TWI841096B - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
TWI841096B
TWI841096B TW111146834A TW111146834A TWI841096B TW I841096 B TWI841096 B TW I841096B TW 111146834 A TW111146834 A TW 111146834A TW 111146834 A TW111146834 A TW 111146834A TW I841096 B TWI841096 B TW I841096B
Authority
TW
Taiwan
Prior art keywords
layer
substrate
semiconductor
buffer layer
metal layer
Prior art date
Application number
TW111146834A
Other languages
Chinese (zh)
Inventor
黃仲麟
Original Assignee
南亞科技股份有限公司
Filing date
Publication date
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI841096B publication Critical patent/TWI841096B/en

Links

Images

Abstract

A semiconductor device includes a substrate, a metal layer, a semiconductor layer, an insulating layer and a buffer layer. The substrate has a recess. The metal layer is located in the recess of the substrate. The semiconductor layer is located in the recess of the substrate and on the metal layer, in which the bottom of the semiconductor layer directly contacts the metal layer. The insulating layer is located in the recess of the substrate and on the semiconductor layer. The buffer layer extends from the position between the semiconductor layer and the metal layer, through the sidewall of the semiconductor layer, to the sidewall of the insulating layer, such that the buffer layer has an L-shaped cross section.

Description

半導體裝置及其製造方法Semiconductor device and method for manufacturing the same

本揭露是有關一種半導體裝置及一種半導體裝置的製造方法。The present disclosure relates to a semiconductor device and a method for manufacturing the semiconductor device.

在動態隨機處存記憶體(Dynamic random access memory, DRAM)裡面,閘極引發汲極漏電流(Gate induced drain leakage, GIDL)是個嚴重且難以去除的問題,因為讓電晶體的飽和電流(I D,SAT)有更好表現就可能引發閘極引發汲極漏電流,並且這種漏電流會嚴重影響記憶體的回寫。當源極/汲極的摻雜密度變高,字線閘極導體與汲極之間的接觸就會變大,兩者之間的電場變大的同時也就更容易導致更大的閘極引發汲極漏電流。 In dynamic random access memory (DRAM), gate induced drain leakage (GIDL) is a serious and difficult to eliminate problem, because making the saturation current (I D,SAT ) of the transistor better may cause gate induced drain leakage, and this leakage current will seriously affect the memory write-back. When the source/drain doping density becomes higher, the contact between the word line gate conductor and the drain will become larger, and the electric field between the two will increase, which will easily lead to a larger gate induced drain leakage current.

傳統上的解法是降低汲極摻雜的密度,再將閘極與汲極重疊,但這會影響記憶體的驅動電流以及導致不好的回寫表現。另一傳統做法是在字線中使用雙功函數陣列結構(Dual work function array),但雙功函數陣列結構又會因不同的材質導致電阻率的不同,讓訊號在傳遞上出現時間差。因此,在字線長度變長及閘極電壓開關切換的工作頻率變高的時候,雙功函數陣列結構會容易出現電阻電容延遲(Resistance-Capacitance delay, RC delay)。The traditional solution is to reduce the density of drain doping and then overlap the gate and drain, but this will affect the memory drive current and lead to poor write-back performance. Another traditional approach is to use a dual work function array structure in the word line, but the dual work function array structure will cause different resistivities due to different materials, causing time differences in signal transmission. Therefore, when the word line length becomes longer and the operating frequency of the gate voltage switch switching becomes higher, the dual work function array structure will easily experience resistance-capacitance delay (RC delay).

本揭露之一技術態樣為一種半導體裝置。One technical aspect of the present disclosure is a semiconductor device.

根據本揭露一實施方式,一種半導體裝置包含基板、金屬層、半導體層、隔離層與緩衝層。基板具有凹槽,金屬層位於基板的凹槽內。半導體層位於基板的凹槽內且位於金屬層上,其中半導體層的底部與金屬層直接接觸。隔離層位於基板的凹槽內且位於半導體層上。緩衝層從半導體層與金屬層之間的位置經半導體層的側壁延伸至隔離層的側壁,使緩衝層具有L形的剖面。According to an embodiment of the present disclosure, a semiconductor device includes a substrate, a metal layer, a semiconductor layer, an isolation layer and a buffer layer. The substrate has a groove, and the metal layer is located in the groove of the substrate. The semiconductor layer is located in the groove of the substrate and on the metal layer, wherein the bottom of the semiconductor layer is in direct contact with the metal layer. The isolation layer is located in the groove of the substrate and on the semiconductor layer. The buffer layer extends from a position between the semiconductor layer and the metal layer through the side wall of the semiconductor layer to the side wall of the isolation layer, so that the buffer layer has an L-shaped cross-section.

在本揭露之一實施方式中,緩衝層具有水平部與鄰接水平部的垂直部,半導體層的底部位於緩衝層的水平部內,且垂直部接觸半導體層的側壁與隔離層的側壁。In one embodiment of the present disclosure, the buffer layer has a horizontal portion and a vertical portion adjacent to the horizontal portion, the bottom of the semiconductor layer is located in the horizontal portion of the buffer layer, and the vertical portion contacts the sidewall of the semiconductor layer and the sidewall of the isolation layer.

在本揭露之一實施方式中,緩衝層的水平部具有開口,且半導體層的底部位於水平部的開口中。In one embodiment of the present disclosure, the horizontal portion of the buffer layer has an opening, and the bottom of the semiconductor layer is located in the opening of the horizontal portion.

在本揭露之一實施方式中,金屬層的材質包括鎢。In one embodiment of the present disclosure, the material of the metal layer includes tungsten.

在本揭露之一實施方式中,半導體層的材質包括多晶矽。In one embodiment of the present disclosure, the material of the semiconductor layer includes polysilicon.

在本揭露之一實施方式中,隔離層的材質包括氮化矽。In one embodiment of the present disclosure, the material of the isolation layer includes silicon nitride.

在本揭露之一實施方式中,半導體裝置更包括絕緣層,位於基板的凹槽內,且位於基板與金屬層之間及基板與緩衝層之間。In one embodiment of the present disclosure, the semiconductor device further includes an insulating layer located in the groove of the substrate, between the substrate and the metal layer, and between the substrate and the buffer layer.

本揭露之另一技術態樣為一種半導體裝置的製造方法。Another technical aspect of the present disclosure is a method for manufacturing a semiconductor device.

根據本揭露一實施方式,一種半導體裝置的製造方法包含在基板的凹槽內形成絕緣層;在基板的凹槽內形成金屬層;在基板的凹槽內與金屬層上形成緩衝層,其中緩衝層沿絕緣層及金屬層的頂面形成;蝕刻緩衝層以形成開口,使其具有L形的剖面;在緩衝層與金屬層上形成半導體層,使半導體層的底部位於開口中而與金屬層直接接觸;以及在半導體層上形成隔離層。According to an embodiment of the present disclosure, a method for manufacturing a semiconductor device includes forming an insulating layer in a groove of a substrate; forming a metal layer in the groove of the substrate; forming a buffer layer in the groove of the substrate and on the metal layer, wherein the buffer layer is formed along the top surfaces of the insulating layer and the metal layer; etching the buffer layer to form an opening so that it has an L-shaped cross-section; forming a semiconductor layer on the buffer layer and the metal layer so that the bottom of the semiconductor layer is located in the opening and directly contacts the metal layer; and forming an isolation layer on the semiconductor layer.

在本揭露之一實施方式中,蝕刻該緩衝層以形成該開口包括在凹槽內與緩衝層上形成相對的兩間隔件;以兩間隔件為遮罩蝕刻緩衝層以形成開口;以及移除兩間隔件。In one embodiment of the present disclosure, etching the buffer layer to form the opening includes forming two spacers opposite to each other in the groove and on the buffer layer; etching the buffer layer using the two spacers as masks to form the opening; and removing the two spacers.

在本揭露之一實施方式中,蝕刻緩衝層以形成開口是使用乾蝕刻法。In one embodiment of the present disclosure, etching the buffer layer to form the opening is performed using a dry etching method.

在本揭露上述實施方式中,由於緩衝層有開口,因此半導體層的底部能直接跟下方的金屬層接觸,達到直接將半導體層與金屬層短路的作用。這樣的配置,雖然半導體層與金屬層擁有不同的電阻率,但因為彼此電性連接而導通,可以避免訊號在這兩層之間傳遞的時間差,進而避免雙功函數陣列結構在高頻運作下的電阻電容延遲。In the above-mentioned embodiment of the present disclosure, since the buffer layer has an opening, the bottom of the semiconductor layer can directly contact the metal layer below, thereby achieving the effect of directly short-circuiting the semiconductor layer and the metal layer. With such a configuration, although the semiconductor layer and the metal layer have different resistivities, they are electrically connected and conductive to each other, which can avoid the time difference in signal transmission between the two layers, thereby avoiding the resistance and capacitance delay of the dual work function array structure under high-frequency operation.

以下揭示之實施方式內容提供了用於實施所提供的標的之不同特徵的許多不同實施方式,或實例。下文描述了元件和佈置之特定實例以簡化本案。當然,該等實例僅為實例且並不意欲作為限制。此外,本案可在各個實例中重複元件符號及/或字母。此重複係用於簡便和清晰的目的,且其本身不指定所論述的各個實施方式及/或配置之間的關係。The embodiments disclosed below provide many different embodiments, or examples, for implementing the different features of the subject matter provided. Specific examples of components and arrangements are described below to simplify the present invention. Of course, these examples are only examples and are not intended to be limiting. In addition, the present invention may repeat component symbols and/or letters in each example. This repetition is for the purpose of simplicity and clarity, and does not itself specify the relationship between the various embodiments and/or configurations discussed.

諸如「在……下方」、「在……之下」、「下部」、「在……之上」、「上部」等等空間相對術語可在本文中為了便於描述之目的而使用,以描述如附圖中所示之一個元件或特徵與另一元件或特徵之關係。空間相對術語意欲涵蓋除了附圖中所示的定向之外的在使用或操作中的裝置的不同定向。裝置可經其他方式定向(旋轉90度或以其他定向)並且本文所使用的空間相對描述詞可同樣相應地解釋。Spatially relative terms such as "below," "beneath," "lower," "above," "upper," and the like may be used herein for descriptive purposes to describe the relationship of one element or feature to another element or feature as illustrated in the accompanying figures. Spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the accompanying figures. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.

第1圖繪示根據本揭露一實施方式的半導體裝置100的剖面圖。參照第1圖,半導體裝置100包含基板110、金屬層120、半導體層130、隔離層140與緩衝層150。基板110具有凹槽112,金屬層120位於基板110的凹槽112內。半導體層130位於基板110的凹槽112內且位於金屬層120上,其中半導體層130的底部132與金屬層120直接接觸。隔離層140位於基板110的凹槽112內且位於半導體層130上。FIG. 1 shows a cross-sectional view of a semiconductor device 100 according to an embodiment of the present disclosure. Referring to FIG. 1 , the semiconductor device 100 includes a substrate 110, a metal layer 120, a semiconductor layer 130, an isolation layer 140, and a buffer layer 150. The substrate 110 has a groove 112, and the metal layer 120 is located in the groove 112 of the substrate 110. The semiconductor layer 130 is located in the groove 112 of the substrate 110 and is located on the metal layer 120, wherein the bottom 132 of the semiconductor layer 130 is in direct contact with the metal layer 120. The isolation layer 140 is located in the groove 112 of the substrate 110 and is located on the semiconductor layer 130.

緩衝層150從半導體層130與金屬層120之間的位置經半導體層130的側壁134延伸至隔離層140的側壁142,使緩衝層150具有L形的剖面。緩衝層150具有水平部152與鄰接水平部152的垂直部154,半導體層130的底部132位於緩衝層150的水平部152內,且垂直部154接觸半導體層130的側壁134與隔離層140的側壁142。緩衝層150的水平部152具有開口156,且半導體層130的底部132位於水平部152的開口156中。半導體裝置100更包括絕緣層160,位於基板110的凹槽112內,且位於基板110與金屬層120之間及基板110與緩衝層150之間。The buffer layer 150 extends from a position between the semiconductor layer 130 and the metal layer 120 through the sidewall 134 of the semiconductor layer 130 to the sidewall 142 of the isolation layer 140, so that the buffer layer 150 has an L-shaped cross-section. The buffer layer 150 has a horizontal portion 152 and a vertical portion 154 adjacent to the horizontal portion 152. The bottom 132 of the semiconductor layer 130 is located in the horizontal portion 152 of the buffer layer 150, and the vertical portion 154 contacts the sidewall 134 of the semiconductor layer 130 and the sidewall 142 of the isolation layer 140. The horizontal portion 152 of the buffer layer 150 has an opening 156, and the bottom 132 of the semiconductor layer 130 is located in the opening 156 of the horizontal portion 152. The semiconductor device 100 further includes an insulating layer 160 located in the groove 112 of the substrate 110 and between the substrate 110 and the metal layer 120 and between the substrate 110 and the buffer layer 150.

也就是說,在本實施方式中,緩衝層150的垂直部154的一部分位於半導體層130與絕緣層160之間,垂直部154的剩餘部分則位於隔離層140與絕緣層160之間,並且緩衝層150的垂直部154直接接觸絕緣層160。緩衝層150的水平部152位於金屬層120的頂面上,與金屬層120的頂面直接接觸。半導體層的底部132穿過開口156與金屬層120直接接觸並電性連接,半導體層130的其餘部分位於緩衝層150的水平部152之上。因此,如第1圖中所繪示,緩衝層150呈現兩個L型的剖面,分別位於凹槽112中的兩邊。That is, in this embodiment, a portion of the vertical portion 154 of the buffer layer 150 is located between the semiconductor layer 130 and the insulating layer 160, and the remaining portion of the vertical portion 154 is located between the isolation layer 140 and the insulating layer 160, and the vertical portion 154 of the buffer layer 150 directly contacts the insulating layer 160. The horizontal portion 152 of the buffer layer 150 is located on the top surface of the metal layer 120 and directly contacts the top surface of the metal layer 120. The bottom 132 of the semiconductor layer passes through the opening 156 to directly contact and electrically connect with the metal layer 120, and the remaining portion of the semiconductor layer 130 is located above the horizontal portion 152 of the buffer layer 150. Therefore, as shown in FIG. 1 , the buffer layer 150 presents two L-shaped cross-sections, which are located at two sides of the groove 112 respectively.

在本實施方式中,基板110的材質包含矽(Si),金屬層120的材質包括鎢(W)或氮化鈦(TiN)。半導體層130的材質包括多晶矽(Poly Silicon)。隔離層140的材質包括氮化矽(SiN)。緩衝層150的材質可為二氧化矽(SiO 2),但在一些實施方式中,緩衝層150的材質亦可使用高介電常數的介電材質(high κ dielectric,例如氮化矽) ,但並不用於限制本揭露。此處所謂「高介電常數」的比較基準為二氧化矽(κ=3.9) ,氮化矽的κ為7到8。緩衝層150使用高介電常數的材料可以減少飽和電流的過度下降,同時這樣的雙功函數陣列結構又可以減少汲極側的電場,以避免閘極引發汲極漏電流。 In the present embodiment, the material of the substrate 110 includes silicon (Si), and the material of the metal layer 120 includes tungsten (W) or titanium nitride (TiN). The material of the semiconductor layer 130 includes polysilicon (Poly Silicon). The material of the isolation layer 140 includes silicon nitride (SiN). The material of the buffer layer 150 may be silicon dioxide (SiO 2 ), but in some embodiments, the material of the buffer layer 150 may also use a high dielectric constant dielectric material (high κ dielectric, such as silicon nitride), but it is not intended to limit the present disclosure. The comparison benchmark for the so-called "high dielectric constant" here is silicon dioxide (κ=3.9), and the κ of silicon nitride is 7 to 8. The use of a high dielectric constant material for the buffer layer 150 can reduce the excessive drop in saturation current. At the same time, such a dual work function array structure can reduce the electric field on the drain side to avoid gate-induced drain leakage current.

具體而言,由於半導體裝置100的緩衝層150具有開口156,使得半導體層130的底部132位於開口156中且半導體層130的底部132與金屬層120直接接觸。如此一來,半導體層130與金屬層120之間便呈現短路的狀態。因為半導體層130的底部132與金屬層120直接接觸,因此兩者電性連接而導通,而可以避免訊號在金屬層120與半導體層130之間傳遞的時間差,進而避免雙功函數陣列結構在高頻運作下因傳統緩衝層將兩層不同電阻率的導體隔開所引發的電阻電容延遲。Specifically, since the buffer layer 150 of the semiconductor device 100 has the opening 156, the bottom 132 of the semiconductor layer 130 is located in the opening 156 and the bottom 132 of the semiconductor layer 130 is in direct contact with the metal layer 120. In this way, a short circuit occurs between the semiconductor layer 130 and the metal layer 120. Because the bottom 132 of the semiconductor layer 130 is in direct contact with the metal layer 120, the two are electrically connected and conductive, thereby avoiding the time difference in signal transmission between the metal layer 120 and the semiconductor layer 130, thereby avoiding the resistance and capacitance delay caused by the traditional buffer layer separating the two layers of conductors with different resistivities when the dual work function array structure operates at high frequencies.

應理解到,已敘述的元件連接關係、材料與功效將不重覆贅述,合先敘明。在以下敘述中,將說明半導體裝置100的製造方法。It should be understood that the connection relationship, materials and functions of the components described above will not be repeated and should be described first. In the following description, a method for manufacturing the semiconductor device 100 will be described.

第2圖繪示根據本揭露一實施方式的半導體裝置的製造方法的流程圖。首先在步驟S1中,半導體裝置的製造方法包含在基板的凹槽內形成絕緣層。接著在步驟S2中,在基板的凹槽內形成金屬層。然後在步驟S3中,在基板的凹槽內與金屬層上形成緩衝層,其中緩衝層沿絕緣層及金屬層的頂面形成。之後在步驟S4中,蝕刻緩衝層以形成開口,使其具有L形的剖面。接著在步驟S5中,在緩衝層與金屬層上形成半導體層,使半導體層的底部位於開口中而與金屬層直接接觸。後續步驟S6中,在半導體層上形成隔離層。FIG. 2 is a flow chart of a method for manufacturing a semiconductor device according to an embodiment of the present disclosure. First, in step S1, the method for manufacturing a semiconductor device includes forming an insulating layer in a groove of a substrate. Then, in step S2, a metal layer is formed in the groove of the substrate. Then, in step S3, a buffer layer is formed in the groove of the substrate and on the metal layer, wherein the buffer layer is formed along the top surface of the insulating layer and the metal layer. Then, in step S4, the buffer layer is etched to form an opening so that it has an L-shaped cross-section. Then in step S5, a semiconductor layer is formed on the buffer layer and the metal layer, so that the bottom of the semiconductor layer is located in the opening and directly contacts the metal layer. In the subsequent step S6, an isolation layer is formed on the semiconductor layer.

在一些實施方式中,半導體裝置的製造方法並不限於上述步驟S1至步驟S6,舉例來說,在一些實施方式中,可在兩前後步驟之間進一步包括其他步驟,也可在步驟S1前進一步包括其他步驟,在步驟S5後進一步包括其他步驟。In some embodiments, the method for manufacturing a semiconductor device is not limited to the above-mentioned steps S1 to S6. For example, in some embodiments, other steps may be further included between two successive steps, or other steps may be further included before step S1, and other steps may be further included after step S5.

在以下敘述中,將詳細說明上述半導體裝置的製造方法的各步驟。In the following description, each step of the method for manufacturing the semiconductor device will be described in detail.

第3圖至第10圖繪示第1圖之半導體裝置100的製造方法在中間過程的剖面圖。參照第3圖與第4圖,首先,可在基板110中形成凹槽112。接著,在基板110的凹槽112內形成絕緣層160。絕緣層160的形成方式可利用高溫氧化製程來氧化矽基板110中的矽,但並不限於此種方法。FIG. 3 to FIG. 10 illustrate cross-sectional views of the intermediate process of the manufacturing method of the semiconductor device 100 of FIG. 1. Referring to FIG. 3 and FIG. 4, first, a groove 112 may be formed in the substrate 110. Then, an insulating layer 160 is formed in the groove 112 of the substrate 110. The insulating layer 160 may be formed by oxidizing the silicon in the silicon substrate 110 using a high temperature oxidation process, but is not limited to this method.

參照第5圖,絕緣層160形成之後,可在基板110的凹槽112內形成金屬層120。金屬層120位於絕緣層160上。金屬層120的形成方式可為物理氣象沉積(Physical vapor deposition, PVD),但並不限於此種方法。5 , after the insulating layer 160 is formed, the metal layer 120 may be formed in the groove 112 of the substrate 110. The metal layer 120 is located on the insulating layer 160. The metal layer 120 may be formed by physical vapor deposition (PVD), but is not limited to this method.

參照第6圖,金屬層120形成之後,在基板110的凹槽112內與金屬層120上形成緩衝層150,其中緩衝層150沿絕緣層160及金屬層120的頂面形成。此時形成的緩衝層150是一個連續的披覆層,緩衝層150也同時會在基板110的上表面上形成。6 , after the metal layer 120 is formed, a buffer layer 150 is formed in the groove 112 of the substrate 110 and on the metal layer 120, wherein the buffer layer 150 is formed along the insulating layer 160 and the top surface of the metal layer 120. The buffer layer 150 formed at this time is a continuous coating layer, and the buffer layer 150 is also formed on the upper surface of the substrate 110 at the same time.

參照第7圖,接著,在凹槽112內與緩衝層150上形成相對的兩間隔件170。間隔件170的材質可為二氧化矽,但並不侷限於此種材料,舉例來說,間隔件170亦可為圖案化光阻等材料。兩間隔件170可經圖案化製程形成,使其之間會有一間隔,兩間隔件170可於稍後的蝕刻步驟中作為遮罩來使用。Referring to FIG. 7 , two spacers 170 are then formed in the groove 112 and on the buffer layer 150. The material of the spacer 170 may be silicon dioxide, but is not limited to this material. For example, the spacer 170 may also be a patterned photoresist or other material. The two spacers 170 may be formed by a patterning process so that there is a gap between them. The two spacers 170 may be used as masks in a subsequent etching step.

參照第8圖,間隔件170形成之後,以兩間隔件170為遮罩蝕刻緩衝層150以形成開口156。兩間隔件170之間的開口可讓緩衝層150的一部分露出,使緩衝層150未被兩間隔件170覆蓋的露出部分能夠被蝕刻出開口156。此外,凹槽112外之基板110上方的緩衝層150可經蝕刻移除。在本實施方式中,蝕刻緩衝層150以形成開口156是使用乾蝕刻法,但並不侷限於此種方法。Referring to FIG. 8 , after the spacers 170 are formed, the buffer layer 150 is etched using the two spacers 170 as a mask to form an opening 156. The opening between the two spacers 170 allows a portion of the buffer layer 150 to be exposed, so that the exposed portion of the buffer layer 150 not covered by the two spacers 170 can be etched to form the opening 156. In addition, the buffer layer 150 above the substrate 110 outside the groove 112 can be removed by etching. In the present embodiment, the buffer layer 150 is etched to form the opening 156 using a dry etching method, but is not limited to this method.

參照第9圖,開口156形成之後,移除兩間隔件170。移除間隔件170之後,會留下具有L形的剖面的緩衝層150,其水平部152會具有開口156。在緩衝層150的開口156形成之後,金屬層120的一部分便會露出。9, after the opening 156 is formed, the two spacers 170 are removed. After the spacers 170 are removed, the buffer layer 150 having an L-shaped cross-section is left, and the horizontal portion 152 thereof has the opening 156. After the opening 156 of the buffer layer 150 is formed, a portion of the metal layer 120 is exposed.

參照第10圖,間隔件170(見第7圖)移除後,在第8圖的緩衝層150與金屬層120上形成半導體層130,使半導體層130的底部132位於開口156中而與金屬層120直接接觸。由於前面的步驟將緩衝層150蝕刻出了開口156,在形成半導體層130時,半導體層130便可經由開口156直接與金屬層120接觸。這樣的設計,使得具有兩種不同材質的半導體層130與金屬層120直接導通,不會因為兩者電阻率不同,而在高工作頻率的情況下出現電阻電容延遲。透過將半導體層130的底部132與金屬層120直接接觸,而可以避免訊號在金屬層120與半導體層130之間傳遞的時間差,進而避免雙功函數陣列結構在高頻運作下因傳統緩衝層將兩層不同電阻率的導體隔開所引發的電阻電容延遲。本實施方式的雙功函數陣列結構可以減少汲極側的電場大小,以避免閘極引發汲極漏電流。Referring to FIG. 10 , after the spacer 170 (see FIG. 7 ) is removed, the semiconductor layer 130 is formed on the buffer layer 150 and the metal layer 120 in FIG. 8 , so that the bottom 132 of the semiconductor layer 130 is located in the opening 156 and directly contacts the metal layer 120. Since the opening 156 is etched out of the buffer layer 150 in the previous step, when the semiconductor layer 130 is formed, the semiconductor layer 130 can directly contact the metal layer 120 through the opening 156. This design allows the semiconductor layer 130 and the metal layer 120 having two different materials to be directly connected, and there will be no resistance and capacitance delay under high operating frequency due to the different resistivity of the two. By directly contacting the bottom 132 of the semiconductor layer 130 with the metal layer 120, the time difference of the signal transmission between the metal layer 120 and the semiconductor layer 130 can be avoided, thereby avoiding the resistance and capacitance delay caused by the traditional buffer layer separating the two layers of conductors with different resistivity under high-frequency operation of the dual-function array structure. The dual-function array structure of this embodiment can reduce the electric field size on the drain side to avoid the gate-induced drain leakage current.

參照第10圖與第1圖,半導體層130形成之後,在半導體層130上形成隔離層140。此步驟結束後,第1圖的半導體裝置100便製造完成。透過蝕刻緩衝層150以形成開口156,讓半導體層130的底部132可以透過開口156直接與金屬層120接觸,可以避免訊號在金屬層120與半導體層130兩種材料中傳遞的時間差,進而避免傳統的雙功函數陣列結構在高頻運作下因傳統緩衝層將兩層不同電阻率的導體隔開所引發的電阻電容延遲。Referring to FIG. 10 and FIG. 1, after the semiconductor layer 130 is formed, an isolation layer 140 is formed on the semiconductor layer 130. After this step is completed, the semiconductor device 100 of FIG. 1 is manufactured. By etching the buffer layer 150 to form an opening 156, the bottom 132 of the semiconductor layer 130 can directly contact the metal layer 120 through the opening 156, thereby avoiding the time difference of the signal being transmitted in the metal layer 120 and the semiconductor layer 130, thereby avoiding the resistance and capacitance delay caused by the traditional buffer layer separating the two layers of conductors with different resistivity under high frequency operation of the traditional dual work function array structure.

前述概述了幾個實施方式的特徵,使得本領域技術人員可以更好地理解本揭露的態樣。本領域技術人員應當理解,他們可以容易地將本揭露用作設計或修改其他過程和結構的基礎,以實現與本文介紹的實施方式相同的目的和/或實現相同的優點。本領域技術人員還應該認識到,這樣的等效構造不脫離本揭露的精神和範圍,並且在不脫離本揭露的精神和範圍的情況下,它們可以在這裡進行各種改變,替換和變更。The foregoing summarizes the features of several embodiments so that those skilled in the art can better understand the aspects of the present disclosure. Those skilled in the art should understand that they can easily use the present disclosure as a basis for designing or modifying other processes and structures to achieve the same purpose and/or achieve the same advantages as the embodiments described herein. Those skilled in the art should also recognize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they can make various changes, substitutions and modifications here without departing from the spirit and scope of the present disclosure.

100:半導體裝置100:Semiconductor device

110:基板110: Substrate

112:凹槽112: Groove

120:金屬層120:Metal layer

130:半導體層130:Semiconductor layer

132:底部132: Bottom

134:側壁134: Side wall

140:隔離層140: Isolation layer

142:側壁142: Side wall

150:緩衝層150: Buffer layer

152:水平部152: Horizontal

154:垂直部154: Vertical part

156:開口156: Open

160:絕緣層160: Insulation layer

170:間隔件170: Spacer

S1,S2,S3,S4,S5,S6:步驟S1,S2,S3,S4,S5,S6: Steps

當與隨附圖示一起閱讀時,可由後文實施方式最佳地理解本揭露內容的態樣。注意到根據此行業中之標準實務,各種特徵並未按比例繪製。實際上,為論述的清楚性,可任意增加或減少各種特徵的尺寸。 第1圖繪示根據本揭露一實施方式的半導體裝置的剖面圖。 第2圖繪示根據本揭露一實施方式的半導體裝置的製造方法的流程圖。 第3圖至第10圖繪示第1圖之半導體裝置的製造方法在中間過程的剖面圖。 The disclosure is best understood from the following embodiments when read in conjunction with the accompanying illustrations. Note that various features are not drawn to scale in accordance with standard practice in the industry. In fact, the dimensions of various features may be arbitrarily increased or decreased for clarity of discussion. FIG. 1 illustrates a cross-sectional view of a semiconductor device according to an embodiment of the disclosure. FIG. 2 illustrates a flow chart of a method for manufacturing a semiconductor device according to an embodiment of the disclosure. FIGS. 3 to 10 illustrate cross-sectional views of the method for manufacturing the semiconductor device of FIG. 1 at intermediate stages.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

100:半導體裝置 100:Semiconductor devices

110:基板 110: Substrate

112:凹槽 112: Groove

120:金屬層 120:Metal layer

130:半導體層 130:Semiconductor layer

132:底部 132: Bottom

134:側壁 134: Side wall

140:隔離層 140: Isolation layer

142:側壁 142: Side wall

150:緩衝層 150: Buffer layer

152:水平部 152: Horizontal part

154:垂直部 154: Vertical part

156:開口 156: Open mouth

160:絕緣層 160: Insulation layer

Claims (10)

一種半導體裝置,包括:一基板,其中該基板具有一凹槽;一金屬層,位於該基板的該凹槽內;一半導體層,位於該基板的該凹槽內且位於該金屬層上,其中該半導體層的一底部與該金屬層直接接觸;一隔離層,位於該基板的該凹槽內且位於該半導體層上;以及一緩衝層,具有位在該半導體層與該金屬層之接觸面的一開口,其中該緩衝層從該開口的兩側分別延伸,且位於該半導體層的一側壁與該隔離層的一側壁上,使該緩衝層具有L形的剖面。 A semiconductor device comprises: a substrate, wherein the substrate has a groove; a metal layer, located in the groove of the substrate; a semiconductor layer, located in the groove of the substrate and on the metal layer, wherein a bottom of the semiconductor layer is in direct contact with the metal layer; an isolation layer, located in the groove of the substrate and on the semiconductor layer; and a buffer layer, having an opening located at the contact surface between the semiconductor layer and the metal layer, wherein the buffer layer extends from both sides of the opening respectively and is located on a side wall of the semiconductor layer and a side wall of the isolation layer, so that the buffer layer has an L-shaped cross-section. 如請求項1所述之半導體裝置,其中該緩衝層具有一水平部與鄰接該水平部的一垂直部,該半導體層的該底部位於該緩衝層的該水平部內,且該垂直部接觸該半導體層的該側壁與該隔離層的該側壁。 A semiconductor device as described in claim 1, wherein the buffer layer has a horizontal portion and a vertical portion adjacent to the horizontal portion, the bottom of the semiconductor layer is located in the horizontal portion of the buffer layer, and the vertical portion contacts the side wall of the semiconductor layer and the side wall of the isolation layer. 如請求項2所述之半導體裝置,其中該半導體層的該底部位於該水平部的該開口中。 A semiconductor device as described in claim 2, wherein the bottom of the semiconductor layer is located in the opening of the horizontal portion. 如請求項1所述之半導體裝置,其中該金屬層的材質包括鎢。 A semiconductor device as described in claim 1, wherein the material of the metal layer includes tungsten. 如請求項1所述之半導體裝置,其中該半導體層的材質包括多晶矽。 A semiconductor device as described in claim 1, wherein the material of the semiconductor layer includes polysilicon. 如請求項1所述之半導體裝置,其中該隔離層的材質包括氮化矽。 A semiconductor device as described in claim 1, wherein the material of the isolation layer includes silicon nitride. 如請求項1所述之半導體裝置,更包括:一絕緣層,位於該基板的該凹槽內,且位於該基板與該金屬層之間及該基板與該緩衝層之間。 The semiconductor device as described in claim 1 further includes: an insulating layer located in the groove of the substrate, between the substrate and the metal layer, and between the substrate and the buffer layer. 一種半導體裝置的製造方法,包括:在一基板的一凹槽內形成一絕緣層;在該基板的該凹槽內形成一金屬層;在該基板的該凹槽內與該金屬層上形成一緩衝層,其中該緩衝層沿該絕緣層及該金屬層的頂面形成;蝕刻該緩衝層以形成一開口,使其具有L形的剖面;在該緩衝層與該金屬層上形成一半導體層,使該半導體層的一底部位於該開口中而與該金屬層直接接觸;以及在該半導體層上形成一隔離層。 A method for manufacturing a semiconductor device includes: forming an insulating layer in a groove of a substrate; forming a metal layer in the groove of the substrate; forming a buffer layer in the groove of the substrate and on the metal layer, wherein the buffer layer is formed along the top surface of the insulating layer and the metal layer; etching the buffer layer to form an opening so that it has an L-shaped cross-section; forming a semiconductor layer on the buffer layer and the metal layer so that a bottom of the semiconductor layer is located in the opening and directly contacts the metal layer; and forming an isolation layer on the semiconductor layer. 如請求項8所述之半導體裝置的製造方法,其中蝕刻該緩衝層以形成該開口包括:在該凹槽內與該緩衝層上形成相對的兩間隔件; 以該兩間隔件為遮罩蝕刻該緩衝層以形成該開口;以及移除該兩間隔件。 The method for manufacturing a semiconductor device as described in claim 8, wherein etching the buffer layer to form the opening comprises: forming two spacers opposite to each other in the groove and on the buffer layer; etching the buffer layer using the two spacers as masks to form the opening; and removing the two spacers. 如請求項8所述之半導體裝置的製造方法,其中蝕刻該緩衝層以形成該開口是使用乾蝕刻法。A method for manufacturing a semiconductor device as described in claim 8, wherein etching the buffer layer to form the opening is performed using a dry etching method.
TW111146834A 2022-12-06 Semiconductor device and manufacturing method thereof TWI841096B (en)

Publications (1)

Publication Number Publication Date
TWI841096B true TWI841096B (en) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210035835A1 (en) 2019-07-31 2021-02-04 Kokusai Electric Corporation Substrate processing apparatus, substrate support, and method of manufacturing semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210035835A1 (en) 2019-07-31 2021-02-04 Kokusai Electric Corporation Substrate processing apparatus, substrate support, and method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US9093419B2 (en) Semiconductor device containing MIM capacitor and fabrication method
KR970000228B1 (en) Method for manufacturing dram capacitor
US7494865B2 (en) Fabrication method of metal oxide semiconductor transistor
US11121135B1 (en) Structure of memory device
US11737257B2 (en) Semiconductor device and manufacturing method thereof
TWI434353B (en) Method for forming self-aligned contact and integrated circuit with self-aligned contact
KR101096033B1 (en) Method for fabricating semiconductor device
TWI841096B (en) Semiconductor device and manufacturing method thereof
US11665888B2 (en) Semiconductor device and method for fabricating the same
JP2009164534A (en) Semiconductor device and manufacturing method therefor
US6177327B1 (en) Method of manufacturing capacitor for mixed-moded circuit device
KR100973266B1 (en) Method of manufacturing of semiconductor
TWI736947B (en) Memory structure and manufacturing method thereof
JP3165693B2 (en) Stacked capacitor type DRAM
KR20090103508A (en) Semiconductor device
KR100195837B1 (en) Micro contact forming method of semiconductor device
KR19990057892A (en) Contact formation method of semiconductor device
KR20070032476A (en) Method of manufacturing semiconductor device
KR100745057B1 (en) Method for fabricating of semiconductor device
KR20050066164A (en) Semiconductor device and method of manufacturing semiconductor device
KR100575360B1 (en) Method for fabricating semiconductor device
CN117373996A (en) Semiconductor structure and manufacturing method thereof
KR0140476B1 (en) Manufacture method of electrode storage in semiconductor device
KR0166029B1 (en) Capacitor fabrication method of semiconductor device
CN117352491A (en) Semiconductor structure and manufacturing method thereof