JP4882202B2 - Method for synthesizing high silica mordenite - Google Patents

Method for synthesizing high silica mordenite Download PDF

Info

Publication number
JP4882202B2
JP4882202B2 JP2004031807A JP2004031807A JP4882202B2 JP 4882202 B2 JP4882202 B2 JP 4882202B2 JP 2004031807 A JP2004031807 A JP 2004031807A JP 2004031807 A JP2004031807 A JP 2004031807A JP 4882202 B2 JP4882202 B2 JP 4882202B2
Authority
JP
Japan
Prior art keywords
sio
mordenite
type zeolite
ratio
reaction mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004031807A
Other languages
Japanese (ja)
Other versions
JP2005219988A (en
Inventor
庸治 佐野
慶治 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2004031807A priority Critical patent/JP4882202B2/en
Publication of JP2005219988A publication Critical patent/JP2005219988A/en
Application granted granted Critical
Publication of JP4882202B2 publication Critical patent/JP4882202B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)

Description

本発明は触媒、吸着剤、分離剤等の基材として有用なモルデナイト、特に、従来法では困難であったSiO/Al=40〜100のモルデナイト型ゼオライトを、種結晶添加により合成する方法に関するものである。SiO/Al比の高いゼオライトは、耐熱性、耐酸性または構造安定性に優れ、また固体酸強度も強くなるので、触媒や吸着剤として優れた特性を示す。 The present invention synthesizes mordenite useful as a base material for catalysts, adsorbents, separating agents, etc., in particular, mordenite-type zeolite having SiO 2 / Al 2 O 3 = 40 to 100, which was difficult by the conventional method, by adding seed crystals. It is about how to do. Zeolite having a high SiO 2 / Al 2 O 3 ratio is excellent in heat resistance, acid resistance or structural stability, and also has high solid acid strength, and thus exhibits excellent characteristics as a catalyst and an adsorbent.

モルデナイト型ゼオライトは天然にも産出するアルミノシリケートゼオライトの1種であり、その合成方法は多数提案されている。これまでに提案されているモルデナイトの一般的合成法は、有機添加剤を用いることなしにアルミノシリケートゲルスラリーを加熱結晶化する方法である(例えば、特許文献1、2、3参照)。これらの方法で得られるモルデナイトのSiO/Al比は通常9〜20の範囲である。これに対して、微粉状シリカ原料を用いて攪拌下で合成することにより、SiO/Al比が12〜30の結晶を合成する方法がある(例えば、特許文献4参照)。また有機添加剤としてベンジルトリメチルアンモニウムイオンを用いる方法(例えば、特許文献5参照)やアミノ酸を添加する方法(例えば、特許文献6参照)などが提案されている。これらの方法によれば有機添加剤を用いない方法に比べてSiO/Al比の高い結晶が得られるが、その最大値はそれぞれ25.8および26.4であり、40を超えるSiO/Al比のモルデナイト結晶の合成は不可能であった。そのために一般的には、SiO/Al比=10〜20のモルデナイトを脱アルミニウム処理することによってSiO/Al比を高くする方法が採用されてきた。しかしながらこの方法では、結晶内の一部が構造破壊を起こして結合欠陥が生じるため、細孔径や固体酸強度を任意に制御することが困難であるという不都合が生じていた。 Mordenite-type zeolite is a kind of aluminosilicate zeolite that is naturally produced, and many methods for its synthesis have been proposed. A general method for synthesizing mordenite proposed so far is a method in which an aluminosilicate gel slurry is heated and crystallized without using an organic additive (see, for example, Patent Documents 1, 2, and 3). SiO 2 / Al 2 O 3 ratio of mordenite obtained by these methods is usually in the range of 9-20. On the other hand, there is a method of synthesizing a crystal having a SiO 2 / Al 2 O 3 ratio of 12 to 30 by synthesizing under agitation using a fine powdery silica raw material (for example, see Patent Document 4). In addition, a method using benzyltrimethylammonium ion as an organic additive (for example, see Patent Document 5), a method for adding an amino acid (for example, see Patent Document 6), and the like have been proposed. According to these methods, crystals having a high SiO 2 / Al 2 O 3 ratio can be obtained as compared with the method without using an organic additive, but the maximum values are 25.8 and 26.4, respectively, which exceeds 40. It was impossible to synthesize mordenite crystals with a SiO 2 / Al 2 O 3 ratio. Therefore, in general, a method of increasing the SiO 2 / Al 2 O 3 ratio by dealumination of mordenite having a SiO 2 / Al 2 O 3 ratio of 10 to 20 has been adopted. However, this method has a disadvantage in that it is difficult to arbitrarily control the pore diameter and the solid acid strength because a part of the crystal causes structural destruction and a bond defect occurs.

一方、さらにSiO/Al比の高いモルデナイト結晶を合成する試みとして、TEAイオンを添加して合成する方法があるが、生成結晶のSiO/Al比の最大値は35である。(特許文献7および非特許文献1参照)。 Meanwhile, even in an attempt to synthesize a high mordenite crystals SiO 2 / Al 2 O 3 ratio, there is a method of synthesizing by adding TEA ions, the maximum value of SiO 2 / Al 2 O 3 ratio of product crystals 35 It is. (See Patent Document 7 and Non-Patent Document 1).

さらに最近は、TEAOH(テトラエチルアンモニウムヒドロキシド)とNaFを同時に添加することによりSiO/Al比が40以上のモルデナイトを合成する方法が提案されているが、合成後の結晶に難溶性のNaFが同伴するため、吸着剤、触媒等として使用する前に大量の水で洗浄する必要があった。また、NaFを添加しない方法では、SiO/Al比が40以上のモルデナイトの合成は困難であった。(特許文献8参照) More recently, a method of synthesizing mordenite having a SiO 2 / Al 2 O 3 ratio of 40 or more by simultaneously adding TEAOH (tetraethylammonium hydroxide) and NaF has been proposed, but it is hardly soluble in the synthesized crystals. Therefore, it was necessary to wash with a large amount of water before using it as an adsorbent, a catalyst or the like. In addition, in the method without adding NaF, it was difficult to synthesize mordenite having a SiO 2 / Al 2 O 3 ratio of 40 or more. (See Patent Document 8)

特公昭41−17854号公報Japanese Patent Publication No.41-17854 特公昭47−46677号公報Japanese Examined Patent Publication No. 47-46677 特公昭49−10440号公報Japanese Patent Publication No.49-10440 特公昭63−51969号公報(特許請求の範囲)Japanese Examined Patent Publication No. 63-51969 (Claims) 特公昭62−43927号公報Japanese Examined Patent Publication No. 62-43927 米国特許第5573746号明細書(第16頁、Example 7)US Pat. No. 5,573,746 (Page 16, Example 7) 米国特許第3766093号明細書(第6−7頁、Example 8)U.S. Pat. No. 3,766,093 (page 6-7, Example 8) 特開2003−313026号公報JP 2003-313026 A A.A.Shaikh、P.N.Joshi、N.E.Jacob、V.P.Shiralkar著、「ゼオライツ(ZEOLITES)」、バターウオース−ハイネマン(Butterworht−Heinemann)社出版、1993年発行、Vol.13、511−517頁、(517頁、表6)A. A. Shaikh, P.A. N. Joshi, N .; E. Jacob, V.M. P. Shiralkar, “ZEOLITES”, published by Butterworth-Heinemann, 1993, Vol. 13, 511-517, (page 517, Table 6).

本願発明の目的は、合成したままの状態でSiO/Al比=40〜100であり、NaFのような結晶の特性を低下させる不純物を同伴しない高純度モルデナイト型ゼオライト結晶を合成し、高温耐熱性、高い構造安定性、強い固体酸性などが要求される触媒、吸着剤、分離剤等として有用な材料を提供することにある。 The object of the present invention is to synthesize a high-purity mordenite-type zeolite crystal that has an SiO 2 / Al 2 O 3 ratio of 40 to 100 in the as-synthesized state and is not accompanied by impurities such as NaF that degrade the crystal characteristics. Another object of the present invention is to provide a material useful as a catalyst, an adsorbent, a separating agent and the like that are required to have high temperature heat resistance, high structural stability, strong solid acidity, and the like.

本発明者らは、ゼオライトの構造と組成、ゼオライトの結晶化機構について鋭意検討を重ねた結果、本発明に至った。本発明のSiO/Al比=40〜100の高純度ハイシリカモルデナイト型ゼオライトは、有機添加剤としてTEAOH、アルカリ成分としてNaOHを添加した反応混合物に、さらにモルデナイト型ゼオライトを種結晶として添加することにより、初めて合成可能である。 As a result of intensive studies on the structure and composition of zeolite and the crystallization mechanism of zeolite, the present inventors have reached the present invention. The high-purity high-silica mordenite type zeolite having a SiO 2 / Al 2 O 3 ratio of 40 to 100 of the present invention is obtained by adding TEAOH as an organic additive and NaOH as an alkali component to a reaction mixture, and further using the mordenite zeolite as a seed crystal. It can be synthesized for the first time by adding.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

モルデナイト型ゼオライトは、12員酸素環から成る細孔径6.5×7.0Åの比較的大きな一次元細孔を有することが特徴である。また、モルデナイト型ゼオライト結晶の代表的X線回折図は、表1に示す回折角(2θ)と格子面間隔(dÅ)およびその回折強度によって特徴づけられ、他のゼオライトと明瞭に区別することができる。   The mordenite-type zeolite is characterized by having relatively large one-dimensional pores having a pore diameter of 6.5 × 7.0 mm composed of 12-membered oxygen rings. The typical X-ray diffraction pattern of the mordenite-type zeolite crystal is characterized by the diffraction angle (2θ), lattice spacing (dÅ) and diffraction intensity shown in Table 1, and can be clearly distinguished from other zeolites. it can.

Figure 0004882202
また、その組成は酸化物のモル比で表して下記の組成式で表わされる。
Figure 0004882202
Moreover, the composition is represented by the following composition formula, expressed by the molar ratio of the oxide.

xNaO・Al・ySiO・zH
ここでxは0.8〜1.2、yは10〜20、zは0以上の数を表す。yの値が比較的高いことがモルデナイトの特徴であり、そのために耐熱性を有し、プロトン交換体は強い固体酸性を示すことが特徴である。しかしながら、従来の方法では40以上のyの値を有する高純度モルデナイトの合成方法は存在しなかった。したがって、SiO/Al比の高いモルデナイトが必要な場合には、酸処理やスチーミングを行ってアルミニウムを骨格外に抽出することが行われている。この方法によりSiO/Al比を上げることは可能であるが必然的に結合欠陥が生じるため、結晶細孔径や固体酸特性が変化してモルデナイト本来の特徴が損なわれる。そのために触媒や吸着剤への応用にも限界があった。
xNa 2 O · Al 2 O 3 · ySiO 2 · zH 2 O
Here, x represents 0.8 to 1.2, y represents 10 to 20, and z represents a number of 0 or more. The characteristic of mordenite is that the value of y is relatively high. Therefore, it has heat resistance, and the proton exchanger is characterized by strong solid acidity. However, there has been no method for synthesizing high purity mordenite having a value of y of 40 or more in the conventional method. Therefore, when mordenite having a high SiO 2 / Al 2 O 3 ratio is required, aluminum is extracted out of the skeleton by acid treatment or steaming. Although it is possible to increase the SiO 2 / Al 2 O 3 ratio by this method, inevitably a bond defect is generated, so that the crystal pore diameter and the solid acid characteristics are changed and the original characteristics of mordenite are impaired. Therefore, there was a limit to application to catalysts and adsorbents.

本発明のモルデナイト型ゼオライトは、脱アルミニウム処理をすることなく、合成したままの状態で上記組成式のyの値が40〜100であり、かつ難溶解性のNaF等の不純物を含有しないことが特徴である。したがって、構造破壊による結合欠陥が本質的に存在せず、優れた構造安定性、耐熱性および固体酸性を有する。本発明のSiO/Al比が40〜100と高いモルデナイト型ゼオライト合成方法は、有機添加剤としてTEAOH、アルカリ成分としてNaOHを添加した下記の組成の反応混合物
SiO/Al=40を超えて100以下
NaO/SiO=0.05〜0.3
TEAO/SiO=0.01〜0.5
O/SiO=0.5〜50
(ここでTEAはテトラエチルアンモニウムイオンを表す)
であり、且つ、Fを含まない反応混合物に、モルデナイト型ゼオライトを種結晶として0.1〜10wt%(シリカ成分重量に対して)を添加し、自生圧力下において100〜200℃の温度で結晶化させる合成方法である。

The mordenite-type zeolite of the present invention may have a y-value of 40 to 100 in the above composition formula without being dealuminated and do not contain impurities such as hardly soluble NaF. It is a feature. Therefore, there are essentially no bond defects due to structural breakdown, and excellent structural stability, heat resistance, and solid acidity. The mordenite-type zeolite synthesis method having a high SiO 2 / Al 2 O 3 ratio of 40 to 100 according to the present invention comprises a reaction mixture SiO 2 / Al 2 O 3 having the following composition in which TEAOH is added as an organic additive and NaOH is added as an alkaline component. = 40 to 100 or less Na 2 O / SiO 2 = 0.05 to 0.3
TEA 2 O / SiO 2 = 0.01 to 0.5
H 2 O / SiO 2 = 0.5~50
(Here TEA represents tetraethylammonium ion)
And 0.1 to 10 wt% (based on the silica component weight) of mordenite-type zeolite as a seed crystal is added to the reaction mixture containing no F and crystallized at a temperature of 100 to 200 ° C. under an autogenous pressure. This is a synthesis method.

上記組成式において、SiO/Al比が40以下の場合には、SiO/Al比が40以上の値を有するモルデナイト型ゼオライトが得られず、100を超える場合には、純粋な結晶が生成しない。NaOはアルカリ成分としてのNaOHを指し、NaO/SiO比が0.05以下では結晶化が起こらず、0.3以上になると純粋なモルデナイト結晶が得られなくなる。TEAOの添加量は、TEAO/SiO比が0.01以下ではモルルデナイトが結晶化せず、また0.5以上では経済合理性に欠ける。HO/SiO比は上記数値の広い範囲で実施可能である。最初にスラリー状混合物を調製してから乾燥し、水分を蒸発させてHO/SiO比を小さくして反応収率を高めることも可能である。これらの反応混合物を調製するための原料として、シリカ源としてはコロイダルシリカ、無定形シリカ、珪酸ナトリウム、アルミノシリケートゲルなどが、またアルミナ源としては、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム、水酸化アルミニウム、アルミノシリケートゲルなどが用いられ、他の成分とも十分均一に混合できる形態のものが望ましい。塩化アルミニウムや硝酸アルミニウムを使用する場合には、その酸成分を中和するのに必要なアルカリ成分の添加が必要である。この酸成分を中和するアルカリ成分としてNaOHを用いることは可能であるが、反応混合物のアルカリ成分(NaO)とはみなさない。 In the above composition formula, when the SiO 2 / Al 2 O 3 ratio is 40 or less, a mordenite-type zeolite having a SiO 2 / Al 2 O 3 ratio of 40 or more cannot be obtained. Pure crystals are not produced. Na 2 O refers to NaOH as an alkali component. When the Na 2 O / SiO 2 ratio is 0.05 or less, crystallization does not occur, and when it is 0.3 or more, pure mordenite crystals cannot be obtained. When the TEA 2 O / SiO 2 ratio is 0.01 or less, the molar amount of TEA 2 O is not crystallized, and when it is 0.5 or more, the economic rationality is lacking. The H 2 O / SiO 2 ratio can be implemented within a wide range of the above numerical values. It is also possible to prepare a slurry mixture first and then dry, evaporate the water to reduce the H 2 O / SiO 2 ratio and increase the reaction yield. As raw materials for preparing these reaction mixtures, colloidal silica, amorphous silica, sodium silicate, aluminosilicate gel, etc. are used as silica sources, and aluminum chloride, aluminum nitrate, aluminum sulfate, sodium aluminate are used as alumina sources. Aluminum hydroxide, aluminosilicate gel, etc. are used, and it is desirable to have a form that can be sufficiently mixed with other components. In the case of using aluminum chloride or aluminum nitrate, it is necessary to add an alkali component necessary for neutralizing the acid component. Although it is possible to use NaOH as an alkali component for neutralizing this acid component, it is not considered as an alkali component (Na 2 O) of the reaction mixture.

反応混合物の添加順序は特に限定されないが、特にHO/SiO比が小さい場合には反応混合物の粘度が高くなるので、均一混合物が得られるような方法で混合することが好ましい。 The order of addition of the reaction mixture is not particularly limited, but particularly when the H 2 O / SiO 2 ratio is small, the viscosity of the reaction mixture increases, and therefore, it is preferable to mix by a method that can obtain a uniform mixture.

本反応混合物の結晶化において、加熱中の攪拌は特に必要としないが、粒子径の制御等が必要な場合は攪拌してもよい。HO/SiO比が小さい場合には、密閉容器に入れて加熱することのみにより結晶化が可能なので、容積あたりの収率を高めることができるので効率的である。 In the crystallization of this reaction mixture, stirring during heating is not particularly required, but stirring may be performed if control of the particle size or the like is required. When the H 2 O / SiO 2 ratio is small, crystallization is possible only by heating in an airtight container, which is efficient because the yield per volume can be increased.

本発明に用いられる種結晶は、モルデナイト型ゼオライトであれば如何なるゼオライトでも使用できる。例えば、SiO/Al=10〜100のモルデナイト型ゼオライトであり、SiO/Al=30〜100の合成モルデナイトを用いることが好ましい。
又、種結晶として、酸化物のモル比で表して次の組成
SiO/Al=30〜100
NaO/SiO=0〜0.2
TEAO/SiO=0.01〜0.5
O/SiO=0.5〜50
(ここでTEAはテトラエチルアンモニウムイオンを表す)
の反応混合物を自生圧力下において、100〜200℃の温度で結晶化させることによって合成されたSiO/Al=30〜100のモルデナイト型ゼオライトを使用することも好ましい。
The seed crystal used in the present invention can be any zeolite as long as it is a mordenite type zeolite. For example, it is a mordenite type zeolite of SiO 2 / Al 2 O 3 = 10 to 100, and it is preferable to use a synthetic mordenite of SiO 2 / Al 2 O 3 = 30 to 100.
Further, as a seed crystal, the following composition expressed in terms of the molar ratio of the oxide: SiO 2 / Al 2 O 3 = 30 to 100
Na 2 O / SiO 2 = 0 to 0.2
TEA 2 O / SiO 2 = 0.01 to 0.5
H 2 O / SiO 2 = 0.5~50
(Here TEA represents tetraethylammonium ion)
It is also preferable to use a mordenite-type zeolite of SiO 2 / Al 2 O 3 = 30 to 100 synthesized by crystallizing the reaction mixture of 2 at a temperature of 100 to 200 ° C. under an autogenous pressure.

更に、種結晶の合成時にNaFを添加しても、本願発明のモルデナイト型ゼオライトの合成方法においては、NaFを添加しておらず、合成されるモルデナイト型ゼオライトの純度に影響しないため、種結晶の合成時にNaFを添加してもよい。   Further, even if NaF is added during the synthesis of the seed crystal, in the method for synthesizing the mordenite zeolite of the present invention, NaF is not added and the purity of the synthesized mordenite zeolite is not affected. NaF may be added during the synthesis.

種結晶添加量に関しては、0.1%以下では添加効果が現れ難く、また10%以上では経済合理性に欠けるため、1〜5%の範囲が好ましい。   With respect to the seed crystal addition amount, if 0.1% or less, the effect of addition hardly appears, and if it is 10% or more, the economic rationality is insufficient, so a range of 1 to 5% is preferable.

結晶化のための加熱温度は、100℃以上が必要であり、100℃未満では反応速度が遅く効率的でない。また、加熱温度の上限は200℃であり、通常、150〜180℃で結晶化される。   The heating temperature for crystallization needs to be 100 ° C. or more. If it is less than 100 ° C., the reaction rate is slow and it is not efficient. Moreover, the upper limit of heating temperature is 200 degreeC, and it crystallizes normally at 150-180 degreeC.

本発明の方法により得られるモルデナイト結晶は、TEAイオンを結晶内に含有している。したがって触媒や吸着剤として使用する前に、加熱焼成等の方法によりTEAイオンを除去する必要がある。加熱焼成は、大気中500℃程度の温度で可能である。   The mordenite crystal obtained by the method of the present invention contains TEA ions in the crystal. Therefore, before using as a catalyst or adsorbent, it is necessary to remove TEA ions by a method such as heat firing. Heating and baking can be performed at a temperature of about 500 ° C. in the atmosphere.

以上の方法によれば、高純度で耐熱性、構造安定性に優れたSiO/Al=40〜100のモルデナイト結晶を経済的、合理的に合成することが可能であり、触媒、吸着剤、分離剤等として有効に使用することができる。 According to the above method, it is possible to economically and rationally synthesize a mordenite crystal of SiO 2 / Al 2 O 3 = 40 to 100 having high purity, excellent heat resistance and excellent structural stability, It can be used effectively as an adsorbent, a separating agent and the like.

以下の実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   The present invention will be specifically described by the following examples, but the present invention is not limited to these examples.

参考例1、2(種結晶の合成)
硝酸アルミニウム・9水和物を水に溶解した後、水酸化ナトリウムを添加し、さらにこの水溶液にテトラエチルアンモニウムヒドロキシドと無定形シリカ粉末(日本シリカ工業製、ニップシール)を添加して均一になるように混合して表2に示す組成の反応混合物を調製した。参考例2においてはさらにフッ化ナトリウムを添加して均一な反応混合物を調製した。これらの実施例においてHO/SiO比は全ての例で7.4とした。これらの反応混合物をステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。理学電機工業社製、X線回折装置 RINT−2000を用いて測定した参考例1及び参考例2の生成物のX線回折図は表1に示すモルデナイト型ゼオライトであった。PHILIPS社製、蛍光X線分析装置 PW2000を用いて測定した生成物の蛍光X線分析の結果、SiO/Al比は表2に示すとおりである。
Reference examples 1 and 2 (synthesis of seed crystals)
Dissolve aluminum nitrate nonahydrate in water, then add sodium hydroxide, and then add tetraethylammonium hydroxide and amorphous silica powder (Nippon Silica Kogyo Co., Ltd., nip seal) to this aqueous solution to make it uniform. And a reaction mixture having the composition shown in Table 2 was prepared. In Reference Example 2, a uniform reaction mixture was prepared by further adding sodium fluoride. In these examples, the H 2 O / SiO 2 ratio was 7.4 in all examples. These reaction mixtures were sealed in a stainless steel autoclave and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. The X-ray diffraction pattern of the products of Reference Example 1 and Reference Example 2 measured using an X-ray diffractometer RINT-2000 manufactured by Rigaku Denki Kogyo was the mordenite zeolite shown in Table 1. As a result of fluorescent X-ray analysis of the product measured using a fluorescent X-ray analyzer PW2000 manufactured by PHILIPS, the SiO 2 / Al 2 O 3 ratio is as shown in Table 2.

Figure 0004882202
実施例1〜4
参考例で用いたものと同じ原料を使用して、表3に示す組成の反応混合物を調製した。この反応混合物に、参考例1で得られたSiO/Al比=30.6のモルデナイト結晶を、種結晶としてシリカ成分重量の4wt%添加して均一に混合した。参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、実施例1〜4の生成物はいずれも表1に示したモルデナイトであった。実施例1の生成物のX線回折図を図1に示す。蛍光X線分析の結果、生成物のSiO/Al比は表3に示すとおりいずれも40以上であった。
Figure 0004882202
Examples 1-4
Using the same raw materials as those used in Reference Examples, reaction mixtures having the compositions shown in Table 3 were prepared. To this reaction mixture, the mordenite crystal of SiO 2 / Al 2 O 3 ratio = 30.6 obtained in Reference Example 1 was added as a seed crystal, and 4 wt% of the silica component weight was added and mixed uniformly. It was sealed in the same stainless steel autoclave as used in Reference Example and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, the products of Examples 1 to 4 were all mordenites shown in Table 1. The X-ray diffraction pattern of the product of Example 1 is shown in FIG. As a result of X-ray fluorescence analysis, the SiO 2 / Al 2 O 3 ratio of the product was 40 or more as shown in Table 3.

Figure 0004882202
実施例5、6
参考例で用いたものと同じ原料を使用して、表4に示す組成の反応混合物を調製した。この反応混合物に、参考例2で得られたSiO/Al比=31.0のモルデナイト結晶を、種晶としてシリカ成分重量の4wt%添加して均一に混合した。参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、実施例5,6の生成物はいずれも実施例1で得られた結晶と同等の結晶度を有するモルデナイトであった。蛍光X線分析の結果、生成物のSiO/Al比は表4に示すとおりいずれも40以上であった。
Figure 0004882202
Examples 5 and 6
Using the same raw materials as those used in Reference Examples, reaction mixtures having the compositions shown in Table 4 were prepared. To this reaction mixture, the mordenite crystal having a SiO 2 / Al 2 O 3 ratio of 31.0 obtained in Reference Example 2 was added as a seed crystal in an amount of 4 wt% of the silica component weight and mixed uniformly. It was sealed in the same stainless steel autoclave as used in Reference Example and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, the products of Examples 5 and 6 were all mordenites having the same degree of crystallinity as the crystals obtained in Example 1. As a result of X-ray fluorescence analysis, the SiO 2 / Al 2 O 3 ratio of the product was 40 or more as shown in Table 4.

Figure 0004882202
実施例7
参考例で用いたものと同じ原料を使用して、実施例1と同じ組成の反応混合物を調製した。この反応混合物に、有機テンプレート剤を使用しないで合成したSiO/Al比=17.5のモルデナイト結晶(特公昭63−46007、実施例5に従って合成)を、種晶としてシリカ成分重量の4wt%添加して均一に混合した。参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、生成物は実施例1で得られた結晶と同等の結晶度を有するモルデナイトであった。蛍光X線分析の結果、SiO/Al比は43.3であった。
Figure 0004882202
Example 7
A reaction mixture having the same composition as in Example 1 was prepared using the same raw materials as those used in Reference Example. In this reaction mixture, a mordenite crystal having a SiO 2 / Al 2 O 3 ratio of 17.5 (synthesized according to JP-B 63-46007, Example 5) synthesized without using an organic templating agent was used as a seed crystal. 4 wt% of the mixture was added and mixed uniformly. It was sealed in the same stainless steel autoclave as used in Reference Example and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, the product was mordenite having a crystallinity equivalent to that of the crystal obtained in Example 1. As a result of fluorescent X-ray analysis, the SiO 2 / Al 2 O 3 ratio was 43.3.

比較例1〜3
参考例で用いたものと同じ原料を使用して、実施例1,3,4と同じ組成の反応混合物を調製した。種晶を添加せずにこれらの反応混合物を参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、生成物は表5に示すとおりであり、モルデナイト型ゼオライトは得られなかった。
Comparative Examples 1-3
A reaction mixture having the same composition as in Examples 1, 3, and 4 was prepared using the same raw materials as those used in Reference Examples. Without adding seed crystals, these reaction mixtures were sealed in the same stainless steel autoclave as used in Reference Example and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, the product was as shown in Table 5, and a mordenite zeolite was not obtained.

Figure 0004882202
比較例4
参考例で用いたものと同じ原料を使用して表6に示す組成の反応混合物を調製し、参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、生成物はBEA型ゼオライトであり、蛍光X線分析の結果、表6に示すとおり、生成物のSiO/Al比は43.6であった。
Figure 0004882202
Comparative Example 4
A reaction mixture having the composition shown in Table 6 was prepared using the same raw materials as those used in the reference example, sealed in the same stainless steel autoclave as used in the reference example, and heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, the product was a BEA type zeolite. As a result of fluorescent X-ray analysis, as shown in Table 6, the product had a SiO 2 / Al 2 O 3 ratio of 43.6.

比較例5
比較例4で得られたBEA型ゼオライトを種晶としてシリカ成分重量の4wt%を添加して、表6に示す組成の反応混合物を調製し、参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、表6に示すとおり、生成物は大量の石英を含むMOR型ゼオライトであった。
Comparative Example 5
Using the BEA type zeolite obtained in Comparative Example 4 as a seed crystal, 4 wt% of the silica component weight was added to prepare a reaction mixture having the composition shown in Table 6 and placed in the same stainless steel autoclave as used in the Reference Example. And heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, as shown in Table 6, the product was a MOR type zeolite containing a large amount of quartz.

Figure 0004882202
比較例6
TEAOHの代わりにテトラプロピルアンモニウムブロマイド(TPABr)を用いた以外は、参考例で用いたものと同じ原料を使用して表7に示す組成の反応混合物を調製した。参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、160℃で20時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、表7に示すとおり、生成物はMFI型ゼオライトであり、蛍光X線分析の結果、SiO/Al比は204であった。
Figure 0004882202
Comparative Example 6
A reaction mixture having the composition shown in Table 7 was prepared using the same raw materials as those used in Reference Example except that tetrapropylammonium bromide (TPABr) was used instead of TEAOH. It was sealed in the same stainless steel autoclave as used in Reference Example, and heated at 160 ° C. for 20 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, as shown in Table 7, the product was MFI type zeolite, and as a result of fluorescent X-ray analysis, the SiO 2 / Al 2 O 3 ratio was 204.

比較例7
比較例6で得られたMFI型ゼオライトを種晶としてシリカ成分重量の4wt%を添加して、表7に示す組成の反応混合物を調製し、参考例で用いたものと同じステンレス製オートクレーブに入れて密封し、170℃で72時間加熱した。生成物をろ過、洗浄した後、120℃で乾燥した。X線回折による測定の結果、表7に示すとおり、生成物はMFI型ゼオライトを含むMOR型ゼオライトであった。
Comparative Example 7
Using the MFI zeolite obtained in Comparative Example 6 as a seed crystal, 4 wt% of the silica component weight was added to prepare a reaction mixture having the composition shown in Table 7, and placed in the same stainless steel autoclave as used in the Reference Example. And heated at 170 ° C. for 72 hours. The product was filtered and washed, and then dried at 120 ° C. As a result of measurement by X-ray diffraction, as shown in Table 7, the product was MOR type zeolite containing MFI type zeolite.

Figure 0004882202
Figure 0004882202

実施例1で合成したモルデナイト型ゼオライトのX線回折図を示す。図の横軸(X軸)はX線回折における2θ(単位はdeg)を示し、縦軸(Y軸)はX線回折におけるピークの強度を示し、スケールは任意である。The X-ray diffraction pattern of the mordenite type zeolite synthesized in Example 1 is shown. In the figure, the horizontal axis (X axis) represents 2θ (unit: deg) in X-ray diffraction, the vertical axis (Y axis) represents peak intensity in X-ray diffraction, and the scale is arbitrary.

Claims (3)

反応混合物が酸化物のモル比で表して次の組成
SiO/Al=40を超えて100以下
NaO/SiO=0.05〜0.3
TEAO/SiO=0.01〜0.5
O/SiO=0.5〜50
(ここでTEAはテトラエチルアンモニウムイオンを表す)
であり、且つ、Fを含まない反応混合物にモルデナイト型ゼオライトを種結晶として0.1〜10wt%(シリカ成分重量に対して)を添加し、自生圧力下において100〜200℃の温度で結晶化させるSiO/Al=40〜100のモルデナイト型ゼオライトの合成方法。
The reaction mixture is expressed in terms of the molar ratio of the oxide and exceeds the following composition SiO 2 / Al 2 O 3 = 40 to 100 or less Na 2 O / SiO 2 = 0.05 to 0.3
TEA 2 O / SiO 2 = 0.01 to 0.5
H 2 O / SiO 2 = 0.5~50
(Here TEA represents tetraethylammonium ion)
In addition, 0.1 to 10 wt% (based on silica component weight) of mordenite-type zeolite as seed crystals is added to the reaction mixture containing no F and crystallized at a temperature of 100 to 200 ° C. under an autogenous pressure. A method for synthesizing a mordenite-type zeolite having SiO 2 / Al 2 O 3 = 40-100.
種結晶として添加するモルデナイト型ゼオライトのSiO/Alのモル比が10〜100のモルデナイト型ゼオライトである請求項1記載のモルデナイト型ゼオライトの合成方法。 Synthesis process according to claim 1 mordenite zeolite according molar ratio of mordenite zeolite of SiO 2 / Al 2 O 3 is a mordenite type zeolite 10-100 added as seed crystals. 種結晶として添加するモルデナイト型ゼオライトが、酸化物のモル比で表して次の組成SiO/Al=30〜100
NaO/SiO=0〜0.2
TEAO/SiO=0.01〜0.5
O/SiO=0.5〜50
(ここでTEAはテトラエチルアンモニウムイオンを表す)
の反応混合物を自生圧力下において、100〜200℃の温度で結晶化させることによって合成されたSiO/Al=30〜100のモルデナイト型ゼオライトである請求項2記載のモルデナイト型ゼオライトの合成方法
The mordenite-type zeolite to be added as a seed crystal is expressed by the molar ratio of the oxide and has the following composition SiO 2 / Al 2 O 3 = 30 to 100
Na 2 O / SiO 2 = 0 to 0.2
TEA 2 O / SiO 2 = 0.01 to 0.5
H 2 O / SiO 2 = 0.5~50
(Here TEA represents tetraethylammonium ion)
The mordenite-type zeolite according to claim 2, which is a mordenite-type zeolite of SiO 2 / Al 2 O 3 = 30 to 100 synthesized by crystallizing the reaction mixture at a temperature of 100 to 200 ° C. under an autogenous pressure. Synthesis method .
JP2004031807A 2004-02-09 2004-02-09 Method for synthesizing high silica mordenite Expired - Fee Related JP4882202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031807A JP4882202B2 (en) 2004-02-09 2004-02-09 Method for synthesizing high silica mordenite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031807A JP4882202B2 (en) 2004-02-09 2004-02-09 Method for synthesizing high silica mordenite

Publications (2)

Publication Number Publication Date
JP2005219988A JP2005219988A (en) 2005-08-18
JP4882202B2 true JP4882202B2 (en) 2012-02-22

Family

ID=34995914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031807A Expired - Fee Related JP4882202B2 (en) 2004-02-09 2004-02-09 Method for synthesizing high silica mordenite

Country Status (1)

Country Link
JP (1) JP4882202B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453461C (en) * 2006-04-24 2009-01-21 南开大学 Process for synthesis of nano mordenite molecular sieve
CN100436320C (en) * 2006-05-08 2008-11-26 浙江大学 Method for synthesizing high-silicon mordenite in the absence of amine
CN102060309B (en) * 2009-11-17 2014-06-18 中国石油大学(北京) Mordenite and preparation method thereof
CN103058221B (en) * 2011-10-24 2014-12-31 中国石油化工股份有限公司 Method for synthesizing mordenite
JP6724020B2 (en) * 2015-02-04 2020-07-15 エクソンモービル ケミカル パテンツ インコーポレイテッド Methods for preparing molecular sieves
CN108698941B (en) 2016-02-23 2021-06-25 日本碍子株式会社 Setter for firing and method for manufacturing honeycomb structure using setter for firing
CN114229864B (en) * 2021-12-24 2023-07-18 山西大学 Synthesis method of lamellar mordenite molecular sieve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5888118A (en) * 1981-11-17 1983-05-26 Toyo Soda Mfg Co Ltd Preparation of high-silica crystalline mordenite
JPS60195018A (en) * 1984-03-16 1985-10-03 Agency Of Ind Science & Technol Production of mordenite zeolite
JP4470003B2 (en) * 2002-02-25 2010-06-02 東ソー株式会社 High silica mordenite and its synthesis method

Also Published As

Publication number Publication date
JP2005219988A (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP5351216B2 (en) Method for producing zeolite
US8007764B2 (en) Preparation of molecular sieve SSZ-13
KR101626183B1 (en) Chabazite-type zeolite and process for producing the same
WO2013154086A1 (en) Beta zeolite and method for producing same
JP5417969B2 (en) Method for producing chabazite using N, N, N-trimethyl-benzylammonium ion
EP3450397B1 (en) Mse-type zeolite production method
EP3526164B1 (en) Synthesis of molecular sieve ssz-83
JP2021500286A (en) Molecular Sieve SZZ-112, its synthesis and use
JP4882202B2 (en) Method for synthesizing high silica mordenite
KR101729356B1 (en) Method for producing mtw-type zeolite
JPH0357050B2 (en)
JP4639713B2 (en) Method for synthesizing high purity high silica mordenite
JP5124659B2 (en) Method for producing MTW-type zeolite
JP4470003B2 (en) High silica mordenite and its synthesis method
JP6059068B2 (en) Method for producing VET type zeolite
CN112551543B (en) Method for preparing IZM-2 zeolite in the presence of mixture of nitrogen-containing organic structuring agent in hydroxide and bromide form
JPH08183611A (en) Production of mfi type zeolite
JP2011184277A (en) METHOD FOR PRODUCING beta-METALLOSILICATE
JP4144221B2 (en) Cesium ion-containing aluminosilicate zeolite and synthesis method thereof
JP2022529174A (en) High-speed synthesis method of AFX-structured zeolite with faujasite source
JP4078841B2 (en) Novel zeolite and its crystallization method
JP2021088473A (en) Stw-type zeolite and method for production the same
JPH05221629A (en) Synthesization of zeolite having alumino silicate frame belonging to structure group, product obtained, and use thereof in adsorption and catalysis
JP2005082473A (en) Method for producing crystalline aluminosilicate having afi structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4882202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees