TWI825908B - 有機半導體化合物及包含其之有機光電元件 - Google Patents

有機半導體化合物及包含其之有機光電元件 Download PDF

Info

Publication number
TWI825908B
TWI825908B TW111129786A TW111129786A TWI825908B TW I825908 B TWI825908 B TW I825908B TW 111129786 A TW111129786 A TW 111129786A TW 111129786 A TW111129786 A TW 111129786A TW I825908 B TWI825908 B TW I825908B
Authority
TW
Taiwan
Prior art keywords
group
groups
electrode
substituted
organic
Prior art date
Application number
TW111129786A
Other languages
English (en)
Other versions
TW202309049A (zh
Inventor
蕭育堂
李威龍
蔡佳樺
廖椿毅
Original Assignee
天光材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天光材料科技股份有限公司 filed Critical 天光材料科技股份有限公司
Publication of TW202309049A publication Critical patent/TW202309049A/zh
Application granted granted Critical
Publication of TWI825908B publication Critical patent/TWI825908B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本發明係關於一種有機半導體化合物及包含其之有機光電元件,該有機半導體化合物具有一新穎之化學結構設計,使得該化合物具有良好之紅外光範圍響應值,適用於有機光電元件,如OPD、OFET或OPV等,於使用時可提供更佳之吸光波長範圍和外部量子效率。

Description

有機半導體化合物及包含其之有機光電元件
本發明係關於一種化合物及其包含之光電元件,其特別係一種具有良好之物理化學性質,並可使用對環境友善之有機溶劑進行加工操作,提升其生產之便利性及降低對環境影響之有機半導體化合物,及其具有優異之紅外光範圍響應值之有機光電元件。
近年來,為了製造更通用、成本更低之電子元件,對於有機半導體化合物(Organic Semiconducting Compound,有機半導體化合物)之需求日增,此一現象係因有機半導體化合物與傳統半導體材料相比,其吸光範圍廣、光吸收係數大且具有可調控結構,其吸光範圍、能階及溶解度皆可以依照目標需求做調整,另外有機材料在元件製作上具有低成本、可撓曲性、毒性較低及可大面積生產之優點,使有機光電材料在各個領域都具有良好之競爭性。此類化合物之應用範圍十分廣泛,包含有機場效應電晶體(Organic field-effect transistor,OFET)、有機發光二極體(Organic light-emitting diode,OLED)、有機光感測器(Organic photodetector,OPD)、有機光伏(Organic photovoltaic,OPV)電池、傳感器、存儲元件和邏輯電路之各種元件或組件中。其中有機半導體材料於上述應用之各元件或組件中,通常以薄層之形式存在,其厚度約為50 nm至1 μm。
有機光感測器(OPD)為近年新興之有機光電領域,此類裝置可偵測環境中之各種光源,並應用於如醫療照護、健康管理、智能駕駛、無人空拍機或數位化家庭等等各種領域,因此依據應用領域而有不同之材料需求,且由於使用有機材料,使裝置具備良好之可撓曲性。受益於現今材料科學之發展,OPD不僅可製成薄層,也可針對特定波長段進行吸收;而目前市面上之產品依據光源不同,需要吸收之光線波段也各異,因此其利用有機材料具有吸光範圍可調整性,能有效針對需要的波段進行吸收而達到降低干擾的效果,且有機材料的高消光係數也能有效的提高偵測效率。近年來OPD的發展從紫外線、可見光,逐漸發展至近紅外線(NIR)。
其中,有機光感測器中之主動層材料係直接影響元件效能,因此扮演重要角色,而其材料可分為供體與受體兩部分。供體材料方面常見之材料包含有機聚合物、低聚物或限定之分子單元,現今以發展D-A型之共軛高分子為主流,藉由其高分子中多電子單元與缺電子單元間交互作用而形成推—拉電子效應,可用來調控高分子之能階與能隙;而搭配之受體材料通常為具有高導電度之富勒烯衍生物,其吸光範圍大約在400-600 nm,此外亦包含石墨烯、金屬氧化物或量子點等。然而富勒烯衍生物在結構上不易調整,且吸光波段及能階之範圍有其侷限,使得整體供體、受體材料搭配上受限。隨著市場發展,近紅外光區之材料需求逐漸增加,即使供體材料共軛高分子之吸光範圍能夠調控到近紅外光區,但受限於富勒烯受體未必能有良好搭配,因此發展出非富勒烯受體化合物來取代傳統之富勒烯受體在主動層材料之突破上十分重要。
儘管如此,非富勒烯受體化合物早期之發展頗為困難,因為對其化合物型態之控制不易,因此其功率轉換效率偏低。不過,自2015年起關於非富勒烯受體之眾多研究,使其電性表現有顯著之提昇而成為具有競爭力之選擇。此一改變主要歸因於合成方式進步、材料設計策略改進等原因,而先前為了富勒烯型受體而發展出之廣泛供體材料也間接為非富勒烯受體化合物之研發產生助益。
目前非富勒烯受體化合物材料發展,主要以多電子中心搭配兩側缺電子單元形成結構為A-D-A模式之分子,其中D通常由為苯環及噻吩組成之分子,A則通常為氰基茚酮(IC)衍生物。另一類結構則為A’-D-A-D-A’模式,作為中心之缺電子單元常使用含硫原子之分子以加強其表現。
在智能駕駛、無人空拍機領域中,為了避免訊號過強的可見光,發展趨勢為採用NIR吸收波段;並且為了有更好的穿透度和長距離偵測性質,應用波長需超過1000 nm。另外,對應各國環保法規要求和良好加工操作性的要求,材料製程中必須盡可能使用對環境友善之溶劑,利於溼式製程操作。而現今具有相關潛力之有機半導體材料,有使用供體-受體架構之聚合物類型者,或是小分子類型者,僅在<1000 nm的吸光範圍有良好表現,而>1000 nm的材料整體元件表現不彰,且溼式加工所使用之溶劑主要為含鹵素之有機溶劑,對環境影響大。因此,開發一種具有更優異之紅外光範圍光響應性能,且不須使用含鹵素之有機溶劑進行操作之有機半導體化合物,係有其需求。
鑒於上述對於現今材料不足處之問題,本發明之目的為提供一種新的有機半導體化合物,特別是一種n型有機半導體化合物,其可克服來自先前技術之有機半導體化合物的缺點,及提供一或多個上述有利特性,特別是藉由適合量產之方法的容易合成、具有大於1000 nm之光響應性能且具有良好的元件效能,以及在生產裝置之製程中表現出良好之加工性和對環境友善之溶劑之良好溶解度,有利於使用溶液加工法大規模製造。
本發明之另一目的,為提供一種新的有機光電元件,其中該元件包含本發明之有機半導體化合物,具有大於1000 nm之光響應性能以及優異之外部量子效率。
為了達到上述之目的,本發明提供一種有機半導體化合物,以下式表示: 其中, A 1係選自由以下基團組成之群組:
x為選自0-5之整數, Ar 1係未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團, R 1係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之烷硫基、C1~C30之鹵代烷基、C2~C30之烯烴、C2~C30之炔烴、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基; A 2-A 4係選自單環或多環之芳香環或雜芳香環基團;以及 a、b、c係選自0-5之整數。
為了達到上述之另一目的,本發明進一步係關於一種有機光電元件,其係包含:一基板;一電極模組,其係設置於基板之上,該電極模組包含一第一電極和一第二電極;以及一主動層,設置於該第一電極和該第二電極之間,該主動層之材料係包含至少一種如本發明之有機化合物;其中該第一電極和該第二電極之至少一者為透明或半透明。
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以實施例及配合說明,說明如後:
本發明之有機半導體化合物除了易於合成,並且在生產裝置之製程中表現出良好之加工性和對溶劑之良好溶解度,有利於使用溶液加工法大規模製造。
本發明之有機半導體化合物之製備可基於發明所屬技術領域中具有通常知識者已知且描述於文獻中的方法達成,將會進一步於實施例中說明。
本發明提供之有機半導體化合物,以下式表示: 其中, A 1係選自由以下基團組成之群組:
x為選自0-5之整數, Ar 1係未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團, R 1係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之烷硫基、C1~C30之鹵代烷基、C2~C30之烯烴、C2~C30之炔烴、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基; A 2-A 4係選自單環或多環之芳香環或雜芳香環基團;以及 a、b、c係選自0-5之整數。
本發明之Ar 1,其芳香環較佳地具有4至30個環C原子、為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之Ar 1,其雜芳香環較佳地具有4至30個環C原子,其中,一或多個C環原子經雜原子,較佳地選自N、O、S、Si及Se取代,為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之R 1,其烷基或烷氧基 (即其中一CH 2基團經-O-取代)可為直鏈或支鏈。特佳直鏈具有2、3、4、5、6、7、8、12或16個碳原子,且因此表示較佳為乙基、丙基、丁基、戊基、己基、庚基、辛基、十二基或十六基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基、辛氧基、十二烷氧基或十六烷氧基、甲基、壬基、癸基、十一基、十三基、十四基、十五基、壬氧基、癸氧基、十一烷氧基、十三烷氧基或十四烷氧基。
本發明之R 1,其烯基 (即烷基中一或多個CH 2基團經-CH=CH-取代)可為直鏈或支鏈。較佳為直鏈、具有2至10個C原子,且因此較佳為乙烯基、丙烯-1-、或丙烯-2-基、丁烯-1-、2-或丁烯-3-基、戊烯-1-、2-、3-或戊烯-4-基、己烯-1-、2-、3-、4-或己烯-5-基、庚烯-1-、2-、3-、4-、5-或庚烯-6-基、辛烯-1-、2-、3-、4-、5-、6-或辛烯-7-基、壬烯-1-、2-、3-、4-、5-、6-、7-或壬烯-8-基、癸烯-1-、2-、3-、4-、5-、6-、7-、8-或癸烯-9-基。
本發明之R 1,其硫代烷基 (即其中一CH 2基團經-S-取代) 較佳為直鏈硫代甲基(-SCH 3)、1-硫代乙基(-SCH 2CH 3)、1-硫代丙基(=-SCH 2CH 2CH 3)、1-(硫代丁基)、1-(硫代戊基)、1-(硫代己基)、1-(硫代庚基)、1-(硫代辛基)、1-(硫代壬基)、1-(硫代癸基)、1-(硫代十一基)或1-(硫代十二基),其中,較佳地與sp 2混成之乙烯基碳原子相鄰的CH 2基團經取代。
本發明之R 1,其鹵素包含F、Cl、Br或I。
在本發明之較佳具體實施例中,該有機半導體化合物之A 2係選自由以下基團組成之群組:
 
    
 
 
 
 ;  
其中 U、U 1及U 2係選自O、S或Se; y係選自0-5之整數; Ar 2係選自未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團;以及 R 2係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之烷硫基、C1~C30之鹵代烷基、C2~C30之烯烴、C2~C30之炔烴、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
本發明之有機半導體化合物,其中Ar 2其芳香環較佳地具有4至30個環C原子、為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之有機半導體化合物,其中Ar 2其雜芳香環較佳地具有4至30個環C原子,其中,一或多個C環原子經雜原子,較佳地選自N、O、S、Si及Se取代,為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之有機半導體化合物,其中R 2其烷基或烷氧基 (即其中一CH 2基團經-O-取代)可為直鏈或支鏈。特佳直鏈具有2、3、4、5、6、7、8、12或16個碳原子,且因此表示較佳為乙基、丙基、丁基、戊基、己基、庚基、辛基、十二基或十六基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基、辛氧基、十二烷氧基或十六烷氧基、甲基、壬基、癸基、十一基、十三基、十四基、十五基、壬氧基、癸氧基、十一烷氧基、十三烷氧基或十四烷氧基。
本發明之有機半導體化合物,其中R 2其烯基 (即烷基中一或多個CH 2基團經-CH=CH-取代)可為直鏈或支鏈。較佳為直鏈、具有2至10個C原子,且因此較佳為乙烯基、丙烯-1-、或丙烯-2-基、丁烯-1-、2-或丁烯-3-基、戊烯-1-、2-、3-或戊烯-4-基、己烯-1-、2-、3-、4-或己烯-5-基、庚烯-1-、2-、3-、4-、5-或庚烯-6-基、辛烯-1-、2-、3-、4-、5-、6-或辛烯-7-基、壬烯-1-、2-、3-、4-、5-、6-、7-或壬烯-8-基、癸烯-1-、2-、3-、4-、5-、6-、7-、8-或癸烯-9-基。
本發明之有機半導體化合物,其中R 2其硫代烷基 (即其中一CH 2基團經-S-取代) 較佳為直鏈硫代甲基(-SCH 3)、1-硫代乙基(-SCH 2CH 3)、1-硫代丙基(=-SCH 2CH 2CH 3)、1-(硫代丁基)、1-(硫代戊基)、1-(硫代己基)、1-(硫代庚基)、1-(硫代辛基)、1-(硫代壬基)、1-(硫代癸基)、1-(硫代十一基)或1-(硫代十二基),其中,較佳地與sp 2混成之乙烯基碳原子相鄰的CH 2基團經取代。
本發明之有機半導體化合物,其中R 2其鹵素包含F、Cl、Br或I。
更佳地,其中A 2係選自由以下基團組成之群組:
 
 
 
 
 
在本發明之較佳具體實施例中,該有機半導體化合物之A 3係選自由以下基團組成之群組:
 
 
 
其中W及W 1係選自O、S或Se; z係選自0~5之整數; Ar 3係選自未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團;以及 R 3係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之烷硫基、C1~C30之鹵代烷基、C2~C30之烯烴、C2~C30之炔烴、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
本發明之有機半導體化合物,其中Ar 3其芳香環較佳地具有4至30個環C原子、為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之有機半導體化合物,其中Ar 3其雜芳香環較佳地具有4至30個環C原子,其中,一或多個C環原子經雜原子,較佳地選自N、O、S、Si及Se取代,為單-或多環及亦可包含稠合環,較佳地包含1、2、3、4或5個稠合或未稠合環,及視需要經一或多個鹵素原子取代。
本發明之有機半導體化合物,其中R 3其烷基或烷氧基 (即其中一CH 2基團經-O-取代)可為直鏈或支鏈。特佳直鏈具有2、3、4、5、6、7、8、12或16個碳原子,且因此表示較佳為乙基、丙基、丁基、戊基、己基、庚基、辛基、十二基或十六基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基、庚氧基、辛氧基、十二烷氧基或十六烷氧基、甲基、壬基、癸基、十一基、十三基、十四基、十五基、壬氧基、癸氧基、十一烷氧基、十三烷氧基或十四烷氧基。
本發明之有機半導體化合物,其中R 3其烯基 (即烷基中一或多個CH 2基團經-CH=CH-取代)可為直鏈或支鏈。較佳為直鏈、具有2至10個C原子,且因此較佳為乙烯基、丙烯-1-、或丙烯-2-基、丁烯-1-、2-或丁烯-3-基、戊烯-1-、2-、3-或戊烯-4-基、己烯-1-、2-、3-、4-或己烯-5-基、庚烯-1-、2-、3-、4-、5-或庚烯-6-基、辛烯-1-、2-、3-、4-、5-、6-或辛烯-7-基、壬烯-1-、2-、3-、4-、5-、6-、7-或壬烯-8-基、癸烯-1-、2-、3-、4-、5-、6-、7-、8-或癸烯-9-基。
本發明之有機半導體化合物,其中R 3其硫代烷基 (即其中一CH 2基團經-S-取代) 較佳為直鏈硫代甲基(-SCH 3)、1-硫代乙基(-SCH 2CH 3)、1-硫代丙基(=-SCH 2CH 2CH 3)、1-(硫代丁基)、1-(硫代戊基)、1-(硫代己基)、1-(硫代庚基)、1-(硫代辛基)、1-(硫代壬基)、1-(硫代癸基)、1-(硫代十一基)或1-(硫代十二基),其中,較佳地與sp 2混成之乙烯基碳原子相鄰的CH 2基團經取代。
本發明之有機半導體化合物,其中R 3其鹵素包含F、Cl、Br或I。
更佳地,A 3係選自由以下基團組成之群組:
  
在本發明之較佳具體實施例中,其中A 4係選自由以下基團組成之群組:
  
 
    
以及   
R 4-R 7係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之烷硫基、C1~C30之鹵代烷基、C2~C30之烯烴、C2~C30之炔烴、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
以下舉例說明本發明之有機半導體化合物之製備方式
化合物4之製備
準備250毫升三頸瓶使用機械攪拌,將反應瓶氣體出口通NaOH (aq),於冰浴下依次加入H 2SO 4(24.6 mL)、fuming H 2SO 4(53 mL) 及fuming HNO 3(29.2 mL) ,接著分次緩慢加入 M1(20 g, 82.7 mmol),加料結束後,緩慢回至室溫反應3小時,反應結束後將反應溶液倒入冰塊中攪拌,待冰塊溶解後抽氣過濾以水清洗並蒐集固體,以MeOH再結晶,獲得產物淡黃色固體 M2(24 g,產率87%)。鑑定上因 M2分子不含氫原子,因此並無測定氫譜直接往後實驗。
秤取 M2(24 g, 7.23 mmol)、Conc. HCl (240 mL),加入500毫升燒杯以磁石攪拌,在0 oC下緩慢加入Sn (60 g, 50.6 mmol),反應3小時,反應結束後,將粗產物降溫至-20 oC以下使產物析出,抽氣過濾蒐集固體,以清水沖洗,獲得產物米色固體 M3(14 g,產率60%)。產物無須額外鑑定純度,直接進行下一步反應。
秤取 M3(1.6 g, 8.55 mmol)、 M21(7.0 g, 9.41 mmol)、K 2CO 3(2.4 g, 17.10 mmol)及EtOH (80 mL),加入250毫升反應瓶中以磁石攪拌,反應溫度40 oC,反應18小時,反應結束後移除溶劑,以Heptane/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane =3/1),獲得產物黃綠色油狀物 M4(3.7 g,產率53%)。 1H NMR (500 MHz, CDCl 3): δ 7.95 (s, 2H), 7.01 (s, 2H), 2.78 (d, J=7.0 Hz, 4H), 1.76 (s, 2H), 1.33-1.27 (m, 48H), 0.89-0.85 (m, 12H)。
秤取 M4(3.7 g, 4.52 mmol)、THF (74 mL)及DMF (37 mL),加入250毫升三頸瓶以磁石攪拌,在0 oC下加入NBS (724 mg, 4.07 mmol),緩慢回室溫反應18小時,反應結束後,以Heptane/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane=3/1),獲得產物墨綠色油狀物 M5(1.8 g,產率45%)。 1H NMR (500 MHz, CDCl 3): δ 7.93 (s, 1H), 7.07 (s, 1H), 7.03 (s, 1H), 2.78-2.76 (m, 4H), 1.76 (s, 2H), 1.33-1.25 (m, 48H), 0.89-0.85 (m, 12H)。
秤取 M5(1.8 g, 2.01 mmol)及DCE (90 mL),加入250毫升三頸反應瓶以磁石攪拌,以氮氣除氧30分鐘。在另一100毫升雙頸反應瓶中加入無水DMF (7.8 mL, 100.3 mmol),在冰浴下緩慢加入POCl 3(1.1 mL, 12.0 mmol)以磁石攪拌30分鐘形成Vilsmeier-Haack試劑,將Vilsmeier-Haack試劑打入250毫升三頸瓶中,升溫至65 oC反應18小時,反應結束後移出油鍋降回室溫,以Dichloromethane/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為Heptane/Dichloromethane=1/1),獲得墨綠色油狀物 M6(1.3 g,產率70%)。 1H NMR (500 MHz, CDCl 3): δ 10.57 (s, 1H), 7.21 (s, 1H), 7.18 (s, 1H), 2.81-2.78 (m, 4H), 1.78 (ms 2H), 1.34-1.28 (m, 48H), 0.89-0.86 (m, 12H)。
秤取 M6(100 mg, 0.16 mmol)、 M11(320 mg, 0.36 mmol)及THF (3mL),加入100毫升三頸瓶以磁石攪拌以氬氣除氧30分鐘,加入Pd 2dba 3(6 mg, 0.006 mmol)及P(o-tol) 3(8 mg, 0.026 mmol),在60 oC下反應2小時,反應結束後,過Celite短柱去除催化劑,進行矽膠管柱層析 (沖提液為 Heptane/Ethyl acetate=95/5),獲得墨綠色固體 M12(280 mg,產率40%)。 1H NMR (500 MHz, CDCl 3): δ 10.54 (s, 2H), 7.91 (s, 2H), 7.25 (s, 2H), 7.24 (s, 2H), 4.18-4.13 (m, 2H), 2.86-2.80 (m, 8H), 2.05-1.93 (m, 1H), 1.84-1.82 (m, 4H), 1.48-1.23 (m, 104H), 1.01-0.88 (m, 30H)。
秤取 M12(280 mg, 0.141 mmol)、2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (150 mg, 0.566 mmol)及CHCl 3(8.4 mL),加入100毫升三頸瓶以磁石攪拌,以氬氣除氧30分鐘,加入Pyridine (0.14 mL),將反應瓶置於室溫反應3小時,反應結束後加入MeOH (28 mL)攪拌30分鐘,並抽氣過濾蒐集固體,以Acetone沖洗固體,獲得產物深藍色固體 化合物 4(240 mg,產率69%)。 1H NMR (500 MHz, 100 oC, Cl 2CDCDCl 2): δ 9.73 (s, 2H), 8.80 (s, 2H), 7.85-7.78 (m, 4H), 7.62 (s, 2H), 7.45 (s, 2H), 4.16-4.08 (m, 2H), 3.05 (d, J=5.5 Hz , 4H), 2.68 (m, 4H), 2.13 (m, 1H), 2.10-2.00 (m, 2H), 1.77 (m, 2H), 1.58-1.36 (m, 104H), 1.14-0.92 (m, 30H)。 化合物5之製備
秤取 M10(370 mg, 0.35 mmol)、 M6(650 mg, 0.70 mmol)及THF (11.1 mL),加入100毫升三頸瓶以磁石攪拌,以氬氣除氧30分鐘,加入Pd 2dba 3(13 mg, 0.014 mmol)及P(o-tol) 3(17 mg, 0.056 mmol),在60 oC下反應2小時,反應結束後,過Celite短柱去除催化劑,進行矽膠管柱層析 (沖提液為 Heptane /Dichloromethane =1/1),獲得墨綠色固體 M13(500 mg,產率66%)。 1H NMR (500 MHz, CDCl 3): δ 10.58 (s, 1H), 10.57 (s, 1H), 7.77 (s, 1H), 7.46 (s, 1H), 7.31-7.30 (m, 1H), 7.27 (s, 1H), 7.24 (s, 1H), 7.21 (s, 1H), 2.82 (d, J=6.5 Hz , 6H), 2.79 (d, J=7.0 Hz, 2H), 2.02-1.92 (m, 4H), 1.80 (m, 4H), 1.44-1.06 (m, 122H), 0.90-0.77 (m, 36H)。
秤取 M13(500 mg, 0.23 mmol)、Tributyl (1,3-dioxolan-2-ylmethyl) phosphonium bromide (341 mg, 0.92 mmol)及無水THF (15 mL),加入100毫升三頸瓶以磁石攪拌,在0 oC下加入60% NaH (55 mg, 1.39 mmol),緩慢回置室溫反應18小時,接著緩慢加入稀鹽酸 (10%, 1.5 mL),在室溫下反應30分鐘,反應結束後以Ethyl acetate/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為 Heptane/Ethyl acetate=9/1),獲得產物紅色固體 M14(420 mg,產率82%)。 1H NMR (500 MHz, CDCl 3): δ 9.75 (d, J=3.5 Hz, 1H), 9.74 (d, J=3.0 Hz, 1H), 8.20 (d, J=6.0 Hz, 1H), 8.17 (d, J=5.5 Hz, 1H), 7.65 (s, 1H), 7.35 (s, 1H), 7.28-7.27 (m, 1H), 7.24 (s, 1H), 7.20 (s, 1H), 7.17 (s, 1H), 6.80-6.75 (m, 2H), 2.84-2.77 (m, 8H), 2.03-1.95 (m, 4H), 1.81 (m, 4H), 1.37-1.09 (m, 122H), 0.89-0.78 (m, 36H)。
秤取 M14(420 mg, 0.190 mmol)、 2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (200 mg, 0.758 mmol)及Chloroform (4.2 mL),加入100毫升三頸瓶以磁石攪拌,以氬氣除氧30分鐘,加入Pyridine (0.21 mL),將反應瓶置於室溫反應3小時,反應結束後加入MeOH (28 mL)攪拌30分鐘,並抽氣過濾蒐集固體,以Acetone沖洗固體,進行矽膠管柱層析 (沖提液為 Heptane/Chloroform=1/1),獲得產物深藍色固體 化合物 5(300 mg,產率58%)。 1H NMR (500 MHz, 100 oC, Cl 2CDCDCl 2): δ 9.09 (t, J=11.3 Hz, 1H), 9.01 (t, J=11.0 Hz, 1H), 8.78-8.77 (m, 2H), 8.55-8.53 (m, 2H), 8.13-8.05 (m, 2H), 7.96 (s, 1H), 7.95 (s, 1H), 7.90 (s, 1H), 7.58 (s, 1H), 7.51 (s, 1H), 7.50 (s, 1H), 7.37 (s, 1H), 7.34 (s, 1H), 2.94-2.90 (m, 8H), 2.18-2.10 (m, 4H), 1.94-1.90 (m, 4H), 1.62-1.17 (m, 122H), 0.98-0.87 (m, 36H)。
化合物6之製備
秤取 M3(2 g, 10.69 mmol)、 M15(7.9 g, 11.76 mmol)、K 2CO 3(3 g, 21.38 mmol)及EtOH ( 100 mL),加入250毫升反應瓶中以磁石攪拌,反應溫度40 oC,反應2小時,反應結束後移除溶劑,以Heptane/H 2O進行萃取三次,蒐集有機層加入MgSO4除水,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane=2/1),獲得產物黃綠色油狀物 M16(3.7 g,產率46%)。 1H NMR (500 MHz, CDCl 3): δ 7.89 (s, 2H), 7.01 (d, J=4.0 Hz, 2H), 6.65 (d, J=3.5 Hz, 2H), 2.77 (d, J=7.0 Hz, 4H), 1.68 (s, 2H), 1.31-1.27 (m, 48H), 0.90-0.86 (m, 12H)。
秤取 M16(2 g, 2.67 mmol)、THF (30 mL)及DMF (30 mL),加入100毫升三頸瓶,在0 oC下加入NBS (475 mg, 2.67 mmol),緩慢回室溫反應2小時,反應結束後,以Heptane/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane=3/1),獲得產物墨綠色油狀物 M17(700 mg,產率36%)。 1H NMR (500 MHz, CDCl 3): δ 7.90 (s, 1H), 7.10 (s, 1H), 7.07 (d, J=3.5 Hz, 1H), 6.67 (d, J=3.5 Hz, 1H), 6.64 (d, J=3.5 Hz, 1H), 2.79-2.76 (m, 4H), 1.68 (s, 1H), 1.58 (s, 1H), 1.31-1.19 (m, 48H), 0.89-0.86 (m, 12H)。
秤取 M17(700 mg, 0.85 mmol)及DCE (35 mL),加入100毫升三頸反應瓶以磁石攪拌,以氮氣除氧30分鐘。在另一100毫升雙頸反應瓶中加入無水DMF (3.3 mL, 42.3 mmol),在冰浴下緩慢加入POCl 3(0.5 mL, 5.07 mmol)以磁石攪拌30分鐘形成Vilsmeier-Haack試劑,將Vilsmeier-Haack試劑打入100毫升三頸瓶中,升溫至65 oC反應1小時,反應結束後移出油鍋降回室溫,以Dichloromethane /H 2O進行萃取三次,蒐集機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為Heptane/Dichloromethane=1/1),獲得墨綠色固體 M18 (570 mg,產率79%)。 1H NMR (500 MHz, CDCl 3): δ 10.57 (s, 1H), 7.24-7.21 (m, 2H), 6.71-6.68 (m, 2H), 2.81-2.79 (m, 4H), 1.70 (s, 2H), 1.31-1.27 (m, 48H), 0.90-0.86 (m, 12H)。
秤取 M10(250 mg, 0.24 mmol)、 M18(407 mg, 0.47 mmol)及THF (7.5 mL),加入100毫升三頸瓶以磁石攪拌,以氬氣除氧30分鐘,加入Pd 2dba 3(9 mg, 0.009 mmol)及P(o-tol) 3(12 mg, 0.038 mmol),在60 oC反應18小時,過Celite短柱去除催化劑,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane=1/1),獲得墨綠色固體 M19(370 mg,產率72%)。 1H NMR (500 MHz, CDCl 3): δ 10.58 (s, 1H), 10.57 (s, 1H), 7.82 (s, 1H), 7.44 (s, 1H), 7.38-7.38 (m, 1H), 7.34 (d, J=4.0 Hz, 1H), 7.30 (d, J=3.5 Hz, 1H), 7.27 (s, 1H), 6.74-6.69 (m, 4H), 2.84-2.81 (m, 6H), 2.80 (d, J=7.0 Hz , 2H), 2.03-2.00 (m, 4H), 1.72 (m, 4H), 1.34-1.04 (m, 122H), 0.90-0.77 (m, 36H)。
秤取 M19(370 mg, 0.18 mmol)、Tributyl (1,3-dioxolan-2-ylmethyl) phosphonium bromide (270 mg, 0.73 mmol)及無水THF (11.1 mL),加入100毫升三頸瓶以磁石攪拌,在0 oC下加入60% NaH (44 mg, 1.10 mmol),緩慢回置於室溫反應18小時,接著緩慢加入稀鹽酸 (10%, 1.11 mL),在室溫下反應30分鐘,反應結束後以Ethyl acetate/H 2O進行萃取三次,蒐集有機層加入MgSO 4除水,進行矽膠管柱層析 (沖提液為 Heptane/Dichloromethane=1/2),獲得產物紅色固體 M20(290 mg,產率76%)。 1H NMR (500 MHz, CDCl 3): δ 9.74-9.72 (m, 2H), 8.22-8.18 (m, 2H), 7.71 (s, 1H), 7.34 (s,2H), 7.30 (d, J=4.0 Hz, 1H), 7.22 (d, J=3.5 Hz, 1H), 6.79-6.70 (m, 6H), 2.83 (d, J=6.5 Hz, 6H), 2.79 (d, J=7.0 Hz , 2H), 2.03-1.97 (m, 4H), 1.74 (m, 4H), 1.35-1.06 (m, 122H), 0.89-0.77 (m, 36H)。
秤取 M20(290 mg, 0.140 mmol)、2-(5,6-dichloro-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (147 mg, 0.558 mmol)及Chloroform (8.7 mL),加入100毫升三頸瓶以磁石攪拌,以氬氣除氧30分鐘,加入Pyridine (0.15 mL),將反應瓶置於室溫反應3小時,反應結束後加入MeOH (29 mL)攪拌30分鐘,並抽氣過濾蒐集固體,以Acetone沖洗,獲得產物深藍色固體 化合物 6(310 mg,產率88%)。 1H NMR (500 MHz, 100 oC, Cl 2CDCDCl 2): δ 8.96-8.87 (m, 2H), 8.72 (s, 2H), 8.52 (m, 2H), 8.18-8.13 (m, 2H), 7.90-7.89 (m, 3H), 7.54-7.50 (m, 3H), 7.41-7.37 (m, 2H), 6.80-6.77 (m, 4H), 2.89-2.86 (m, 8H), 2.14-2.11 (m, 4H), 1.80 (m, 4H), 1.61-1.15 (m, 122H), 0.93-0.83 (m, 36H)。
依據本發明之有機半導體化合物實施例如表一 表一   本發明之有機半導體化合物實施例
化合物1
化合物2
化合物3
化合物4
化合物5
化合物6
化合物7
化合物8
化合物9
化合物10
化合物11
化合物12
化合物13
化合物14
化合物15
化合物16
化合物17
再者,本發明之有機半導體化合物係用作為光學、電光學、電子、電致發光或光致發電元件或裝置中之電荷傳輸、半導體性、導電、光導或發光材料。在這些元件或裝置中,通常應用本發明之有機半導體化合物作為薄層或膜。
本發明之有機半導體化合物進一步適合做為有機光電元件之電子接受體或n型半導體,以及適合製備n型及p型半導體之摻合物應用於有機光偵測器元件等領域。其中,該術語「n型」或「n型半導體」將被理解為是指外質半導體,其中導電電子密度超過移動電洞密度,而術語「p型」或「p型半導體」將被理解為是指外質半導體,其中移動電洞密度超過導電電子密度(亦見J. Thewlis, Concise Dictionary of Physics, Pergamon Press, Oxford, 1973)。
而當本發明之有機半導體化合物要運用於有機光電加工操作時,係先需要加入一或多個具有電荷傳輸、半導體性、導電、光導、電洞阻擋及電子阻擋特性之一或多個的小分子化合物及/或聚合物,混合製備成第一組成物。
更進一步地,本發明之有機半導體化合物可與一或多個有機溶劑(較佳溶劑為脂肪族烴、氯化烴、芳香族烴、酮類、醚類及其混合物,如甲苯、鄰二甲苯、對二甲苯、四氫呋喃、2-甲基四氫呋喃、1,3,5-三甲基苯或1,2,4-三甲基苯),混合並製備成第二組成物。
本發明之有機半導體化合物亦可用於如本文描述之裝置中的圖案化OSC層。對於現代微電子應用,一般所欲為生產小結構或圖案以降低成本(更多裝置/單元面積),及電力消耗。包括本發明之有機半導體化合物之薄層圖案化可例如由微影術、電子束蝕刻技術或雷射圖案化進行。
對於電子或電光裝置中用作為薄層,本發明之由有機半導體化合物所組成之第一組成物或第二組成物可由任何適當方法沉積。裝置之液態塗佈比真空沉積技術更好。而由本發明之有機半導體化合物所組成之第二組成物可以使數個液態塗佈技術之使用變的可行。
較佳沉積技術包括,但非限制,浸塗、旋轉塗佈、噴墨印刷、噴嘴印刷、凸版印刷、網版印刷、凹版印刷、刮刀塗佈、輥印刷、反向輥印刷、平版印刷術印刷、乾式平版印刷術印刷、快乾印刷、網路印刷(web printing)、噴塗、簾塗佈、刷塗、狹縫式塗佈(slot-die coating)或移印。
因此,本發明亦提供包含該有機半導體化合物或由其所組成之第一組成物或第二組成物之有機光電元件。
在本發明之第1實施方式中,請參見第1A圖,該有機光電元件10係包含:一基板100;一第一電極110,設置於該基板100之上;一主動層120,設置於該第一電極110之上,其中該主動層120係包含至少一種如請求項1所述之有機半導體化合物;以及一第二電極130,設置於該主動層120之上;其中該第一電極110和該第二電極130之至少一者為透明或半透明。
在本發明之第2實施方式中,請參見第1B圖,該有機光電元件10係包含:一基板100;一第二電極130,設置於該基板100之上;一主動層120,設置於該第二電極130之上,其中該主動層120係包含至少一種如請求項1所述之有機半導體化合物;以及一第一電極110,設置於該主動層120之上;其中該第一電極110和該第二電極130之至少一者為透明或半透明。
上述之基板100,較佳為使用具有機械强度、熱强度且具有透明性的玻璃基板或透明性軟性基板,其中透明性軟性基板材質可為:聚乙烯、乙烯-乙酸乙烯酯共聚物、乙烯-乙烯醇共聚物、聚丙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚氯乙烯、聚乙烯醇、聚乙烯基丁醛、尼龍、聚醚醚酮、聚碸、聚醚碸、四氟乙烯-全氟烷基乙烯基醚共聚物、聚氟乙烯、四氟乙烯-乙烯共聚物、四氟乙烯-六氟丙烯共聚物、聚氯三氟乙烯、聚偏二氟乙烯、聚酯、聚碳酸酯、聚氨基甲酸酯、聚醯亞胺等。
上述之第一電極110,較佳為使用具有透明性的銦氧化物、錫氧化物等的金屬氧化物及其摻雜鹵素的衍生物(Florine Doped Tin Oxide,FTO)、或是複合金屬氧化物的銦錫氧化物(Indium Tin Oxide,ITO)、銦鋅氧化物(Indium Zinc Oxide,IZO)等。
上述之第二電極130,為金屬氧化物、金屬(銀、鋁、金)、導電高分子、碳基導體、金屬化合物、或由上述材料交替組成之導電薄膜。
較佳地,該有機光電元件10之該主動層120包含至少一種n型有機半導體化合物,且該n型有機半導體化合物為如本發明之有機半導體化合物,以及至少一種p型有機半導體化合物。
更佳地,該有機光電元件10之p型有機半導體化合物係選自下列化學式組成之群組:
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P12
P13
P14
P15
在本發明之第3實施方式中,參見第1C圖,其中該有機光電元件10係進一步包含:一第一載子傳遞層140,設置於該第一電極110和該主動層120之間;以及一第二載子傳遞層150,設置於該第二電極130和該主動層120之間。
在本發明之第4實施方式中,參見第1D圖,其中該有機光電元件10之各元件順序係同於本發明之第1實施方式,並進一步包含:一第一載子傳遞層140,設置於該第二電極130和該主動層120之間;以及一第二載子傳遞層150,設置於該第一電極110和該主動層120之間。
在本發明之第5實施方式中,參見第1E圖,其中該有機光電元件10之各元件之順序係同於本發明之第2實施方式,並進一步包含:一第一載子傳遞層140,設置於該第二電極130和該主動層120之間;以及一第二載子傳遞層150,設置於該第一電極110和該主動層120之間。
在本發明之第6實施方式中,參見第1F圖,其中該有機光電元件10之各元件之順序係同於本發明之第2實施方式,並進一步包含:一第一載子傳遞層140,設置於該第一電極110和該主動層120之間;以及一第二載子傳遞層150,設置於該第二電極130和該主動層120之間。
在前述之第3至第6實施方式中,該第一載子傳遞層可選自共軛聚合物電解質,例如PEDOT:PSS;或聚合物酸,例如聚丙烯酸酯;或共軛聚合物,例如聚三芳基胺(PTAA);或絕緣聚合物,例如納菲薄膜、聚乙烯亞胺或聚苯乙烯磺酸鹽;或聚合物摻雜金屬氧化物,該些金屬氧化物係例如MoOx, NiOx, WOx, SnOx;或有機小分子化合物,例如N,N'-二苯基-N,N' -雙(1-萘基)(1,1'-聯苯)-4,4'-二胺(NPB)、N,N'-二苯基-N,N'-(3-甲基苯基)-1,1'-聯苯- 4,4'-二胺(TPD);或上述一或多種材料的組合。 在前述之第3至第6實施方式中,該第二載子傳遞層可選自共軛聚合物電解質,例如聚乙烯亞胺;共軛聚合物,例如聚[3-(6-三甲基銨己基)噻吩]、聚(9,9) -雙(2-乙基己基-芴)-b-聚[3-(6-三甲基銨己基) 噻吩]或聚[(9,9-雙(3’-(N,N-二甲基氨基)丙基)-2, 7-芴)-alt-2,7-(9,9-二辛基芴)]、有機小分子化合物,例如三(8-喹啉基)-鋁(III)(Alq 3)、4,7-二苯基- 1,10-菲咯啉;金屬氧化物,例如ZnOx,摻鋁的ZnO(AZO)、TiOx或其奈米顆粒;鹽,例如LiF、 NaF、CsF、CsCO 3;胺,例如伯胺、仲胺或叔胺。
為說明本發明之有機半導體化合物應用於有機光電元件後帶來之功效改良,將製備包含本發明之有機半導體化合物之有機光電元件進行性質測試和功效表現,該些測試結果如下: 材料吸收光譜測試
使用紫外光/可見光光譜儀偵測樣品之吸收光譜。量測樣品以氯仿溶解後,方可進行溶液態之量測。量測固態時,須將樣品製備成薄膜,方可進行量測。薄膜樣品之製備:配置樣品濃度為 5 wt%,以玻璃當作基材,用旋轉塗佈之方式塗佈於玻璃上,隨後進行固態薄膜之量測。各樣品之吸收光譜如第2A圖至第2C圖,量測結果如表二。 表二   樣品之吸收光譜測量和電化學性質測試之結果
Material soln max (nm) film max (nm) film onset (nm) (10 5cm -1M -1) E g opt(eV) HOMO (eV) LUMO (eV)
化合物 4 917 1217 1339 1.14 0.93 -5.48 -4.55
化合物 5 1104 1105, 1219 1510 0.95 0.82 -5.41 -4.59
化合物 6 1123 1096, 1237 1529 0.89 0.81 -5.31 -4.50
比較例 1 700 780 847 1.3 1.47 -5.51 -4.02
比較例 2 770 835 1333 - 0.93 -4.62 -3.69
比較例 3 714 865 1220 - 0.98 -4.71 -3.59
使用化合物4、5和6製備有機光電元件後進行測試後,三支材料都具有良好的溶解度(14 mg/mL in o-xylene)。其中化合物 4其吸光起始值為1339 nm,而化合物5及化合物6其吸光起始值甚至延伸到1510及1529 nm,顯示本發明之有機半導體化合物在大於1000 nm之波段係具有優秀吸光性質,更適於更長的波段範圍應用。本發明作為對照組的文獻分別有比較例1出自J. Mater. Chem. C, 2019, 7, 8820-8824;比較例2出自Polym. Chem., 2015, 6, 6836–6844;比較例3出自Appl. Phys. Lett. 2006, 89, 081106所揭示之化合物,比較例1及比較例3,其吸光起始值也僅能達到1200 nm,比較例2其吸光起始值雖然達到1333 nm,然而其吸光最大值僅835 nm,代表其在大於1000 nm的吸收光譜比較不足,因此本發明之有機半導體材料除了在結構上具有新穎性,在吸收光譜延伸至紅外光之長波段方面較先前技術更佳。 材料電化學性質測試
用電化學分析儀來記錄氧化與還原電位,以 0.1 M之四正丁基六氟磷酸銨(Bu 4NPF 6,tetra-1-butylammonium hexafluorophosphate)之乙腈溶液為電解液,以 0.01 M 硝酸銀 (AgNO 3)與 0.1 M TBAP (tetrabutylammonium perchlorate) 乙腈溶液加入 Ag/AgCl 參考電極 (reference electrode),鉑 (Pt) 為輔助電極 (counter electrode),碳玻璃電極 (glass carbon electrode) 為工作電極 (work electrode) ,並將待測物以氯仿溶解,滴至工作電極上形成薄膜。量測時以50 mV/sec 之速率掃描並同時記錄其氧化還原曲線。做成 CV 圖時,可得其氧化還原電位,並以 ferrocene/ferrocenium (Fc/Fc +) 當作內參考電位校正後可得其 HOMO 及 LUMO 值。計算公式如下: HOMO = -(4.71 eV + (E ox-E ref)) LUMO = HOMO + E g opt各樣品之測試結果如表二。 OPD效能測試
使用具有薄層電阻、以預圖案化之ITO塗覆之玻璃作為基板。依序在中性清潔劑、去離子水、丙酮及異丙醇中超音波震盪處理,在每個步驟中清洗15分鐘。用UV-O 3清潔器進一步處理洗滌過之基材15分鐘。將AZO(Aluminum doped zinc oxide nanoparticle,摻鋁之氧化鋅奈米粒子)之頂塗層,以2000 rpm之旋轉速率40秒旋轉塗佈在ITO基板上,然後在空氣中在120 oC下烘烤5分鐘。在鄰二甲苯中製備主動層溶液(供體聚合物:受體小分子重量比為1:1)。聚合物濃度為20 mg/ml。為了完全溶解聚合物,主動層溶液應在加熱板上在100 oC下攪拌至少3小時,以PTFE濾膜過濾(孔徑0.45~1.2 m),再將主動層溶液加熱1小時。隨後將溶液置於室溫冷卻後進行塗佈,以塗佈轉速控制膜厚範圍於100~300 nm上下。之後混合膜在100 oC下退火5分鐘,然後傳送至蒸鍍機中。在3x10 -6Torr之真空鍍下,沉積三氧化鉬之薄層(8 nm)作為電洞傳輸層。使用Keithley™ 2400 source meter儀器紀錄無光下之暗電流(ID,偏壓為-8 V),接著使用太陽光模擬器(具有AM1.5G濾光器之氙燈,100 mW cm -2)在空氣中及室溫下量測元件光電流(I ph)特性。此處使用具有KG5濾光片之標準矽二極體做為參考電池來校準光強度,以使光譜不匹配之部分達到一致。外部量子效率(EQE)則使用外部量子效率量測器,量測範圍為300~1800 nm(偏壓為0~-8 V),光源校正使用矽(300~1100 nm)及鍺(1100~1800 nm)。另外,藉由以下公式計算出其響應度(Responsibility, R)及偵測度(Detectivity, D):
其中λ為波長,q為單位電荷,h為普郎克常數,c為光速,J D為暗電流密度。
本發明之比較例3係引用文獻 Appl. Phys. Lett. 2006, 89, 081106之實驗結果。由於比較例3中並無直接列出響應度及偵測度測試數值,表三內之數值係以該篇之實驗數據計算而得。
各樣品之電流密度和外部量子效率如第3A、3B、4A、4B、5A、5B、6A、6B、7A和7B圖,測試結果如表三和表四。 表三   包含本發明之有機半導體化合物之有機光電元件之電性測試
ATL 100 nm Donor / Acceptor J darkat -2V (A/cm 2) J darkat -8V (A/cm 2) R 1050at -2V (A/W) D 1050at -2V (Jones) R 1050at -8V (A/W) D 1050at -8V (Jones)
P1 化合物5 4.4 x 10 -6 1.1 x 10 -3 1.3 x 10 -3 1.1 x 10 9 7.8 x 10 -3 4.1 x 10 8
P3 3.1 x 10 -4 2.3 x 10 -2 1.1 x 10 -2 1.1 x 10 9 3.3 x 10 -2 4.7 x 10 8
P14 1.1 x 10 -6 8.2 x 10 -5 7.6 x 10 -3 1.3 x 10 10 4.7 x 10 -2 9.3 x 10 9
P1 化合物6 2.3 x 10 -5 1.3 x 10 -3 4.2 x 10 -4 1.6 x 10 8 6.3 x 10 -3 3.1 x 10 8
P3 2.4 x 10 -3 1.6 x 10 -2 1.3 x 10 -2 4.6 x 10 8 6.3 x 10 -2 8.8 x 10 8
比較例3 PCBM ~10 -3 - 2 x 10 -3 6.5 x 10 7 - -
表四   包含本發明之有機半導體化合物之有機光電元件之電性測試
ATL 100 nm Donor / Acceptor J darkat -2V (A/cm 2) J darkat -8V (A/cm 2) R 1350at -2V (A/W) D 1350at -2V (Jones) R 1350at -8V (A/W) D 1350at -8V (Jones)
P1 化合物5 4.4 x 10 -6 1.1 x 10 -3 8.7 x 10 -4 7.3 x 10 8 1.5 x 10 -3 8.1 x 10 7
P3 3.1 x 10 -4 2.3 x 10 -2 1.1 x 10 -2 1.1 x 10 9 3.9 x 10 -2 5.5 x 10 8
P14 1.1 x 10 -6 8.2 x 10 -5 7.6 x 10 -3 1.3 x 10 10 4.8 x 10 -2 9.4 x 10 9
P1 化合物6 2.3 x 10 -5 1.3 x 10 -3 9.8 x 10 -4 3.6 x 10 8 7.4 x 10 -3 3.6 x 10 8
P3 2.4 x 10 -3 1.6 x 10 -2 7.6 x 10 -3 2.7 x 10 8 6.1 x 10 -2 8.6 x 10 8
在EQE表現上可以看到材料化合物5及化合物6皆有超過1000 nm,且暗電流在偏壓-2 V下分別能夠達到1.1 10 -6及2.3 10 -5A/cm 2,且 P3搭配化合物6在1050 nm的響應度為0.013 A/W,P3搭配化合物5在1350 nm的響應度為0.011 A/W,與比較例3中的<0.01 A/W有明顯的進步。關於偵測度之測試,P14搭配化合物5在1050及1350 nm皆能夠大於10 10Jones,P3搭配化合物6在1050及1350 nm皆能夠大於10 8Jones。本實施例除了測試有機光電元件於偏壓-2 V下的應用外,也揭露了元件在-8 V下的效能,其中P14搭配化合物5的暗電流為8.2 10 -5A/cm 2,在1050 nm下的EQE為5.6%,響應度為0.047 A/W,偵測度為9.3 10 9Jones,在1350 nm下的EQE為4.4%,響應度為0.048 A/W,偵測度為9.4 10 9Jones,在光吸收起始值>1500 nm的材料中,有突破性的表現。比較例3中的其響應度 <0.01 A/W,比較例1揭露的材料其EQE響應僅在300-850 nm,本發明實施例將EQE響應拓展至超過1000 nm,不論在響應度或吸光範圍拓展都有更佳的表現。且本實施例製備有機光電元件時,使用鄰二甲苯作為溶劑即有優異之溶解度,利於後續溼式加工操作。
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。
故本發明實為一具有新穎性、進步性及可供產業上利用者,應符合我國專利法專利申請要件無疑,爰依法提出發明專利申請,祈  鈞局早日賜准專利,至感為禱。
10:有機光電元件 100:基板 110:第一電極 120:主動層 130:第二電極 140:第一載子傳遞層 150:第二載子傳遞層
第1A-1F圖:其為本發明之有機光電元件之結構示意圖;
第2A-2C圖:其為本發明之有機光電元件之實驗結果圖表;
第3A-3B圖:其為本發明之有機光電元件之實驗結果圖表;
第4A-4B圖:其為本發明之有機光電元件之實驗結果圖表;
第5A-5B圖:其為本發明之有機光電元件之實驗結果圖表;
第6A-6B圖:其為本發明之有機光電元件之實驗結果圖表;以及
第7A-7B圖:其為本發明之有機光電元件之實驗結果圖表。
10:有機光電元件
100:基板
110:第一電極
120:主動層
130:第二電極

Claims (12)

  1. 一種有機半導體化合物,以下式表示:
    Figure 111129786-A0305-02-0050-1
    其中,A1係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0050-2
    x為選自0-5之整數,Ar1係未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團,R1係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之硫代烷基、C1~C30之鹵代烷基、C2~C30之烯基、C2~C30之炔基、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基;A2-A4係選自單環或多環之芳香環或雜芳香環基團;以及a、b、c係選自0-5之整數;其中A4係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0051-3
    Figure 111129786-A0305-02-0052-4
    Figure 111129786-A0305-02-0052-5
    ;以及R4-R7係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之硫代烷基、C1~C30之鹵代烷基、C2~C30之烯基、C2~C30之炔基、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
  2. 如請求項1之有機半導體化合物,其中A2係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0052-6
    Figure 111129786-A0305-02-0053-8
    Figure 111129786-A0305-02-0054-9
    其中U、U1及U2係選自O、S或Se;y係選自0-5之整數;Ar2係選自未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團;以及R2係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之硫代烷基、C1~C30之鹵代烷基、C2~C30之烯基、C2~C30之炔基、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
  3. 如請求項2之有機半導體化合物,其中A2係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0054-10
    Figure 111129786-A0305-02-0055-11
  4. 如請求項1之有機半導體化合物,其中A3係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0055-12
    Figure 111129786-A0305-02-0056-13
    其中W及W1係選自O、S或Se;z係選自0~5之整數;Ar3係選自未經取代或經鹵素取代之單環或多環之芳香環或雜芳香環基團;以及R3係選自由以下基團組成之群組:氫原子、鹵素、氰基、C1~C30之直鏈烷基、C3~C30之支鏈烷基、C1~C30之矽烷基、C2~C30之酯基、C1~C30之烷氧基、C1~C30之硫代烷基、C1~C30之鹵代烷基、C2~C30之烯基、 C2~C30之炔基、C2~C30之經氰基取代之烷基、C1~C30之經硝基取代之烷基、C1~C30之經羥基取代之烷基、和C3~C30之經酮基取代之烷基。
  5. 如請求項4之有機半導體化合物,其中A3係選自由以下基團組成之群組:
    Figure 111129786-A0305-02-0057-14
  6. 一種有機光電元件,其係包含:一基板;一電極模組,其係設置於基板之上,該電極模組包含一第一電極和一第二電極;以及一主動層,設置於該第一電極和該第二電極之間,該主動層之材料係包含至少一種如請求項1所述之有機化合物;其中該第一電極和該第二電極之至少一者為透明或半透明。
  7. 如請求項6所述之有機光電元件,其中該第一電極、該主動層以及該第二電極係由下而上依序設置於該基板上。
  8. 如請求項6所述之有機光電元件,其中該第二電極、該主動層以及該第一電極係由下而上依序設置於該基板上。
  9. 如請求項6所述之有機光電元件,其中該主動層包含至少一種 n型有機半導體化合物和至少一種p型有機半導體化合物,且該n型有機半導體化合物為如請求項1所述之有機半導體化合物。
  10. 如請求項9所述之有機光電元件,其中該p型有機半導體化合物係選自下列化學式組成之群組:
    Figure 111129786-A0305-02-0058-15
    Figure 111129786-A0305-02-0058-16
    Figure 111129786-A0305-02-0058-17
    Figure 111129786-A0305-02-0058-18
    Figure 111129786-A0305-02-0059-19
    Figure 111129786-A0305-02-0059-20
    Figure 111129786-A0305-02-0059-21
    Figure 111129786-A0305-02-0059-22
    Figure 111129786-A0305-02-0060-23
    Figure 111129786-A0305-02-0060-24
    Figure 111129786-A0305-02-0060-25
    Figure 111129786-A0305-02-0061-26
    Figure 111129786-A0305-02-0061-27
    Figure 111129786-A0305-02-0061-28
    Figure 111129786-A0305-02-0062-29
  11. 如請求項6所述之有機光電元件,其係進一步包含:一第一載子傳遞層,設置於該第一電極和該主動層之間;以及一第二載子傳遞層,設置於該第二電極和該主動層之間。
  12. 如請求項6所述之有機光電元件,其係進一步包含:一第一載子傳遞層,設置於該第二電極和該主動層之間;以及一第二載子傳遞層,設置於該第一電極和該主動層之間。
TW111129786A 2021-08-27 2022-08-08 有機半導體化合物及包含其之有機光電元件 TWI825908B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163237722P 2021-08-27 2021-08-27
US63/237,722 2021-08-27

Publications (2)

Publication Number Publication Date
TW202309049A TW202309049A (zh) 2023-03-01
TWI825908B true TWI825908B (zh) 2023-12-11

Family

ID=85292873

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111129786A TWI825908B (zh) 2021-08-27 2022-08-08 有機半導體化合物及包含其之有機光電元件

Country Status (4)

Country Link
US (1) US20230121184A1 (zh)
JP (1) JP2023033222A (zh)
CN (1) CN115724858A (zh)
TW (1) TWI825908B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113563374A (zh) * 2021-07-30 2021-10-29 中国科学院宁波材料技术与工程研究所 一类有机小分子给体光伏材料及其制备方法与应用
TW202313634A (zh) 2021-09-15 2023-04-01 天光材料科技股份有限公司 有機半導體化合物及包含其之有機光電元件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170233384A1 (en) * 2015-11-10 2017-08-17 Polyera Corporation Thienothiadiazole Compounds and Related Semiconductor Devices
CN112661940A (zh) * 2020-12-03 2021-04-16 华南理工大学 基于噻吩并噻二唑的n型水/醇溶共轭聚电解质及其制备与应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013102038A1 (en) * 2011-12-30 2013-07-04 University Of Washington Thienothiadiazole based semiconductors and uses in electronics and optoelectronics
CN107793435B (zh) * 2016-08-29 2020-09-22 中国科学院化学研究所 一种共轭有机小分子太阳能电池受体材料化合物及其制备方法与应用
US10991893B2 (en) * 2016-10-05 2021-04-27 Raynergy Tek Incorporation Organic semiconducting compounds
WO2019052935A1 (en) * 2017-09-13 2019-03-21 Merck Patent Gmbh ORGANIC SEMICONDUCTOR COMPOUNDS
TWI795639B (zh) * 2019-04-12 2023-03-11 天光材料科技股份有限公司 有機半導體材料及應用其之有機光電元件
KR102291239B1 (ko) * 2019-09-03 2021-08-20 부산대학교 산학협력단 N-형 유기 반도체 화합물, 이의 제조방법 및 이를 함유하는 유기 태양전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170233384A1 (en) * 2015-11-10 2017-08-17 Polyera Corporation Thienothiadiazole Compounds and Related Semiconductor Devices
CN112661940A (zh) * 2020-12-03 2021-04-16 华南理工大学 基于噻吩并噻二唑的n型水/醇溶共轭聚电解质及其制备与应用

Also Published As

Publication number Publication date
JP2023033222A (ja) 2023-03-09
US20230121184A1 (en) 2023-04-20
CN115724858A (zh) 2023-03-03
TW202309049A (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
EP2643865B1 (en) Organic small molecule semiconducting chromophores for use in organic electronic devices
TWI825908B (zh) 有機半導體化合物及包含其之有機光電元件
Mikroyannidis et al. Low band gap conjugated small molecules containing benzobisthiadiazole and thienothiadiazole central units: synthesis and application for bulk heterojunction solar cells
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
TWI825366B (zh) 含苯並硒二唑之非富勒烯受體化合物及包含其之有機光電元件
Zhang et al. Synthesis and photovoltaic properties of low bandgap dimeric perylene diimide based non-fullerene acceptors
Chen et al. A non-fullerene acceptor with all “A” units realizing high open-circuit voltage solution-processed organic photovoltaics
Giri et al. Diketopyrrolopyrrole/perylene-diimide and thiophene based D-π-A low bandgap polymer sensitizers for application in dye sensitized solar cells
Gupta et al. Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells
Adhikari et al. Solid-state showdown: Comparing the photovoltaic performance of amorphous and crystalline small-molecule diketopyrrolopyrrole acceptors
US20220416169A1 (en) Polymeric photovoltaic cell with inverted structure comprising a conjugated polymer comprising an anthradithiophene derivative
CN113518780B (zh) 苯并二噻吩共轭聚合物和含有它们的有机装置
Raj et al. Photovoltaic studies on perylene diimide-based copolymers containing electronic push–pull chromophores
TWI825907B (zh) 有機半導體化合物及包含其之有機光電元件
US20220135549A1 (en) Bispyranilidenes, dithiobispyranilidenes and diselenobispyranilidene and use thereof
KR101535066B1 (ko) 두 개의 적층형 유기 태양전지 소자용 유기 반도체 화합물, 및 이를 포함하는 유기전자소자
US20240122055A1 (en) Organic semiconducting compound and organic optoelectronic devices using the same
Rakstys Molecularly Engineered Hole Transporting Materials for High Performance Perovskite Solar Cells
KR101514819B1 (ko) 유기 반도체 화합물, 이의 제조방법 및 이를 포함하는 유기전자소자
WO2016184388A1 (en) Solution-processable donor-acceptor compounds containing boron(iii) moieties for fabrication of optical reflectors and organic memory devices and their preparation thereof
JP2023055647A (ja) 有機半導体化合物及びそれを用いた有機光電素子
Bai Material Design and Device Fabrication for High-Performance Non-Fullerene Organic Photovoltaics
WO2022189931A1 (en) Conjugated anthradithiophene terpolymers and photovoltaic devices containing them
TW202409136A (zh) 有機半導體聚合物及包含其之有機光電元件
Alemdar Yılmaz Rational molecular design enables efficient organic solar cells and organic light emitting devices