48 | 2.08 |
Zeolite 5 | 38.0 | 2.02 | 3.75 | 2.01 |
Zeolite 6 | 25.4 | 1.98 | 3.48 | 1.92 |
Zeolite 7 | 22.9 | 2.17 | 4.22 | 2.03 |
Zeolite 8 | 25.8 | 2.29 | 5.78 | 1.85 |
Comparative | 22.3 | 0.71 | 1.25 | 0.48 |
zeolite 1 | ||||
Comparative | 18.5 | 0.65 | 1.26 | 0.39 |
zeolite 3 | ||||
Comparative | 24.2 | 0.23 | 0.38 | 0.18 |
zeolite 5 | ||||
Comparative | 24.4 | 0.33 | 1.49 | 0.32 |
zeolite 6 | ||||
Dry powders of zeolite 3 and comparative zeolite 1 were calcined at 600° C. for 2 hours in an air stream. Thereafter, each powder was press-molded and then pulverized to obtain a powder regulated so as to be composed of 12- to 20-mesh particles. 3 ml of each zeolite having the regulated particle sizes was filled into an ordinary-pressure fixed-bed flow-through type reaction tube. While air containing 10% by volume moisture was being passed at 300 mL/min, the zeolite was treated at 900° C. for two levels of periods, i.e., 1 hour and 16 hours. The hydrothermal resistance of each zeolite was evaluated in terms of crystallinity as determined after the hydrothermal treatment. The crystallinity was determined by subjecting the zeolite to powder X-ray diffraction and calculating the ratio of the intensity of the diffraction peak appearing at d=4.25, as shown in Table 1, to the intensity thereof for the zeolite that had not undergone the hydrothermal treatment, which was taken as 100. In Table 4 is shown the values of crystallinity (%) of each zeolite which had undergone the hydrothermal treatment. The results show that the chabazite-type zeolite of the invention had higher retentions of crystallinity than the conventional chabazite-type zeolite and had excellent thermal resistance.
TABLE 4 | |
Crystallinity (%; relative to values | |
for the untreated zeolites) |
After 1-hour | After 16-hour | |
Zeolite | treatment at 900° C. | treatment at 900° C. |
Zeolite 3 | 92 | 70 |
Comparative zeolite 1 | 65 | 58 |
While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.
This application is based on a Japanese patent application filed on Dec. 22, 2008 (Application No. 2008-325404), the contents thereof being incorporated herein by reference.
Since the chabazite-type zeolite of the invention has high durability and hydrothermal resistance, this zeolite is expected to be utilized in a wide range of fields as catalyst supports for exhaust gas purification catalysts and as the bases of adsorbents.
Consequently, the invention has a significant industrial value.
Claims (6)
1. A process for producing a chabazite-type zeolite having an SiO2/Al2O3 molar ratio of 15-50 and an average crystal particle diameter of 1.5 μm or more, comprising crystallizing a starting-material composition in which the molar ratios of a structure-directing agent and water to SiO2 satisfy
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30
in the presence of at least one alkali metal ion selected from the group consisting of K, Rb, and Cs, and wherein the structure-directing agent comprises at least one member selected from the group consisting of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trialkyladamantylammonium as a cation and of the hydroxides, halides, carbonates, methyl carbonate salts, and sulfates which each include an N,N,N-trimethylbenzylammonium ion, an N-alkyl-3-quinuclidinol ion, or an N,N,N-trialkyl-exo-aminonorbornane as a cation.
2. The process for producing the chabazite-type zeolite as claimed in claim 1 , wherein the structure-directing agent comprises at least one member selected from the group consisting of N,N,N-trimethyladamantylammonium hydroxide, N,N,N-trimethyladamantylammonium halides, N,N,N-trimethyladamantylammonium carbonate, N,N,N-trimethyladamantylammonium methyl carbonate, and N,N,N-trimethyladamantylammonium sulfate.
3. The process for producing the chabazite-type zeolite as claimed in claim 1 , wherein a starting-material composition in which the molar ratio of the water to SiO2 satisfies
5≤H2O/SiO2≤18.
5≤H2O/SiO2≤18.
4. The process for producing the chabazite-type zeolite as claimed in claim 1 , wherein the starting-material is crystallized in the presence of at least K.
5. The process for producing the chabazite-type zeolite as claimed in claim 1 , wherein said crystallization further comprises crystallization of the starting-material in the presence of Na.
6. A process for producing a chabazite-type zeolite having an SiO2/Al2O3 molar ratio of 15-50 and an average crystal particle diameter of 1.5 um or more, comprising crystallizing a starting-material composition in which the molar ratios of a structure-directing agent and water to SiO2 and the molar ratio of SiO2/Al2O3 satisfy
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30
16≤SiO2/Al2O3≤100
0.05≤(structure-directing agent)/SiO2<0.13 and
5≤H2O/SiO2<30
16≤SiO2/Al2O3≤100
in the presence of at least one alkali metal ion selected from the group consisting of K, Rb, and Cs, and wherein the structure-directing agent comprises at least one member selected from the group consisting of the hydroxides, halides, carbonates, methyl carbonates, and sulfates which each include an N,N,N-trialkyladamantylammonium as a cation and of the hydroxides, halides, carbonates, methyl carbonate salts, and sulfates which each include an N,N,N-trimethylbenzylammonium ion, an N-alkyl-3-quinuclidinol ion, or an N,N,N-trialkyl-exo-aminonorbornane as a cation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008325404 | 2008-12-22 | ||
JP2008-325404 | 2008-12-22 | ||
PCT/JP2009/071260 WO2010074040A1 (en) | 2008-12-22 | 2009-12-21 | Chabazite-type zeolite and process for production of same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20110251048A1 US20110251048A1 (en) | 2011-10-13 |
US10029247B2 true US10029247B2 (en) | 2018-07-24 |
Family
ID=42287649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/139,591 Active 2034-02-08 US10029247B2 (en) | 2008-12-22 | 2009-12-21 | Chabazite-type zeolite and process for producing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US10029247B2 (en) |
EP (1) | EP2368849B1 (en) |
JP (2) | JP5482179B2 (en) |
KR (2) | KR101738318B1 (en) |
CN (3) | CN102256899A (en) |
WO (1) | WO2010074040A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10407314B2 (en) * | 2017-02-22 | 2019-09-10 | Tosoh Corporation | Chabazite-type zeolite and method of manufacturing chabazite-type zeolite |
WO2023223027A1 (en) | 2022-05-17 | 2023-11-23 | Johnson Matthey Public Limited Company | A cha type zeolite and the method of synthesising said zeolite |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10384162B2 (en) * | 2007-03-26 | 2019-08-20 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
JP4577585B2 (en) * | 2008-03-22 | 2010-11-10 | 株式会社デンソー | Manufacturing method of load sensor |
GB2464478A (en) * | 2008-10-15 | 2010-04-21 | Johnson Matthey Plc | Aluminosilicate zeolite catalyst and use thereof in exhaust gas after-treatment |
JP5417969B2 (en) * | 2008-12-17 | 2014-02-19 | 東ソー株式会社 | Method for producing chabazite using N, N, N-trimethyl-benzylammonium ion |
CN102548658B (en) | 2009-08-27 | 2016-01-20 | 东曹株式会社 | High hot water resistance SCR catalyst and manufacture method thereof |
WO2011024687A1 (en) | 2009-08-28 | 2011-03-03 | 東ソー株式会社 | Zeolite for processing non-aqueous electrolyte, and method for processing non-aqueous electrolyte |
JP5668422B2 (en) * | 2009-11-10 | 2015-02-12 | 三菱化学株式会社 | Method for producing aluminosilicate |
CN106276952A (en) * | 2009-11-24 | 2017-01-04 | 巴斯夫欧洲公司 | Preparation has the method for the zeolite of CHA structure |
JP5957828B2 (en) * | 2010-08-26 | 2016-07-27 | 三菱化学株式会社 | Zeolite membrane composite for gas separation |
JP5810852B2 (en) * | 2010-11-09 | 2015-11-11 | 東ソー株式会社 | Chabazite-type zeolite and nitrogen oxide reduction catalyst containing the same |
JP6450521B2 (en) | 2010-12-02 | 2019-01-09 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Metal-containing zeolite catalyst |
JP5895510B2 (en) * | 2010-12-22 | 2016-03-30 | 東ソー株式会社 | Chabazite-type zeolite and method for producing the same, low-silica zeolite supporting copper, nitrogen oxide reduction and removal catalyst containing the zeolite, and nitrogen oxide reduction and removal method using the catalyst |
WO2012091046A1 (en) | 2010-12-28 | 2012-07-05 | 東ソー株式会社 | Zeolite having copper and alkali earth metal supported thereon |
US9174849B2 (en) | 2011-08-25 | 2015-11-03 | Basf Corporation | Molecular sieve precursors and synthesis of molecular sieves |
US20120258032A1 (en) | 2011-11-02 | 2012-10-11 | Johnson Matthey Public Limited Company | Catalyzed filter for treating exhaust gas |
JP5810846B2 (en) * | 2011-11-04 | 2015-11-11 | 東ソー株式会社 | Method for producing chabazite-type zeolite having copper and alkali metal |
IN2014CN04885A (en) | 2011-12-01 | 2015-09-18 | Johnson Matthey Plc | |
US9126180B2 (en) | 2012-01-31 | 2015-09-08 | Johnson Matthey Public Limited Company | Catalyst blends |
JP6441789B2 (en) | 2012-04-11 | 2018-12-19 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Metal-containing zeolite catalyst |
EP3031777A4 (en) | 2013-08-05 | 2016-08-03 | Mitsubishi Chem Corp | Zeolite, and production method and use therefor |
US9296620B2 (en) * | 2013-08-09 | 2016-03-29 | Chevron U.S.A. Inc. | Preparation of high-silica cha-type molecular sieves using a mixed template |
JP6785483B2 (en) * | 2013-09-30 | 2020-11-18 | 国立研究開発法人産業技術総合研究所 | Composite membrane with zeolite thin film and its manufacturing method |
US9216911B2 (en) | 2013-10-01 | 2015-12-22 | Chevron U.S.A. Inc. | Method for preparing CHA-type molecular sieves using an alkali metal silicate precursor and novel structure directing agents |
CN103787369B (en) * | 2013-12-20 | 2016-05-25 | 天津众智科技有限公司 | A kind of zeolite molecular sieve and synthetic method thereof |
JP5732169B1 (en) * | 2013-12-27 | 2015-06-10 | イビデン株式会社 | Zeolite production method and honeycomb catalyst |
JP5732170B1 (en) | 2014-07-07 | 2015-06-10 | イビデン株式会社 | Zeolite, honeycomb catalyst and exhaust gas purification device |
JP5740040B1 (en) | 2014-07-07 | 2015-06-24 | イビデン株式会社 | Zeolite, honeycomb catalyst and exhaust gas purification device |
CN104163434B (en) * | 2014-07-18 | 2016-06-15 | 天津众智科技有限公司 | The method of crystal seed method synthesizing high-silicon aluminum ratio Chabazite-type molecular sieve and the application of molecular sieve |
JP6713821B2 (en) * | 2016-05-06 | 2020-06-24 | 日本碍子株式会社 | Method for producing Cs-containing CHA-type zeolite |
JP6953791B2 (en) * | 2016-05-23 | 2021-10-27 | 東ソー株式会社 | CHA-type zeolite and its manufacturing method |
CN106145137B (en) * | 2016-06-27 | 2018-06-05 | 杨晓波 | A kind of method of silica alumina ratio chabasie in direct hydrothermal synthesis |
CN106082256B (en) * | 2016-07-25 | 2017-10-24 | 江西科帕克环保化工有限责任公司 | The dedicated molecular sieve used preparation method of ethene |
JP6792264B2 (en) * | 2016-11-25 | 2020-11-25 | 国立大学法人広島大学 | Crystalline aluminosilicate containing gallium and its manufacturing method |
MY190284A (en) | 2017-10-11 | 2022-04-12 | Tosoh Corp | Metal-containing cha-type zeolite and method for producing the same |
CN107673369B (en) * | 2017-10-30 | 2019-05-10 | 太原理工大学 | A method of synthesizing the Chabazite zeolite molecular sieve with multi-stage artery structure |
JP7158141B2 (en) | 2017-11-27 | 2022-10-21 | エヌ・イーケムキャット株式会社 | Slurry composition for catalyst, method for producing the same, method for producing catalyst using the same, and method for producing Cu-containing zeolite |
EP3743381A1 (en) | 2018-01-23 | 2020-12-02 | Sud Chemie India Pvt. Ltd. | Process for synthesizing zeolite ssz-13 |
US11401850B2 (en) * | 2018-05-17 | 2022-08-02 | Tokyo Roki Co., Ltd. | Exhaust gas purification catalyst |
US20220212163A1 (en) | 2019-06-21 | 2022-07-07 | Total Se | Chabazite-type zeolite, precursors thereof, methods for making the same and use of the zeolite as sorbent for co2 |
WO2021024142A1 (en) * | 2019-08-02 | 2021-02-11 | Basf Corporation | Chabazite synthesis method including organic and inorganic structure directing agents and chabazite zeolite with flake-like morphology |
CN114423712A (en) * | 2019-09-25 | 2022-04-29 | 巴斯夫公司 | Cu-CHASCR catalyst with specific lattice strain and domain size characteristics |
CN111268691A (en) * | 2020-03-12 | 2020-06-12 | 上海索易分子筛有限公司 | Small-grain chabazite as well as preparation method and application thereof |
JP7444674B2 (en) * | 2020-03-27 | 2024-03-06 | 日揮触媒化成株式会社 | Manufacturing method of chabazite type zeolite |
CN111470517B (en) * | 2020-04-28 | 2022-08-30 | 大连理工大学 | Large-particle titanium silicalite molecular sieve with excellent diffusivity performance and preparation method thereof |
JP2022031247A (en) | 2020-08-07 | 2022-02-18 | 東ソー株式会社 | Cha type zeolite and method for producing the same |
EP3988506A1 (en) * | 2020-10-21 | 2022-04-27 | Basf Se | Zeolite synthesis from cyclic precursors |
EP4277746A1 (en) * | 2021-01-15 | 2023-11-22 | Council of Scientific & Industrial Research | A zeolite catalyst, process for preparation and application thereof |
Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB868846A (en) | 1957-08-26 | 1961-05-25 | Union Carbide Corp | Improvements in and relating to zeolites |
US3030181A (en) | 1957-08-26 | 1962-04-17 | Union Carbide Corp | Crystalline zeolite r |
US4496786A (en) | 1983-09-30 | 1985-01-29 | Chevron Research Company | Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite |
US4544538A (en) * | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
US4665110A (en) | 1986-01-29 | 1987-05-12 | Chevron Research Company | Process for preparing molecular sieves using adamantane template |
JPH0578266A (en) | 1991-03-14 | 1993-03-30 | Imperial Chem Ind Plc <Ici> | Process for purifying 1,1,1,2-tetrafluoroethane |
JPH0859566A (en) | 1994-08-23 | 1996-03-05 | Mitsui Toatsu Chem Inc | Production of methylamines |
JPH09124578A (en) | 1995-09-11 | 1997-05-13 | Air Prod And Chem Inc | Ammoxidation method for hydrocarbon |
JP2001525241A (en) | 1997-12-10 | 2001-12-11 | アーベー ボルボ | Porous material, method and apparatus for catalytic conversion of exhaust gas |
US6353146B1 (en) | 1998-04-20 | 2002-03-05 | Playtex Products, Inc. | Fibrous articles having odor adsorbtion ability and method of making same |
US6488741B2 (en) | 2001-01-23 | 2002-12-03 | The Trustess Of The University Of Pennsylvania | Light hydrocarbon separation using 8-member ring zeolites |
US20030069449A1 (en) | 2001-08-30 | 2003-04-10 | Zones Stacey I. | Small crystallite zeolite CHA |
US20030089227A1 (en) | 2001-09-21 | 2003-05-15 | Hasse David J. | Mixed matrix membranes incorporating chabazite type molecular sieves |
WO2005063622A2 (en) | 2003-12-23 | 2005-07-14 | Exxonmobil Chemical Patents Inc. | Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
US20060115403A1 (en) * | 2004-11-29 | 2006-06-01 | Chevron U.S.A. Inc. | Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA |
US20080027259A1 (en) | 2006-07-28 | 2008-01-31 | Roth Wieslaw J | Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions |
US20080202107A1 (en) * | 2007-02-27 | 2008-08-28 | Basf Catalysts Llc | Scr on low thermal mass filter substrates |
US20080226545A1 (en) * | 2007-02-27 | 2008-09-18 | Ivor Bull | Copper CHA Zeolinte Catalysts |
US20080241060A1 (en) * | 2007-03-26 | 2008-10-02 | Hong-Xin Li | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
US20100003178A1 (en) | 2006-09-27 | 2010-01-07 | Tosoh Corporation, | ß-ZEOLITE FOR SCR CATALYST AND METHOD FOR PURIFYING NITROGEN OXIDES USING SAME |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
WO2010043891A1 (en) | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
US20110076229A1 (en) | 2008-05-21 | 2011-03-31 | Basf Se | PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING ZEOLITES HAVING CHA STRUCTURE |
US20110136657A1 (en) | 2008-08-19 | 2011-06-09 | Tosoh Corporation | Highly heat-resistant beta-type zeolite and scr catalyst employing the same |
US20120244066A1 (en) * | 2009-11-24 | 2012-09-27 | Basf Se | Process For The Preparation Of Zeolites Having CHA Structure |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6110258A (en) * | 1998-10-06 | 2000-08-29 | Matheson Tri-Gas, Inc. | Methods for removal of water from gases using superheated zeolites |
US7332640B2 (en) * | 2003-10-31 | 2008-02-19 | Exxonmobile Research And Engineering Company | Light hydrocarbon separation using 8-member ring zeolites |
JP5151041B2 (en) * | 2005-03-03 | 2013-02-27 | 三菱化学株式会社 | Method for synthesizing aluminophosphates |
JP5051815B2 (en) * | 2006-05-23 | 2012-10-17 | 独立行政法人産業技術総合研究所 | Marinoite-type zeolite composite membrane and method for producing the same |
EP2056964B1 (en) * | 2006-07-28 | 2019-01-30 | ExxonMobil Chemical Patents Inc. | A novel molecular sieve composition, a method of making and a process of using the same |
US8057782B2 (en) * | 2006-12-27 | 2011-11-15 | Chevron U.S.A. Inc. | Preparation of small pore molecular sieves |
JP5527107B2 (en) * | 2009-11-11 | 2014-06-18 | 三菱化学株式会社 | Method and apparatus for separating hydrous organic compounds |
-
2009
- 2009-12-16 JP JP2009285460A patent/JP5482179B2/en active Active
- 2009-12-21 US US13/139,591 patent/US10029247B2/en active Active
- 2009-12-21 KR KR1020167003589A patent/KR101738318B1/en active IP Right Grant
- 2009-12-21 CN CN2009801512875A patent/CN102256899A/en active Pending
- 2009-12-21 KR KR1020117014009A patent/KR101626183B1/en active IP Right Grant
- 2009-12-21 EP EP09834841.0A patent/EP2368849B1/en active Active
- 2009-12-21 CN CN201610425913.7A patent/CN105905918A/en active Pending
- 2009-12-21 WO PCT/JP2009/071260 patent/WO2010074040A1/en active Application Filing
- 2009-12-21 CN CN201510487850.3A patent/CN105152183A/en active Pending
-
2014
- 2014-02-03 JP JP2014018330A patent/JP5861725B2/en active Active
Patent Citations (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB868846A (en) | 1957-08-26 | 1961-05-25 | Union Carbide Corp | Improvements in and relating to zeolites |
US3030181A (en) | 1957-08-26 | 1962-04-17 | Union Carbide Corp | Crystalline zeolite r |
US4544538A (en) * | 1982-07-09 | 1985-10-01 | Chevron Research Company | Zeolite SSZ-13 and its method of preparation |
US4496786A (en) | 1983-09-30 | 1985-01-29 | Chevron Research Company | Selective conversion of methanol to low molecular weight olefins over high silica SSZ-13 zeolite |
JPS6092221A (en) | 1983-09-30 | 1985-05-23 | シエブロン リサーチ コンパニー | Conversion of methanol to olefin |
US4665110A (en) | 1986-01-29 | 1987-05-12 | Chevron Research Company | Process for preparing molecular sieves using adamantane template |
JPH0578266A (en) | 1991-03-14 | 1993-03-30 | Imperial Chem Ind Plc <Ici> | Process for purifying 1,1,1,2-tetrafluoroethane |
JPH0859566A (en) | 1994-08-23 | 1996-03-05 | Mitsui Toatsu Chem Inc | Production of methylamines |
JPH09124578A (en) | 1995-09-11 | 1997-05-13 | Air Prod And Chem Inc | Ammoxidation method for hydrocarbon |
JP2001525241A (en) | 1997-12-10 | 2001-12-11 | アーベー ボルボ | Porous material, method and apparatus for catalytic conversion of exhaust gas |
US7033969B1 (en) | 1997-12-10 | 2006-04-25 | Volvo Car Corporation | Porous material, method and arrangement for catalytic conversion of exhaust gases |
US6353146B1 (en) | 1998-04-20 | 2002-03-05 | Playtex Products, Inc. | Fibrous articles having odor adsorbtion ability and method of making same |
JP2002512083A (en) | 1998-04-20 | 2002-04-23 | プレイテックス プロダクツ インコーポレーテッド | Fiber member having odor adsorption ability and method for producing the same |
US6702797B2 (en) | 1998-04-20 | 2004-03-09 | Playtex Products, Inc. | Fibrous articles having odor adsorption ability and method of making same |
US6488741B2 (en) | 2001-01-23 | 2002-12-03 | The Trustess Of The University Of Pennsylvania | Light hydrocarbon separation using 8-member ring zeolites |
US20030069449A1 (en) | 2001-08-30 | 2003-04-10 | Zones Stacey I. | Small crystallite zeolite CHA |
US6709644B2 (en) | 2001-08-30 | 2004-03-23 | Chevron U.S.A. Inc. | Small crystallite zeolite CHA |
US20030089227A1 (en) | 2001-09-21 | 2003-05-15 | Hasse David J. | Mixed matrix membranes incorporating chabazite type molecular sieves |
JP2005503260A (en) | 2001-09-21 | 2005-02-03 | レール・リキード−ソシエテ・アノニム・ア・ディレクトワール・エ・コンセイユ・ドゥ・スールベイランス・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Mixed matrix membrane incorporating chabazite-type molecular sieve |
WO2005063622A2 (en) | 2003-12-23 | 2005-07-14 | Exxonmobil Chemical Patents Inc. | Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
US20050197520A1 (en) | 2003-12-23 | 2005-09-08 | Mertens Machteld M. | Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
US7067108B2 (en) | 2003-12-23 | 2006-06-27 | Exxonmobil Chemical Patents Inc. | Chabazite-type molecular sieve, its synthesis and its use in the conversion of oxygenates to olefins |
JP2007534582A (en) | 2003-12-23 | 2007-11-29 | エクソンモービル・ケミカル・パテンツ・インク | Kabasite type molecular sieves, their synthesis, and their use in converting oxydinate to olefin |
US20060115403A1 (en) * | 2004-11-29 | 2006-06-01 | Chevron U.S.A. Inc. | Reduction of oxides of nitrogen in a gas stream using high-silics molecular sieve CHA |
US20080027259A1 (en) | 2006-07-28 | 2008-01-31 | Roth Wieslaw J | Molecular sieve composition (EMM-10-P), its method of making, and use for hydrocarbon conversions |
US20100003178A1 (en) | 2006-09-27 | 2010-01-07 | Tosoh Corporation, | ß-ZEOLITE FOR SCR CATALYST AND METHOD FOR PURIFYING NITROGEN OXIDES USING SAME |
US7601662B2 (en) * | 2007-02-27 | 2009-10-13 | Basf Catalysts Llc | Copper CHA zeolite catalysts |
US20080226545A1 (en) * | 2007-02-27 | 2008-09-18 | Ivor Bull | Copper CHA Zeolinte Catalysts |
US20080202107A1 (en) * | 2007-02-27 | 2008-08-28 | Basf Catalysts Llc | Scr on low thermal mass filter substrates |
US20080241060A1 (en) * | 2007-03-26 | 2008-10-02 | Hong-Xin Li | Novel microporous crystalline material comprising a molecular sieve or zeolite having an 8-ring pore opening structure and methods of making and using same |
US20100092362A1 (en) * | 2007-03-26 | 2010-04-15 | Pq Corporation | High silica chabazite for selective catalytic reduction, methods of making and using same |
US20110076229A1 (en) | 2008-05-21 | 2011-03-31 | Basf Se | PROCESS FOR THE DIRECT SYNTHESIS OF Cu CONTAINING ZEOLITES HAVING CHA STRUCTURE |
US20110136657A1 (en) | 2008-08-19 | 2011-06-09 | Tosoh Corporation | Highly heat-resistant beta-type zeolite and scr catalyst employing the same |
WO2010043891A1 (en) | 2008-10-15 | 2010-04-22 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
US20110182790A1 (en) * | 2008-10-15 | 2011-07-28 | Johnson Matthey Public Limited Company | Transition metal-containing aluminosilicate zeolite |
US20120244066A1 (en) * | 2009-11-24 | 2012-09-27 | Basf Se | Process For The Preparation Of Zeolites Having CHA Structure |
Non-Patent Citations (10)
Title |
---|
, "Gas Chromatographic separation of Meta and Para-Xylenes in Aromaic Mixtures", Nature, vol. 181, 1958, pp. 1794-1796. |
Cabanas et al., "Synthesis and structure of pure SIO2 polymorph with the lowest framework density", Chem Commun, 1998, pp. 1881-1882. |
China Office action, dated Oct. 10, 2012 along with an english translation thereof. |
Chinese Office Action dated Mar. 4, 2014 with English translation for Chinese Application No. 200980151287.5. |
Christian Baerlocher et al., "Atlas of Zeolite Framework Types", Structure Commission, Fifth Revised Edition, 2007, pp. 96-97. |
Japan Office action, dated Oct. 22, 2013 along with an english translation thereof. |
Office Action dated Jun. 20, 2013 in Chinese Application 200980151287.5. |
S.I. Zone et al., Novel zeolite transformation: The template-mediated conversion of cubic P zeolite to ssz-13, Zeolite, May 1988, vol. 8, pp. 166-174. |
S.I. Zone et al., Sequence of high silica zeolites found during synthesis experiments in the presence of a quaternary adamantammoniumcation, Zeolites: Facts, Figures, Future, Elsevier Science Publishers B.V., 1989, pp. 299-309. |
Search report from E.P.O., dated Sep. 18, 2013. |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10407314B2 (en) * | 2017-02-22 | 2019-09-10 | Tosoh Corporation | Chabazite-type zeolite and method of manufacturing chabazite-type zeolite |
WO2023223027A1 (en) | 2022-05-17 | 2023-11-23 | Johnson Matthey Public Limited Company | A cha type zeolite and the method of synthesising said zeolite |
Also Published As
Publication number | Publication date |
---|---|
JP5861725B2 (en) | 2016-02-16 |
KR101738318B1 (en) | 2017-05-29 |
EP2368849B1 (en) | 2017-10-18 |
JP5482179B2 (en) | 2014-04-23 |
KR20160022395A (en) | 2016-02-29 |
EP2368849A1 (en) | 2011-09-28 |
CN105905918A (en) | 2016-08-31 |
CN105152183A (en) | 2015-12-16 |
EP2368849A4 (en) | 2013-10-16 |
WO2010074040A1 (en) | 2010-07-01 |
JP2014155921A (en) | 2014-08-28 |
KR20110106854A (en) | 2011-09-29 |
CN102256899A (en) | 2011-11-23 |
US20110251048A1 (en) | 2011-10-13 |
KR101626183B1 (en) | 2016-05-31 |
JP2010168269A (en) | 2010-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10029247B2 (en) | Chabazite-type zeolite and process for producing the same | |
JP4904417B2 (en) | Beta-type zeolite and method for producing the same | |
EP2837596B1 (en) | Beta zeolite and method for producing same | |
CN108622915B (en) | Method for synthesizing IZM-2 zeolite in presence of template 1, 6-bis (methylpiperidinium) hexane dibromide | |
JP7085375B2 (en) | Method for synthesizing IZM-2 zeolite in the presence of template 1,6-bis (methylpiperidinium) hexanedihydroxydo | |
US10343138B2 (en) | PST-20 zeolite, preparation method for the same, and selective separation method for carbon dioxide using the same | |
AU2017282418B2 (en) | MWF-type zeolite | |
AU774201B2 (en) | Synthesis of low silicon sodium X zeolite | |
JP5422559B2 (en) | IM-16 crystalline solid and process for its preparation | |
US20210188651A1 (en) | Method for synthesizing an afx-structure zeolite of very high purity in the presence of an organic nitrogen-containing structuring agent | |
JP2012512800A (en) | Crystalline solid IM-20 and method for preparing the same | |
WO2014013969A1 (en) | Method for producing maz-type zeolite | |
JP2011502939A (en) | IM-18 crystalline solid and process for its preparation | |
KR20200045111A (en) | PST-29 zeolites and manufacturing method thereof, selective separation method as CO2 adsorbents and methylamine synthesis using PST-29 zeolites | |
US11643332B2 (en) | Method for preparing a high-purity AFX structural zeolite with a nitrogen-containing organic structuring agent | |
JP4882202B2 (en) | Method for synthesizing high silica mordenite | |
US11472711B2 (en) | Process for preparing an IZM-2 zeolite in the presence of a mixture of nitrogenous organic structuring agents in hydroxide form and of bromide and of an alkali metal chloride | |
JP5820526B2 (en) | Germanosilicate SSZ-75 | |
JP4639713B2 (en) | Method for synthesizing high purity high silica mordenite | |
JP4470003B2 (en) | High silica mordenite and its synthesis method | |
JP7119494B2 (en) | Nitrogen adsorption separation method | |
JPH04108607A (en) | Levyne-type zeolite and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TOSOH CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARIGA, KO;AOYAMA, HIDEKAZU;REEL/FRAME:026440/0902 Effective date: 20110603 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 4 |