TWI451414B - High performance sram - Google Patents

High performance sram Download PDF

Info

Publication number
TWI451414B
TWI451414B TW100108305A TW100108305A TWI451414B TW I451414 B TWI451414 B TW I451414B TW 100108305 A TW100108305 A TW 100108305A TW 100108305 A TW100108305 A TW 100108305A TW I451414 B TWI451414 B TW I451414B
Authority
TW
Taiwan
Prior art keywords
nmos transistor
inverter
transistor
voltage
gate
Prior art date
Application number
TW100108305A
Other languages
Chinese (zh)
Other versions
TW201237869A (en
Inventor
Ming Chuen Shiau
En Chih Chang
Original Assignee
Univ Hsiuping Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Hsiuping Sci & Tech filed Critical Univ Hsiuping Sci & Tech
Priority to TW100108305A priority Critical patent/TWI451414B/en
Publication of TW201237869A publication Critical patent/TW201237869A/en
Application granted granted Critical
Publication of TWI451414B publication Critical patent/TWI451414B/en

Links

Description

具高效能之靜態隨機存取記憶體High performance static random access memory

本發明係有關於一種具高效能之靜態隨機存取記憶體(Static Random Access Memory,簡稱SRAM),尤指一種有效提高靜態隨機存取記憶體之待機效能以及有效提高靜態雜訊邊際(Static Noise Margin,簡稱SNM),並能有效降低漏電流(leakage current)且能解決習知具單一位元線之單埠SRAM寫入邏輯1困難之單埠靜態隨機存取記憶體。The invention relates to a high performance static random access memory (SRAM), in particular to effectively improve the standby performance of the static random access memory and effectively improve the static noise margin (Static Noise) Margin (SNM for short) can effectively reduce the leakage current and can solve the problem of the static random access memory that is difficult to write logic 1 with a single bit line.

記憶體在電腦工業中扮演著無可或缺的角色。通常,記憶體可依照其能否在電源關閉後仍能保存資料,而區分為非揮發性(non-volatile)記憶體及揮發性(volatile)記憶體,非揮發性記憶體所儲存之資料並不會因電源關閉或中斷而消失,而儲存在揮發性記憶體之資料則會隨著電源關閉或中斷而被消除。常見的揮發性記憶體有動態隨機存取記憶體(DRAM)及靜態隨機存取記憶體(SRAM)兩種。動態隨機存取記憶體(DRAM)具有面積小及價格低等優點,但操作時必須不時地更新(refresh)以防止資料因漏電流而遺失,而導致存在有高速化困難及消耗功率大等缺失。相反地,靜態隨機存取記憶體(SRAM)的操作則較為簡易且毋須更新操作,因此具有高速化及消耗功率低等優點。Memory plays an indispensable role in the computer industry. Generally, the memory can be classified into non-volatile memory and volatile memory, non-volatile memory, and stored according to whether it can save data after the power is turned off. It will not disappear due to power off or interruption, and the data stored in volatile memory will be eliminated as the power is turned off or interrupted. Common volatile memory types are dynamic random access memory (DRAM) and static random access memory (SRAM). Dynamic random access memory (DRAM) has the advantages of small area and low price, but it must be refreshed from time to time to prevent data from being lost due to leakage current, resulting in high speed and power consumption. Missing. Conversely, the operation of the static random access memory (SRAM) is simple and does not require an update operation, so it has the advantages of high speed and low power consumption.

目前以行動電話為代表之行動電子設備所採用之半導體記憶裝置,係以SRAM為主流。此乃由於SRAM待機電流小,適於連續通話時間、連續待機時間盡可能延長之手機。The semiconductor memory devices currently used in mobile electronic devices represented by mobile phones are mainly SRAM. This is due to the small standby current of the SRAM, which is suitable for mobile phones with continuous talk time and continuous standby time.

習知之靜態隨機存取記憶體(SRAM)如第1a圖所示,其主要包括一記憶體陣列(memory array),該記憶體陣列係由複數個記憶體區塊(memory block,MB1 、MB2 等)所組成,每一記憶體區塊更由複數列記憶體晶胞(a plurality of rows of memory cells)與複數行記憶體晶胞(a plurality of columns of memory cells)所組成,每一列記憶體晶胞與每一行記憶體晶胞各包括有複數個記憶體晶胞;複數條字元線(word line,WL1 、WL2 等),每一字元線對應至複數列記憶體晶胞中之一列;以及複數位元線對(bit line pairs,BL1 、BLB1 ...BLm 、BLBm 等),每一位元線對係對應至複數行記憶體晶胞中之一行,且每一位元線對係由一位元線(BL1 ...BLm )及一互補位元線(BLB1 ...BLBm )所組成。A conventional static random access memory (SRAM), as shown in FIG. 1a, mainly includes a memory array, which is composed of a plurality of memory blocks (MB 1 , MB). 2, etc., each memory block is composed of a plurality of columns of memory cells and a plurality of columns of memory cells, each column The memory cell and each row of memory cells each include a plurality of memory cells; a plurality of word lines (word line, WL 1 , WL 2 , etc.), each word line corresponding to a plurality of columns of memory crystals One of the cells; and a plurality of bit line pairs (BL 1 , BLB 1 ... BL m , BLB m , etc.), each bit line pair corresponding to one of the plurality of rows of memory cells And each bit line pair is composed of one bit line (BL 1 ... BL m ) and one complementary bit line (BLB 1 ... BLB m ).

第1b圖所示即是6T靜態隨機存取記憶體(SRAM)晶胞之電路示意圖,其中,PMOS電晶體(P1)和(P2)稱為負載電晶體(load transistor),NMOS電晶體(M1)和(M2)稱為驅動電晶體(driving transistor),NMOS電晶體(M3)和(M4)稱為存取電晶體(access transistor),WL為字元線(word line),而BL及BLB分別為位元線(bit line)及互補位元線(complementary bit line),由於該SRAM晶胞需要6個電晶體,且驅動電晶體與存取電晶體間的電流驅動能力比(即單元比率(cell ratio))通常設定在2.2至3.5之間,而導致存在有高集積化困難及價格高等缺失。Figure 1b shows the circuit diagram of a 6T static random access memory (SRAM) cell. The PMOS transistors (P1) and (P2) are called load transistors and NMOS transistors (M1). And (M2) are called driving transistors, NMOS transistors (M3) and (M4) are called access transistors, WL is word line, and BL and BLB They are a bit line and a complementary bit line, respectively. Since the SRAM cell requires six transistors, and the current drive capability ratio between the drive transistor and the access transistor (ie, the cell ratio) The (cell ratio) is usually set between 2.2 and 3.5, resulting in the difficulty of high integration and high price.

第1b圖所示6T靜態隨機存取記憶體晶胞於寫入操作時之HSPICE暫態分析模擬結果,如第2圖所示,其係以level 49模型且使用TSMC 0.18微米CMOS製程參數加以模擬。The HSPICE transient analysis simulation results of the 6T SRAM cell in the write operation shown in Figure 1b, as shown in Figure 2, are simulated in a level 49 model using TSMC 0.18 micron CMOS process parameters. .

用來減少6T靜態隨機存取記憶體(SRAM)晶胞之電晶體數之一種方式係揭露於第3圖中。第3圖顯示一種僅具單一位元線之5T靜態隨機存取記憶體晶胞之電路示意圖,與第1圖之6T靜態隨機存取記憶體晶胞相比,此種5T靜態隨機存取記憶體晶胞比6T靜態隨機存取記憶體晶胞少一個電晶體及少一條位元線,惟該5T靜態隨機存取記憶體晶胞在不變更PMOS電晶體P1和P2以及NMOS電晶體M1、M2和M3的通道寬長比的情況下存在寫入邏輯1相當困難之問題。茲考慮記憶晶胞左側節點A原本儲存邏輯0的情況,由於節點A之電荷僅單獨自寫入用位元線(WBL)傳送,因此很難將節點A中先前寫入的邏輯0蓋寫成邏輯1。第3圖所示5T靜態隨機存取記憶體晶胞,於寫入操作時之HSPICE暫態分析模擬結果,如第4圖所示,其係以level 49模型且使用TSMC 0.18微米CMOS製程參數加以模擬,由該模擬結果可証實,具單一位元線之5T靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。One way to reduce the number of transistors in a 6T static random access memory (SRAM) cell is disclosed in FIG. Figure 3 shows a circuit diagram of a 5T SRAM cell with only a single bit line. Compared with the 6T SRAM cell of Figure 1, the 5T static random access memory. The bulk cell has one transistor and one less bit line than the 6T static random access memory cell, but the 5T SRAM cell does not change the PMOS transistors P1 and P2 and the NMOS transistor M1. In the case of the channel width to length ratio of M2 and M3, there is a problem that writing logic 1 is quite difficult. Considering that node A on the left side of the memory cell originally stores logic 0, since the charge of node A is only transmitted from the write bit line (WBL) alone, it is difficult to write the previously written logic 0 in node A as logic. 1. Figure 5 shows the results of the HSPICE transient analysis simulation of the 5T SRAM cell during the write operation. As shown in Figure 4, it is modeled using the level 49 model using TSMC 0.18 micron CMOS process parameters. Simulation, from the simulation results, it can be confirmed that the 5T SRAM cell with a single bit line has a problem that writing logic 1 is quite difficult.

迄今,有許多具單一位元線之5T靜態隨機存取記憶體晶胞之技術被提出,例如非專利文獻1(I. Carlson et al.,”A high density,low leakage,5T SRAM for embedded caches,”Solid-State Circuits Conference,2004. ESSCIRC 2004. Proceeding of the 30th European,pp.215-218,2004.)之5T SRAM由於係藉由重新設計晶胞中之二驅動電晶體、二負載電晶體以及一存取電晶體之通道寬長比以解決寫入邏輯1困難之問題,而造成破壞原有晶胞中之驅動電晶體與負載電晶體之對稱性關係並從而易受製程變異的影響;非專利文獻2(M. Wieckowski et al.,”A novel five-transistor(5T)SRAM cell for high performance cache,”IEEE Conference on SOC,pp.1001-1002,2005.)之5T SRAM由於係將一長通道長度之存取電晶體設置於晶胞中之二負載電晶體之間以解決寫入邏輯1困難之問題,而造成降低存取速度之缺失;專利文獻3(98年6月1日第TW M358390號)所提出之「寫入操作時降低電源電壓之單埠SRAM」雖可有效解決寫入邏輯1困難之問題,惟寫入操作時,由於缺乏有效的放電路徑,而造成於高記憶容量及/或高速操作時存在低寫入速度之缺失。To date, many techniques have been proposed for a 5T SRAM cell with a single bit line, such as Non-Patent Document 1 (I. Carlson et al., "A high density, low leakage, 5T SRAM for embedded caches". , "Solid-State Circuits Conference, 2004. ESSCIRC 2004. Proceeding of the 30th European, pp. 215-218, 2004.) The 5T SRAM is due to the redesign of the two of the unit cell, the two-load transistor And accessing the channel width-to-length ratio of the transistor to solve the problem of writing logic 1 is difficult, thereby causing damage to the symmetry relationship between the driving transistor and the load transistor in the original unit cell and thus being susceptible to process variation; 5T SRAM of Non-Patent Document 2 (M. Wieckowski et al., "A novel five-transistor (5T) SRAM cell for high performance cache," IEEE Conference on SOC, pp. 1001-1002, 2005.) The access transistor of the long channel length is disposed between the two load transistors in the unit cell to solve the problem of difficulty in writing the logic 1, thereby causing a lack of access speed; Patent Document 3 (June 1, 1998) TW M358390) The low power supply voltage "SRAM" can effectively solve the problem of writing logic 1, but the write operation is due to the lack of an effective discharge path, resulting in low memory speed and/or high speed operation. Missing.

至今,有許多降低待機電流之技術被提出,例如專利文獻4(99年12月1日第TW M393773號)所提出之「具放電路徑之雙埠靜態隨機存取記憶體」、專利文獻5(98年3月21日第TW I307890號)所提出之「靜態隨機存取記憶體」、專利文獻6(97年6月3日第US7382674 B2號)所提出之「Static random access memory(SRAM) with clamped source potential in standby mode」、專利文獻7(96年8月7日第US7254085 B2號)所提出之「Static random access memory device and method of reducing standby current」、專利文獻8(95年9月19日第US7110317 B2號)所提出之「SRAM employing virtual rail scheme stable against various process-voltage-temperature variations」、非專利文獻9(Tae-Hyoung Kim et al.,”A Voltage Scalable 0.26 V,64 kb 8T SRAM With Vmin Lowering Techniques and Deep Sleep Mode”,IEEE Journal of Solid-State Circuits. ,Vol. 64,pp 1785-1795,2009.)所提出之8T SRAM以及非專利文獻10(Ding-Ming Kwai,”Modeling of SRAM Standby Current by Three-Parameter Lognormal Distribution”,Design, and Testing,2009. MTDT '09. IEEE International Workshop on Memory Technology, pp 77-82,Aug. 31 2009-Sept. 2 2009.)所提出之SRAM,該等專利文獻或非專利文獻於待機操作時,均是藉由將所有記憶體晶胞中之驅動電晶體(亦即第1b圖之NMOS電晶體M1和M2)之源極電壓由原本之接地電壓提高至較該接地電壓為高之一預定電壓,以謀求降低待機操作之功率消耗,惟由於該預定電壓僅係藉由電晶體之漏電流對寄生電容的充電而產生,而造成靜態隨機存取記憶體進入待機模式之速度極為緩慢,並因而導致降低待機效能之缺失:亦即該等專利文獻或非專利文獻均缺乏待機啟動電路以促使靜態隨機存取記憶體快速進入待機模式。In the past, there have been many techniques for reducing the standby current, for example, "Double-埠 Static Random Access Memory with Discharge Path" proposed in Patent Document 4 (No. TW M393773, December 1, 1999), Patent Document 5 ( "Static random access memory" proposed by TW I307890, March 21, 1998, "Static random access memory (SRAM) with patent document 6 (No. US7382674 B2, June 3, 1997) "Static random access memory device and method of reducing standby current", Patent Document 7 (No. US7254085 B2, August 7, 196), Patent Document 8 (September 19, 1995) "SRAM employing virtual rail scheme stable against various process-voltage-temperature variations", No. 5,71,103, B2, Non-Patent Document 9 (Tae-Hyoung Kim et al., "A Voltage Scalable 0.26 V, 64 kb 8T SRAM With Vmin Lowering Techniques and Deep Sleep Mode", IEEE Journal of Solid-State Circuits. , Vol. 64, pp 1785-1795, 2009.) 8T SRAM and Non-Patent Document 10 (Ding-Ming Kwai, "Modeling of SR AM Standby Current by Three-Parameter Lognormal Distribution", Design, and Testing, 2009. MTDT '09. IEEE International Workshop on Memory Technology, pp 77-82, Aug. 31 2009-Sept. 2 2009.) In the standby operation, the source voltages of the driving transistors (ie, the NMOS transistors M1 and M2 of FIG. 1b) in all the memory cells are grounded by the original. The voltage is raised to a predetermined voltage higher than the ground voltage to reduce the power consumption of the standby operation, but the predetermined voltage is generated only by charging the parasitic capacitance by the leakage current of the transistor, thereby causing static random storage. The speed at which the memory enters the standby mode is extremely slow, and thus the lack of standby performance is reduced: that is, the patent documents or the non-patent literature lack a standby start circuit to cause the static random access memory to quickly enter the standby mode.

有鑑於此,本發明之主要目的係提出一種具高效能之靜態隨機存取記憶體,其能有效促使靜態隨機存取記憶體快速進入待機模式,並因而有效提高靜態隨機存取記憶體之待機效能。In view of this, the main object of the present invention is to provide a high-performance static random access memory, which can effectively cause the static random access memory to quickly enter the standby mode, thereby effectively improving the standby of the static random access memory. efficacy.

本發明之次要目的係提出一種具高效能之靜態隨機存取記憶體,其能有效提高靜態隨機存取記憶體之靜態雜訊邊際(SNM)。A secondary object of the present invention is to provide a high performance static random access memory that can effectively improve the static noise margin (SNM) of static random access memory.

本發明之再一目的係提出一種具高效能之靜態隨機存取記憶體,其能藉由控制電路以有效避免習知具單一位元線之單埠靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。A further object of the present invention is to provide a high performance static random access memory capable of effectively avoiding the existence of a write of a static random access memory cell with a single bit line by means of a control circuit. Logic 1 is quite a difficult problem.

本發明之又一目的係提出一種具高效能之靜態隨機存取記憶體,其能藉由控制電路以有效降低待機模式之漏電流。Another object of the present invention is to provide a high performance static random access memory capable of effectively reducing leakage current in a standby mode by a control circuit.

本發明提出一種具高效能之靜態隨機存取記憶體,其主要包括一記憶體陣列、複數個控制電路(2)以及一待機啟動電路(3),該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞設置一個控制電路,且每一記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P1與一第一NMOS電晶體M1所組成)、一第二反相器(由一第二PMOS電晶體P2與一第二NMOS電晶體M2所組成)、一存取電晶體(由第三NMOS電晶體M3所組成)、一第三反相器(由一第一PMOS控制電晶體PC1與一第一NMOS控制電晶體MC1所組成)以及一第四反相器(由一第二PMOS控制電晶體(PC2)與一第二NMOS控制電晶體(MC2)所組成)。每一控制單元係連接至對應列記憶體晶胞中之每一記憶體晶胞的該第一NMOS電晶體(M1)的源極以及該第二NMOS電晶體(M2)的源極,以便因應不同操作模式而控制該第一NMOS電晶體(M1)的源極電壓以及該第二NMOS電晶體(M2)的源極電壓,藉此於寫入模式時,可有效防止寫入邏輯1困難之問題,於待機模式時,可有效降低漏電流,而於其他模式時則可維持原有的電氣特性。再者,將每一記憶體晶胞中之該第一NMOS電晶體(M1)的背閘極(back gate)連接至該第三反相器之輸出端,以及將該第二NMOS電晶體(M2)的背閘極與該第三NMOS電晶體(M3)的背閘極均該連接至該第四反相器之輸出端,以便有效提高單埠靜態隨機存取記憶體之靜態雜訊邊際(SNM)。另,藉由該待機啟動電路(3)的設計,可有效促使靜態隨機存取記憶體快速進入待機模式,並因而大幅提高靜態隨機存取記憶體之待機效能。The present invention provides a high performance static random access memory, which mainly comprises a memory array, a plurality of control circuits (2) and a standby starting circuit (3). The memory array is composed of a plurality of columns of memory crystals. The cell is composed of a plurality of memory cells, each column of memory cells is provided with a control circuit, and each memory cell (1) includes a first inverter (by a first PMOS transistor P1 and a first NMOS transistor M1, a second inverter (composed of a second PMOS transistor P2 and a second NMOS transistor M2), an access transistor (by a third NMOS transistor) M3 is composed of a third inverter (composed of a first PMOS control transistor PC1 and a first NMOS control transistor MC1) and a fourth inverter (by a second PMOS control transistor ( PC2) is composed of a second NMOS control transistor (MC2). Each control unit is connected to a source of the first NMOS transistor (M1) and a source of the second NMOS transistor (M2) of each memory cell corresponding to the column memory cell, so as to cope with Controlling the source voltage of the first NMOS transistor (M1) and the source voltage of the second NMOS transistor (M2) in different operation modes, thereby effectively preventing writing logic 1 from being difficult in the write mode The problem is that the leakage current can be effectively reduced in the standby mode, while the original electrical characteristics can be maintained in other modes. Furthermore, a back gate of the first NMOS transistor (M1) in each memory cell is connected to an output of the third inverter, and the second NMOS transistor is The back gate of M2) and the back gate of the third NMOS transistor (M3) are both connected to the output end of the fourth inverter, so as to effectively improve the static noise margin of the static random access memory (SNM). In addition, the design of the standby start circuit (3) can effectively cause the static random access memory to quickly enter the standby mode, thereby greatly improving the standby performance of the static random access memory.

根據上述之主要目的,本發明提出一種具高效能之靜態隨機存取記憶體,其主要包括一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包括有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶晶胞設置一個控制電路(2);以及一待機啟動電路(3),該待機啟動電路(3)係促使靜態隨機存取記憶體快速進入待機模式,以有效提高單埠靜態隨機存取記憶體之待機效能。According to the above main object, the present invention provides a high performance static random access memory, which mainly comprises a memory array, which is composed of a plurality of memory cells and a plurality of memory cells. Each column of memory cells and each row of memory cells includes a plurality of memory cells (1); a plurality of control circuits (2), each column of memory cells is provided with a control circuit (2); The standby starting circuit (3), the standby starting circuit (3) prompts the static random access memory to enter the standby mode quickly, so as to effectively improve the standby performance of the static random access memory.

為了便於說明起見,第5圖所示之具高效能之靜態隨機存取記憶體僅以一個記憶體晶胞(1)、一條字元線(WL)、一條位元線(BL)、一控制電路(2)以及一待機啟動電路(3)做為實施例來說明。該記憶體晶胞(1)係包括一第一反相器(由一第一PMOS電晶體P1與一第一NMOS電晶體M1所組成)、一第二反相器(由一第二PMOS電晶體P2與一第二NMOS電晶體M2所組成)、一第三反相器(由一第一PMOS控制電晶體PC1與一第一NMOS控制電晶體MC1所組成)、一第四反相器(由一第二PMOS控制電晶體PC2與一第二NMOS控制電晶體MC2所組成)、一第三NMOS電晶體(M3),其中,該第一反相器及該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出(即節點A)係連接該第二反相器之輸入,而該第二反相器之輸出(即節點B)則連接該第一反相器之輸入,並且該第一反相器之輸出(節點A)係用於儲存SRAM晶胞之資料,而該第二反相器之輸出(節點B)則用於儲存SRAM晶胞之反相資料。For convenience of explanation, the high-performance static random access memory shown in FIG. 5 has only one memory cell (1), one word line (WL), one bit line (BL), and one. The control circuit (2) and a standby start circuit (3) are described as an embodiment. The memory cell (1) includes a first inverter (composed of a first PMOS transistor P1 and a first NMOS transistor M1) and a second inverter (by a second PMOS) The crystal P2 is composed of a second NMOS transistor M2, a third inverter (composed of a first PMOS control transistor PC1 and a first NMOS control transistor MC1), and a fourth inverter ( a second NMOS transistor 102 is formed by a second PMOS control transistor PC2 and a second NMOS transistor (M3), wherein the first inverter and the second inverter interact with each other. a coupling connection, that is, an output of the first inverter (ie, node A) is connected to an input of the second inverter, and an output of the second inverter (ie, node B) is connected to the first inversion Input of the first inverter, and the output of the first inverter (node A) is used to store the data of the SRAM cell, and the output of the second inverter (node B) is used to store the inverse of the SRAM cell data.

請再參考第5圖,該第三反相器之輸入係連接至該第一反相器之輸出(節點A),並於該第三反相器之輸出形成一第二控制節點(B2),而該第四反相器之輸入係連接至該第二反相器之輸出(節點B),並於該第四反相器之輸出形成一第一控制節點(B1);該第三NMOS電晶體(M3)係連接在該節點(A)與位元線(BL)之間,且該背閘極(back gate)連接至該第一控制節點(B1),而其閘極則連接至字元線(WL)。在此值得注意的是,該第三反相器之輸出(即第二控制節點B2)連接至該第一NMOS電晶體(M1)之背閘極,而該第四反相器之輸出(即第一控制節點B1)除了連接至該第三NMOS電晶體(M3)之該背閘極外,亦連接到第二NMOS電晶體(M2)之背閘極。Referring again to FIG. 5, the input of the third inverter is connected to the output of the first inverter (node A), and a second control node (B2) is formed at the output of the third inverter. And the input of the fourth inverter is connected to the output of the second inverter (node B), and forms a first control node (B1) at the output of the fourth inverter; the third NMOS A transistor (M3) is connected between the node (A) and the bit line (BL), and the back gate is connected to the first control node (B1), and the gate is connected to Word line (WL). It is worth noting here that the output of the third inverter (ie, the second control node B2) is connected to the back gate of the first NMOS transistor (M1), and the output of the fourth inverter (ie, The first control node B1) is connected to the back gate of the second NMOS transistor (M2) in addition to the back gate connected to the third NMOS transistor (M3).

請再參考第5圖,該控制電路(2)係由一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一第十二NMOS電晶體(M29)、一第三PMOS電晶體(P21)、一第四PMOS電晶體(P22)、一第五反相器(I21)、一第一延遲電路(D1)以及一寫入控制信號(CTL)所組成。該第四NMOS電晶體(M21)之源極係連接至該第七NMOS電晶體(M24)之汲極,而閘極與汲極連接在一起並連接至一第一低電壓節點(VL1);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至接地電壓、一反相待機模式控制信號(/S)與一第二低電壓節點(VL2);該第六NMOS電晶體(M23)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、一待機模式控制信號(S)與該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極連接至接地電壓,而閘極與汲極連接在一起並連接至該第四NMOS電晶體(M21)之源極;該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該反相待機模式控制信號(/S)與該第九NMOS電晶體(M26)之汲極;該第九NMOS電晶體(M26)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第八NMOS電晶體(M25)之汲極;該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至接地電壓、該第十一NMOS電晶體(M28)之汲極與該第九NMOS電晶體(M26)之閘極;該第十一NMOS電晶體(M28)之源極、閘極與汲極係分別連接至該第十二NMOS電晶體(M29)之汲極、該寫入控制信號(CTL)與該第十NMOS電晶體(M27)之閘極、該第三PMOS電晶體(P21)之汲極和該第四PMOS電晶體(P22)之汲極;該第十二NMOS電晶體(M29)之源極、閘極與汲極係分別連接至接地電壓、該第五反相器(I21)之輸出端與該第十一NMOS電晶體(M28)之源極;該第五反相器(I21)之輸入連接至該第一延遲電路(D1)之輸出,而該第五反相器(I21)之輸出則連接至該第十二NMOS電晶體(M29)之閘極;該第一延遲電路(D1)之輸入連接至該寫入控制信號(CTL)與該第三PMOS電晶體(P21)之閘極和該第十一NMOS電晶體(M28)之閘極;該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至一電源供應電壓(VDD )、該寫入控制信號(CTL)、與該第四PMOS電晶體(P22)之汲極和該第十一NMOS電晶體(M28)之汲極;該第四PMOS電晶體(P22)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD )、該第五反相器(I21)之輸出與該第三PMOS電晶體(P21)之汲極和該第十一NMOS電晶體(M28)之汲極。在此值得注意的是,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得。Referring again to FIG. 5, the control circuit (2) is composed of a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a seventh NMOS device. Crystal (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), and a twelfth NMOS transistor (M29), a third PMOS transistor (P21), a fourth PMOS transistor (P22), a fifth inverter (I21), a first delay circuit (D1), and a write control The signal (CTL) is composed of. The source of the fourth NMOS transistor (M21) is connected to the drain of the seventh NMOS transistor (M24), and the gate is connected to the drain and connected to a first low voltage node (VL1); a source, a gate and a drain of the fifth NMOS transistor (M22) are respectively connected to a ground voltage, an inverted standby mode control signal (/S) and a second low voltage node (VL2); a source, a gate and a drain of the NMOS transistor (M23) are respectively connected to the second low voltage node (VL2), a standby mode control signal (S) and the first low voltage node (VL1); The source of the seven NMOS transistor (M24) is connected to the ground voltage, and the gate is connected to the drain and connected to the source of the fourth NMOS transistor (M21); the eighth NMOS transistor (M25) a source, a gate and a drain are respectively connected to the first low voltage node (VL1), the reverse standby mode control signal (/S) and the drain of the ninth NMOS transistor (M26); The source of the NMOS transistor (M26) is connected to the ground voltage, and the gate is connected to the drain and connected to the drain of the eighth NMOS transistor (M25); the tenth NMOS transistor (M27) source The gate and the drain are respectively connected to a ground voltage, a drain of the eleventh NMOS transistor (M28) and a gate of the ninth NMOS transistor (M26); the eleventh NMOS transistor (M28) The source, the gate and the drain are respectively connected to the drain of the twelfth NMOS transistor (M29), the write control signal (CTL) and the gate of the tenth NMOS transistor (M27), a drain of the third PMOS transistor (P21) and a drain of the fourth PMOS transistor (P22); a source, a gate and a drain of the twelfth NMOS transistor (M29) are respectively connected to a ground voltage An output end of the fifth inverter (I21) and a source of the eleventh NMOS transistor (M28); an input of the fifth inverter (I21) is connected to the first delay circuit (D1) Output, and the output of the fifth inverter (I21) is connected to the gate of the twelfth NMOS transistor (M29); the input of the first delay circuit (D1) is connected to the write control signal (CTL) And a gate of the third PMOS transistor (P21) and a gate of the eleventh NMOS transistor (M28); the source, the gate and the drain of the third PMOS transistor (P21) are respectively connected to a power supply voltage (V DD), the write a signal (CTL), a drain of the fourth PMOS transistor (P22), and a drain of the eleventh NMOS transistor (M28); a source and a gate of the fourth PMOS transistor (P22) The drain is connected to the power supply voltage (V DD ), the output of the fifth inverter (I21), the drain of the third PMOS transistor (P21), and the eleventh NMOS transistor (M28) Bungee jumping. It is worth noting here that the inverted standby mode control signal (/S) is obtained by the standby mode control signal (S) via an inverter.

該控制電路(2)係設計成可因應不同操作模式而控制該第一低電壓節點(VL1)與該第二低電壓節點(VL2)之電壓位準,於寫入模式時,將選定晶胞中較接近位元線(BL)之驅動電晶體(即該第一NMOS電晶體M1)的源極電壓(即該第一低電壓節點VL1)在初始期間(該初始期間係為該第一延遲電路(D1)所提供之一第一延遲時間以及該第五反相器(I21)所提供之下降延遲時間的總和)設定成較接地電壓為高之一第一預定電壓(即該第九NMOS電晶體(M26)之閘源極電壓VGS(M26) ),且將選定晶胞中另一驅動電晶體(即該第二NMOS電晶體M2)的源極電壓(即該第二低電壓節點VL2)設定成接地電壓,以便防止寫入邏輯1困難之問題;於待機模式時,將所有記憶晶胞中之驅動電晶體的源極電壓設定成較接地電壓為高之一第二預定電壓(即該第四NMOS電晶體(M21)之臨界電壓VTM21 及該第七NMOS電晶體(M24)之臨界電壓VTM24 的總和,VTM21 +VTM24 ),以便降低漏電流;而於其他模式時則將記憶晶胞中之驅動電晶體的源極電壓設定成接地電壓,以便維持讀取穩定度,其詳細工作電壓位準如表1所示。The control circuit (2) is designed to control the voltage level of the first low voltage node (VL1) and the second low voltage node (VL2) according to different operation modes, and select the unit cell in the write mode. The source voltage of the driving transistor (ie, the first NMOS transistor M1) closer to the bit line (BL) is in an initial period (the initial period is the first delay) One of the first delay time provided by the circuit (D1) and the sum of the falling delay times provided by the fifth inverter (I21) is set to be higher than the ground voltage by one of the first predetermined voltages (ie, the ninth NMOS) The gate voltage V GS (M26) of the transistor (M26), and the source voltage of the other driving transistor (ie, the second NMOS transistor M2) in the selected cell (ie, the second low voltage node) VL2) is set to the ground voltage to prevent the difficulty of writing logic 1; in the standby mode, the source voltage of the driving transistor in all memory cells is set to be higher than the ground voltage by a second predetermined voltage ( That is, the threshold voltage V TM21 of the fourth NMOS transistor (M21) and the threshold voltage V TM2 of the seventh NMOS transistor (M24) The sum of 4 , V TM21 +V TM24 ), in order to reduce the leakage current; in other modes, the source voltage of the driving transistor in the memory cell is set to the ground voltage in order to maintain read stability, and its detailed operation The voltage level is shown in Table 1.

表1中之該寫入控制信號(CTL)可簡單的為一字元線(WL),亦可為一寫入致能(Write Enable,簡稱WE)信號與對應之字元線(WL)信號的及閘(AND gate)運算結果,此時僅於該寫入致能(WE)信號與該對應之字元線(WL)信號均為邏輯高位準時,該寫入控制信號(CTL)方為邏輯高位準。The write control signal (CTL) in Table 1 can be simply a word line (WL), or a Write Enable (WE) signal and a corresponding word line (WL) signal. And the AND gate operation result, when the write enable (WE) signal and the corresponding word line (WL) signal are both at a logic high level, the write control signal (CTL) is The logic is high.

請再參考第5圖,該待機啟動電路(3)係由一第五PMOS電晶體(P31)、一第六PMOS電晶體(P32)、一第六反相器(I33)以及一第二延遲電路(D2)所組成。該第五PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD )、該反相待機模式控制信號(/S)與該第六PMOS電晶體(P32)之源極;該第六PMOS電晶體(P32)之源極、閘極與汲極係分別連接至該第五PMOS電晶體(P31)之汲極、該第六反相器(I33)之輸出與該第一低電壓節點(VL1);該第六反相器(I33)之輸入連接至該第二延遲電路(D2)之輸出,而該第六反相器(I33)之輸出則連接至該第六PMOS電晶體(P32)之閘極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第六反相器(I33)之輸入。Referring again to FIG. 5, the standby starting circuit (3) is composed of a fifth PMOS transistor (P31), a sixth PMOS transistor (P32), a sixth inverter (I33), and a second delay. The circuit (D2) is composed of. a source, a gate and a drain of the fifth PMOS transistor (P31) are respectively connected to the power supply voltage (V DD ), the reverse standby mode control signal (/S) and the sixth PMOS transistor ( a source of P32); a source, a gate and a drain of the sixth PMOS transistor (P32) are respectively connected to a drain of the fifth PMOS transistor (P31), and the sixth inverter (I33) The output is coupled to the first low voltage node (VL1); the input of the sixth inverter (I33) is coupled to the output of the second delay circuit (D2), and the output of the sixth inverter (I33) is Connected to the gate of the sixth PMOS transistor (P32); the input of the second delay circuit (D2) is connected to the inverted standby mode control signal (/S), and the output of the second delay circuit (D2) Then connected to the input of the sixth inverter (I33).

茲依靜態隨機存取記憶體之工作模式說明第5圖之本發明較佳實施例的工作原理如下(該第三反相器與該第四反相器之主要目的在於增加記憶體晶胞的靜態雜訊邊際,為了簡潔起見,於此將省略該第三反相器與該第四反相器之敘述):The working principle of the preferred embodiment of the present invention is as follows according to the working mode of the SRAM (the third inverter and the fourth inverter are mainly for increasing the memory cell). Static noise margin, for the sake of brevity, the description of the third inverter and the fourth inverter will be omitted here):

(I)寫入模式(write mode)(I) write mode

於寫入操作開始前,該寫入控制信號(CTL)為邏輯低位準,使得該第三PMOS電晶體(P21)導通(ON),並使得該第十一NMOS電晶體(M28)截止(OFF),於是節點C為邏輯高位準,該邏輯高位準之節點C會導通該第十NMOS電晶體(M27),並使得該低電壓節點(VL1)呈接地電壓。Before the start of the write operation, the write control signal (CTL) is at a logic low level, such that the third PMOS transistor (P21) is turned "ON", and the eleventh NMOS transistor (M28) is turned off (OFF) Then, the node C is at a logic high level, and the node C of the logic high level turns on the tenth NMOS transistor (M27), and causes the low voltage node (VL1) to be grounded.

而於寫入操作之初始期間內(該初始期間係為該第一延遲電路(D1)所提供之該第一延遲時間以及該第五反相器(I21)所提供之下降延遲時間的總和),該寫入控制信號(CTL)為邏輯高位準,而寫入反相延遲控制信號(/CTL)仍呈邏輯高位準,使得該第三PMOS電晶體(P21)截止,該第十一NMOS電晶體(M28)導通,由於在該初始期間內寫入反相延遲控制信號(/CTL)仍呈邏輯高位準,於是使得該第十二NMOS電晶體(M29)導通,該第四PMOS電晶體(P22)截止,並使得節點C為邏輯低位準,該邏輯低位準之節點C會使得該第十NMOS電晶體(M27)截止,並使得該低電壓節點(VL1)等於該第九NMOS電晶體(M26)之閘源極電壓VGS(M26) ,藉此得以有效防止寫入邏輯1困難之問題。And during the initial period of the write operation (the initial period is the sum of the first delay time provided by the first delay circuit (D1) and the fall delay time provided by the fifth inverter (I21)) The write control signal (CTL) is at a logic high level, and the write inverted delay control signal (/CTL) is still at a logic high level, such that the third PMOS transistor (P21) is turned off, and the eleventh NMOS is turned off. The crystal (M28) is turned on, since the write reverse phase delay control signal (/CTL) is still at a logic high level during the initial period, so that the twelfth NMOS transistor (M29) is turned on, and the fourth PMOS transistor ( P22) is turned off, and the node C is at a logic low level, and the logic low level node C turns off the tenth NMOS transistor (M27), and makes the low voltage node (VL1) equal to the ninth NMOS transistor ( M26) gate source voltage V GS (M26) , thereby effectively preventing the problem of writing logic 1 difficult.

最後於寫入操作初始期間之後,由於此時該寫入控制信號(CTL)為邏輯高位準,且該寫入反相延遲控制信號(/CTL)為邏輯低位準,因此,該第三PMOS電晶體(P21)截止,該第十一NMOS電晶體(M28)導通,該第十二NMOS電晶體(M29)截止,該第四PMOS電晶體(P22)導通,於是節點C為邏輯高位準,該邏輯高位準之節點C會導通該第十NMOS電晶體(M27),並使得該低電壓節點(VL1)呈接地電壓。Finally, after the initial period of the write operation, since the write control signal (CTL) is at a logic high level and the write inverted delay control signal (/CTL) is at a logic low level, the third PMOS is The crystal (P21) is turned off, the eleventh NMOS transistor (M28) is turned on, the twelfth NMOS transistor (M29) is turned off, and the fourth PMOS transistor (P22) is turned on, so that the node C is at a logic high level, The logic high level node C turns on the tenth NMOS transistor (M27) and causes the low voltage node (VL1) to be grounded.

接下來依靜態隨機存取記憶體靜態隨機存取記憶晶胞之4種寫入狀態來說明第5圖之本發明較佳實施例如何完成寫入動作。Next, how the write operation of the preferred embodiment of the present invention in FIG. 5 is completed in accordance with the four write states of the SRAM SRAM.

(一)節點A原本儲存邏輯0,而現在欲寫入邏輯0:(1) Node A originally stores a logic 0, but now wants to write a logic 0:

在寫入動作發生前(該字元線WL為接地電壓),該第一NMOS電晶體(M1)為導通(ON)。因為該第一NMOS電晶體(M1)為ON,所以當寫入動作開始時,該字元線(WL)由Low(接地電壓)轉High(電源供應電壓VDD )。當該字元線(WL)的電壓大於該第三NMOS電晶體(M3)(即存取電晶體)的臨界電壓時,該第三NMOS電晶體(M3)由截止(OFF)轉變為導通(ON),此時因為位元線(BL)是接地電壓,所以會將該節點A放電,而完成邏輯0的寫入動作,直到寫入週期結束。Before the write operation occurs (the word line WL is a ground voltage), the first NMOS transistor (M1) is turned "ON". Since the first NMOS transistor (M1) is ON, the word line (WL) is turned from Low (ground voltage) to High (power supply voltage V DD ) when the write operation starts. When the voltage of the word line (WL) is greater than the threshold voltage of the third NMOS transistor (M3) (ie, the access transistor), the third NMOS transistor (M3) is turned from off (OFF) to on ( ON), at this time, since the bit line (BL) is the ground voltage, the node A is discharged, and the logic 0 write operation is completed until the end of the write cycle.

(二)節點A原本儲存邏輯0,而現在欲寫入邏輯1:(2) Node A originally stores logic 0, but now wants to write logic 1:

在寫入動作發生前(該字元線WL為接地電壓),該第一NMOS電晶體(M1)為導通(ON)。因為該第一NMOS電晶體(M1)為ON,所以當寫入動作開始時,該字元線(WL)由Low(接地電壓)轉High(該電源供應電壓VDD ),該節點A的電壓會跟隨該字元線(WL)的電壓而上升。Before the write operation occurs (the word line WL is a ground voltage), the first NMOS transistor (M1) is turned "ON". Since the first NMOS transistor (M1) is ON, when the write operation starts, the word line (WL) is turned from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the node A It will rise following the voltage of the word line (WL).

當該字元線(WL)的電壓大於該第三NMOS電晶體(M3)的臨界電壓時,該第三NMOS電晶體(M3)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)是High(該電源供應電壓VDD ),並且因為該第一NMOS電晶體(M1)仍為ON且該節點B仍處於電壓位準為接近於該電源供應電壓(VDD )之電壓位準的初始狀態,所以該第一PMOS電晶體P1仍為截止(OFF),而該節點A則會朝一分壓電壓位準快速充電,該分壓電壓位準等於(RM1 +RM26 )/(RM3 +RM1 +RM26 )乘以該電源供應電壓(VDD ),其中該RM3 表示該第三NMOS電晶體(M3)之導通等效電阻,該RM1 表示該第一NMOS電晶體(M1)之導通等效電阻,而該RM26 表示該第九NMOS電晶體(M26)之導通等效電阻,此時因為第三NMOS電晶體(M3)仍工作於飽和區(saturation region)且該第一NMOS電晶體(M1)仍工作於線性區(triode region),雖然該第三NMOS電晶體(M3)之導通等效電阻(RM3 )會遠大於該第一NMOS電晶體(M1)之導通等效電阻(RM1 ),但由於該第九NMOS電晶體(M26)係呈二極體連接,因此可於該第一低電壓節點(VL1)處提供一等於該第九NMOS電晶體(M26)之閘-源極電壓VGS(M26) 之電壓位準,結果節點A所呈現的該分壓電壓位準,其電壓值會比第4圖之習知5T靜態隨機存取記憶體晶胞之該節點A之電壓位準還要高許多。該還要高許多之分壓電壓位準足以使該第二NMOS電晶體(M2)導通,於是使得節點B放電至一較低電壓位準,該節點B之較低電壓位準會使得該第一NMOS電晶體(M1)之導通等效電阻(RM1 )呈現較高的電阻值,該第一NMOS電晶體(M1)之該較高的電阻值會於該節點A獲得較高電壓位準,該節點A之較高電壓位準又會經由一第二反相器(由第二PMOS電晶體P2與第二NMOS電晶體M2所組成),而使得該節點B呈現更低電壓位準,該節點B之更低電壓位準又會經由一第一反相器(由第一PMOS電晶體P1與第一NMOS電晶體M1所組成),而使得該節點A獲得更高電壓位準,依此循環,即可將該節點A充電至該電源供應電壓(VDD ),而完成邏輯1的寫入動作。When the voltage of the word line (WL) is greater than the threshold voltage of the third NMOS transistor (M3), the third NMOS transistor (M3) is turned from OFF to ON, because The bit line (BL) is High (the power supply voltage V DD ), and because the first NMOS transistor (M1) is still ON and the node B is still at a voltage level close to the power supply voltage (V DD ) The initial state of the voltage level, so the first PMOS transistor P1 is still off (OFF), and the node A is quickly charged toward a divided voltage level, the divided voltage level is equal to (R M1 + R M26 ) / ( R M3 + R M1 + R M26 ) multiplied by the power supply voltage (V DD ), wherein R M3 represents the on-resistance equivalent resistance of the third NMOS transistor (M3), and the R M1 represents the The first NMOS transistor (M1) is turned on by the equivalent resistance, and the R M26 is the on-resistance equivalent of the ninth NMOS transistor (M26), because the third NMOS transistor (M3) is still operating in the saturation region. (saturation region) and the first NMOS transistor (M1) still operates in a triode region, although the on-resistance equivalent (R M3 ) of the third NMOS transistor ( M3 ) is much larger than the first NMOS Electricity The on-resistance equivalent of the crystal (M1) (R M1 ), but since the ninth NMOS transistor (M26) is diode-connected, an equal to the first is provided at the first low-voltage node (VL1) The voltage level of the gate-source voltage V GS (M26) of the nine NMOS transistor (M26) results in the voltage division value presented by node A, and its voltage value will be statically random compared to the conventional 5T of FIG. The voltage level of the node A accessing the memory cell is much higher. The much higher voltage division voltage level is sufficient to turn on the second NMOS transistor (M2), thus causing the node B to discharge to a lower voltage level, and the lower voltage level of the node B causes the first The on-resistance equivalent (R M1 ) of an NMOS transistor (M1) exhibits a higher resistance value, and the higher resistance value of the first NMOS transistor (M1) obtains a higher voltage level at the node A. The higher voltage level of the node A is again caused by a second inverter (composed of the second PMOS transistor P2 and the second NMOS transistor M2), so that the node B exhibits a lower voltage level. The lower voltage level of the node B is again passed through a first inverter (composed of the first PMOS transistor P1 and the first NMOS transistor M1), so that the node A obtains a higher voltage level. In this cycle, the node A can be charged to the power supply voltage (V DD ), and the logic 1 write operation is completed.

在此值得注意的是,該第一低電壓節點VL1僅於寫入邏輯1之初始期間,方具有等於該第九NMOS電晶體(M26)之閘源極電壓VGS(M26) 的電壓位準。It should be noted here that the first low voltage node VL1 has a voltage level equal to the gate source voltage V GS (M26) of the ninth NMOS transistor (M26) only during the initial period of writing logic 1. .

(三)節點A原本儲存邏輯1,而現在欲寫入邏輯1:(3) Node A originally stores logic 1, but now wants to write logic 1:

在寫入動作發生前(該字元線WL為接地電壓),該第一PMOS電晶體(P1)為導通(ON)。當該字元線(WL)由Low(接地電壓)轉High(該電源供應電壓VDD ),且該字元線(WL)的電壓大於該第三NMOS電晶體(M3)的臨界電壓時,該第三NMOS電晶體(M3)由截止(OFF)轉變為導通(ON);此時因為該位元線(BL)是High(該電源供應電壓VDD ),並且因為該第一PMOS電晶體(P1)仍為ON,所以該節點A的電壓會維持於該電源供應電壓(VDD )之電壓位準,直到寫入週期結束。在此值得注意的是,該第一低電壓節點(VL1)於寫入邏輯1後,係具有等於該第四NMOS電晶體(M21)之臨界電壓之電壓位準。Before the write operation occurs (the word line WL is the ground voltage), the first PMOS transistor (P1) is turned "ON". When the word line (WL) is turned from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line (WL) is greater than the threshold voltage of the third NMOS transistor (M3), The third NMOS transistor (M3) is turned from OFF to ON; at this time, since the bit line (BL) is High (the power supply voltage V DD ), and because the first PMOS transistor (P1) is still ON, so the voltage of the node A will be maintained at the voltage level of the power supply voltage (V DD ) until the end of the write cycle. It should be noted here that the first low voltage node (VL1) has a voltage level equal to the threshold voltage of the fourth NMOS transistor (M21) after writing logic 1.

(四)節點A原本儲存邏輯1,而現在欲寫入邏輯0:(4) Node A originally stores logic 1, but now wants to write logic 0:

在寫入動作發生前(該字元線WL為接地電壓),該第一PMOS電晶體(P1)為導通(ON)。當該字元線(WL)由Low(接地電壓)轉High(該電源供應電壓VDD ),且該字元線(WL)的電壓大於該第三NMOS電晶體(M3)的臨界電壓時,該第三NMOS電晶體(M3)由截止(OFF)轉變為導通(ON),此時因為該位元線(BL)是Low(接地電壓),所以會將該節點A以及該第一低電壓節點(VL1)放電而完成邏輯0的寫入動作,直到寫入週期結束。在此值得注意的是,該第一低電壓節點(VL1)於寫入邏輯0後,係具有接地電壓之位準。Before the write operation occurs (the word line WL is the ground voltage), the first PMOS transistor (P1) is turned "ON". When the word line (WL) is turned from Low (ground voltage) to High (the power supply voltage V DD ), and the voltage of the word line (WL) is greater than the threshold voltage of the third NMOS transistor (M3), The third NMOS transistor (M3) is turned from OFF to ON. At this time, since the bit line (BL) is Low (ground voltage), the node A and the first low voltage are The node (VL1) is discharged to complete the write operation of logic 0 until the end of the write cycle. It is worth noting here that the first low voltage node (VL1) has a level of ground voltage after writing logic zero.

第5圖所示之本發明較佳實施例,於寫入操作時之HSPICE暫態分析模擬結果,如第6圖所示,其係以level 49模型且使用TSMC 0.18微米CMOS製程參數加以模擬,由該模擬結果可証實,本發明所提出之具高效能之靜態隨機存取記憶體,能藉由寫入邏輯1時提高該第一低電壓節點(VL1)之電壓位準,以有效避免習知具單一位元線之單埠靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題。In the preferred embodiment of the present invention shown in FIG. 5, the HSPICE transient analysis simulation result during the write operation, as shown in FIG. 6, is simulated by the level 49 model and using TSMC 0.18 micron CMOS process parameters. It can be confirmed from the simulation results that the high-performance static random access memory proposed by the present invention can improve the voltage level of the first low voltage node (VL1) by writing logic 1, thereby effectively avoiding the practice. It is quite difficult to know that it is difficult to write logic 1 in a static random access memory cell with a single bit line.

(II)待機模式(standby mode)(II) Standby mode

此時該待機模式控制信號(S)為邏輯高位準,而該反相待機模式控制信號(/S)為邏輯低位準,該邏輯低位準之該反相待機模式控制信號(/S)可使得該控制電路(2)中之該第五NMOS電晶體(M22)和該第八NMOS電晶體(M25)截止(OFF),而該邏輯高位準之該待機模式控制信號(S)則使得該第六NMOS電晶體(M23)導通(ON),此時該第六NMOS電晶體(M23)係作為等化器(equalizer)使用,因此可藉由呈導通狀態之該第六NMOS電晶體(M23),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,且該等電壓位準均會等於該第四NMOS電晶體(M21)之臨界電壓(VTM21 )及該第七NMOS電晶體(M24)之臨界電壓(VTM24 )的總和,即VTM21 +VTM24 之電壓位準。At this time, the standby mode control signal (S) is a logic high level, and the inverted standby mode control signal (/S) is a logic low level, and the logic low level of the inverted standby mode control signal (/S) can make The fifth NMOS transistor (M22) and the eighth NMOS transistor (M25) in the control circuit (2) are turned off (OFF), and the logic high level of the standby mode control signal (S) makes the first The six NMOS transistor (M23) is turned on (ON), and the sixth NMOS transistor (M23) is used as an equalizer, so that the sixth NMOS transistor (M23) can be turned on. So that the voltage level of the first low voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are equal to the fourth NMOS transistor (M21) The sum of the threshold voltage (V TM21 ) and the threshold voltage (V TM24 ) of the seventh NMOS transistor (M24), that is, the voltage level of V TM21 +V TM24 .

接下來說明本發明於待機模式(standby mode)時如何減少漏電流,請參考第5圖,第5圖描述有本發明實施例處於待機模式時所產生之各漏電流(subthreshold leakage current)I1 、I2 、I3 ,其中假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low(在此值得注意的是,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該第四NMOS電晶體(M21)及該第七NMOS電晶體(M24)之臨界電壓總和(VTM21 +VTM24 )的電壓位準,因此節點A為邏輯Low之電壓位準亦維持在該VTM21 +VTM24 的電壓位準),而該第二反相器之輸出(即節點B)為邏輯High(電源供應電壓VDD )。請參考第1b圖之先前技藝與第5圖之本發明實施例,來說明本發明所提出之靜態隨機存取記憶體與第1b圖之6T SRAM於漏電流方面之比較,首先關於流經該第三NMOS電晶體(M3)之漏電流I1 ,由於本發明於待機模式時節點A之電壓位準係維持在該VTM21 +VTM24 的電壓位準,且假設字元線(WL)於待機模式時係設定成接地電壓,因此本發明之第三NMOS電晶體(M3)的閘源極電壓VGS 為負值,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M3)的閘源極電壓VGS 等於0,根據閘極引發汲極洩漏(Gate Induced Drain Leakage,簡稱GIDL)效應或2005年3月8日第US6865119號專利案第3(A)及3(B)圖之結果可知,對於NMOS電晶體而言,閘源極電壓為-0.1伏特時之次臨界電流約為閘源極電壓為0伏特時之次臨界電流的1%,因此導因於GIDL效應所引發之流經本發明之該第三NMOS電晶體(M3)之漏電流I1 遠小於第1b圖先前技藝之NMOS電晶體(M3)者;再者,本發明該第三NMOS電晶體(M3)之汲源極電壓VDS 為該電源供應電壓VDD 扣減該VTM21 +VTM24 的電壓位準,反觀於待機模式時傳統第1b圖6T靜態隨機存取記憶體之NMOS電晶體M3之汲源極電壓VDS 係等於該電源供應電壓VDD ,根據汲極引發能障下跌(Drain-Induced Barrier Lowering,簡稱DIBL)效應,由於DIBL效應所引發之流經本發明之該第三NMOS電晶體(M3)之漏電流I1 亦小於第1b圖先前技藝之NMOS電晶體(M3)者;結果,流經本發明之該第三NMOS電晶體(M3)之漏電流I1 遠小於第1b圖先前技藝之NMOS電晶體(M3)者。Next, how to reduce leakage current in the standby mode of the present invention will be described. Referring to FIG. 5, FIG. 5 depicts the leakage current I 1 generated when the embodiment of the present invention is in the standby mode. I 2 , I 3 , wherein it is assumed that the output of the first inverter (ie, node A) in the SRAM cell is a logic Low (it is worth noting here that the second low voltage node (VL2) due to the standby mode The voltage level is maintained at the voltage level of the threshold voltage sum (V TM21 +V TM24 ) of the fourth NMOS transistor (M21) and the seventh NMOS transistor (M24), so node A is a logic Low. voltage level is also maintained in the V TM21 + V voltage level of the TM24), and the second output (i.e., node B) of inverter logic High (the power supply voltage V DD). Referring to the prior art of FIG. 1b and the embodiment of the present invention of FIG. 5, the comparison between the static random access memory of the present invention and the 6T SRAM of FIG. 1b in terms of leakage current is first described. The leakage current I 1 of the third NMOS transistor (M3) is maintained at the voltage level of the V TM21 +V TM 24 due to the voltage level of the node A in the standby mode, and the word line (WL) is assumed to be In the standby mode, the ground voltage is set. Therefore, the gate-source voltage V GS of the third NMOS transistor (M3) of the present invention is a negative value, and in the standby mode, the NMOS transistor (M3) of the prior art of FIG. The gate source voltage V GS is equal to 0, according to the Gate Induced Drain Leakage (GIDL) effect or the 3rd (A) and 3 (B) drawings of US Pat. No. 6,865,119, March 8, 2005. As a result, it can be seen that for the NMOS transistor, the sub-critical current when the gate-source voltage is -0.1 volt is about 1% of the sub-critical current when the gate-source voltage is 0 volt, which is caused by the GIDL effect. The leakage current I 1 flowing through the third NMOS transistor (M3) of the present invention is much smaller than that of the prior art of FIG. The transistor (M3); further, the NMOS voltage V DS of the third NMOS transistor (M3) of the present invention deducts the voltage level of the V TM21 +V TM24 from the power supply voltage V DD , In the standby mode, the source voltage V DS of the NMOS transistor M3 of the conventional 1b to 6T static random access memory is equal to the power supply voltage V DD , which is based on Drain-Induced Barrier Lowering. The DIBL) effect, the leakage current I 1 of the third NMOS transistor (M3) flowing through the present invention due to the DIBL effect is also smaller than that of the prior art NMOS transistor (M3) of FIG. 1b; as a result, flowing through the present invention The leakage current I 1 of the third NMOS transistor (M3) is much smaller than that of the prior art NMOS transistor (M3) of FIG. 1b.

接著關於流經該第一PMOS電晶體(P1)之漏電流I2 ,由於待機模式時該第一PMOS電晶體(P1)之源極係為該電源供應電壓(VDD ),而該第一PMOS電晶體(P1)之汲極係維持在該該VTM21 +VTM24 的電壓位準,因此本發明之該第一PMOS電晶體(P1)之源汲極電壓VSD 為該電源供應電壓(VDD )扣減該VTM21 +VTM24 的電壓位準,反觀於待機模式時第1b圖先前技藝之PMOS電晶體(P1)之源汲極電壓VSD 係等於該電源供應電壓(VDD ),根據DIBL效應,因此流經該第一PMOS電晶體(P1)之漏電流I2 會小於第1b圖先前技藝之PMOS電晶體(P1)者;最後,關於流經該第二NMOS電晶體(M2)之漏電流I3 ,由於待機模式時該第二低電壓節點(VL2)之電壓位準係維持在該VTM21 +VTM24 的電壓位準,節點A之電壓位準亦維持在該VTM21 +VTM24 的電壓位準,而節點B之電壓位準係等於該電源供應電壓(VDD )且該第二NMOS電晶體(M2)之基底為接地電壓,因此本發明之該第二NMOS電晶體(M2)的基源極電壓VBS 為負值,且該第二NMOS電晶體(M2)之汲源極電壓VDS 為該電源供應電壓(VDD )扣減該VTM21 +VTM24 的電壓位準,反觀於待機模式時第1b圖先前技藝之NMOS電晶體(M2)的基源極電壓VBS 等於0,且NMOS電晶體(M2)之汲源極電壓VDS 等於該電源供應電壓(VDD ),根據本體效應(body effect)及DIBL效應可知,流經本發明之該第二NMOS電晶體(M2)之漏電流I3 遠小於第5圖先前技藝之NMOS電晶體(M2)者。Next, regarding the leakage current I 2 flowing through the first PMOS transistor (P1), the source of the first PMOS transistor (P1) is the power supply voltage (V DD ) due to the standby mode, and the first PMOS transistor (P1) of the drain line is maintained at the V TM21 + V voltage level TM24, and thus the present invention the first PMOS transistor (P1) of the drain source voltage for the power supply voltage V SD ( V DD ) deducts the voltage level of the V TM21 +V TM24 , and in the standby mode, the source drain voltage V SD of the prior art PMOS transistor (P1) of FIG. 1b is equal to the power supply voltage (V DD ). According to the DIBL effect, therefore, the leakage current I 2 flowing through the first PMOS transistor (P1) will be smaller than that of the prior art PMOS transistor (P1) of FIG. 1b; finally, regarding the flow through the second NMOS transistor ( M2) leakage current I 3 , since the voltage level of the second low voltage node (VL2) is maintained at the voltage level of the V TM21 +V TM24 in the standby mode, the voltage level of the node A is also maintained at the V The voltage level of TM21 + V TM24 , and the voltage level of node B is equal to the power supply voltage (V DD ) and the base of the second NMOS transistor (M2) is the ground voltage. Therefore, the base-source voltage V BS of the second NMOS transistor (M2) of the present invention is a negative value, and the 汲 source voltage V DS of the second NMOS transistor (M2) is the power supply voltage (V DD ). deduct the voltage level V TM21 + V TM24, and when in the standby mode on the other hand, prior art of FIG. 1b NMOS transistor (M2) is the base-source voltage V BS equal to 0, and the NMOS transistor (M2) of the VDS The pole voltage V DS is equal to the power supply voltage (V DD ). According to the body effect and the DIBL effect, the leakage current I 3 flowing through the second NMOS transistor (M2) of the present invention is much smaller than that of the fifth figure. The NMOS transistor (M2) of the art.

第5圖所示之本發明較佳實施例與傳統第1b圖6T靜態隨機存取記憶體於待機模式下之漏電流(即I1 、I2 及I3 之總和)比較如表2所示,其係以level 49模型且使用TSMC 0.18微米CMOS製程參數加以模擬,由表2可看出於製程TT、SS以及FF,本論文所提出之單埠靜態隨機存取記憶體與傳統6T靜態隨機存取記憶體分別減少90.7%、31.5%及87.3%的漏電流。The leakage current (ie, the sum of I 1 , I 2 , and I 3 ) in the standby mode of the preferred embodiment of the present invention shown in FIG. 5 and the conventional 1b FIG. 6T static random access memory is as shown in Table 2. It is simulated by the level 49 model and using TSMC 0.18 micron CMOS process parameters. It can be seen from Table 2 that the process TT, SS and FF, the static random access memory proposed in this paper and the traditional 6T static random The access memory reduces leakage current by 90.7%, 31.5%, and 87.3%, respectively.

接著,說明第5圖中之待機啟動電路(3)如何促使靜態隨機存取記憶體快速進入待機模式,以有效提高靜態隨機存取記憶體之待機效能:(1)於進入待機模式之前,該反相待機模式控制信號(/S)為邏輯High,該邏輯High之反相待機模式控制信號(/S)使得該第五PMOS電晶體(P31)截止(OFF),並使得該第六PMOS電晶體(P32)導通(ON);(2)而於進入待機模式後,該反相待機模式控制信號(/S)為邏輯Low,該邏輯Low之反相待機模式控制信號(/S)使得該第五PMOS電晶體(P31)導通(ON),惟於待機模式之初始期間內(該初始期間係為該第二延遲電路(D2)所提供之一第二延遲時間以及該第六反相器(I33)所提供之上升延遲時間的總和),該第六PMOS電晶體(P32)仍導通(ON),於是該第一低電壓節點(VL1)可快速到達該第四NMOS電晶體(M21)之臨界電壓(VTM21 )及該第七NMOS電晶體(M24)之臨界電壓(VTM24 )的總和,即VTM21 +VTM24 之電壓位準,亦即靜態隨機存取記憶體可快速進入待機模式。Next, how the standby start circuit (3) in FIG. 5 causes the static random access memory to quickly enter the standby mode to effectively improve the standby performance of the static random access memory: (1) before entering the standby mode, The inverted standby mode control signal (/S) is logic High, and the inverted high standby mode control signal (/S) causes the fifth PMOS transistor (P31) to be turned off (OFF), and the sixth PMOS is turned off. The crystal (P32) is turned on (ON); (2) after entering the standby mode, the inverted standby mode control signal (/S) is logic Low, and the inverted standby mode control signal (/S) of the logic Low makes the The fifth PMOS transistor (P31) is turned on (ON), but during the initial period of the standby mode (the initial period is one of the second delay times provided by the second delay circuit (D2) and the sixth inverter (I33) the sum of the rising delay times provided, the sixth PMOS transistor (P32) is still turned ON, so the first low voltage node (VL1) can quickly reach the fourth NMOS transistor (M21) The sum of the threshold voltage (V TM21 ) and the threshold voltage (V TM24 ) of the seventh NMOS transistor (M24), that is, V TM21 +V TM The voltage level of 24 , that is, the static random access memory, can quickly enter standby mode.

最後,說明第5圖中之該第三反相器與該第四反相器如何增加記憶體晶胞的靜態雜訊邊際,請再參考第5圖,該第三反相器之輸出(即第二控制節點B2)連接至該第一NMOS電晶體(M1)之背閘極,而該第四反相器之輸出(即第一控制節點B1)除了連接至該第三NMOS電晶體(M3)之背閘極外,亦連接到第二NMOS電晶體(M2)之背閘極。在此值得注意的是,該第三反相器與該第四反相器均係連接在一次電源供應電壓(VDDL )與接地電壓之間,而該次電源供應電壓(VDDL )的電壓位準大小係設定成小於該第一NMOS電晶體(M1)之背閘極與源極間之寄生二極體的切入電壓(cut in voltage)大小與該第二NMOS電晶體(M2)之背閘極與源極間之寄生二極體的切入電壓大小二者中之較小者,並且為了順利達成該設定,限定該第一PMOS控制電晶體(PC1)與該第二PMOS控制電晶體(PC2)之臨界電壓大小小於該次電源供應電壓(VDDL )的電壓位準大小。Finally, how the third inverter and the fourth inverter in FIG. 5 increase the static noise margin of the memory cell, please refer to FIG. 5, the output of the third inverter (ie, The second control node B2) is connected to the back gate of the first NMOS transistor (M1), and the output of the fourth inverter (ie, the first control node B1) is connected to the third NMOS transistor (M3) The back gate of the ) is also connected to the back gate of the second NMOS transistor (M2). It is worth noting here that the third inverter and the fourth inverter are both connected between the primary power supply voltage (V DDL ) and the ground voltage, and the voltage of the secondary power supply voltage (V DDL ) The level of the level is set to be smaller than the cut in voltage of the parasitic diode between the back gate and the source of the first NMOS transistor (M1) and the back of the second NMOS transistor (M2) The smaller of the cut-in voltages of the parasitic diode between the gate and the source, and in order to smoothly achieve the setting, the first PMOS control transistor (PC1) and the second PMOS control transistor are defined ( The threshold voltage of PC2) is smaller than the voltage level of the secondary power supply voltage (V DDL ).

茲說明靜態隨機存取記憶體處於保持狀態(hold state)時,如何增加靜態雜訊邊際:(1)假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low,則該第一控制節點(B1)為接地電壓之邏輯Low,而該第二控制節點(B2)為該次電源供應電壓(VDDL )的電壓位準之邏輯High,根據本體效應,該邏輯High之第二控制節點(B2)會減少該第一NMOS電晶體(M1)之臨界電壓,該較低之臨界電壓即可增加節點A為邏輯Low之靜態雜訊邊際;(2)假設SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯High,則該第一控制節點(B1)為該次電源供應電壓(VDDL )的電壓位準之邏輯High,而該第二控制節點(B2)為接地電壓之邏輯Low,根據本體效應,該邏輯High之第一控制節點(B1)會減少該第二NMOS電晶體(M2)之臨界電壓,該較低之臨界電壓即可增加節點A為邏輯High之靜態雜訊邊際。It is explained how to increase the static noise margin when the SRAM is in the hold state: (1) It is assumed that the output of the first inverter (ie, node A) in the SRAM cell is logical Low. Then, the first control node (B1) is a logic Low of the ground voltage, and the second control node (B2) is a logic High of a voltage level of the secondary power supply voltage (V DDL ), according to the ontology effect, the logic High The second control node (B2) reduces the threshold voltage of the first NMOS transistor (M1), and the lower threshold voltage increases the static noise margin of node A to logic Low; (2) assumes SRAM cell The output of the first inverter (ie, node A) is logic High, and the first control node (B1) is a logic high of the voltage level of the secondary power supply voltage (V DDL ), and the second The control node (B2) is a logic Low of the ground voltage. According to the bulk effect, the first control node (B1) of the logic High reduces the threshold voltage of the second NMOS transistor (M2), and the lower threshold voltage can be Add node A to the static noise margin of logic High.

接著藉由觀察該第三NMOS電晶體(M3)之背閘極電壓以說明靜態隨機存取記憶體處於寫入動作時,如何增加靜態雜訊邊際:(1)假設寫入前SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯High,則該第一控制節點(B1)為該次電源供應電壓(VDDL )的電壓位準之邏輯High,根據本體效應,此時該第三NMOS電晶體(M3)之臨界電壓會小於第3圖先前技藝之NMOS電晶體(M3)之臨界電壓,該較低之臨界電壓有助於增加由邏輯1寫入邏輯0之靜態雜訊邊際;(2)假設寫入前SRAM晶胞中之該第一反相器之輸出(即節點A)為邏輯Low,則該第一控制節點(B1)為接地電壓之邏輯Low,此時該第三NMOS電晶體(M3)之背閘極電壓相同於第3圖先前技藝之NMOS電晶體(M3)之背閘極電壓,此時將具有與第3圖先前技藝相同的靜態雜訊邊際。Then, by observing the back gate voltage of the third NMOS transistor (M3) to illustrate how the static random access memory is in the write operation, how to increase the static noise margin: (1) Assume that the SRAM cell is written before The output of the first inverter (ie, node A) is logic High, and the first control node (B1) is a logic high of the voltage level of the secondary power supply voltage (V DDL ), according to the ontology effect, When the threshold voltage of the third NMOS transistor (M3) is lower than the threshold voltage of the NMOS transistor (M3) of the prior art of FIG. 3, the lower threshold voltage helps to increase the static value of logic 0 written by logic 1. (2) assuming that the output of the first inverter (ie, node A) in the pre-SRAM cell is logic Low, the first control node (B1) is the logic Low of the ground voltage, The back gate voltage of the third NMOS transistor (M3) is the same as the back gate voltage of the NMOS transistor (M3) of the prior art of FIG. 3, and will have the same static noise as the prior art of FIG. Marginal.

【發明功效】【Effects of invention】

本發明所提出之具高效能之靜態隨機存取記憶體,具有如下功效:The high performance static random access memory proposed by the invention has the following effects:

(1) 快速進入待機模式:由於本發明所提出之具高效能之靜態隨機存取記憶體晶胞設置有待機啟動電路(3)以促使靜態隨機存取記憶體快速進入待機模式,並藉此以謀求提高靜態隨機存取記憶體之待機效能;(1) Quick entry standby mode: Since the high-performance SRAM cell proposed by the present invention is provided with a standby start circuit (3) to cause the SRAM to quickly enter the standby mode, and thereby In order to improve the standby performance of the static random access memory;

(2) 高靜態雜訊邊際(SNM):由於本發明所提出之具高效能之靜態隨機存取記憶體晶胞設置有一第三反相器與一第四反相器,並且將該第三反相器之輸出(即第二控制節點B2)連接至該第一NMOS電晶體(M1)之背閘極,同時將該第四反相器之輸出(即第一控制節點B1)連接至該第三NMOS電晶體(M3)之背閘極以及第二NMOS電晶體(M2)之背閘極,藉此可有效提高靜態隨機存取記憶體之靜態雜訊邊際(SNM);(2) High Static Noise Edge (SNM): Since the high-performance SRAM cell proposed by the present invention is provided with a third inverter and a fourth inverter, and the third An output of the inverter (ie, the second control node B2) is coupled to the back gate of the first NMOS transistor (M1) while the output of the fourth inverter (ie, the first control node B1) is coupled to the a back gate of the third NMOS transistor (M3) and a back gate of the second NMOS transistor (M2), thereby effectively improving the static noise margin (SNM) of the static random access memory;

(3) 避免寫入邏輯1困難之問題:本發明所提出之具高效能之靜態隨機存取記憶體於寫入操作時,可藉由寫入邏輯1之初始期間提高該第一低電壓節點(VL1)之電壓位準以有效避免習知具單一位元線之單埠靜態隨機存取記憶體晶胞存在寫入邏輯1相當困難之問題;(3) Avoiding the problem of writing logic 1: The high-performance static random access memory proposed by the present invention can improve the first low voltage node by the initial period of writing logic 1 during the write operation. The voltage level of (VL1) is effective to avoid the problem that it is difficult to write logic 1 in a static random access memory cell with a single bit line;

(4) 低待機電流:由於本發明所提出之具高效能之靜態隨機存取記憶體於待機模式時,可藉由呈導通狀態之該第六NMOS電晶體(M23),以使得該第一低電壓節點(VL1)之電壓位準相等於該第二低電壓節點(VL2)之電壓位準,並使得該等電壓位準均等於該第四NMOS電晶體(M21)及該第七NMOS電晶體(M24)之臨界電壓的總和之位準,因此本發明所提出之具高效能之靜態隨機存取記憶體亦具備低待機電流之功效。(4) Low standby current: since the high-performance static random access memory proposed by the present invention is in the standby mode, the sixth NMOS transistor (M23) in an on state can be used to make the first The voltage level of the low voltage node (VL1) is equal to the voltage level of the second low voltage node (VL2), and the voltage levels are equal to the fourth NMOS transistor (M21) and the seventh NMOS battery. The sum of the threshold voltages of the crystals (M24), so the high-performance static random access memory proposed by the present invention also has the effect of low standby current.

雖然本發明特別揭露並描述了所選之較佳實施例,但舉凡熟悉本技術之人士可明瞭任何形式或是細節上可能的變化均未脫離本發明的精神與範圍。因此,所有相關技術範疇內之改變都包括在本發明之申請專利範圍內。While the invention has been particularly shown and described, the embodiments of the invention may Therefore, all changes in the relevant technical scope are included in the scope of the patent application of the present invention.

P1...第一PMOS電晶體P1. . . First PMOS transistor

P2...第二PMOS電晶體P2. . . Second PMOS transistor

M1...第一NMOS電晶體M1. . . First NMOS transistor

M2...第二NMOS電晶體M2. . . Second NMOS transistor

M3...第三NMOS電晶體M3. . . Third NMOS transistor

WL...字元線WL. . . Word line

BL...位元線BL. . . Bit line

A...儲存節點A. . . Storage node

B...反相儲存節點B. . . Inverting storage node

VDD ...電源供應電壓V DD . . . Power supply voltage

S...待機模式控制信號S. . . Standby mode control signal

/S...反相待機模式控制信號/S. . . Inverting standby mode control signal

VL1...第一低電壓節點VL1. . . First low voltage node

VL2...第二低電壓節點VL2. . . Second low voltage node

M21...第四NMOS電晶體M21. . . Fourth NMOS transistor

M22...第五NMOS電晶體M22. . . Fifth NMOS transistor

M23...第六NMOS電晶體M23. . . Sixth NMOS transistor

M24...第七NMOS電晶體M24. . . Seventh NMOS transistor

M25...第八NMOS電晶體M25. . . Eighth NMOS transistor

M26...第九NMOS電晶體M26. . . Ninth NMOS transistor

M27...第十NMOS電晶體M27. . . Tenth NMOS transistor

M28...第十一NMOS電晶體M28. . . Eleventh NMOS transistor

M29...第十二NMOS電晶體M29. . . Twelfth NMOS transistor

P21...第三PMOS電晶體P21. . . Third PMOS transistor

P22...第四PMOS電晶體P22. . . Fourth PMOS transistor

1...SRAM晶胞1. . . SRAM cell

2...控制電路2. . . Control circuit

3...待機啟動電路3. . . Standby start circuit

I1 ...漏電流I 1 . . . Leakage current

I2 ...漏電流I 2 . . . Leakage current

I3 ...漏電流I 3 . . . Leakage current

MB1 MBk ...記憶體區塊MB 1 ... MB k . . . Memory block

BLB...互補位元線BLB. . . Complementary bit line

BL1 BLm ...位元線BL 1 ... BL m . . . Bit line

WL1 WLn ...字元線WL 1 ... WL n . . . Word line

CTL...寫入控制信號CTL. . . Write control signal

/CTL...寫入反相延遲控制信號/CTL. . . Write inverted delay control signal

VDDL ...低電源供應電壓V DDL . . . Low power supply voltage

D1...第一延遲電路D1. . . First delay circuit

D2...第二延遲電路D2. . . Second delay circuit

I21...第五反相器I21. . . Fifth inverter

I33...第六反相器I33. . . Sixth inverter

P31...第五PMOS電晶體P31. . . Fifth PMOS transistor

P32...第六PMOS電晶體P32. . . Sixth PMOS transistor

MC1...第一NMOS控制電晶體MC1. . . First NMOS control transistor

MC2...第二NMOS控制電晶體MC2. . . Second NMOS control transistor

PC1...第一PMOS控制電晶體PC1. . . First PMOS control transistor

PC2...第二PMOS控制電晶體PC2. . . Second PMOS control transistor

BLB1 BLB1 ...互補位元線BLB 1 ... BLB 1 . . . Complementary bit line

B1...第一控制節點B1. . . First control node

B2...第二控制節點B2. . . Second control node

第1a圖 係顯示習知之靜態隨機存取記憶體;Figure 1a shows a conventional static random access memory;

第1b圖 係顯示習知6T靜態隨機存取記憶體晶胞之電路示意圖;Figure 1b is a schematic circuit diagram showing a conventional 6T static random access memory cell;

第2圖 係顯示習知6T靜態隨機存取記憶體晶胞之寫入動作時序圖;Figure 2 is a timing chart showing the write operation of a conventional 6T static random access memory cell;

第3圖 係顯示習知5T靜態隨機存取記憶體晶胞之電路示意圖;Figure 3 is a circuit diagram showing a conventional 5T static random access memory cell;

第4圖 係顯示習知5T靜態隨機存取記憶體晶胞之寫入動作時序圖;Figure 4 is a timing chart showing the write operation of a conventional 5T static random access memory cell;

第5圖 係顯示本發明較佳實施例所提出之電路示意圖;Figure 5 is a circuit diagram showing the preferred embodiment of the present invention;

第6圖 係顯示5圖之本發明較佳實施例之寫入動作時序圖。Figure 6 is a timing chart showing the write operation of the preferred embodiment of the present invention in Figure 5.

P1...第一PMOS電晶體P1. . . First PMOS transistor

P2...第二PMOS電晶體P2. . . Second PMOS transistor

M1...第一NMOS電晶體M1. . . First NMOS transistor

M2...第二NMOS電晶體M2. . . Second NMOS transistor

M3...第三NMOS電晶體M3. . . Third NMOS transistor

A...儲存節點A. . . Storage node

B...反相儲存節點B. . . Inverting storage node

VDD ...電源供應電壓V DD . . . Power supply voltage

BL...位元線BL. . . Bit line

WL...字元線WL. . . Word line

S...待機模式控制信號S. . . Standby mode control signal

/S...反相待機模式控制信號/S. . . Inverting standby mode control signal

VL1...第一低電壓節點VL1. . . First low voltage node

VL2...第二低電壓節點VL2. . . Second low voltage node

M21...第四NMOS電晶體M21. . . Fourth NMOS transistor

M22...第五NMOS電晶體M22. . . Fifth NMOS transistor

M23...第六NMOS電晶體M23. . . Sixth NMOS transistor

M24...第七NMOS電晶體M24. . . Seventh NMOS transistor

M25...第八NMOS電晶體M25. . . Eighth NMOS transistor

M26...第九NMOS電晶體M26. . . Ninth NMOS transistor

M27...第十NMOS電晶體M27. . . Tenth NMOS transistor

M28...第十一NMOS電晶體M28. . . Eleventh NMOS transistor

M29...第十二NMOS電晶體M29. . . Twelfth NMOS transistor

P21...第三PMOS電晶體P21. . . Third PMOS transistor

P22...第四PMOS電晶體P22. . . Fourth PMOS transistor

1...SRAM晶胞1. . . SRAM cell

2...控制電路2. . . Control circuit

3...待機啟動電路3. . . Standby start circuit

I1 、I2 ...漏電流I 1 , I 2 . . . Leakage current

I3 ...漏電流I 3 . . . Leakage current

CTL...寫入控制信號CTL. . . Write control signal

/CTL...反相寫入延遲控制信號/CTL. . . Inverted write delay control signal

D1...第一延遲電路D1. . . First delay circuit

D2...第二延遲電路D2. . . Second delay circuit

I21...第五反相器I21. . . Fifth inverter

I33...第六反相器I33. . . Sixth inverter

P31...第五PMOS電晶體P31. . . Fifth PMOS transistor

P32...第六PMOS電晶體P32. . . Sixth PMOS transistor

MC1...第一NMOS控制電晶體MC1. . . First NMOS control transistor

MC2...第二NMOS控制電晶體MC2. . . Second NMOS control transistor

PC1...第一PMOS控制電晶體PC1. . . First PMOS control transistor

PC2...第二PMOS控制電晶體PC2. . . Second PMOS control transistor

VDDL ...低電源供應電壓V DDL . . . Low power supply voltage

B1...第一控制節點B1. . . First control node

B2...第二控制節點B2. . . Second control node

Claims (8)

一種具高效能之靜態隨機存取記憶體,包括:一記憶體陣列,該記憶體陣列係由複數列記憶體晶胞與複數行記憶體晶胞所組成,每一列記憶體晶胞與每一行記憶體晶胞均包含有複數個記憶體晶胞(1);複數個控制電路(2),每一列記憶體晶胞設置一個控制電路(2);以及一待機啟動電路(3),該待機啟動電路(3)係促使該靜態隨機存取記憶體快速進入待機模式,並藉此以有效提高靜態隨機存取記憶體之待機效能;其中,每一記憶體晶胞(1)更包含:一第一反相器,係由一第一PMOS電晶體(P1)與一第一NMOS電晶體(M1)所組成,該第一反相器係連接在一電源供應電壓(VDD )與一第一低電壓節點(VL1)之間;一第二反相器,係由一第二PMOS電晶體(P2)與一第二NMOS電晶體(M2)所組成,該第二反相器係連接在該電源供應電壓(VDD )與一第二低電壓節點(VL2)之間;一儲存節點(A),係由該第一反相器之輸出端所形成;一反相儲存節點(B),係由該第二反相器之輸出端所形成;一第三NMOS電晶體(M3),係連接在該儲存節點(A)與對應之一位元線(BL)之間,且閘極連接至對應之一字元線(WL);一第三反相器,係由一第一PMOS控制電晶體(PC1)與一第一NMOS控制電晶體(MC1)所組成,該第三反相器係連接在一次電源供應電壓(VDDL )與接地電壓之間,且該第三反相器之輸入端係連接至該儲存節點(A);一第四反相器,係由一第二PMOS控制電晶體(PC2)與一第二NMOS控制電晶體(MC2)所組成,該第四反相器係連接在該次電源供應電壓(VDDL )與接地電壓之間,且該第四反相器之輸入端係連接至該反相儲存節點(B);一第一控制節點(B1),係由該第四反相器之輸出端所形成,且連接至該第二NMOS電晶體(M2)之背閘極(back gate)及該第三NMOS電晶體(M3)之背閘極;一第二控制節點(B2),係由該第三反相器之輸出端所形成,且連接至該第一NMOS電晶體(M1)之背閘極;其中,該第一反相器和該第二反相器係呈交互耦合連接,亦即該第一反相器之輸出端(即儲存節點A)係連接至該第二反相器之輸入端,而該第二反相器之輸出端(即反相儲存節點B)則連接至該第一反相器之輸入端;而每一控制電路(2)更包含:一第四NMOS電晶體(M21)、一第五NMOS電晶體(M22)、一第六NMOS電晶體(M23)、一第七NMOS電晶體(M24)、一第八NMOS電晶體(M25)、一第九NMOS電晶體(M26)、一第十NMOS電晶體(M27)、一第十一NMOS電晶體(M28)、一第十二NMOS電晶體(M29)、一第三PMOS電晶體(P21)、一第四PMOS電晶體(P22)、一第五反相器(I21)、一第一延遲電路(D1)以及一寫入控制信號(CTL)所組成;其中,該第四NMOS電晶體(M21)之源極係連接至該第七NMOS電晶體(M24)之汲極,而閘極與汲極連接在一起並連接至該第一低電壓節點(VL1);該第五NMOS電晶體(M22)之源極、閘極與汲極係分別連接至接地電壓、一反相待機模式控制信號(/S)與該第二低電壓節點(VL2);該第六NMOS電晶體(M23)之源極、閘極與汲極係分別連接至該第二低電壓節點(VL2)、一待機模式控制信號(S)與該第一低電壓節點(VL1);該第七NMOS電晶體(M24)之源極連接至接地電壓,而閘極與汲極連接在一起並連接至該第四NMOS電晶體(M21)之源極;該第八NMOS電晶體(M25)之源極、閘極與汲極係分別連接至該第一低電壓節點(VL1)、該反相待機模式控制信號(/S)與該第九NMOS電晶體(M26)之汲極;該第九NMOS電晶體(M26)之源極係連接至接地電壓,而閘極與汲極連接在一起並連接至該第八NMOS電晶體(M25)之汲極;該第十NMOS電晶體(M27)之源極、閘極與汲極係分別連接至接地電壓、該第十一NMOS電晶體(M28)之汲極與該第九NMOS電晶體(M26)之閘極;該第十一NMOS電晶體(M28)之源極、閘極與汲極係分別連接至該第十二NMOS電晶體(M29)之汲極、該寫入控制信號(CTL)與該第十NMOS電晶體(M27)之閘極、該第三PMOS電晶體(P21)之汲極和該第四PMOS電晶體(P22)之汲極;該第十二NMOS電晶體(M29)之源極、閘極與汲極係分別連接至接地電壓、該第五反相器(I21)之輸出端與該第十一NMOS電晶體(M28)之源極;該第五反相器(I21)之輸入連接至該第一延遲電路(D1)之輸出,而該第五反相器(I21)之輸出則連接至該第十二NMOS電晶體(M29)之閘極與該第四PMOS電晶體(P22)之閘極;該第一延遲電路(D1)之輸入連接至該寫入控制信號(CTL)與該第三PMOS電晶體(P21)之閘極和該第十一NMOS電晶體(M28)之閘極;該第三PMOS電晶體(P21)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD )、該控制信號(CTL)、與該第四PMOS電晶體(P22)之汲極和該第十一NMOS電晶體(M28)之汲極;而該第四PMOS電晶體(P22)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD )、該第五反相器(I21)之輸出與該第三PMOS電晶體(P21)之汲極和該第十一NMOS電晶體(M28)之汲極;再者,該待機啟動電路(3)係設計成於進入待機模式之一初始期間內,對該第一低電壓節點(VL1)處之寄生電容快速充電至該第四NMOS電晶體(M21)之臨界電壓(VTM21 )及該第七NMOS電晶體(M24)之臨界電壓(VTM24 )的總和之電壓位準。A high performance static random access memory, comprising: a memory array consisting of a plurality of columns of memory cells and a plurality of rows of memory cells, each column of memory cells and each row The memory unit cell includes a plurality of memory cells (1); a plurality of control circuits (2), each column memory cell is provided with a control circuit (2); and a standby start circuit (3), the standby The startup circuit (3) causes the SRAM to quickly enter the standby mode, thereby effectively improving the standby performance of the SRAM; wherein each memory cell (1) further comprises: The first inverter is composed of a first PMOS transistor (P1) and a first NMOS transistor (M1) connected to a power supply voltage (V DD ) and a first a low voltage node (VL1); a second inverter consisting of a second PMOS transistor (P2) and a second NMOS transistor (M2), the second inverter is connected the power supply voltage (V DD) between the node and a second low voltage (VL2); a storage node (a), the first line by the An output of the inverter is formed; an inverting storage node (B) is formed by the output of the second inverter; and a third NMOS transistor (M3) is connected to the storage node (A) And a corresponding one of the bit lines (BL), and the gate is connected to the corresponding one of the word lines (WL); a third inverter is controlled by a first PMOS transistor (PC1) and a a first NMOS control transistor (MC1) connected between the primary power supply voltage (V DDL ) and the ground voltage, and the input of the third inverter is connected to the storage a node (A); a fourth inverter consisting of a second PMOS control transistor (PC2) and a second NMOS control transistor (MC2) connected to the secondary power supply Between the supply voltage (V DDL ) and the ground voltage, and the input of the fourth inverter is connected to the inverting storage node (B); a first control node (B1) is caused by the fourth inversion Formed at the output end of the device, and connected to the back gate of the second NMOS transistor (M2) and the back gate of the third NMOS transistor (M3); a second control node (B2) By the first An output terminal of the inverter is formed and connected to a back gate of the first NMOS transistor (M1); wherein the first inverter and the second inverter are connected in an alternating connection, that is, the The output of the first inverter (ie, storage node A) is connected to the input of the second inverter, and the output of the second inverter (ie, the inverting storage node B) is connected to the first An input terminal of the inverter; and each control circuit (2) further comprises: a fourth NMOS transistor (M21), a fifth NMOS transistor (M22), a sixth NMOS transistor (M23), and a a seventh NMOS transistor (M24), an eighth NMOS transistor (M25), a ninth NMOS transistor (M26), a tenth NMOS transistor (M27), an eleventh NMOS transistor (M28), a twelfth NMOS transistor (M29), a third PMOS transistor (P21), a fourth PMOS transistor (P22), a fifth inverter (I21), a first delay circuit (D1), and a write control signal (CTL); wherein the source of the fourth NMOS transistor (M21) is connected to the drain of the seventh NMOS transistor (M24), and the gate is connected to the drain And connected to the first low voltage node (VL1) The source, the gate and the drain of the fifth NMOS transistor (M22) are respectively connected to a ground voltage, an inverted standby mode control signal (/S) and the second low voltage node (VL2); a source, a gate and a drain of the six NMOS transistor (M23) are respectively connected to the second low voltage node (VL2), a standby mode control signal (S) and the first low voltage node (VL1); The source of the seventh NMOS transistor (M24) is connected to the ground voltage, and the gate is connected to the drain and connected to the source of the fourth NMOS transistor (M21); the eighth NMOS transistor (M25) The source, the gate and the drain are respectively connected to the first low voltage node (VL1), the reverse standby mode control signal (/S) and the drain of the ninth NMOS transistor (M26); The source of the nine NMOS transistor (M26) is connected to the ground voltage, and the gate is connected to the drain and connected to the drain of the eighth NMOS transistor (M25); the tenth NMOS transistor (M27) The source, the gate and the drain are respectively connected to a ground voltage, a drain of the eleventh NMOS transistor (M28) and a gate of the ninth NMOS transistor (M26); the eleventh NMOS transistor (M 28) The source, the gate and the drain are respectively connected to the drain of the twelfth NMOS transistor (M29), the write control signal (CTL) and the gate of the tenth NMOS transistor (M27) a drain of the third PMOS transistor (P21) and a drain of the fourth PMOS transistor (P22); a source, a gate and a drain of the twelfth NMOS transistor (M29) are respectively connected to a ground voltage, an output of the fifth inverter (I21) and a source of the eleventh NMOS transistor (M28); an input of the fifth inverter (I21) is connected to the first delay circuit (D1) The output of the fifth inverter (I21) is connected to the gate of the twelfth NMOS transistor (M29) and the gate of the fourth PMOS transistor (P22); the first delay An input of the circuit (D1) is connected to the write control signal (CTL) and a gate of the third PMOS transistor (P21) and a gate of the eleventh NMOS transistor (M28); the third PMOS transistor a source, a gate and a drain of (P21) are respectively connected to the power supply voltage (V DD ), the control signal (CTL), the drain of the fourth PMOS transistor (P22), and the eleventh a drain of an NMOS transistor (M28); and the fourth PMOS transistor a source, a gate and a drain of (P22) are respectively connected to the power supply voltage (V DD ), an output of the fifth inverter (I21), and a drain of the third PMOS transistor (P21) The drain of the eleventh NMOS transistor (M28); further, the standby start circuit (3) is designed to be parasitic to the first low voltage node (VL1) during an initial period of entering the standby mode. the sum of the voltage level of fast charging capacitor to the fourth NMOS transistor (M21) of the threshold voltage (V TM21) and the seventh NMOS transistor (M24) of the threshold voltage (V TM24) a. 如申請專利範圍第1項所述之具高效能之靜態隨機存取記憶體,其中,該反相待機模式控制信號(/S)係由該待機模式控制信號(S)經一反相器而獲得。The high-performance static random access memory according to claim 1, wherein the inverted standby mode control signal (/S) is controlled by the standby mode control signal (S) via an inverter. obtain. 如申請專利範圍第1項所述之具高效能之靜態隨機存取記憶體,其中,該寫入控制信號(CTL)為每一列記憶體晶胞所對應之字元線(WL)。The high-performance static random access memory according to claim 1, wherein the write control signal (CTL) is a word line (WL) corresponding to each column of memory cells. 如申請專利範圍第1項所述之具高效能之靜態隨機存取記憶體,其中,該寫入控制信號(CTL)為一寫入致能(Write Enable,簡稱WE)信號與每一列記憶體晶胞所對應之字元線(WL)信號的及閘(AND gate)運算結果,亦即僅於該寫入致能WE信號與該對應之字元線(WL)信號均為邏輯高位準時,該寫入控制信號(CTL)方為邏輯高位準。The high-performance static random access memory according to claim 1, wherein the write control signal (CTL) is a write enable (WE) signal and each column of memory. The result of the AND gate operation of the word line (WL) signal corresponding to the unit cell, that is, only when the write enable WE signal and the corresponding word line (WL) signal are both at a logic high level. The write control signal (CTL) side is a logic high level. 如申請專利範圍第1項所述之具高效能之靜態隨機存取記憶體,其中,該待機啟動電路(3)係由一第五PMOS電晶體(P31)、一第六PMOS電晶體(P32)、一第六反相器(I33)以及一第二延遲電路(D2)所組成;其中,該第五PMOS電晶體(P31)之源極、閘極與汲極係分別連接至該電源供應電壓(VDD )、該反相待機模式控制信號(/S)與該第六PMOS電晶體(P32)之源極;該第六PMOS電晶體(P32)之源極、閘極與汲極係分別連接至該第五PMOS電晶體(P31)之汲極、該第六反相器(I33)之輸出與該第一低電壓節點(VL1);該第六反相器(I33)之輸入連接至該第二延遲電路(D2)之輸出,而該第六反相器(I33)之輸出則連接至該第六PMOS電晶體(P32)之閘極;該第二延遲電路(D2)之輸入連接至該反相待機模式控制信號(/S),而該第二延遲電路(D2)之輸出則連接至該第六反相器(I33)之輸入。The high-performance static random access memory according to claim 1, wherein the standby start circuit (3) is a fifth PMOS transistor (P31) and a sixth PMOS transistor (P32). a sixth inverter (I33) and a second delay circuit (D2); wherein the source, the gate and the drain of the fifth PMOS transistor (P31) are respectively connected to the power supply a voltage (V DD ), the inverted standby mode control signal (/S) and a source of the sixth PMOS transistor (P32); a source, a gate and a drain of the sixth PMOS transistor (P32) Connected to the drain of the fifth PMOS transistor (P31), the output of the sixth inverter (I33) and the first low voltage node (VL1); the input of the sixth inverter (I33) To the output of the second delay circuit (D2), the output of the sixth inverter (I33) is connected to the gate of the sixth PMOS transistor (P32); the input of the second delay circuit (D2) Connected to the inverting standby mode control signal (/S), and the output of the second delay circuit (D2) is coupled to the input of the sixth inverter (I33). 如申請專利範圍第5項所述之具高效能之靜態隨機存取記憶體,其中,該待機啟動電路(3)進入待機模式之該初始期間係等於該第二延遲電路(D2)所提供之一第二延遲時間以及該第六反相器(I33)所提供之一上升延遲時間的總和。The high-performance static random access memory according to claim 5, wherein the initial period of the standby starting circuit (3) entering the standby mode is equal to that provided by the second delay circuit (D2). A second delay time and a sum of one of the rise delay times provided by the sixth inverter (I33). 如申請專利範圍第1項所述之具高效能之靜態隨機存取記憶體,其中,該次電源供應電壓(VDDL )的電壓位準大小係設定成小於該第一NMOS電晶體(M1)之背閘極與源極間之寄生二極體的切入電壓(cut in voltage)大小與該第二NMOS電晶體(M2)之背閘極與源極間之寄生二極體的切入電壓大小二者中之較小者。The high-performance static random access memory according to claim 1, wherein the voltage level of the power supply voltage (V DDL ) is set to be smaller than the first NMOS transistor (M1). The cut in voltage of the parasitic diode between the back gate and the source and the cut-in voltage of the parasitic diode between the back gate and the source of the second NMOS transistor (M2) The smaller of them. 如申請專利範圍第7項所述之具高效能之靜態隨機存取記憶體,其中,該第一PMOS控制電晶體(PC1)與該第二PMOS控制電晶體(PC2)之臨界電壓大小係設定成小於該次電源供應電壓(VDDL )之電壓位準大小。The high-performance static random access memory according to claim 7, wherein the threshold voltage of the first PMOS control transistor (PC1) and the second PMOS control transistor (PC2) is set. It is smaller than the voltage level of the power supply voltage (V DDL ).
TW100108305A 2011-03-11 2011-03-11 High performance sram TWI451414B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100108305A TWI451414B (en) 2011-03-11 2011-03-11 High performance sram

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100108305A TWI451414B (en) 2011-03-11 2011-03-11 High performance sram

Publications (2)

Publication Number Publication Date
TW201237869A TW201237869A (en) 2012-09-16
TWI451414B true TWI451414B (en) 2014-09-01

Family

ID=47223253

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100108305A TWI451414B (en) 2011-03-11 2011-03-11 High performance sram

Country Status (1)

Country Link
TW (1) TWI451414B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206463A1 (en) * 2000-06-29 2003-11-06 Mitsubishi Denki Kabushiki Kaisha Low-power consumption semiconductor memory device
US20050201144A1 (en) * 2002-03-27 2005-09-15 The Regents Of The University Of California Low-power high-performance storage circuitry
US20060050590A1 (en) * 2004-08-11 2006-03-09 Stmicroelectronics Pvt. Ltd. Logic device with reduced leakage current
TWM391711U (en) * 2010-06-10 2010-11-01 Hsiuping Inst Technology Single port sram having a discharging path
US20100328990A1 (en) * 2006-12-07 2010-12-30 Nat.Inst. Of Adv Industrial Science And Technology Sram device
TWM417634U (en) * 2011-01-14 2011-12-01 Hsiuping Inst Technology 5T single port sram
TW201234370A (en) * 2011-02-15 2012-08-16 Hsiuping Inst Technology Dual port SRAM with improved SNM

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030206463A1 (en) * 2000-06-29 2003-11-06 Mitsubishi Denki Kabushiki Kaisha Low-power consumption semiconductor memory device
US20050201144A1 (en) * 2002-03-27 2005-09-15 The Regents Of The University Of California Low-power high-performance storage circuitry
US20060050590A1 (en) * 2004-08-11 2006-03-09 Stmicroelectronics Pvt. Ltd. Logic device with reduced leakage current
US20100328990A1 (en) * 2006-12-07 2010-12-30 Nat.Inst. Of Adv Industrial Science And Technology Sram device
TWM391711U (en) * 2010-06-10 2010-11-01 Hsiuping Inst Technology Single port sram having a discharging path
TWM417634U (en) * 2011-01-14 2011-12-01 Hsiuping Inst Technology 5T single port sram
TW201234370A (en) * 2011-02-15 2012-08-16 Hsiuping Inst Technology Dual port SRAM with improved SNM

Also Published As

Publication number Publication date
TW201237869A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
TWI490868B (en) Static random access memory with five transistors
TWI556242B (en) Single port static random access memory (8)
TWI433151B (en) 5t sram
TWI529711B (en) Single port static random access memory (2)
TWI436359B (en) 5t single port sram
TWI433152B (en) 7t dual port sram
TWI529712B (en) Single port static random access memory (6)
TWI494924B (en) Static random access memory with five transistors (2)
TWI529713B (en) Single port static random access memory (5)
TWI425510B (en) Single port sram with reducing standby current
TWI451412B (en) Dual port sram with improved snm
TW201535370A (en) Single port static random access memory (3)
TWI559453B (en) Single port static random access memory (4)
TWI478165B (en) High performance single port sram
TWI441178B (en) Dual port sram
TWI451414B (en) High performance sram
TWI500032B (en) Static random access memory with five transistors (3)
TWI489457B (en) Single port sram with standby start-up circuit
TWI490857B (en) Static random access memory
TWI451413B (en) High performance dual port sram
TWI509605B (en) Static random access memory (2)
TWI521510B (en) Single port static random access memory (1)
TWI490858B (en) Static random access memory with single port (1)
TWI478164B (en) Dual port sram with standby start-up circuit
TWI426514B (en) Single port sram having a lower power voltage in writing operation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees