TWM338542U - Integrated heat dissipation substrate - Google Patents

Integrated heat dissipation substrate Download PDF

Info

Publication number
TWM338542U
TWM338542U TW96219705U TW96219705U TWM338542U TW M338542 U TWM338542 U TW M338542U TW 96219705 U TW96219705 U TW 96219705U TW 96219705 U TW96219705 U TW 96219705U TW M338542 U TWM338542 U TW M338542U
Authority
TW
Taiwan
Prior art keywords
integrated heat
metal
insulating layer
substrate
heat dissipating
Prior art date
Application number
TW96219705U
Other languages
Chinese (zh)
Inventor
I-Yung Wang
Original Assignee
Advanced Nano Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Nano Technology Inc filed Critical Advanced Nano Technology Inc
Priority to TW96219705U priority Critical patent/TWM338542U/en
Publication of TWM338542U publication Critical patent/TWM338542U/en

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Description

M338542 八、新型說明: 【新型所屬之技術領域】 本創作是有關於一種散熱基板,特別是指一種整合性 散熱基板。 【先前技術】 長久以來,電子及光電元件的散熱在本身功率輸出不大 的情況下,由塑膠所製備而得的基板就能同時滿足散熱及電 氣絕緣的需求。由於資訊及通訊等科技產物於近幾年^不斷 地趨向普及化,例如動態隨機存取記憶(Dynamic Rand〇m Access Memoir ; DRAM)等相關電子產品市場需求量的增加, 半導體及光電元件在製程上也隨著產業的需求演進到超大 型積體電路(Very Large Scale Integration ; VLSI)的製作 方式,由此,利用多重内連接線(Multi level Interc〇nnects) 來製作το件電路(Circuit)所伴隨而來的散熱問題,將是開 發散熱基板業者所需克服的一大難題。 請參閱第-圖,-種習知的整合性散熱基Μ,包含·· 一鋁基板U、一高分子環氧樹脂(Ep〇xy)膜12及複數銅 線13。 該高分子環氧樹脂膜12是形成在該銘基板n的一上表 面。 二亥4銅導線13疋利用濕式的電鍍法(Eiectr〇chemicai plating)形成在該高分子環氧樹脂膜12的一上表面。 1得注意的是’由於該高分子環氧樹脂膜12與該等銅 M338542 導線13之間的表面性質差異大,因此誃 著次該高分子環氧樹賴12的上表面'導線13不易附 附著性,於電鍍該等銅導線13之前=增加兩者之間的 處理步驟,例如:粗化(R〇ughening),卜進行一系列的前 脂膜12表面利用氧化還原作用依序=該高分子環氧樹 及活化(ACtivati〇n)等步驟。 毛仃破化(Sensitizing) 上述習知的整合性散熱基板!具有以下 (一)該高分子環氧樹脂膜12之埶 conductivity)極低,僅為 〇. 2W/m/K,:專β導率(thermal 基板1存在著」_而無法符合龍電路° 散熱 導致元件的使用壽命下降。 ,、的政熱而求,並 (一)為增加該等銅導線13在該高班〆 驟於電精銅導線13之前仍需 的結 (四)濕式電鑛法將對環境帶來水污染的問題。 μ綜^?^ ’此種習知的整合性散熱基板1具有執傳導率 不足、製程繁複、影響元件使用壽命、無作 路及造成水污料缺點,因此,如製 ^線見的線 性散熱基板並改善前面所述等缺點, 相關業者所需克服的一大難題。於是本創作人 研究與諸多實務經驗,經多方穿 二於夕年從事 =出-種整合性散熱基板以作為前述期 6 M338542 【新型内容】 目的,即在提供一種整合性 有鑑於上述課題,本創作之 散熱基板。 此敕Hit?依本創作之整合性散熱基板。 板包含一金屬基板、一金屬化合物絕緣 形成在金屬基板之表面,披覆材料是 f料:ϋ?層上’使金屬化合物絕緣層區分為具有披覆 形=覆蓋區之披覆材料上,以製作成本創作之 熱基板。 另外’本創作整合性散熱基板可依下列方法製成: (A) 提供金屬基板; (B) 利用一微弧氧化製程或一陽極處理製程,使金屬基 板上形成金屬氧化物絕緣層; (C) 形成披覆材料於金屬氧化物絕緣層上,使金屬氧化 物絕緣層區分為具有«材料之覆蓋區,及未具有 披覆材料之裸露區;以及 (D) 形成導電層於覆蓋區之披覆材料上。 再者,本創作整合性散熱基板亦可依下列方法製成: (A) 提供金屬基板; (B) 形成金屬氮化物絕緣層於金屬基板上; (C) 形成披覆材料於金屬氮化物絕緣層上,使金屬氮化 物絕緣層區分為具有披覆材料之覆蓋區,及未具有 M338542 , 彼覆材料之裸露區;以及 (D)形成導電層於覆蓋區之披覆材料上。 承上所述,因依本創作之整合性散熱基板,其功效在 於金屬化合物絕緣層具有複數個孔洞分佈於其中,更可進 一步使金屬化合物絕緣層形成為單層結構或多層結構,且 此金屬化合物絕緣層可為金屬氧化物絕緣層或金屬氮化物 絕緣層,並配合為金屬基板之化合物;且可改變孔洞緻密 度形成緻密層及疏鬆層,而金屬氧化物絕緣層利用一微弧 鲁氧化(Micro Arc Oxidation,MAO)製程或一陽極處理製 > 程形成於金屬基板表面,披覆材料(Epoxy樹脂)覆蓋在 金屬化合物絕緣層上’披覆材料與導電層具有良好的結合 能力,且導電層可為複數個電極墊,同時具有至少一相互 導通之導線將電極墊串接起來,其中裸露區可以設置任何 電子元件,如:發光二極體等,由具孔洞的金屬氧化物絕 緣層將熱往金屬基板散逸,可提供較習知環氧樹脂更佳的 散熱效果,且藉由Epoxy樹脂上形成導電層的技術以提升 整合性散熱基板的製程效率。同時,亦可以是於金屬化合 • 物絕緣層上直接形成導電層。 茲為使貴審查委員對本創作之技術特徵及所達成之 功效有更進一步之瞭解與認識,下文謹提供較佳之實施例及 相關圖式以為輔佐之用,並以詳細之說明文字配合說明如 【實施方式】 為讓本創作之上述目的、特徵、和優點能更明顯易懂, 下文依本創作之整合性散熱基板特舉較佳實施例,並配合 1 M338542 所附相關圖式,作詳細說明如下,其中相同的元件將以相 同的元件符號加以說明。 請參閱第二圖,本創作之整合性散熱基板2,包含:一 金屬基板21、一金屬化合物絕緣層22、一彼覆材料23及 一導電層24。 適用於本創作的金屬基板21是由銘、銅、鈦、鎂,或 前述之組合的金屬材料所製成。其中,使用於本創作的金 屬基板21是一由鋁金屬材料所製成的鋁基板。 φ 金屬化合物絕緣層22是形成於金屬基板21之表面, • 且具有複數個孔洞分佈於金屬化合物絕緣層22中;同時, 又可依孔洞的分佈狀態,使金屬化合物絕緣層22為單層結 構或多層結構。在本創作之整合性散熱基板2的金屬化合 物絕緣層22,是一由鋁基板所形成的氧化鋁絕緣層,是利 用一微弧氧化(Micro Arc Oxidation,MAO)製程或一陽 極處理製程,形成於金屬基板21表面。同時,又可依孔洞 的分佈狀態(緻密度),使金屬化合物絕緣層22為緻密層 及疏鬆層。較佳地’金屬化合物絕緣層2 2是金屬基板21 • 之化合物。其中,在本創作之整合性散熱基板2的金屬化 合物絕緣層2 2,是一由銘基板所形成的氧化銘絕緣層,此 氧化銘絕緣層是非晶質結構包含有<2 - A12〇3或7 - A12〇3 ’以 形成上述之緻密層及疏鬆層,而有別於一般晶質結構之氧 化銘。 披覆材料23是形成於金屬化合物絕緣層22上,使金 屬化合物絕緣層22區分為具有披覆材料23之覆蓋區 221,及未具有彼覆材料23之裸露區222。較佳地,使用 於本創作的彼覆材料23可為一 Epoxy樹脂。 9 M338542 導電層24形成於覆蓋區221之彼覆材料23上。更進 一步地,導電層24可為複數個電極墊組成,同時具有至少 一相互導通之導線將電極墊串接起來。較佳地,導電層24 是由鋁、銅、銀、金,或前述之組合的金屬材料所製成。 最後,便製作成本創作之整合性散熱基板2。 另外,上述所提及整合性散熱基板可以由下列製作整合 性散熱基板的方法製備而得。請參閱第三圖,該方法包含以 下步驟: 步驟S31 :提供金屬基板; 步驟S32:利用一微弧氧化製程或一陽極處理製程,使 金屬基板上形成金屬氧化物絕緣層; 步驟S33J形成披覆材料於金屬氧化物絕緣層上,使 金屬氧化物絕緣層區分為具有披覆材料之覆蓋 區’及未具有披覆材料之裸露區;以及 步驟S34 :形成導電層於覆蓋區之披覆材料上。 —請參閱第四圖,本創作之整合性散熱基板之實施立體 示意圖。本創作之整合性散熱基板4之實施示意,其金屬 基板21可依設計上的需求有各種形狀的樣態,且導電層% 是形成在彼覆材料23上,其中使導電層24相互導通之 4卜可埋設在披覆材料23内,最後,可在彼覆材料烈上印 刷文字42,而金屬化合物絕緣層22的裸露區221提供各 電子兀件設置的區域(如··發光二極體等),由具孔洞的金 屬化合物鱗層22賴往金屬基板21散逸,可提供較 知環氧樹脂更佳的散熱效果,且藉* EpQxy樹脂的披覆材 料23上形成導電層24的技術以提升整合性散熱基板4的 M338542 製程效率。 另外’上述所提及整合性散熱基板亦可以由下列製作整 合性散熱基板的方法製備而得。請參閱第五圖,該方法包 以下步驟: 步驟S51 :提供金屬基板; 步驟S52 :形成金屬氮化物絕緣層於金屬基板上; 步驟S53 :形成披覆材料於金屬氮化物絕緣層上,使 金屬氮化物絕緣層區分為具有披覆材料之覆蓋 1 區,及未具有披覆材料之裸露區;以及 步驟S54 :形成導電層於覆蓋區之披覆材料上。 請參閱第六圖,本創作之整合性散熱基板6,包含··一 金屬基板21、一金屬化合物絕緣層22及一導電層24。 適用於本創作的金屬基板21是由鋁、銅、鈦、鎂,或 前述之組合的金屬材料所製成。其中,使用於本創作的^ 屬基板21是一由鋁金屬材料所製成的鋁基板。 ’ • 金屬化合物絕緣層22是形成於金屬基板21之表面, 且具有複數個孔洞分佈於金屬化合物絕緣層22中;同時, 又可依孔洞的分佈狀態,使金屬化合物絕緣層22為單層梦 構或多層結構。在本創作之整合性散熱基板6的金屬/匕: 物絕緣層22,是一由鋁基板所形成的氧化鋁絕緣層,是利 用一微弧氧化(Micro Arc Oxidation,ΜΑΟ)製程或—陽 極處理製程,形成於金屬基板21表面。同時,又可依孔洞 的分佈狀態(緻密度),使金屬化合物絕緣層22為緻密居 及疏鬆層。較佳地,金屬化合物絕緣層22是金屬基板& 之化合物。其中,在本創作之整合性散熱基板6的金屬化 11 M338542 合物絕緣層22,是一由鋁基板所形成的氧化鋁 乳化銘絕緣層是非晶質結構包含有α —Al2〇3戋、、層,此 形成上述之緻密層及疏鬆層,而有別於一妒3曰7:Ah〇3,以 化在呂。 又日日貝結構之氧 導電層24直接形成於金屬化合物絕緣岸 一步地,導電層24可為複數個電極墊組成,胃1上。更進 一相互導通之導線將電極墊串接起來。較佳有至少 tfa > ^151 ^ x >6^ . ju> ... 導電層 24 是由銘、銅、銀、金,或前述之組合的金屬_;1層/ 最後,便製作成糊作之整合性散熱基板6。 上述所提及整合性散熱基板可以由 熱基板的方法製備而得。請參閱第七圖,哕方合性散 驟: Μ乃凌包含以下步 步驟S71 :提供金屬基板; 步驟利用一微弧氧化製程或一陽 金屬基板上形成金職化物崎層;从Μ ’使 步驟S73 :形成導㈣於金屬氧化物崎層上。 亡述所提及整合性散熱基板亦可以由下 散熱基板的方法製備而得。請參閱第土 5 ' 步驟: 月^阅弟八圖,该方法包含以下 步驟S81 :提供金屬基板; 步驟S82.形成金屬氮化物絕緣層於金屬基板上;以及 步驟S83 :形成導電層於金屬氮化物絕緣層上。 综上所述,因依本創作之整人 於金屬化合物絕緣層具有複數個“ iii其 12 M338542 絕緣層’並配合為金屬基板之化合物衫金屬亂化物 項技舰,㈣為限舰者。按,凡熟悉該 太創作夕掉、*又虞本創作所揭露之技術内容,在任何未脫離 精神與範,,而對其進行 包含於後附之申請專利範圍中。 文次交更 【圖式簡單說明】 第-圖是-則知的整合性散熱基板之剖視圖; 第二圖是糊叙整合錄熱基板之剖視圖; 第三圖是摘作之整合錄熱基板之流程圖; 第四圖是本創作之整合性散熱基板之實%立體示意圖; 第五圖是補狀整合錄減板之流程圖; 第六圖是本創作之整合性散熱基板之剖視圖; 第七圖是本創作之整合性散熱基板之流程圖;以及 第八圖是本創作之整合性散熱基板之流程圖。 【主要元件符號說明】 I :習知的整合性散熱基板; II ·銘基板; 12 :高分子環氧樹脂(Epoxy)膜; 13 M338542 13 :銅導線; 2:整合性散熱基板; 21 :金屬基板; 2 2 :金屬化合物絕緣層 221 :覆蓋區; 222 ·裸露區, 23 :披覆材料; _ 24 :導電層; S31〜S34 :流程步驟; 4:整合性散熱基板; 41 :相互導通之導線; 42 :文字; 以及 S51〜S54 ·•流程步驟; 6:整合性散熱基板; S71〜S73 :流程步驟; S81〜S83 :流程步驟。M338542 VIII. New description: [New technical field] This creation is about a heat-dissipating substrate, especially an integrated heat-dissipating substrate. [Prior Art] For a long time, the heat dissipation of electronic and optoelectronic components can be achieved by the substrate prepared by plastic in the case where the power output of the electronic components is not large enough to meet the requirements of heat dissipation and electrical insulation. As the technological products such as information and communication have been steadily becoming popular in recent years, such as the demand for related electronic products such as Dynamic Random Access Memory (DRAM), semiconductor and optoelectronic components are in the process. In addition, the industry has evolved to the production of Very Large Scale Integration (VLSI) with the demand of the industry. Therefore, multi-level interconnects (Multi level Interc〇nnects) are used to create a circuit. The accompanying heat dissipation problem will be a major problem for the development of the heat sink substrate industry. Referring to Fig. 1, a conventional integrated heat dissipation substrate includes an aluminum substrate U, a polymer epoxy resin (Ep〇xy) film 12, and a plurality of copper wires 13. The polymer epoxy resin film 12 is formed on an upper surface of the substrate n. The Erhai 4 copper wire 13 is formed on an upper surface of the polymer epoxy film 12 by a wet plating method (Eiectr〇chemicai plating). 1 It should be noted that 'the surface of the polymer epoxy resin film 12 and the copper M338542 wire 13 have a large difference, so the upper surface of the polymer epoxy tree 12 is not easily attached. Adhesion, before plating the copper wires 13 = increasing the processing steps between the two, for example: R〇ughening, performing a series of pre-lipid film 12 surface using redox action sequence = the height Molecular epoxy tree and activation (ACtivati〇n) and other steps. Sensitizing The above-mentioned integrated heat sink substrate! The following (a) the polymer epoxy resin film 12 has a very low conductivity, only 〇. 2W/m/K,: the specific beta conductivity (the thermal substrate 1 is present) _ but cannot meet the dragon circuit ° heat dissipation Resulting in a decrease in the service life of the component, and the political heat, and (a) the need to increase the copper wire 13 before the high-level break in the electric copper wire 13 (4) wet electric ore The law will bring water pollution to the environment. μ合^^^ 'This kind of integrated heat-dissipating substrate 1 has insufficient conduction rate, complicated process, affects component life, no work and causes water pollution defects Therefore, the linear heat-dissipating substrate as seen in the system and the improvement of the above-mentioned shortcomings, the related industry needs to overcome a major problem. So the creator research and many practical experience, after many wears in the eve of the year = out A kind of integrated heat-dissipating substrate is used as the above-mentioned period 6 M338542 [new content] The purpose is to provide a heat-dissipating substrate with the above-mentioned problems in view of the above-mentioned problems. This 敕Hit? is an integrated heat-dissipating substrate according to the present invention. a metal substrate, a The metal compound is formed on the surface of the metal substrate, and the covering material is a material on which the metal compound insulating layer is divided into a covering material having a covering shape = a covering area to fabricate a heat substrate. In addition, the integrated heat-dissipating substrate of the present invention can be made by the following methods: (A) providing a metal substrate; (B) forming a metal oxide insulating layer on the metal substrate by using a micro-arc oxidation process or an anodizing process; Forming a coating material on the metal oxide insulating layer to distinguish the metal oxide insulating layer from having a "covering area of the material and a bare area having no covering material; and (D) forming a conductive layer in the covering area In addition, the integrated heat-dissipating substrate of the present invention can also be made by the following methods: (A) providing a metal substrate; (B) forming a metal nitride insulating layer on the metal substrate; (C) forming a covering material On the metal nitride insulating layer, the metal nitride insulating layer is divided into a covering region having a covering material, and the exposed portion of the material is not provided with M338542; and (D) a conductive layer is formed to cover According to the above, the integrated heat-dissipating substrate of the present invention has the effect that the metal compound insulating layer has a plurality of holes distributed therein, and the metal compound insulating layer can be further formed into a single-layer structure or a multilayer structure, and the metal compound insulating layer may be a metal oxide insulating layer or a metal nitride insulating layer, and is compounded as a compound of the metal substrate; and the density of the holes may be changed to form a dense layer and a loose layer, and the metal oxide insulating layer A micro Arc Oxidation (MAO) process or an anodizing process is formed on the surface of the metal substrate, and the covering material (Epoxy resin) is coated on the metal compound insulating layer. The covering material and the conductive layer have Good bonding ability, and the conductive layer can be a plurality of electrode pads, and at least one conductive wire is connected to the electrode pads in series, wherein the exposed area can be provided with any electronic components, such as: light-emitting diodes, etc., with holes The metal oxide insulating layer dissipates heat to the metal substrate, providing better dispersion than conventional epoxy resins. The thermal effect is achieved by the technique of forming a conductive layer on the Epoxy resin to improve the process efficiency of the integrated heat-dissipating substrate. At the same time, it is also possible to form a conductive layer directly on the metallization insulating layer. In order to give your reviewers a better understanding and understanding of the technical features of the creation and the efficacies achieved, the following examples are provided to facilitate the use of the preferred embodiments and related drawings, with detailed explanations such as [ The above-mentioned objects, features, and advantages of the present invention can be more clearly understood. The following is a detailed description of the integrated heat-dissipating substrate according to the present invention, and is described in detail in conjunction with the related drawings of 1 M338542. The same elements will be described with the same element symbols as follows. Referring to the second figure, the integrated heat dissipation substrate 2 of the present invention comprises: a metal substrate 21, a metal compound insulating layer 22, a covering material 23 and a conductive layer 24. The metal substrate 21 suitable for the present invention is made of a metal material of Ming, copper, titanium, magnesium, or a combination thereof. Among them, the metal substrate 21 used in the present invention is an aluminum substrate made of an aluminum metal material. The φ metal compound insulating layer 22 is formed on the surface of the metal substrate 21, and has a plurality of holes distributed in the metal compound insulating layer 22; and at the same time, the metal compound insulating layer 22 is a single layer structure depending on the distribution state of the holes. Or multilayer structure. The metal compound insulating layer 22 of the integrated heat dissipating substrate 2 of the present invention is an aluminum oxide insulating layer formed of an aluminum substrate, which is formed by a micro arc Oxidation (MAO) process or an anodizing process. On the surface of the metal substrate 21. At the same time, the metal compound insulating layer 22 is a dense layer and a loose layer depending on the distribution state (density) of the holes. Preferably, the metal compound insulating layer 22 is a compound of the metal substrate 21. The metal compound insulating layer 22 of the integrated heat dissipating substrate 2 of the present invention is an oxidized insulating layer formed by a substrate, and the oxidized insulating layer is an amorphous structure containing <2 - A12〇3 Or 7 - A12 〇 3 ' to form the above-mentioned dense layer and loose layer, which is different from the general crystal structure. The covering material 23 is formed on the metal compound insulating layer 22, and the metal compound insulating layer 22 is divided into a covering region 221 having a covering material 23, and a bare region 222 having no covering material 23. Preferably, the cover material 23 used in the present creation may be an Epoxy resin. 9 M338542 The conductive layer 24 is formed on the cover material 23 of the cover region 221. Further, the conductive layer 24 may be composed of a plurality of electrode pads while having at least one conductive wire that is electrically connected to each other to connect the electrode pads in series. Preferably, the conductive layer 24 is made of a metal material of aluminum, copper, silver, gold, or a combination thereof. Finally, an integrated heat sink substrate 2 for cost creation is produced. Further, the above-mentioned integrated heat dissipating substrate can be produced by the following method for producing an integrated heat dissipating substrate. Referring to the third figure, the method includes the following steps: Step S31: providing a metal substrate; Step S32: forming a metal oxide insulating layer on the metal substrate by using a micro-arc oxidation process or an anodizing process; and forming a blanket in step S33J The material is on the metal oxide insulating layer, and the metal oxide insulating layer is divided into a covering region having a covering material and a bare region having no covering material; and step S34: forming a conductive layer on the covering material of the covering region . — Please refer to the fourth figure for a three-dimensional schematic diagram of the implementation of the integrated heat sink substrate. The implementation of the integrated heat dissipation substrate 4 of the present invention is illustrated in which the metal substrate 21 can be in various shapes according to the design requirements, and the conductive layer % is formed on the cover material 23, wherein the conductive layers 24 are electrically connected to each other. 4b can be embedded in the covering material 23, and finally, the text 42 can be printed on the other material, and the exposed area 221 of the metal compound insulating layer 22 provides the area where the electronic components are disposed (such as a light-emitting diode). And the like, the metal compound scale layer 22 with pores is dissipated to the metal substrate 21, which can provide a better heat dissipation effect of the epoxy resin, and the technique of forming the conductive layer 24 on the cladding material 23 of the *EpQxy resin Improve the M338542 process efficiency of the integrated heat sink substrate 4. Further, the above-mentioned integrated heat-dissipating substrate can also be produced by the following method for producing an integrated heat-dissipating substrate. Referring to FIG. 5, the method includes the following steps: Step S51: providing a metal substrate; Step S52: forming a metal nitride insulating layer on the metal substrate; Step S53: forming a coating material on the metal nitride insulating layer to make the metal The nitride insulating layer is divided into a covering region 1 having a covering material and a bare region having no covering material; and step S54: forming a conductive layer on the covering material of the covering region. Referring to the sixth figure, the integrated heat dissipation substrate 6 of the present invention comprises a metal substrate 21, a metal compound insulating layer 22 and a conductive layer 24. The metal substrate 21 suitable for the present invention is made of a metal material of aluminum, copper, titanium, magnesium, or a combination thereof. Among them, the substrate 21 used in the present invention is an aluminum substrate made of an aluminum metal material. The metal compound insulating layer 22 is formed on the surface of the metal substrate 21, and has a plurality of holes distributed in the metal compound insulating layer 22; at the same time, the metal compound insulating layer 22 is a single layer dream according to the distribution state of the holes. Structure or multilayer structure. The metal/germanium insulating layer 22 of the integrated heat-dissipating substrate 6 of the present invention is an aluminum oxide insulating layer formed of an aluminum substrate, which is processed by a micro arc oxidation (Micro Arc Oxidation) process or anodized. The process is formed on the surface of the metal substrate 21. At the same time, the metal compound insulating layer 22 is a dense and loose layer depending on the distribution state (density) of the holes. Preferably, the metal compound insulating layer 22 is a compound of a metal substrate & The metallized 11 M338542 insulating layer 22 of the integrated heat dissipating substrate 6 of the present invention is an aluminum oxide emulsified insulating layer formed of an aluminum substrate, and the amorphous structure includes α-Al2〇3戋, The layer, which forms the above-mentioned dense layer and loose layer, is different from one 妒3曰7:Ah〇3, to be in Lu. The oxygen layer of the shell structure is formed directly on the metal compound insulating layer. The conductive layer 24 can be composed of a plurality of electrode pads on the stomach 1. Further wires that are electrically connected to each other connect the electrode pads in series. Preferably, at least tfa > ^ 151 ^ x > 6 ^ . ju > ... the conductive layer 24 is made of metal, ternary, copper, silver, gold, or a combination of the foregoing - 1 layer / finally, The integrated heat sink substrate 6 is affixed. The above-mentioned integrated heat-dissipating substrate can be produced by a method of heat-substrate. Please refer to the seventh figure, 哕 性 散 :: Μ 凌 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 包含 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 S73: forming a guide (4) on the metal oxide layer. The integrated heat sink substrate mentioned in the above description can also be prepared by a method of lowering the heat sink substrate. Please refer to the first earth 5' step: month ^ reading the eighth figure, the method comprises the following steps S81: providing a metal substrate; step S82. forming a metal nitride insulating layer on the metal substrate; and step S83: forming a conductive layer on the metal nitrogen On the insulating layer. In summary, according to the creation of the whole person in the metal compound insulation layer has a plurality of "iii its 12 M338542 insulation layer" and is compounded into a metal substrate compound metal chaotic compound project ship, (4) is a limited ship. Press Anyone who is familiar with the technical content disclosed in the creation of the eve of the creation, and the creation of the , 虞 , , , , , , , 在 在 在 在 在 任何 任何 任何 任何 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术 技术Brief Description] The first-figure is a cross-sectional view of the integrated heat-dissipating substrate; the second is a cross-sectional view of the integrated thermal recording substrate; the third is a flow chart of the integrated thermal recording substrate; The solid schematic view of the integrated heat-dissipating substrate of the present invention; the fifth figure is a flow chart of the integrated integrated recording and subtraction plate; the sixth figure is a cross-sectional view of the integrated heat-dissipating substrate of the creation; the seventh figure is the integration of the creation The flow chart of the heat-dissipating substrate; and the eighth figure is a flow chart of the integrated heat-dissipating substrate of the present invention. [Main component symbol description] I: conventional integrated heat-dissipating substrate; II · Ming substrate; 12: polymer epoxy tree (Epoxy) film; 13 M338542 13: copper wire; 2: integrated heat sink substrate; 21: metal substrate; 2 2: metal compound insulating layer 221: coverage area; 222 · bare area, 23: cladding material; Conductive layer; S31~S34: process step; 4: integrated heat sink substrate; 41: wire conducting each other; 42: text; and S51~S54 ·• process steps; 6: integrated heat sink substrate; S71~S73: process steps S81~S83: Process steps.

Claims (1)

M338542 修正 年月曰、u 、 補无 九、申請專利範圍: ^~^ 1、 一種整合性散熱基板,至少包含: 一金屬基板; 一金屬化合物絕緣層,係形成於該金屬基板之表 面;以及 一導電層,係形成於該金屬化合物絕緣層之上。 2、 如申請專利範圍第1項所述之整合性散熱基板,其中 該金屬化合物絕緣層與該導電層之間,以一披覆材料 係形成於該金屬化合物絕緣層上,使該金屬化合物絕 緣層區分為具有該彼覆材料之一覆蓋區,及未具有該 披覆材料之一裸露區,該導電層係位於該覆蓋區之該 彼覆材料之上。 3、 如申請專利範圍第1項所述之整合性散熱基板,其中 該金屬化合物絕緣層係具有複數個孔洞分佈於其中。 4、 如申請專利範圍第1項所述之整合性散熱基板,其中 該金屬化合物絕緣層為一金屬氧化物絕緣層或一金 屬氮化物絕緣層。 5、 如申請專利範圍第4項所述之整合性散熱基板,其中 該金屬氧化物絕緣層係利用一微弧氧化(Micro Arc Oxidation,MAO)製程或一陽極處理製程,使該金屬 基板表面形成該金屬氧化物絕緣層。 6、 如申請專利範圍第1項所述之整合性散熱基板,其中 該金屬化合物絕緣層為一單層結構或一多層結構。 7、 如申請專利範圍第1項所述之整合性散熱基板,其中 該金屬化合物絕緣層為該金屬基板之化合物。 15 M338542 丨% ί - 1 一一一. 8、 如申請專利範圍第1項所述之整合性散熱基板 5亥金屬基板為銘、銅、欽、鎮’或前述之組合。 9、 如申請專利範圍第8項所述之整合性散熱基板,其中 該金屬基板是一由鋁金屬材料所製成的鋁基板。 10、 如申請專利範圍第9項所述之整合性散熱基板,其 中該金屬氧化物絕緣層為一氧化鋁絕緣層。 11、 如申請專利範圍第2項所述之整合性散熱基板,其 中該彼覆材料為一 Epoxy樹脂。 瞻 12、如申請專利範圍第1項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 13、 如申請專利範圍第12項所述之整合性散熱基板,其 中該電極墊間具有至少一相互導通之導線。 14、 如申請專利範圍第2項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 15、 如申請專利範圍第μ項所述之整合性散熱基板,其 中該電極墊間具有至少一相互導通之導線,該相互導 •通之導線係埋設於該彼覆材料中。 16、 如申請專利範圍第1項所述之整合性散熱基板,其 中5亥導電層為銘、銅、銀、金,或前述之組合。 17、 如申請專利範圍第4項所述之整合性散熱基板,其 中該整合性散熱基板之形成步驟,至少包含: 提供該金屬基板; 利用一微弧氧化製程或一陽極處理製程,使該金屬 基板上形成該金屬氧化物絕緣層;以及 形成該導電層於該金屬氧化物絕緣層之上。 18、 如申請專利範圍第π項所述之整合性散熱基板,其 M338542 Ί補充 披覆材 年月 中該金屬氧化物絕緣層與該導電層之間,以一做復柯 料係形成於該金屬氧化物絕緣層上,使該金屬氧化物 絕緣層區分為具有該披覆材料之一覆蓋區,及未具有 該披覆材料之一裸露區,該導電層係位於該覆蓋2之 該彼覆材料之上。 19、如申請專利範圍第17項所述之整合性散熱基板,其 中該金屬氧化物絕緣層係具有複數個孔洞分佈於其 中。 /、 2〇、如>申請專利範圍第17項所述之整合性散熱基板,其 中〃亥金屬氧化物絕緣層為一單層結構或一多層結構。 21、 如申請專利範圍第17項所述之整合性散熱基板其 中該金屬氧化物絕緣層為該金屬基板之氧化物。/、 22、 如申請專利範圍第17項所述之整合性散熱基板,其 中該金屬基板為鋁、銅、鈦、鎂,或前述之組合。 23、 如申請專利範圍第22項所述之整合性散熱基^,其 中該金屬基板是一由鋁金屬材料所製成的鋁基板。 24、 如申請專利範圍第23項所述之整合性散熱基板,其 中該金屬氧化物絕緣層為一氧化鋁絕緣層。 25、 如申請專利範圍第18項所述之整合性散熱基板,其 中該披覆材料為一 Epoxy樹脂。 26、 如申請專利範圍第17項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 27、 如申請專利範圍第26項所述之整合性散熱基板,其 中該電極墊間具有至少一相互導通之導線。 28、 如申請專利範圍第18項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 17 M338542 朽 f. 29、 如申請專利範圍第28項所述之整合性散熱 中該電極墊間具有至少一相互導通之導線,該相互導 通之導線係埋設於該坡覆材料中。 30、 如申請專利範圍第π項所述之整合性散熱基板,盆 中該導電層為鋁、銅、銀、金,或前述之組合。八 3卜如申請專利範圍第17項所述之整合性散熱基板,其 中該整合性散熱基板之形成步驟更包含進行一防焊 處理及一文字印刷。 Φ 32、如申請專利範圍第4項所述之整合性散熱基板,其 中該整合性散熱基板之形成步驟,至少包含: 提供該金屬基板; 形成該金屬氮化物絕緣層於該金屬基板上;以及 形成該導電層於該金屬氮化物絕緣層之上。 33、 如申請專利範圍第32項所述之整合性散熱基板,其 中該金屬氮化物絕緣層與該導電層之間,以一披覆材 料係形成於該金屬氮化物絕緣層上,使該金屬氮化物 絕緣層區分為具有該彼覆材料之一覆蓋區,及未具有 ® 該彼覆材料之一裸露區,該導電層係位於該覆蓋區之 該彼覆材料之上。 34、 如申請專利範圍第32項所述之整合性散熱基板,其 中該金屬氮化物絕緣層係具有複數個孔洞分佈於其 中〇 35、 如申請專利範圍第32項所述之整合性散熱基板,其 中該金屬氮化物絕緣層為〆單層結構或一多層結構。 36、 如申請專利範圍第32項所述之整合性散熱基板,其 中該金屬氮化物絕緣層為該金屬基板之氮化物。 M338542 年月曰 補无i 37、 如申請專利範圍第32項所述之整合性散熱基板,其 中該金屬基板為鋁、銅、鈦、鎂,或前述之組合。 38、 如申請專利範圍第33項所述之整合性散熱基板,其 中該彼覆材料為一 Epoxy樹脂。 39、 如申請專利範圍第32項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 40、 如申請專利範圍第39項所述之整合性散熱基板,其 中該電極墊間具有至少一相互導通之導線。M338542 Revision Year 曰, u, 补无九, application patent scope: ^~^ 1, an integrated heat dissipation substrate, comprising at least: a metal substrate; a metal compound insulating layer formed on the surface of the metal substrate; A conductive layer is formed on the insulating layer of the metal compound. 2. The integrated heat dissipating substrate according to claim 1, wherein the metal compound insulating layer and the conductive layer are formed on the metal compound insulating layer by a coating material to insulate the metal compound. The layer is divided into a covered area of the covering material and does not have a bare area of the covering material, the conductive layer being located on the covering material of the covering area. 3. The integrated heat dissipating substrate according to claim 1, wherein the metal compound insulating layer has a plurality of holes distributed therein. 4. The integrated heat dissipating substrate according to claim 1, wherein the metal compound insulating layer is a metal oxide insulating layer or a metal nitride insulating layer. 5. The integrated heat dissipating substrate according to claim 4, wherein the metal oxide insulating layer is formed by a micro arc Oxidation (MAO) process or an anodizing process to form a surface of the metal substrate. The metal oxide insulating layer. 6. The integrated heat dissipating substrate according to claim 1, wherein the metal compound insulating layer is a single layer structure or a multilayer structure. 7. The integrated heat dissipating substrate according to claim 1, wherein the metal compound insulating layer is a compound of the metal substrate. 15 M338542 丨% ί - 1 1-1. 8. The integrated heat-dissipating substrate as described in claim 1 is a combination of Ming, Tong, Qin, Zhen, or a combination thereof. 9. The integrated heat dissipating substrate according to claim 8, wherein the metal substrate is an aluminum substrate made of an aluminum metal material. 10. The integrated heat dissipating substrate of claim 9, wherein the metal oxide insulating layer is an aluminum oxide insulating layer. 11. The integrated heat dissipating substrate of claim 2, wherein the material is an Epoxy resin. The integrated heat dissipating substrate of claim 1, wherein the conductive layer has a plurality of electrode pads. 13. The integrated heat dissipating substrate of claim 12, wherein the electrode pads have at least one electrically conductive wire therebetween. 14. The integrated heat dissipating substrate of claim 2, wherein the conductive layer has a plurality of electrode pads. 15. The integrated heat-dissipating substrate of claim 5, wherein the electrode pads have at least one electrically conductive wire therebetween, and the mutually conductive wires are embedded in the other material. 16. The integrated heat dissipating substrate according to claim 1, wherein the 5 kel conductive layer is inscription, copper, silver, gold, or a combination thereof. The integrated heat dissipating substrate according to claim 4, wherein the step of forming the integrated heat dissipating substrate comprises: providing the metal substrate; using a micro-arc oxidation process or an anodizing process to make the metal Forming the metal oxide insulating layer on the substrate; and forming the conductive layer over the metal oxide insulating layer. 18. The integrated heat-dissipating substrate according to claim π, wherein the metal oxide insulating layer is formed between the metal oxide insulating layer and the conductive layer in the M338542 Ί supplementary covering material. On the metal oxide insulating layer, the metal oxide insulating layer is divided into a covering area having one of the covering materials, and a bare area of the covering material is not provided, and the conductive layer is located on the cover 2 Above the material. 19. The integrated heat dissipating substrate of claim 17, wherein the metal oxide insulating layer has a plurality of holes distributed therein. The integrated heat-dissipating substrate of claim 17, wherein the metal oxide insulating layer is a single layer structure or a multilayer structure. 21. The integrated heat dissipating substrate of claim 17, wherein the metal oxide insulating layer is an oxide of the metal substrate. The integrated heat dissipating substrate of claim 17, wherein the metal substrate is aluminum, copper, titanium, magnesium, or a combination thereof. 23. The integrated heat dissipation base according to claim 22, wherein the metal substrate is an aluminum substrate made of an aluminum metal material. 24. The integrated heat dissipating substrate of claim 23, wherein the metal oxide insulating layer is an aluminum oxide insulating layer. 25. The integrated heat dissipating substrate of claim 18, wherein the covering material is an Epoxy resin. 26. The integrated heat sink substrate of claim 17, wherein the conductive layer has a plurality of electrode pads. 27. The integrated heat dissipating substrate of claim 26, wherein the electrode pads have at least one electrically conductive wire therebetween. 28. The integrated heat dissipating substrate of claim 18, wherein the conductive layer has a plurality of electrode pads. 17 M338542 。 f. 29. In the integrated heat dissipation of claim 28, the electrode pads have at least one mutually conducting wire, and the mutually conductive wires are embedded in the slope material. 30. The integrated heat dissipating substrate according to claim π, wherein the conductive layer is aluminum, copper, silver, gold, or a combination thereof. The integrated heat dissipating substrate of claim 17, wherein the step of forming the integrated heat dissipating substrate further comprises performing an anti-welding process and a text printing. Φ 32. The integrated heat dissipation substrate of claim 4, wherein the forming step of the integrated heat dissipation substrate comprises: providing the metal substrate; forming the metal nitride insulating layer on the metal substrate; The conductive layer is formed over the metal nitride insulating layer. The integrated heat dissipating substrate according to claim 32, wherein the metal nitride insulating layer and the conductive layer are formed on the metal nitride insulating layer by a coating material to make the metal The nitride insulating layer is divided into a covering area having one of the covering materials, and has no exposed area of the one of the covering materials, the conductive layer being located on the covering material of the covering area. The integrated heat dissipating substrate according to claim 32, wherein the metal nitride insulating layer has a plurality of holes distributed therein, and the integrated heat dissipating substrate according to claim 32 of the patent application, The metal nitride insulating layer is a single layer structure or a multilayer structure. 36. The integrated heat dissipating substrate of claim 32, wherein the metal nitride insulating layer is a nitride of the metal substrate. The integrated heat dissipating substrate of claim 32, wherein the metal substrate is aluminum, copper, titanium, magnesium, or a combination thereof. 38. The integrated heat dissipating substrate of claim 33, wherein the covering material is an Epoxy resin. 39. The integrated heat dissipating substrate of claim 32, wherein the conductive layer has a plurality of electrode pads. 40. The integrated heat dissipating substrate of claim 39, wherein the electrode pads have at least one electrically conductive wire therebetween. 41、 如申請專利範圍第33項所述之整合性散熱基板,其 中該導電層係具有複數個電極墊。 42、 如申請專利範圍第41項所述之整合性散熱基板,其 中該電極墊間具有至少一相互導通之導線,該相互導 通之導線係埋設於該彼覆材料中。 43、 如申請專利範圍第32項所述之整合性散熱基板,其 中該導電層為IS、銅、銀、金,或前述之組合。The integrated heat dissipating substrate of claim 33, wherein the conductive layer has a plurality of electrode pads. The integrated heat dissipating substrate of claim 41, wherein the electrode pads have at least one electrically conductive wire interposed therebetween, and the mutually conductive wires are embedded in the covering material. 43. The integrated heat dissipating substrate of claim 32, wherein the conductive layer is IS, copper, silver, gold, or a combination thereof. 44、 如申請專利範圍第32項所述之整合性散熱基板,其 中該整合性散熱基板之形成步驟更包含進行一防焊 處理及一文字印刷。 1944. The integrated heat dissipating substrate of claim 32, wherein the step of forming the integrated heat dissipating substrate further comprises performing an anti-welding process and a text printing. 19
TW96219705U 2007-09-10 2007-11-21 Integrated heat dissipation substrate TWM338542U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96219705U TWM338542U (en) 2007-09-10 2007-11-21 Integrated heat dissipation substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW96215196 2007-09-10
TW96219705U TWM338542U (en) 2007-09-10 2007-11-21 Integrated heat dissipation substrate

Publications (1)

Publication Number Publication Date
TWM338542U true TWM338542U (en) 2008-08-11

Family

ID=44331420

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96219705U TWM338542U (en) 2007-09-10 2007-11-21 Integrated heat dissipation substrate

Country Status (1)

Country Link
TW (1) TWM338542U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9381717B2 (en) 2014-01-22 2016-07-05 Asia Vital Components Co., Ltd Manufacturing method of heat dissipation structure applied to mobile device
US9389656B2 (en) 2014-01-30 2016-07-12 Asia Vital Components Co., Ltd. Heat dissipation structure applied to mobile device
TWI566673B (en) * 2012-08-20 2017-01-11 鴻準精密工業股份有限公司 Heat sink assembly

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI566673B (en) * 2012-08-20 2017-01-11 鴻準精密工業股份有限公司 Heat sink assembly
US9381717B2 (en) 2014-01-22 2016-07-05 Asia Vital Components Co., Ltd Manufacturing method of heat dissipation structure applied to mobile device
US9389656B2 (en) 2014-01-30 2016-07-12 Asia Vital Components Co., Ltd. Heat dissipation structure applied to mobile device

Similar Documents

Publication Publication Date Title
TWI305479B (en) Method of fabricating substrate with embedded component therein
US8859908B2 (en) Package carrier
TW201133963A (en) Film system for led applications
JPWO2011111112A1 (en) Heat dissipating structure, electronic device and manufacturing method thereof
WO2010034194A1 (en) Multilayer circuit board and production method thereof and communication device
JP2012009801A (en) Heat dissipating substrate and method of manufacturing the same
JP2015508571A (en) Method for manufacturing metal printed circuit board
WO2011041934A1 (en) Semiconductor carrier structure
CN109413836A (en) Circuit board and preparation method thereof
CN201513770U (en) Heat-dissipation type LED light source module
TWM338542U (en) Integrated heat dissipation substrate
CN108575048A (en) A kind of high heat conduction package substrate and preparation method thereof
CN104135816A (en) Aluminum-based copper-clad plate and manufacturing method thereof, and electronic circuit board
TWM364272U (en) Heat dissipation substrate having superior heat dissipation capability
US8288655B2 (en) Circuit board structure and manufacturing method thereof
TWI270187B (en) Thermal conductive apparatus and manufacturing method thereof
CN102569224B (en) Circuit carrier with high heat dissipation performance and related circuit modules
JP2008091603A (en) Buildup wiring board
CN204725940U (en) A kind of graphite composite heat conduction film
TW201206261A (en) Circuit board containing metallic heat-dissipation layer and its manufacturing method
TWI231586B (en) Chip module having high heat dissipation property and its substrate
TWM406259U (en) Package substrate of light emitting diode having a double-sided DLC film
CN1702863A (en) Circuit device
TWM377700U (en) Semiconductor carrying structure with thermal conductive zone
CN218499342U (en) Copper ceramic circuit board is covered in graphite alkene heat dissipation

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees