US10001089B2 - Sludge detection and compensation for the continuously variable compressor recirculation valve - Google Patents

Sludge detection and compensation for the continuously variable compressor recirculation valve Download PDF

Info

Publication number
US10001089B2
US10001089B2 US14/562,205 US201414562205A US10001089B2 US 10001089 B2 US10001089 B2 US 10001089B2 US 201414562205 A US201414562205 A US 201414562205A US 10001089 B2 US10001089 B2 US 10001089B2
Authority
US
United States
Prior art keywords
flow
engine
recirculation
valve
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/562,205
Other languages
English (en)
Other versions
US20160160806A1 (en
Inventor
Baitao Xiao
Hamid-Reza Ossareh
Adam Nathan Banker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to US14/562,205 priority Critical patent/US10001089B2/en
Assigned to FORD GLOBAL TECHNOLOGIES, LLC reassignment FORD GLOBAL TECHNOLOGIES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANKER, ADAM NATHAN, OSSAREH, HAMID-REZA, XIAO, BAITAO
Priority to RU2015151486A priority patent/RU2694998C2/ru
Priority to DE102015120910.1A priority patent/DE102015120910A1/de
Priority to CN201510884055.8A priority patent/CN105673236B/zh
Publication of US20160160806A1 publication Critical patent/US20160160806A1/en
Application granted granted Critical
Publication of US10001089B2 publication Critical patent/US10001089B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0207Surge control by bleeding, bypassing or recycling fluids
    • F04D27/0215Arrangements therefor, e.g. bleed or by-pass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/141Introducing closed-loop corrections characterised by the control or regulation method using a feed-forward control element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • Y02T10/144
    • Y02T10/18

Definitions

  • the present description relates generally to methods and systems for improving boost pressure control by adjusting a variable compressor recirculation valve.
  • Engine systems may be configured with boosting devices, such as turbochargers or superchargers, for providing a boosted aircharge delivered to the engine intake manifold and improving peak power outputs.
  • boosting devices such as turbochargers or superchargers
  • the use of a compressor allows a smaller displacement engine to provide as much power as a larger displacement engine, but with additional fuel economy benefits.
  • compressors may be prone to surge. Surge can lead to noise, vibration, and harshness (NVH) issues such as undesirable noise from the engine intake system. In extreme cases, surge may result in compressor damage.
  • engine systems may include a continuously variable compressor recirculation valve (CCRV) coupled across the compressor to enable rapid decaying of boost pressure.
  • the CCRV may recirculate compressed air from the compressor outlet to the compressor inlet.
  • the CCRV may be configured similar to an intake throttle butterfly valve so that it can be actuated fully open, fully closed, or positions there-between.
  • deposits such as sludge may accumulate on the throttle valve body and reduce the effective airflow rate for a given throttle plate angle.
  • the inventors have identified that not only can sludge accumulate, but that it can reduce airflow through across a range of throttle valve angles.
  • CCRV degradation is determined based on response of the CCRV to a command of changing its position, where the CCRV response is measured by a position sensor.
  • the inventors herein have recognized that even adjusting other actuators may not sufficiently address the issue of sludge accumulation on the valve body. Further, even if the CCRV position is sensed, sludge can still adversely affect the flow control. For example, the valve can be accurately controlled to the desired position, yet due to sludge buildup the flow for the desired position is less than would otherwise be expected and thus overall flow control can degrade. Moreover, because sludge may gradually accumulate on the valve body, the CCRV may still be operable even though the response of CCRV to the command is not accurate.
  • recirculation flow may be estimated, and compressor surge may be addressed by accurately controlling the recirculation flow through the CCRV.
  • sludge accumulation on the valve body may be estimated based on the estimated recirculation flow.
  • FIG. 1 shows a schematic depiction of an example boosted engine system.
  • FIG. 2 demonstrates effects of sludge accumulation on a throttle valve.
  • FIG. 3 shows a high level flow chart of an example method for compressor surge control.
  • FIG. 4 shows a low level flow chart of an example method for adjusting CCRV position based on an amount of sludge accumulation on the valve.
  • FIG. 1 A CCRV valve positioned inside a compressor recirculation (CR) passage is used to adjust the boost pressure. Sludge may accumulate on the CCRV and adversely affect the valve performance.
  • FIG. 2 demonstrates the effect of sludge accumulation on a throttle valve.
  • FIG. 3 shows a high level flow chart of an example method for compressor surge control by controlling the CCRV. The CCRV position may be further adjusted based on the amount of sludge accumulation on the valve body in FIG. 4 .
  • FIG. 1 shows a schematic depiction of an example turbocharged engine system 100 including a multi-cylinder internal combustion engine 10 and twin turbochargers 120 and 130 .
  • engine system 100 can be included as part of a propulsion system for a passenger vehicle.
  • Engine system 100 can receive intake air entering the ambient air inlet 141 via intake passage 140 , wherein the intake air may be at ambient pressure.
  • Exhaust gas may exit engine system 100 to ambient through tailpipe exits 171 and 181 located at the very end of exhaust passages 170 and 180 .
  • the airflow through engine system 100 starts from ambient air inlet 141 , travels through the engine system, and ends at tailpipe exits 171 or 181 .
  • Intake passage 140 can include an air filter 156 .
  • Engine system 100 may be a split-engine system wherein intake passage 140 is branched downstream of air filter 156 into first and second parallel intake passages, each including a turbocharger compressor. In the resulting configuration, at least a portion of the intake air is directed to compressor 122 of turbocharger 120 via a first parallel intake passage 142 and at least another portion of the intake air is directed to compressor 132 of turbocharger 130 via a second parallel intake passage 144 of the intake passage 140 .
  • the first portion of the total intake air that is compressed by compressor 122 may be supplied to intake manifold 160 via first parallel branched intake passage 146 .
  • intake passages 142 and 146 form a first parallel branch of the engine's air intake system.
  • a second portion of the total intake air can be compressed via compressor 132 where it may be supplied to intake manifold 160 via second parallel branched intake passage 148 .
  • intake passages 144 and 148 form a second parallel branch of the engine's air intake system.
  • intake air from intake passages 146 and 148 can be recombined via a common intake passage 149 before reaching intake manifold 160 , where the intake air may be provided to the engine.
  • a compressor recirculation (CR) passage 150 may be provided for compressor surge control. Specifically, to reduce compressor surge by flowing boosted air from upstream of an intake throttle inlet to upstream of the compressor inlets, boost pressure may be rapidly reduced, expediting boost control. Flow through CR passage 150 may be regulated by adjusting the position of compressor surge valve 152 positioned therein.
  • compressor recirculation valve 152 may be configured similar to an intake throttle butterfly valve so that it can be actuated fully open, fully closed, or positions there-between.
  • recirculation valve 152 may also be referred to herein as a continuously variable compressor recirculation valve, or CCRV.
  • the CCRV may be configured differently (e.g., as a poppet valve).
  • Intake air supplied to each cylinder 14 (herein, also referred to as combustion chamber 14 ) via common intake passage 149 may be used for fuel combustion and products of combustion may then be exhausted from via bank-specific parallel exhaust passages.
  • a first bank 13 of cylinders of engine 10 can exhaust products of combustion via a first parallel exhaust passage 17 and a second bank 11 of cylinders can exhaust products of combustion via a second parallel exhaust passage 19 .
  • Each of the first and second parallel exhaust passages 17 and 19 may further include a turbocharger turbine.
  • products of combustion that are exhausted via exhaust passage 17 can be directed through exhaust turbine 124 of turbocharger 120 , which in turn can provide mechanical work to compressor 122 via shaft 126 in order to provide compression to the intake air.
  • some or all of the exhaust gases flowing through exhaust passage 17 can bypass turbine 124 via turbine bypass passage 123 as controlled by wastegate 128 .
  • products of combustion that are exhausted via exhaust passage 19 can be directed through exhaust turbine 134 of turbocharger 130 , which in turn can provide mechanical work to compressor 132 via shaft 136 in order to provide compression to intake air flowing through the second branch of the engine's intake system.
  • some or all of the exhaust gas flowing through exhaust passage 19 can bypass turbine 134 via turbine bypass passage 133 as controlled by wastegate 138 .
  • the wastegate actuators may regulate boost pressure by controlling exhaust flow over the corresponding turbines.
  • the impact of wastegate actuation on boost pressure is substantially slower due to slower turbocharger dynamics.
  • exhaust turbines 124 and 134 may be configured as variable geometry turbines, wherein controller 12 may adjust the position of the turbine impeller blades (or vanes) to vary the level of energy that is obtained from the exhaust gas flow and imparted to their respective compressor.
  • controller 12 may adjust the position of the turbine nozzle to vary the level of energy that is obtained from the exhaust gas flow and imparted to their respective compressor.
  • the control system can be configured to independently vary the vane or nozzle position of the exhaust gas turbines 124 and 134 via respective actuators.
  • Exhaust gases in first parallel exhaust passage 17 may be directed to the atmosphere via branched parallel exhaust passage 170 while exhaust gases in second parallel exhaust passage 19 may be directed to the atmosphere via branched parallel exhaust passage 180 .
  • Exhaust passages 170 and 180 may include one or more exhaust after-treatment devices ( 129 and 127 ), such as a catalyst, and one or more exhaust gas sensors.
  • the LP-EGR loops 197 and 195 may recirculate at least some exhaust gas from each of the branched parallel exhaust passages 170 and 180 , downstream of the exhaust turbine 124 and 134 , to first and second parallel intake passages 142 and 144 , upstream of the compressor and downstream of CR passage outlet, as depicted with solid lines in FIG. 1 .
  • the LP-EGR loops 197 and 195 may recirculate at least some exhaust gas to the intake passage 140 at a location upstream of the CR passage outlet, as depicted with dashed lines in FIG. 1 .
  • the position of intake and exhaust valves of each cylinder 14 may be regulated via hydraulically actuated lifters coupled to valve pushrods, or via a cam profile switching mechanism in which cam lobes are used.
  • at least the intake valves of each cylinder 14 may be controlled by cam actuation using a cam actuation system.
  • the intake valve cam actuation system 25 may include one or more cams and may utilize variable cam timing or lift for intake and/or exhaust valves.
  • the intake valves may be controlled by electric valve actuation.
  • the exhaust valves may be controlled by cam actuation systems or electric valve actuation.
  • one or more of the EGR passages may include pressure, temperature, and air-to-fuel ratio sensors, for determining EGR flow characteristics.
  • actuators 81 may include fuel injector 166 , HP-EGR valves (not shown), LP-EGR valves 121 and 119 , throttle valve 158 , CCRV 152 , and wastegates 128 , 138 .
  • Other actuators such as a variety of additional valves and throttles, may be coupled to various locations in engine system 100 .
  • Controller 12 may receive input data from the various sensors, process the input data, and trigger the actuators in response to the processed input data based on instruction or code programmed therein corresponding to one or more routines. Controller 12 may also include an electronic storage medium for storing calibration values and the routines.
  • FIG. 2 demonstrates that sludge accumulation on a throttle valve body may reduce the effective airflow through the valve. Throttle opening angle and corresponding airflow rate through a new valve and an old valve are shown in 202 and 204 respectively. Airflow through both valves increases with the increased throttle opening. However, as the valve ages, effective flow through the old valve decreases when the throttle opening angle is the same as the new valve. The decreased effective flow may be caused by sludge accumulation on the valve body. To achieve the same effective flow, older valve may need to increase the opening angle. Further, an amount of sludge accumulation on the body of the old part may be estimated based on the amount of decreased effective flow.
  • Controller 12 may determine a target recirculation flow based on vehicle and/or engine operating conditions. A corresponding CCRV opening angle may then be calculated based on a calibration method and the target recirculation flow. Due to accumulation of the sludge over CCRV body, the target recirculation flow may not be achieved with the calculated CCRV opening angle. Under such condition, the CCRV opening angle may be corrected by a position correction to increase the effective flow.
  • the calibration method may also be updated based on an amount of sludge accumulation.
  • routine 300 demonstrates an example method to address compressor surge.
  • the routine includes adjusting CCRV position based on a desired total engine flow rate entering engine cylinders and a corresponding desired compressor flow rate. If actual total engine flow rate does not satisfy requirement after CCRV adjustment, the routine further corrects CCRV position to account for accumulated sludge on the valve body. It will be appreciated that the estimating of the desired total engine flow rate entering engine cylinders and the desired compressor flow rate may be performed during all engine operating conditions including during steady-state and transient conditions.
  • the compressor state may be maintained outside of (specifically, to the right of) a hard surge and a soft surge limit.
  • the routine estimates a desired total engine flow entering engine cylinders (or engine intake throttle mass flow rate) based on operating conditions.
  • a desired compressor flow to avoid surge may be estimated based on the desired total engine flow and a compressor surge limit.
  • the desired compressor flow may be a surge constrained compressor flow that is based on a hard surge limit of the compressor.
  • a first recirculation flow may be estimated.
  • the first recirculation flow is a desired recirculation flow to achieve the desired total engine flow.
  • the first recirculation flow rate may be estimated based a difference between the desired compressor flow rate and the desired total engine flow rate.
  • the first recirculation flow rate may be estimated based on the desired compressor flow rate, the desired engine flow rate, and EGR flow rate.
  • opening of air intake throttle 158 may be adjusted based on the estimated desired total engine flow rate.
  • routine 300 includes calculating a CCRV position based on a CCRV calibration and the first recirculation flow determined at 304 , and adjusting CCRV to the calculated position.
  • the CCRV calibration may be a lookup table or an equation stored in controller 12 , wherein the controller can calculate a degree of CCRV opening based on a given flow rate.
  • the lookup table or the equation stored in controller 12 may be generated based on the orifice equation.
  • the lookup table or the equation stored in controller 12 may be modified based on an amount of sludge accumulation on the valve body.
  • the second recirculation flow may be estimated based on the second total engine flow entering engine cylinders, the EGR flow and CCRV calibration. After determining the second recirculation flow and the total intake flow, controller 12 may restore all EGR flows at the end of 316 .
  • actual recirculation flow may be calculated based on a difference between the second total engine flow entering engine cylinders and the total intake flow.
  • the actual recirculation flow may be compared to the second recirculation flow determined at 316 . If the actual recirculation is out of a satisfactory range about the second recirculation flow, routine 300 moves to 324 . If the actual recirculation flow is within a satisfactory range around the second recirculation flow, the CCRV may operate properly and the unsatisfactory first total engine flow at 312 may due to factors unrelated to CCRV. For example, sludge may accumulate on air intake throttle 158 and cause errors in adjusting the throttle flow. Then, at 322 , additional operating parameters are adjusted and/or the operator is notified of throttle adjustment degradation, for example via a display in the vehicle.
  • a diagnostic code can be set that is read via a diagnostic port or otherwise communicated by the control system, for example, to a technician via a diagnostic tool.
  • the air intake throttle 158 may be re-calibrated by the controller to address sludge accumulation.
  • the HP-EGR valve and the wastegate may be adjusted by the controller to achieve the desired total engine flow and boost pressure.
  • routine 300 determines if the CCRV position has been adjusted based on routine 400 . If the answer is YES, at 328 , a CCRV degradation flag may be set and/or the operator is notified of the CCRV degradation. In addition, additional operating parameters may be adjusted. For example, the HP-EGR valve and the wastegate may be adjusted to achieve the desired total engine flow and boost pressure. If the CCRV position has not been adjusted based on routine 400 ( FIG. 4 ), then at 326 , CCRV position is adjusted based on an amount of sludge accumulation on the valve. Next, routine 300 moves back to 310 to estimate the total engine flow entering engine cylinders again.
  • routine 400 is a low level routine for adjusting CCRV position based on an amount of sludge accumulation on the valve.
  • CCRV calibration may be updated based on the amount of sludge accumulation.
  • routine 400 determines a position correction of the CCRV opening based on the difference between the actual recirculation flow and the second recirculation flow to account for accumulated sludge on the valve.
  • the position correction may be determined based on the difference and a current CCRV calibration.
  • the position correction may be a closed loop correction generated by inputting the difference to a feedback controller.
  • the feedback controller may be a P, PI, or PID controller.
  • the position correction may be a small increment of CCRV opening generated by a feed forward controller.
  • a total amount of sludge accumulation on the CCRV is estimated.
  • the total amount of sludge may be estimated based on a difference between current CCRV opening and an ideal opening.
  • the ideal CCRV opening may be calculated based on the actual recirculation flow and the orifice equation assuming no sludge accumulation on the valve body.
  • the total amount of sludge may be estimated based on the difference between the actual recirculation flow and a desired recirculation flow without sludge accumulation on the CCRV.
  • the desired recirculation flow without sludge accumulation may be calculated based on current CCRV opening and the orifice equation.
  • the total amount of sludge accumulation may be estimated based on a summation of previous CCRV position corrections.
  • the CCRV is adjusted to a new position.
  • the CCRV position may be adjusted based on the position correction determined at 402 .
  • the CCRV position may be adjusted based on the total amount of determined sludge accumulation on the valve.
  • the CCRV calibration table may be updated by applying an offset to the original calibration.
  • the offset may be determined based on the position correction of CCRV opening.
  • the example may include a calibration table filled with data at a plurality of points as a function of one or more input variables, where the output of the table based on the input variable is offset by the learned sludge accumulation correction.
  • the updated CCRV calibration may then be stored in the memory of controller 12 .
  • routine 400 compares the total amount of sludge accumulation on the CCRV to a threshold. If the total amount of sludge accumulation is lower than the threshold, controller 12 exits routine 400 . If the total amount of sludge accumulation is greater than the threshold, routine 400 moves to 410 . At 410 , a diagnostic signal may be generated indicating the amount of sludge accumulation. In addition, the CCRV degradation flag may be set.
  • compressor recirculation flow may be monitored with a mass air flow sensor positioned downstream of a compressor recirculation passage outlet but upstream of the passage inlet.
  • the recirculation flow may be accurately controlled by adjusting the CCRV position based on sludge accumulation on the valve to achieve the technical effect of more accurate engine boost control and reduced surge.
  • the mass air flow sensor may also be used to monitor the total intake flow to the engine system 100 when the compressor recirculation passage is not in use.
  • control and estimation routines included herein can be used with various engine and/or vehicle system configurations.
  • the control methods and routines disclosed herein may be stored as executable instructions in non-transitory memory and may be carried out by the control system including the controller in combination with the various sensors, actuators, and other engine hardware.
  • the specific routines described herein may represent one or more of any number of processing strategies such as event-driven, interrupt-driven, multi-tasking, multi-threading, and the like.
  • various actions, operations, and/or functions illustrated may be performed in the sequence illustrated, in parallel, or in some cases omitted.
  • the order of processing is not necessarily required to achieve the features and advantages of the example embodiments described herein, but is provided for ease of illustration and description.
  • One or more of the illustrated actions, operations and/or functions may be repeatedly performed depending on the particular strategy being used. Further, the described actions, operations and/or functions may graphically represent code to be programmed into non-transitory memory of the computer readable storage medium in the engine control system, where the described actions are carried out by executing the instructions in a system including the various engine hardware components in combination with the electronic controller.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
US14/562,205 2014-12-05 2014-12-05 Sludge detection and compensation for the continuously variable compressor recirculation valve Active 2037-03-13 US10001089B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/562,205 US10001089B2 (en) 2014-12-05 2014-12-05 Sludge detection and compensation for the continuously variable compressor recirculation valve
RU2015151486A RU2694998C2 (ru) 2014-12-05 2015-12-02 Способ работы двигателя (варианты) и система транспортного средства
DE102015120910.1A DE102015120910A1 (de) 2014-12-05 2015-12-02 Rückstandserfassung und Ausgleich für das stufenlos variable Verdichterrückführungsventil
CN201510884055.8A CN105673236B (zh) 2014-12-05 2015-12-04 用于连续可变压缩机再循环气门的淤渣检测和补偿

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/562,205 US10001089B2 (en) 2014-12-05 2014-12-05 Sludge detection and compensation for the continuously variable compressor recirculation valve

Publications (2)

Publication Number Publication Date
US20160160806A1 US20160160806A1 (en) 2016-06-09
US10001089B2 true US10001089B2 (en) 2018-06-19

Family

ID=55974372

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/562,205 Active 2037-03-13 US10001089B2 (en) 2014-12-05 2014-12-05 Sludge detection and compensation for the continuously variable compressor recirculation valve

Country Status (4)

Country Link
US (1) US10001089B2 (ru)
CN (1) CN105673236B (ru)
DE (1) DE102015120910A1 (ru)
RU (1) RU2694998C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280303B2 (en) 2019-03-15 2022-03-22 Ford Global Technologies, Llc Sound enhancing system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9810229B2 (en) * 2014-12-08 2017-11-07 Ford Global Technologies, Llc Methods and systems for detecting compressor recirculation valve faults
US10012137B2 (en) * 2014-12-09 2018-07-03 Ford Global Technologies, Llc Diagnostic method for a compressor recirculation valve
US10323607B2 (en) * 2016-07-14 2019-06-18 Ge Global Sourcing Llc Method and systems for draining fluid from an engine
US10344767B2 (en) 2017-05-01 2019-07-09 GM Global Technology Operations LLC Method for compressor surge detection to enable model base air estimation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990814B2 (en) * 2003-12-18 2006-01-31 Caterpillar Inc. Engine turbocharger control management system
US7677227B2 (en) * 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
US8095299B2 (en) 2009-02-13 2012-01-10 Ford Global Technologies, Llc Method for starting a vehicle engine
US8375714B2 (en) * 2005-06-27 2013-02-19 General Electric Company System and method for operating a turbocharged engine
US8661814B2 (en) 2011-05-16 2014-03-04 Ford Global Technologies, Llc Method and system for controlling a turbocharger compressor bypass
US20140260241A1 (en) 2013-03-14 2014-09-18 Ford Global Technologies, Llc Methods and systems for boost control

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207382A (ja) * 2005-01-25 2006-08-10 Hino Motors Ltd ターボチャージャのサージング防止装置
JP4717741B2 (ja) * 2006-07-20 2011-07-06 本田技研工業株式会社 エンジンの過給装置におけるエアバイパスバルブの故障検知装置
US8001778B2 (en) * 2007-09-25 2011-08-23 Ford Global Technologies, Llc Turbocharged engine control operation with adjustable compressor bypass
US7529614B1 (en) * 2007-11-30 2009-05-05 Delphi Technologies, Inc. System and method for turbo compressor recirculation valve control
WO2011135730A1 (ja) * 2010-04-27 2011-11-03 トヨタ自動車株式会社 内燃機関システム制御装置
EP2489851B1 (en) * 2011-02-21 2016-08-17 Ford Global Technologies, LLC Method for operating a turbocharger arrangement and control unit for a turbocharger arrangement
US8739530B2 (en) * 2011-11-10 2014-06-03 Ford Global Technologies, Llc Compressor flow control
JP2013256895A (ja) * 2012-06-12 2013-12-26 Toyota Motor Corp エアバイパスバルブの異常診断装置
JP2014015846A (ja) * 2012-07-05 2014-01-30 Toyota Motor Corp 過給機付内燃機関の制御装置、過給機付内燃機関を搭載した車両
JP6017304B2 (ja) * 2012-12-27 2016-10-26 日野自動車株式会社 過給システム及び過給システムの制御方法
JP2014196678A (ja) * 2013-03-29 2014-10-16 トヨタ自動車株式会社 過給機付き内燃機関の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6990814B2 (en) * 2003-12-18 2006-01-31 Caterpillar Inc. Engine turbocharger control management system
US8375714B2 (en) * 2005-06-27 2013-02-19 General Electric Company System and method for operating a turbocharged engine
US7677227B2 (en) * 2005-07-04 2010-03-16 Denso Corporation Apparatus and method of abnormality diagnosis for supercharging pressure control system
US8095299B2 (en) 2009-02-13 2012-01-10 Ford Global Technologies, Llc Method for starting a vehicle engine
US8661814B2 (en) 2011-05-16 2014-03-04 Ford Global Technologies, Llc Method and system for controlling a turbocharger compressor bypass
US20140260241A1 (en) 2013-03-14 2014-09-18 Ford Global Technologies, Llc Methods and systems for boost control

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11280303B2 (en) 2019-03-15 2022-03-22 Ford Global Technologies, Llc Sound enhancing system

Also Published As

Publication number Publication date
RU2015151486A3 (ru) 2019-01-24
RU2694998C2 (ru) 2019-07-18
DE102015120910A1 (de) 2016-06-09
CN105673236A (zh) 2016-06-15
CN105673236B (zh) 2021-07-09
RU2015151486A (ru) 2017-06-07
US20160160806A1 (en) 2016-06-09

Similar Documents

Publication Publication Date Title
US10962019B2 (en) Methods and systems for detecting compressor recirculation valve faults
US9932938B2 (en) Methods and systems for diagnosing an intake oxygen sensor based on pressure
US10260436B2 (en) System and methods for operating an exhaust gas recirculation valve based on a temperature difference of the valve
US9506474B2 (en) Methods and systems for real-time compressor surge line adaptation
US10018157B2 (en) Methods and systems for boost control
US9828949B2 (en) Method and system for humidity sensor diagnostics
US10156194B2 (en) Methods and systems for open loop and closed loop control of an exhaust gas recirculation system
US9267453B2 (en) Learning of EGR valve lift and EGR valve flow transfer function
US8881713B2 (en) Method and system for humidity sensor diagnostics
US8726658B2 (en) Method and system for exhaust gas recirculation
US9175642B2 (en) Method and system for an intake humidity sensor
US9074541B2 (en) Method and system for control of an EGR valve during lean operation in a boosted engine system
US9816447B2 (en) Methods and systems for surge control
US10001089B2 (en) Sludge detection and compensation for the continuously variable compressor recirculation valve
US9845749B2 (en) System and methods for diagnosing soot accumulation on an exhaust gas recirculation valve
US9021805B2 (en) Exhaust gas recirculation control
JP6809447B2 (ja) 内燃機関の排気還流装置
US9677481B2 (en) Methods and systems for boost control

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XIAO, BAITAO;OSSAREH, HAMID-REZA;BANKER, ADAM NATHAN;REEL/FRAME:034397/0611

Effective date: 20141120

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4