TWM391711U - Single port sram having a discharging path - Google Patents

Single port sram having a discharging path Download PDF

Info

Publication number
TWM391711U
TWM391711U TW99211037U TW99211037U TWM391711U TW M391711 U TWM391711 U TW M391711U TW 99211037 U TW99211037 U TW 99211037U TW 99211037 U TW99211037 U TW 99211037U TW M391711 U TWM391711 U TW M391711U
Authority
TW
Taiwan
Prior art keywords
inverter
transistor
write
voltage
node
Prior art date
Application number
TW99211037U
Other languages
Chinese (zh)
Inventor
Ming-Chuen Shiau
Je-You Lin
Je-Chi Yu
Yang-Hung Shr
Original Assignee
Hsiuping Inst Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hsiuping Inst Technology filed Critical Hsiuping Inst Technology
Priority to TW99211037U priority Critical patent/TWM391711U/en
Publication of TWM391711U publication Critical patent/TWM391711U/en

Links

Landscapes

  • Static Random-Access Memory (AREA)

Description

M391711 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種具放電路徑之單埠靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種即使於高記憶容量 時仍能具有高可靠性與高穩定性之寫入操作的單埠靜態隨機存取記憶 體。 【先前技術】 記憶體在電腦工業中扮演著無可或缺的角色。通常,記憶體可依照 其能否在電源關閉後仍能保存資料,而區分為動態隨機存取記憶體 (DRAM)及靜態隨機存取記憶體(SRAM)兩種。動態隨機存取記憶體 (DRAM)具有面積小及價格低等優點,但操作時必須不時地更新(refresh) 以防止-貝料因漏電流而遺失,而導致存在有高速化困難及消耗功率大 等缺失。相反地,靜態隨機存取記憶體(511^的操作則較為簡易且毋 須更新操作,因此具有高速化及消耗功率低等優點。 目刖以行動電話為代表之行動電子設備所採用之半導體記憶裝 置’係以SRAM為主流。此乃由於SRAM碰紐小,適於連續通話 時間、連續待機時間盡可能延長之手機。 靜態隨機存取記憶體(SRAM)主要包括-記憶體陣列 (memory array),該記憶断列係由複數列記憶體晶胞(a plurality 〇f r〇ws 〇f me ory cells)與複數行記憶體晶胞(a pi啦i办 cells)所組成每_列記憶體晶胞與每一行記憶體晶胞各包括有複數個 記隐體aB胞’複數條字元線(WQfdline) ’每__字元線職至複數列記憶 體曰曰胞中之歹j,以及複數位元線對,每一位元線對係對 應至複數行記_晶胞巾之—行,且每—位元線對係由—位元線及一 3 M391711 互補位元線所組成。 第1圖所示即是6T靜態隨機存取記憶體(SRAM)晶胞之電路示意 圖’其中,PMOS電晶體P1和p2稱為負載電晶體(1〇ad咖士故), NMOS電晶體Ml和M2稱為驅動電晶體(driving咖―), 電晶體M3和JVM稱為存取電晶趙(access ),乳為字元線(w〇rd line) ’而BL·及BLB分別為位元線(他line)及互補位元線 (complementaiy bitline) ’由於該SRam晶胞需要6個電晶體,且驅 動電晶體與存取電晶體間的電流驅動能力比(即單元比率(cdl地〇))通 常設定在2至3之間’而導致存在有冑集積化困難及價格高等缺失。 第1圖所示6T靜態隨機存取記憶體晶胞,於寫入操作時之HSpiCE暫 態分析模擬結果’如第2圖所示,其係以ievei 49模型且使用TSMC 0.35 微米CMOS製程參數加以模擬(其pM〇s電晶體和丽〇3電晶體之零 基底偏壓臨限電壓值Vtho分別為-0.7866083V和0.582913V),其中, PMOS電晶體P卜P2之通道寬長比均為(W/L)=(1[mi/1 4μιη),爾〇8 電晶體Ml和M2之通道寬長比均為,而 電晶體143和]^4之通道寬長比則均為(魏)=(1扣111/〇.35哗)。M391711 V. New description: [New technical field] This is a static random access memory (SRAM) with a discharge path, especially when it is high in memory capacity. A static random access memory capable of high reliability and high stability write operations. [Prior Art] Memory plays an indispensable role in the computer industry. Generally, memory can be classified into dynamic random access memory (DRAM) and static random access memory (SRAM) according to whether it can save data after the power is turned off. Dynamic random access memory (DRAM) has the advantages of small area and low price, but it must be refreshed from time to time to prevent the -becay material from being lost due to leakage current, resulting in high speed and power consumption. Greatly missing. On the contrary, the SRAM (the operation of the 511^ is relatively simple and does not require an update operation, so it has the advantages of high speed and low power consumption. It is a semiconductor memory device used in mobile electronic devices represented by mobile phones. 'SRAM is the mainstream. This is because the SRAM touches the small size, suitable for continuous talk time, continuous standby time as long as possible. Static random access memory (SRAM) mainly includes - memory array (memory array), The memory disconnect is composed of a plurality of memory cells (a 〇 〇fr〇ws 〇f me ory cells) and a plurality of memory cells (a pi cells) Each row of memory cells includes a plurality of hidden ab cells' complex word lines (WQfdline) 'every __ character lines to multiple columns of memory cells, and complex bits For the pair, each bit line pair corresponds to a plurality of rows of cells, and each bit line pair consists of a bit line and a 3 M391711 complementary bit line. The 6T static random access memory (SRAM) cell is shown. Circuit diagram 'where PMOS transistors P1 and p2 are called load transistors (1〇ad café), NMOS transistors M1 and M2 are called drive transistors (driving coffee), and transistors M3 and JVM are called Access to the electron crystal access (access), the milk is the word line (w〇rd line) ' and BL· and BLB are the bit line and the complementary line (complementaiy bitline) respectively due to the SRam unit cell Six transistors are required, and the current drive capability ratio between the drive transistor and the access transistor (ie, the cell ratio (cdl)) is usually set between 2 and 3', resulting in the difficulty of enthalpy accumulation and price. Higher Defects. The 6T SRAM cell shown in Figure 1 shows the HSpiCE transient analysis simulation results during the write operation. As shown in Figure 2, it is modeled on the ievei 49 and uses TSMC 0.35 micron CMOS. The process parameters are simulated (the zero-substrate bias voltage values Vtho of the pM〇s transistor and the Radisson 3 transistor are -0.7866083V and 0.582913V, respectively), wherein the channel width to length ratio of the PMOS transistor P and P2 are respectively Both are (W/L)=(1[mi/1 4μιη), and the width and length ratio of the channel of M1 and M2 are both The channel width to length ratio of the transistor 143 and the ^4 are both (Wei) = (1 button 111 / 〇. 35 哗).

用來減少6T靜態隨機存取記憶體(SRAM^sa胞之電晶體數之一種 方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之57靜態隨 機存取記憶體晶胞之電路示意圖,與第1圖之6T靜態隨機存取記憶體 晶胞相比’此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶 體晶胞少一個電晶體及少一條位元線,惟該5了靜態隨機存取記憶體晶 胞在不變更PMOS電晶體Pi和P2以及NM〇s電晶體VQ、M2和M3 的通道寬長比的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶 b曰胞左側即點A原本儲存邏輯〇的情況,由於節點a之電荷僅單獨自 位元線(BL)傳送’因此很難將節點a中先前寫入的邏輯〇蓋寫成邏輯 1。第3圖所示5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE 4 M391711 暫態分析模擬結果,如第4圖所示,其係以level 49模型且使用TSMC 0.35微米CMOS製程參數加以模擬(其pM〇s電晶體和NMOS電晶體 之零基底偏壓臨限電壓值Vth〇分別為-0.7866083V和0.582913V),其 中,PMOS電晶體P卜P2之通道寬長比均為, NMOS電晶體Ml和M2之通道寬長比均為(W/L)=(2Mm/0.35gm),而 NMOS電晶體M3之通道寬長比則均為(w/L)=(1.3Mm/0.35pm),由該模 擬結果可証實’具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入 邏輯1相當困難之問題。 迄今,有許多具單一位元線之5T靜態隨機存取記憶體晶胞之技術 被k 出’例如非專利文獻 1( I. Carlson et al.A high density,low leakage, 5T SRAM for embedded caches,,5 Solid-State Circuits Conference, 2004.One way to reduce the number of transistors in a 6T SRAM (SRAM^sa cell is disclosed in Figure 3. Figure 3 shows a static random access memory cell with only a single bit line). The circuit diagram of the cell is compared with the 6T SRAM cell of Figure 1 'This 5T SRAM cell is one less transistor and one less than the 6T SRAM cell. Bit line, except that the SRAM cell has a write logic 1 equivalent without changing the channel width-to-length ratio of the PMOS transistors Pi and P2 and the NM〇s transistors VQ, M2, and M3. Difficult problem. Consider the case where the left side of the memory cell, point A, originally stores the logical 〇, since the charge of node a is only transmitted from the bit line (BL) alone, it is difficult to write the logic previously written in node a. The cover is written as logic 1. The 5T static random access memory cell shown in Figure 3, the HSPICE 4 M391711 transient analysis simulation result during the write operation, as shown in Figure 4, is used in the level 49 model and used. TSMC 0.35 micron CMOS process parameters are simulated (its pM〇s transistor and NM) The zero-substrate bias voltage value Vth〇 of the OS transistor is -0.7866083V and 0.582913V, respectively, wherein the channel width to length ratio of the PMOS transistor P and P2 are both, and the channel width and length of the NMOS transistors M1 and M2 are long. The ratio is (W/L)=(2Mm/0.35gm), and the channel width-to-length ratio of the NMOS transistor M3 is (w/L)=(1.3Mm/0.35pm), which can be confirmed by the simulation result. It is quite difficult to write logic 1 in a 5T SRAM cell with a single bit line. So far, there are many 5T SRAM cells with a single bit line. For example, Non-Patent Document 1 (I. Carlson et al. A high density, low leakage, 5T SRAM for embedded caches,, 5 Solid-State Circuits Conference, 2004.

ESSCIRC 2004· Proceeding of the 30th European,ρρ.215·218,2004·)之 5T SRAM由於係藉由重新設計晶胞中之二驅動電晶體、二負載電晶體以 及一存取電晶體之通道寬長比以解決寫入邏輯!困難之問題,而造成 破壞原有晶胞中之驅動電晶體與負載電晶體之對稱性關係並從而易受 製程變異的影響;非專利文獻2 (M. Wieckowski et al.,’’ A novel five-transistor (5T) sram cell for high performance each;5 IEEE Conference on SOC,pp.1001-1002,2005·)之5T SRAM由於係於晶胞中之二負載電 晶體間設置一長通道長度之存取電晶體以解決寫入邏輯1困難之問 題’而造成降低存取速度之缺失;專利文獻3(98年6月1日第TW M358390號)所提出之寫入操作時降低電源電壓之單埠靜態隨機存取記 憶體(其主要代表圖如第5圖所示)雖可有效解決寫入邏輯1困難之 問題’惟寫入操作時,由於高電壓節點(VH)在由高電源供應電壓(hvdd) 下降至低電源供應電壓(lvdd)的過程中缺乏有效的放電路徑,而造成於 尚記憶容量及/或高速操作時存在低寫入可靠度與低寫入穩定度等問 題’因此仍有改進空間。 5 M391711 有鐘於此’本創作之主要目的係提出一種具放電路經之單埠靜態隨 機存取記憶體,其不但可有效避免寫入邏輯丨相當困難之問題,並且 即使於高記憶容量及/或高速操作時仍能具有高可靠性與高穩定性之 寫入操作。 【新型内容】 本創作提出一種具放電路徑之單埠靜態隨機存取記憶體 (SRAM),其係包括一記憶體陣列、複數條字元線、複數條位元線、 複數個寫入電壓控制電路(2)以及複數個放電路徑(3),每一列記 憶體晶胞設置一個寫入電壓控制電路以及一個放電路徑(3)。 該等寫入電壓㈣電路⑵於賊之控繼號(CTL)為代表選定寫 入邏輯1之邏輯雜準時’ 面將-高電壓節點(㈣之電位經由對 應之放電雜放電-預定時間’另—方面將—低電驗應電壓(lVdd) 供應至該高電壓節點(VH),其中該控制信號(CTL)為一寫入致能(writeThe 5T SRAM of ESSCIRC 2004· Proceeding of the 30th European, ρρ.215·218, 2004·) is due to the channel length and length of the two driving transistors, the two load transistors and one access transistor by redesigning the unit cell. Than to solve the write logic! Difficult problem, which causes damage to the symmetry relationship between the driving transistor and the load transistor in the original unit cell and is thus susceptible to process variation; Non-Patent Document 2 (M. Wieckowski et al., ''A novel five -transistor (5T) sram cell for high performance each; 5 IEEE Conference on SOC, pp. 1001-1002, 2005 ·) 5T SRAM is set by a long channel length access between two load transistors in the unit cell The transistor solves the problem of difficulty in writing logic 1', resulting in a lack of access speed; Patent Document 3 (June 1, 1986, TW M358390) reduces the power supply voltage during write operations. Random access memory (which is mainly represented as shown in Figure 5) can effectively solve the problem of writing logic 1 'only when writing operation, because high voltage node (VH) is supplied by high power supply voltage (hvdd) The lack of an effective discharge path in the process of dropping to a low power supply voltage (lvdd) results in problems such as low write reliability and low write stability at still memory capacity and/or high speed operation. space. 5 M391711 has a clock here. The main purpose of this creation is to propose a static random access memory with a circuit, which not only can effectively avoid the problem of writing logic, but also high memory capacity and / / High-speed operation can still have high reliability and high stability of the write operation. [New content] This paper proposes a static random access memory (SRAM) with a discharge path, which includes a memory array, a plurality of word lines, a plurality of bit lines, and a plurality of write voltage controls. The circuit (2) and the plurality of discharge paths (3) each of which has a write voltage control circuit and a discharge path (3). The write voltage (4) circuit (2) is used to indicate the logic of the selected logic 1 when the thief's control number (CTL) is selected. The surface is high-voltage node (the potential of (4) is discharged via the corresponding discharge noise-predetermined time' - the aspect - the low electrical test voltage (lVdd) is supplied to the high voltage node (VH), wherein the control signal (CTL) is a write enable (write

EnaWe,_ WE)信號、寫入資料信號與對應之字元線降)信號的 及閘(ANDgate)運算結果,亦即僅於該寫入致能(Μ)信號、寫入 貝料減與姆應之?it線(WL)錢觸邏輯冑鱗時該控制信號 (CTL)方為邏輯高位準;祕賴之該湖信號(ctl)為代表非選 定寫入狀ϋ或非冑人邏輯丨之邏輯餘料,職—冑魏供應電壓 (HVDD)供絲該高電壓節點㈣。絲,梢麵如之具放電路複 之單埠靜_機存取記㈣,不但可有效避免以邏輯丨相#困難之 問題,並且即使於高記憶容量時佩具有高可#性與高穩定性之寫入 操作。 【實施方式】 根據上述之主要目的,本創作提出—種具放電路徑之科靜態隨機 6 卿 i711 存取記憶體’該具放電路徑之單埠靜態隨機存取記憶體係包括一記憶 體陣列’該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所 組成’每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體 晶胞(1);複數條字元線,每一字元線對應至複數列記憶體晶胞中之 一列;複數條位元線,每一位元線係對應至複數行記憶體晶胞中之一 行;複數個寫入電壓控制電路(2);以及複數個放電路徑(3),其 中’每一列記憶體晶胞設置一個寫入電壓控制電路(2)以及一個放電 路徑(3) 為了便於說明起見,第6圖所示之具放電路徑之單埠靜態隨機存取 記憶體僅以一個記憶體晶胞(1)、一條字元線(WL)、一條位元線(BL)、 —寫入電壓控制電路(2)以及一放電路徑(3)做為較佳實施例來說 明°該記憶體晶胞(1)係包括一第一反相器(由第一 PM0S電晶體P1 與第一 NMOS電晶體Ml所組成)、一第二反相器(由第二PMOS電晶 體P2與第二nm〇S電晶體M2所組成)以及一第三nmos電晶體 (M3) ’其中,該第一反相器和該第二反相器係呈交互耦合連接,亦 即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第 一反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反 相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器 之輪出(節點B)則用於儲存SRAM晶胞之反相資料。該第三NM〇s電 晶體(M3)係做為存取電晶體(accesstransistor)使用,其閘極係連接 至一予元線(WL) ’該字元線(WL)於選定(selected)時係為具一高電 源供應電壓(HV〇d)之邏輯尚位準,而於非選定(nonselected)時則為具 7 M391711 一接地電壓之邏輯低位準。 請再參考第6圖’該寫入電壓控制電路(2)係由一第三pm〇s電 晶體(P21)、一第四PMOS電晶體(P22)以及一第三反相器(123)所組成, 該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至該高電源 供應電壓(HVDD)、一控制信號(CTL)與一高電壓節點(vh);該第四 PMOS電晶體(P22)之源極、閘極與没極係分別連接至一低電源供應電 壓(LVDD)、該反相器(123)之輸出端與該高電壓節點(vh),而該第三反 相器(123)之輸入端則用以接收該控制信號(CTL)。其中,該控制信號 (CTL)為一寫入致能(Write Enable ’簡稱WE)信號、寫入資料信 號與對應之字元線(WL)信號的及閘(AND gate)運算結果,亦即僅於 該寫入致能(WE)信號、寫入資料信號與該對應之字元線(wl)信號 均為邏輯高位準時’該控制信號(CTL)方為邏輯高位準;而於對應之 該控制信號(CTL)為代表非選定寫入狀態或非寫入邏輯1之邏輯低位 準時,則將一高電源供應電壓(HVDD)供應至該高電壓節點(VH)。 當該控制信號(CTL)為代表寫入邏輯1之邏輯高位準時,該邏輯 高位準之該控制信號(CTL)可使得該寫入電壓控制電路(2)中之第 三PMOS電晶體(P21) OFF(截止),並使得第四pm〇S電晶體(P22) ON(導通),於是可將該低電源供應電壓(lvdd)供應至該高電壓節點 (VH);而於該控制信號(CTL)為代表非選定寫入狀態或非寫入邏輯1 之邏輯低位準時,則該邏輯低位準之該控制信號(CTL)可使得該寫入 電壓控制電路(2)中之第三PMOS電晶體(P21) ON(導通),於是可將 該高電源供應電壓(HVDD)供應至該高電壓節點(VH)。 8 M391711 請再參考第6圖’該放電路徑(3)係由一第四nmqs電晶體 (M31)、一第五NMOS電晶體(M32)以及一延遲電路(D33)所組成,該 第四NMOS電晶體(M31)之源極、閘極與汲極係分別連接至該第五 NMOS電晶體(M32)之汲極、該控制信號(CTL)與該高電壓節點(γΗ); 該第五NMOS電晶體(M32)之源極、閘極與汲極係分別連接至接地端、 該延遲電路(D33)之輸出端與該第四NMOS電晶體(M31)之源極,而該 延遲電路(D33)之輸入端則用以接收該寫入電壓控制電路(2)中之該第 三反相器(123)之輸出。其中,當該控制信號(CTL)為代表寫入邏輯i 之邏輯高位準時,可藉由該放電路徑(3)所提供之放電路徑,以將儲 存在該高電壓節點(VH)之電荷放電一預定時間,該預定時間係等於該 延遲電路(D33)所提供之延遲時間再加上該第三反相器(Κ3)之下降傳遞 延遲時間(fall propagation delay time ),在此值得注意的是,該延遲電 路(D33)係由偶數個反相器串接而成’因此可藉由變更該偶數個反相器 之數量以調整該延遲電路(D33)所提供之延遲時間,故當該控制信號 (CTL)為代表寫入邏輯1之邏輯高位準時,可藉由該放電路徑 所提供之放電路徑’以輕易地將該高電壓節點(VH)之電壓位準由該高 電源供應電壓(HVDD)之位準放電至略低於該低電源供應電壓(lvdd)之 位準’並藉由該寫入電壓控制電路(2)中之該第四PMOS電晶體(P22) 的導通以精確地將該高電壓節點(VH)之電壓位準固定為該低電源供應 電壓(LVdd)所提供之電壓位準。 接下來依單埠靜態隨機存取記憶晶胞之4種寫入狀態來說明第6圖 之本創作較佳實施例如何完成寫入動作。 9 M391711 (一) 節點A原本儲存邏輯〇,而現在欲寫入邏輯〇 : 在寫入動作發生前(字元線WL為接地電壓),第一 NMOS電晶體 M1為0N(導通)’該高電源供應電壓(HVDD)供應至該電壓節點(VH)。 因為第一NMOS電晶體Ml為on’所以當寫入動作開始時,字元線(WL) 由Low(接地電壓)轉扭功(高電源供應電壓,節點a的電壓會跟 隨子元線(WL)的電壓而上升。當字元線(wl)的電壓大於第三_〇8電 晶體(M3)(即存取電晶體)的臨界電壓時,第三蘭〇8電晶體(M3) 由OFF(截止)轉變為0N(導通),此時因為位元線(BL)是接地電壓, 所以會將節點A放電,而完成邏輯0的寫入動作,直到寫入週期結束。 在此值得注意的是,該電壓節點(VH)於寫入初期係具有該低電源供應 電壓(LVDD)之位準’而於寫入週期結束後則具有該高電源供應電壓 (HVdd)之位準。 (二) 節點A原本儲存邏輯〇,而現在欲寫入邏輯1 : 在寫入動作發生前(字元線WL為接地電壓),第一 NMOS電晶體 Ml為ON(導通),該高電源供應電壓供應至該電壓節點_。 因為第一NMOS電晶體Ml為ON,所以當寫入動作開始時,字元線(wl) 由Low(接地電壓)轉High(高電源供應電壓HVDD),節點A的電壓會跟 隨字元線(WL)的電壓而上升。 當字元線(WL)的電壓大於該第三NMOS電晶體(M3)的臨界電壓 以及該放電路徑(3)中之該第四NMOS電晶體(M31)的臨界電壓時, 第三NMOS電晶體(M3)由OFF(截止)轉變為ON(導通),此時因為 位元線(BL)是High(高電源供應電壓HVDD),並且因為第一 NMOS 電晶體Ml仍為ON且節點B仍處於電壓位準為接近於該高電源供應 電壓(HVDD)之電壓位準的初始放電狀態,所以第一 pM〇s電晶體pi 仍為OFF(截止),而節點A則會快速充電至該第三NM〇s電晶體(M3) 之導通等效電阻(Rm3)與該第一 NMOS電晶體(Ml)之導通等效電 M391711 阻(Rmi)所呈現之分壓電壓位準’該分壓電壓位準等於 乘以1¾電源供應電壓(HV〇d)所提供之電壓位準,此時由於該第三 NMOS電晶體(M3)係工作於飽和區(saturationregion)且該第一 NMOS 電晶體(Ml)係工作於線性區(trioderegion),因此該第三NMOS電晶 體(M3)之導通等效電阻(〜)會遠大於該第一 電晶體(M1) 之導通等效電阻(Rm!) ’於是節點A會呈現低的分壓電壓位準,其值 約等於第4圖之習知5T靜態隨機存取記憶體晶胞在時間為25奈秒至 30奈秒期間所模擬之〇.52mV。 接著節點B逐步放電至較低電壓位準,該節點B之較低電壓位準 會使得該第一 NMOS電晶體(Ml)之導通等效電阻(r^)呈現較高 的電阻值,該較高的電阻值會於節點A獲得較高電壓位準,該節點A 之較高電壓位準又會經由第二反相器(由第二PM0S電晶體P2與第二 NMOS電晶體M2所組成),而使得節點B獲得更低電壓位準,該節點 B之更低電壓位準又會經由第一反相器(由第一 PMOS電晶體P1與第 一 NMOS電晶體Ml所組成),而使得節點A獲得更高電壓位準,依 此循環’即可將節點A充電至高電源供應電壓(HVDD)扣減該第三 NMOS電晶體(M3)的臨界電壓或該低電源供應電壓(LVdd)兩者中之 較大者,而完成邏輯1的寫入動作。在此值得注意的是,由於該電壓 節點(VH)於寫入初期係具有該低電源供應電壓(lvdd)之位準,而於寫 入週期結束後則具有該高電源供應電壓(HVDD)之位準,因此,寫入週 期結束後’該節點A會被充電至該高電源供應電壓(hvdd)之位準。 (三)節點A原本儲存邏輯1,而現在欲寫入邏輯!: 在寫入動作發生前(字元線WL為接地電壓)’第一 pm〇S電晶體 P1為ON(導通),該高電源供應電壓(HVDD)供應至該電壓節點(_。 當字元線(WL)由Low(接地電壓)轉High(高電源供應電壓HVDD),且該 字元線CWL)的電壓大於第三NMOS電晶體(M3)的臨界電壓時,第 11 M391711 三nmos電晶體⑽)由〇峨止)轉變為〇N(導通);待該低 供應電壓(lvdd)供絲紐節點(Vdd)後,此相為位元線(bl) β、EnaWe, _ WE) signal, write data signal and corresponding word line drop) signal AND gate operation result, that is, only the write enable (Μ) signal, write the material minus Should it? The control line (CTL) is logically high when the it line (WL) touches the logic scale; the lake signal (ctl) of the secret line is the logical residual material representing the unselected write or non-human logic , the job - Wei Wei supply voltage (HVDD) supply the high voltage node (four). Silk, the surface of the surface, such as the circuit of the 單埠 static _ machine access record (four), not only can effectively avoid the problem of logical 丨 phase #, and even in high memory capacity, 佩 has high energy and high stability Sex write operation. [Embodiment] According to the above main object, the present invention proposes a static random random access memory with a discharge path. The static random access memory system with a discharge path includes a memory array. The memory array is composed of a plurality of columns of memory cells and a plurality of rows of memory cells. 'Each column of memory cells and each row of memory cells each include a plurality of memory cells (1); a plurality of words a meta-line, each word line corresponding to one of a plurality of columns of memory cells; a plurality of bit lines, each bit line corresponding to one of a plurality of rows of memory cells; a plurality of write voltage controls a circuit (2); and a plurality of discharge paths (3), wherein 'each column memory cell is provided with a write voltage control circuit (2) and a discharge path (3) for convenience of explanation, as shown in FIG. The static random access memory has only one memory cell (1), one word line (WL), one bit line (BL), a write voltage control circuit (2), and A discharge path (3) is preferred The memory cell (1) includes a first inverter (composed of a first PMOS transistor P1 and a first NMOS transistor M1) and a second inverter (by a second). a PMOS transistor P2 and a second nm 〇S transistor M2) and a third nmos transistor (M3) 'where the first inverter and the second inverter are connected in an alternating manner, that is, The output of the first inverter (ie node A) is connected to the input of the second inverter, and the output of the first inverter (ie node B) is connected to the input of the first inverter, and The output of the first inverter (node A) is used to store the data of the SRAM cell, and the round of the second inverter (node B) is used to store the inverted data of the SRAM cell. The third NM〇s transistor (M3) is used as an access transistor, and its gate is connected to a pre-element (WL) 'the word line (WL) is selected (selected) It is a logic level with a high power supply voltage (HV〇d), and a non-selected (nonselected) logic low level with a ground voltage of 7 M391711. Please refer to FIG. 6 again. The write voltage control circuit (2) is composed of a third pm 电 transistor (P21), a fourth PMOS transistor (P22), and a third inverter (123). The source, the gate and the drain of the third PMOS transistor (P21) are respectively connected to the high power supply voltage (HVDD), a control signal (CTL) and a high voltage node (vh); The source, gate and immersion of the four PMOS transistors (P22) are respectively connected to a low power supply voltage (LVDD), an output of the inverter (123) and the high voltage node (vh), and the The input of the third inverter (123) is used to receive the control signal (CTL). The control signal (CTL) is an AND gate operation result of a Write Enable (WE) signal, a write data signal, and a corresponding word line (WL) signal, that is, only When the write enable (WE) signal, the write data signal, and the corresponding word line (wl) signal are both logic high level, the control signal (CTL) side is a logic high level; and the control is corresponding thereto. The signal (CTL) is a logic low level on behalf of the unselected write state or non-write logic 1, and a high power supply voltage (HVDD) is supplied to the high voltage node (VH). When the control signal (CTL) is a logic high level representing the write logic 1, the logic high level of the control signal (CTL) can cause the third PMOS transistor (P21) in the write voltage control circuit (2) OFF (off), and makes the fourth pm 〇S transistor (P22) ON (on), then the low power supply voltage (lvdd) can be supplied to the high voltage node (VH); and the control signal (CTL) In order to represent the unselected write state or the logic low level of the non-write logic 1, the logic low level of the control signal (CTL) can cause the third PMOS transistor in the write voltage control circuit (2) ( P21) ON, then the high power supply voltage (HVDD) can be supplied to the high voltage node (VH). 8 M391711 Please refer to FIG. 6 again. The discharge path (3) is composed of a fourth nmqs transistor (M31), a fifth NMOS transistor (M32) and a delay circuit (D33). a source, a gate and a drain of the transistor (M31) are respectively connected to a drain of the fifth NMOS transistor (M32), the control signal (CTL) and the high voltage node (γΗ); the fifth NMOS The source, the gate and the drain of the transistor (M32) are respectively connected to the ground, the output of the delay circuit (D33) and the source of the fourth NMOS transistor (M31), and the delay circuit (D33) The input terminal is configured to receive the output of the third inverter (123) in the write voltage control circuit (2). Wherein, when the control signal (CTL) is a logic high level representing the write logic i, the discharge path provided by the discharge path (3) can be used to discharge the charge stored at the high voltage node (VH). a predetermined time, which is equal to the delay time provided by the delay circuit (D33) plus the fall propagation delay time of the third inverter (Κ3), it is worth noting that The delay circuit (D33) is connected in series by an even number of inverters. Therefore, the delay time provided by the delay circuit (D33) can be adjusted by changing the number of the even number of inverters, so when the control signal (CTL) is a logic high level on behalf of write logic 1, and the voltage path of the high voltage node (VH) can be easily passed from the high power supply voltage (HVDD) by the discharge path provided by the discharge path. The level is discharged to a level slightly lower than the low power supply voltage (lvdd) and is turned on by the fourth PMOS transistor (P22) in the write voltage control circuit (2) to accurately The voltage level of the high voltage node (VH) is fixed at this low Voltage level of the supply voltage source (LVDD) provided by registration. Next, how the writing operation of the preferred embodiment of Fig. 6 is completed depends on the four writing states of the static random access memory cell. 9 M391711 (1) Node A originally stores the logic 〇, but now wants to write logic 〇: Before the write action occurs (word line WL is the ground voltage), the first NMOS transistor M1 is 0N (conducting) 'this high A power supply voltage (HVDD) is supplied to the voltage node (VH). Since the first NMOS transistor M1 is on', when the write operation starts, the word line (WL) is turned from the Low voltage (high power supply voltage, and the voltage of the node a follows the sub-line (WL). The voltage rises. When the voltage of the word line (wl) is greater than the threshold voltage of the third _8 transistor (M3) (ie, the access transistor), the third Lancome 8 transistor (M3) is turned OFF. (cutoff) is changed to 0N (conduction). At this time, since the bit line (BL) is the ground voltage, node A is discharged, and the logic 0 write operation is completed until the end of the write cycle. Yes, the voltage node (VH) has the level of the low power supply voltage (LVDD) at the beginning of writing and has the level of the high power supply voltage (HVdd) after the end of the writing period. Node A originally stores the logic 〇, and now wants to write logic 1: Before the write action occurs (word line WL is the ground voltage), the first NMOS transistor M1 is ON (on), and the high power supply voltage is supplied to The voltage node _. Since the first NMOS transistor M1 is ON, when the write operation starts, the word line (wl) is Low ( The ground voltage is turned to High (high power supply voltage HVDD), and the voltage of node A rises following the voltage of the word line (WL). When the voltage of the word line (WL) is greater than that of the third NMOS transistor (M3) When the threshold voltage and the threshold voltage of the fourth NMOS transistor (M31) in the discharge path (3) are changed, the third NMOS transistor (M3) is turned from OFF (turned off) to turned "on", at this time because of the bit element. The line (BL) is High (high power supply voltage HVDD), and since the first NMOS transistor M1 is still ON and the node B is still at an initial level of voltage level close to the voltage level of the high power supply voltage (HVDD) The discharge state, so the first pM〇s transistor pi is still OFF (cutoff), and the node A is quickly charged to the third NM〇s transistor (M3) conduction equivalent resistance (Rm3) and the first The NMOS transistor (Ml) turns on the equivalent voltage M391711 resistance (Rmi) shows the voltage dividing voltage level 'this voltage dividing voltage level is equal to the voltage level provided by the 13⁄4 power supply voltage (HV〇d), At this time, since the third NMOS transistor (M3) operates in a saturation region and the first NMOS transistor ( Ml) operates in a triode region, so the on-resistance equivalent (~) of the third NMOS transistor (M3) is much larger than the on-resistance equivalent (Rm!) of the first transistor (M1). Node A then assumes a low voltage division voltage level that is approximately equal to the .52 mV simulated by the conventional 5T SRAM cell of Figure 4 during a period of 25 nanoseconds to 30 nanoseconds. Then, the node B is gradually discharged to a lower voltage level, and the lower voltage level of the node B causes the on-resistance equivalent (r^) of the first NMOS transistor (M1) to exhibit a higher resistance value. A high resistance value will result in a higher voltage level at node A, and the higher voltage level of the node A will pass through the second inverter (composed of the second PMOS transistor P2 and the second NMOS transistor M2). And causing the node B to obtain a lower voltage level, and the lower voltage level of the node B is again caused by the first inverter (composed of the first PMOS transistor P1 and the first NMOS transistor M1) Node A obtains a higher voltage level, and accordingly, the node A can be charged to a high power supply voltage (HVDD) to deduct the threshold voltage of the third NMOS transistor (M3) or the low power supply voltage (LVdd). The larger of them, and the logic 1 write operation is completed. It is worth noting here that the voltage node (VH) has the low power supply voltage (lvdd) level at the beginning of writing, and has the high power supply voltage (HVDD) after the end of the writing period. The level, therefore, after the end of the write cycle 'the node A will be charged to the level of the high power supply voltage (hvdd). (3) Node A originally stored logic 1, but now wants to write logic! : Before the write action occurs (the word line WL is the ground voltage) 'The first pm 电S transistor P1 is ON (on), and the high power supply voltage (HVDD) is supplied to the voltage node (_. The line (WL) turns from Low (ground voltage) to High (high power supply voltage HVDD), and the voltage of the word line CWL) is greater than the threshold voltage of the third NMOS transistor (M3), the 11th M391711 three nmos transistor (10)) is changed to 〇N (conducting); after the low supply voltage (lvdd) is supplied to the wire node (Vdd), the phase is the bit line (bl) β,

High(高電源供應電壓hvdd),並且因為第_ pM〇s電晶體朽仍^High (high power supply voltage hvdd), and because the _pM〇s transistor decays ^

ON’所㈣點A的電壓會降減高電雜應電壓取㈤扣減該第I NMOS電晶體(M3)的臨界電壓或該低電源供應電壓(lVdd)兩者中^ 較大者’直到寫人週減束該高親絲電取取⑽)絲至電壓節點 (VH)° * (四)卽點A原本儲存邏輯1,而現在欲寫入邏輯〇: 在寫入動作發生前(字元線WL為接地電壓),第—pMGS電晶體 P1為ON(導通)’該高電源供應電壓供應至電壓節點(γΗ^當 字元線(WL)由Low(接地電壓)轉扭奶(高電源供應電壓,且該^ 元線(WL)的電壓大於第三nmos電晶體(M3)的臨界電壓時,第三 NMOS電晶體(M3)由OFF(截止)轉變為〇N(導通),此時因為位元 線(BL)是Low (接地電壓),所以會將節點人放電而完成邏輯〇的 寫入動作,直到寫入週期結束。在此值得注意的是,該電壓節點(_ 於寫入初期係具有該低電源供應電壓(LVdd)之位準,而於寫入週期結束 後則具有該高電源供應電壓(hvdd)之位準。 第6圖所示之本創作較佳實施例,於寫入操作時之HSpICE暫態分 析模擬結果,如第7圖所示’其係以ievei 49模型且使用TSMC 0.35 微米CMOS製程參數加以模擬(其PMOS電晶體和νμο^電晶體之零 基底偏壓臨限電壓值Vth〇分別為-0.7866083V和0.582913V),其中, PMOS電晶體PI、P2之通道寬長比均為,NMOS 電晶體Ml和M2之通道寬長比均為(ΐ>=(2μπι/0.35μπι),而NMOS 電晶體M3之通道寬長比則均為(w/L)=(1.3pm/0.35pm),由該模擬結果 可註實,本創他所提出之具放電路徑之單埠靜態隨機存取記憶體,能 藉由寫入操作時降低電源電壓,以有效避免第3圖所示之習知5T靜態 12 隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。 路但山 打冷 +創作 所拉出之具放電路徑之單埠靜態隨機存取記憶體,即使操作於具有t =憶容量及/或高逮操作之靜態隨機存取記憶體時,仍可藉由本創作= 提供之放電路徑(3)以有效提高寫入操作之可靠度與穩定度。所 【圖式簡單說明】 第1圖係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖; 第2圖係顯示習知6Τ靜態隨機存取記憶體晶胞之寫人動作時序圖; 第3圖係顯示習知5Τ靜態隨機存取記憶體晶胞之電路示意圖;, 第4圖_示習知5Τ靜紐赫取記憶體晶胞之寫人動作時序圖; 第5圖係顯示習知第TW Μ3獅〇號之5Τ靜態隨機存取記憶體晶胞 之電路示意圖; 第6圖係顯示本創作較佳實補所提出之具放電_之科靜態隨機 存取記憶體的電路示意圖; 思 第7圖係顯示第6圖之本創作較佳實施例之寫入動作時序圖 【主要元件符號說明】The voltage at point A of (4) will decrease the high-voltage voltage (5) minus the threshold voltage of the first NMOS transistor (M3) or the lower power supply voltage (lVdd). Write the person's weekly reduction of the high-ply wire to take (10)) wire to the voltage node (VH) ° * (d) 卽 point A originally stored logic 1, and now want to write logic 〇: before the write action occurs (word The source line WL is the ground voltage), and the -pMGS transistor P1 is ON (on). The high power supply voltage is supplied to the voltage node (γΗ^ when the word line (WL) is turned from the Low (ground voltage) to the milk (high) When the power supply voltage is applied, and the voltage of the NMOS line (WL) is greater than the threshold voltage of the third nmos transistor (M3), the third NMOS transistor (M3) is changed from OFF (off) to 〇N (on), Since the bit line (BL) is Low (ground voltage), the node is discharged to complete the logic write operation until the end of the write cycle. It is worth noting that the voltage node (_ write In the initial stage, the low power supply voltage (LVdd) is used, and after the end of the write cycle, the high power supply voltage (hvdd) is used. The preferred embodiment of the present invention shown in FIG. 6 shows the results of the HSpICE transient analysis simulation during the write operation, as shown in FIG. 7 'which is simulated by the ievei 49 model and using TSMC 0.35 micron CMOS process parameters ( The zero-substrate bias voltage value Vth〇 of the PMOS transistor and the νμο^ transistor is -0.7866083V and 0.582913V, respectively, wherein the PMOS transistors PI and P2 have the channel width-to-length ratio, and the NMOS transistor M1 The channel width to length ratio of M2 and M2 are both (ΐ>=(2μπι/0.35μπι), and the channel width to length ratio of NMOS transistor M3 is (w/L)=(1.3pm/0.35pm) by the simulation. As a result, it can be noted that the static random access memory with a discharge path proposed by the present invention can reduce the power supply voltage by the writing operation, thereby effectively avoiding the conventional 5T static 12 random storage shown in FIG. It is quite difficult to write the memory cell 1 to write logic 1. Lushanshan cold + creation of the static random access memory with the discharge path, even if it is operated with t = memory capacity and / or When the static random access memory of the operation is high, the circuit can still be provided by the present creation = (3) To effectively improve the reliability and stability of the write operation. [Simplified description of the drawing] Fig. 1 is a schematic circuit diagram showing a conventional 6T static random access memory cell; Fig. 2 shows a conventional 6Τ Static random access memory cell cell write action timing diagram; Figure 3 shows the circuit diagram of the conventional 5Τ static random access memory cell; 4th figure _ shows the 5 Τ 纽 纽 取 memory Figure 7 shows the circuit diagram of the human cell action; Figure 5 shows the circuit diagram of the 5 Τ static random access memory cell of the TW Μ 3 〇 ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; Schematic diagram of the SRAM static random access memory; Fig. 7 shows the write operation timing diagram of the preferred embodiment of the sixth drawing [main component symbol description]

P2 M2 M4 BLB Ρ1 第一 PMOS電晶體P2 M2 M4 BLB Ρ1 first PMOS transistor

Ml 第一 NMOS電晶體 M3 第三NMOS電晶體 BL 位元線 WL 字元線 A 儲存節點 HV〇d 尚電源供應電壓 1 SRAM晶胞 放電路徑 第二PMOS電晶體 第二NMOS電晶體 第四NMOS電晶體 互補位元線 VH 高電壓節點 B 反相儲存節點 lvdd低電源供應電壓 2 寫入電麗控制電路 CTL 控制信號 13 3 M391711 P21 第三PMOS電晶體 P22 第四PMOS電晶體 M31 第四NMOS電晶體 M32 第五NMOS電晶體 D33 延遲電路 123 第三反相器Ml first NMOS transistor M3 third NMOS transistor BL bit line WL word line A storage node HV〇d still power supply voltage 1 SRAM cell discharge path second PMOS transistor second NMOS transistor fourth NMOS Crystal Complementary Bit Line VH High Voltage Node B Inverting Storage Node lvdd Low Power Supply Voltage 2 Write Electric Control Circuit CTL Control Signal 13 3 M391711 P21 Third PMOS Transistor P22 Fourth PMOS Transistor M31 Fourth NMOS Transistor M32 fifth NMOS transistor D33 delay circuit 123 third inverter

Claims (1)

M391711 六、申請專利範圍: 1· 一種具放電路徑之單埠SRAM,包括: 一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶 胞所組成’每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶 體晶胞(1); 複數條子元線,每一字元線對應至複數列記憶體晶胞中之一列; 複數條位元線,每一位元線係對應至複數行記憶體晶胞中之一行; 複數個寫入電壓控制電路(2),每一列記憶體晶胞設置一個寫入電壓控 制電路;以及 複數個放電路徑(3),每一列記憶體晶胞設置一個放電路徑(3); 其中,每一記憶體晶胞(1)更包含: 一第一反相器,係由第一PMOS電晶體(P1)與第一NM〇s電晶體(jvq)所組 成,該第一反相器係連接在一高電壓節點與接地電壓之間; 一第二反相器,係由第二PM〇s電晶體(P2)與第二_〇!§電晶體_)所組 成,該第二反相器係連接在該高電壓節點(VfJ)與接地電壓之間; 一儲存節點(A) ’係由該第一反相器之輸出端所形成; 一反相儲存節點(B),係由該第二反相器之輸出端所形成;以及 一存取電晶體(M3),係連接在該儲存節點(A)與一對應位元線之 間,且閘極連接至一對應字元線(WL); 其中,該第一反相器和該第二反相器係呈交互耗合連接,亦即該第一反 相器之輸出端(即儲存節點A)係連接至該第二反相器之輸入端,而該第 一反相器之輸出端(即反相儲存節點B)則連接至該第一反相器之輪入端; 其中’每一寫入電壓控制電路(2)更包含: -第三PMOS電晶體(P21),該第三PMOS電晶體㈣)之源極、閉極與 沒極係分猶接至-高電雜應電^hvdd)、—控輸號(CTL)血^ 高電壓節點(VH); 一第四PMOS電晶體(P22),該第四PMOS電晶體之源極、閉極與 汲極係分別連接至一低電源供應電壓(lVdd)、一第三反相器(123)之輪出、 端與該高電壓節點(VH);以及 15 M391711 一第三反相器(123),該第三反相器(123)之輸入端用以接收該控制信號 (CTL),而該第三反相器(123)之輸出端則連接至該第四pm〇S電晶體 (P22)之閘極; 其中,每一放電路徑(3)更包含: 一第四NMOS電晶體(M31) ’該第四NMOS電晶體(M31)之源極、閘極 與汲極係分別連接至一第五NMOS電晶體(M32)之汲極、該控制信號 (CTL)與該高電壓節點(VH); 一第五NMOS電晶體(M32),該第五NMOS電晶體(M32)之源極、閘極 與没極係分別連接至接地電壓、一延遲電路(D33)之輸出端與該第四 NMOS電晶體(M31)之源極;以及 一延遲電路(D33) ’該延遲電路(D33)之輸入端係用以接收該對應寫入電 壓控制電路(2)中之該第三反相器(123)之輸出端,而該延遲電路(£)33) 之輸出端則連接至該第五NMOS電晶體(M32)之閘極。 2. 如申請專利範圍第1項所述之具放電路徑之單埠SRAM,其中,該控制信 號(CTL)為一寫入致能(WE)信號、一寫入資料信號與對應之字元線 (WL)信號的及閘(ANDgate)運算結果’亦即僅於該寫入致能(^) 信號、該寫入資料信號與該對應之字元線(WL)信號均為邏輯高位準 時,該控制信號(CTL)方為邏輯高位準;而於對應之該控制信號(CTL) 為代表非選定寫入狀態或非寫入邏輯1之邏輯低位準時,則將該高電源供 應電壓(HVDD)供應至該高電壓節點(VH)。 3. 如申請專利範圍第2項所述之具放電路徑之單埠sraM,其中,該對應字 元線(WL)之邏輯高位準係為該高電源供應電壓(HVdd)之位準。 4. 如申請專利範圍第3項所述之具放電路徑之單琿SRAM,其中,該每一放 電路徑(3)中之該延遲電路(D33)係由偶數個反相器串接而成,以便提 供一延遲時間。 5. 如申請專利範圍第4項所述之具放電路徑之單埠SRAM,其中,當該控制 仏號(CTL)為代表寫入邏輯1之邏輯高位準時,可藉由對應該放電路 徑(3)所提供之放電路徑,以將儲存在該高電壓節點(呢)之電荷放電 一預定時間。 6. 如申請專利範圍第5項所述之具放電路徑之單埠SRAM,其中,該預定時 16 M391711 間係等於該延遲電路(D33)所提供之該延遲時間再加上該第三反相器(123) 之下降傳遞延遲時間(fall propagation delay time )的總和。 17M391711 VI. Patent Application Range: 1. A 單埠SRAM with a discharge path, comprising: a memory array consisting of a plurality of columns of memory cells and a plurality of rows of memory cells. The body cell and each row of memory cells each include a plurality of memory cells (1); a plurality of sub-member lines, each word line corresponding to one of the plurality of columns of memory cells; a plurality of bit lines Each bit line corresponds to one of the plurality of rows of memory cells; a plurality of write voltage control circuits (2), each column of memory cells is provided with a write voltage control circuit; and a plurality of discharge paths ( 3), each column of memory cells is provided with a discharge path (3); wherein each memory cell (1) further comprises: a first inverter, which is composed of a first PMOS transistor (P1) and a An NM〇s transistor (jvq), the first inverter is connected between a high voltage node and a ground voltage; and a second inverter is connected by a second PM〇s transistor (P2) Composed of the second _〇!§ transistor_), the second inverter is connected Connected between the high voltage node (VfJ) and the ground voltage; a storage node (A) ' is formed by the output of the first inverter; an inverted storage node (B) is the second An output of the inverter is formed; and an access transistor (M3) is connected between the storage node (A) and a corresponding bit line, and the gate is connected to a corresponding word line (WL) The first inverter and the second inverter are in an inter-active connection, that is, the output end of the first inverter (ie, the storage node A) is connected to the second inverter. The input end, and the output end of the first inverter (ie, the inverting storage node B) is connected to the wheel-in end of the first inverter; wherein each of the write voltage control circuit (2) further comprises: - the third PMOS transistor (P21), the source, the close-pole and the immersion of the third PMOS transistor (4) are connected to the high-power electric (^hvdd), the control (CTL) blood ^ High voltage node (VH); a fourth PMOS transistor (P22), the source, the closed pole and the drain of the fourth PMOS transistor are respectively connected to a low power supply voltage (lVdd), a third reverse Phase device (123) a turn-out terminal and the high voltage node (VH); and a 15 M391711-third inverter (123), the input of the third inverter (123) is configured to receive the control signal (CTL), and the The output of the third inverter (123) is connected to the gate of the fourth pm S transistor (P22); wherein each discharge path (3) further comprises: a fourth NMOS transistor (M31) The source, gate and drain of the fourth NMOS transistor (M31) are respectively connected to the drain of a fifth NMOS transistor (M32), the control signal (CTL) and the high voltage node (VH) a fifth NMOS transistor (M32), the source, the gate and the immersion of the fifth NMOS transistor (M32) are respectively connected to a ground voltage, an output of a delay circuit (D33), and the fourth NMOS a source of the transistor (M31); and a delay circuit (D33) 'the input terminal of the delay circuit (D33) for receiving the third inverter (123) in the corresponding write voltage control circuit (2) The output of the delay circuit (£) 33) is connected to the gate of the fifth NMOS transistor (M32). 2. The 單埠SRAM having a discharge path as described in claim 1 wherein the control signal (CTL) is a write enable (WE) signal, a write data signal, and a corresponding word line. The AND gate operation result of the (WL) signal, that is, only when the write enable (^) signal, the write data signal, and the corresponding word line (WL) signal are both at a logic high level, The control signal (CTL) side is a logic high level; and when the corresponding control signal (CTL) is a logic low level representing a non-selected write state or a non-write logic 1, the high power supply voltage (HVDD) is supplied. To the high voltage node (VH). 3. The sraM having a discharge path as described in claim 2, wherein the logic high level of the corresponding word line (WL) is the level of the high power supply voltage (HVdd). 4. The single-turn SRAM having a discharge path according to claim 3, wherein the delay circuit (D33) in each of the discharge paths (3) is formed by connecting an even number of inverters. In order to provide a delay time. 5. A 單埠SRAM having a discharge path as described in claim 4, wherein when the control nickname (CTL) is a logic high level representing write logic 1, the corresponding discharge path can be utilized (3) The discharge path is provided to discharge the charge stored at the high voltage node for a predetermined time. 6. The 單埠SRAM having a discharge path as described in claim 5, wherein the predetermined time interval 16 M391711 is equal to the delay time provided by the delay circuit (D33) plus the third reverse phase The sum of the fall propagation delay time of the device (123). 17
TW99211037U 2010-06-10 2010-06-10 Single port sram having a discharging path TWM391711U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99211037U TWM391711U (en) 2010-06-10 2010-06-10 Single port sram having a discharging path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99211037U TWM391711U (en) 2010-06-10 2010-06-10 Single port sram having a discharging path

Publications (1)

Publication Number Publication Date
TWM391711U true TWM391711U (en) 2010-11-01

Family

ID=50604582

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99211037U TWM391711U (en) 2010-06-10 2010-06-10 Single port sram having a discharging path

Country Status (1)

Country Link
TW (1) TWM391711U (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451413B (en) * 2011-04-07 2014-09-01 Univ Hsiuping Sci & Tech High performance dual port sram
TWI451414B (en) * 2011-03-11 2014-09-01 Univ Hsiuping Sci & Tech High performance sram
TWI489457B (en) * 2011-04-07 2015-06-21 修平學校財團法人修平科技大學 Single port sram with standby start-up circuit
TWI509605B (en) * 2013-02-07 2015-11-21 Univ Hsiuping Sci & Tech Static random access memory (2)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI451414B (en) * 2011-03-11 2014-09-01 Univ Hsiuping Sci & Tech High performance sram
TWI451413B (en) * 2011-04-07 2014-09-01 Univ Hsiuping Sci & Tech High performance dual port sram
TWI489457B (en) * 2011-04-07 2015-06-21 修平學校財團法人修平科技大學 Single port sram with standby start-up circuit
TWI509605B (en) * 2013-02-07 2015-11-21 Univ Hsiuping Sci & Tech Static random access memory (2)

Similar Documents

Publication Publication Date Title
TWI490868B (en) Static random access memory with five transistors
TWI433151B (en) 5t sram
TWI433152B (en) 7t dual port sram
TWI436359B (en) 5t single port sram
TWM391711U (en) Single port sram having a discharging path
TWI404065B (en) Single port sram having a higher voltage word line in writing operation
TWI423258B (en) Dual port sram having a higher voltage write-word-line in writing operation
TWI702713B (en) Column-dependent positive voltage boost for memory cell supply voltage
TWI451412B (en) Dual port sram with improved snm
TWI441178B (en) Dual port sram
TWI419162B (en) Single port sram having a discharging path
TW201128645A (en) Single port SRAM with reducing standby current
TWI441179B (en) Dual port sram having a discharging path
TWI426514B (en) Single port sram having a lower power voltage in writing operation
TW201411637A (en) Ripple bit-lines/search-lines for improving leakage/variation tolerance and density/performance of static random access memory
TWM472292U (en) Dual port SRAM
TWM406791U (en) 7T dual port sram
TWI426515B (en) Single port sram having a lower power voltage in writing operation
TWI425509B (en) Dual port sram having a discharging path
TWI399748B (en) Dual port sram having a lower power voltage in writing operation
TWI500028B (en) Static random access memory with single port
TWI478164B (en) Dual port sram with standby start-up circuit
TWI566255B (en) Five transistor static random access memory
TWI509609B (en) Static random access memory with five transistors
Sakimura et al. A 500-MHz MRAM macro for high-performance SoCs

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees