TWI808927B - Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device - Google Patents

Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device Download PDF

Info

Publication number
TWI808927B
TWI808927B TW112111541A TW112111541A TWI808927B TW I808927 B TWI808927 B TW I808927B TW 112111541 A TW112111541 A TW 112111541A TW 112111541 A TW112111541 A TW 112111541A TW I808927 B TWI808927 B TW I808927B
Authority
TW
Taiwan
Prior art keywords
phase shift
film
layer
light
reflectance
Prior art date
Application number
TW112111541A
Other languages
Chinese (zh)
Other versions
TW202328801A (en
Inventor
坪井誠治
安森順一
Original Assignee
日商Hoya股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商Hoya股份有限公司 filed Critical 日商Hoya股份有限公司
Application granted granted Critical
Publication of TWI808927B publication Critical patent/TWI808927B/en
Publication of TW202328801A publication Critical patent/TW202328801A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/66Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7095Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
    • G03F7/70958Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)
  • Liquid Crystal (AREA)

Abstract

本發明提供一種具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之顯示裝置用相位偏移光罩之形成中使用的相位偏移光罩基底。 本發明之相位偏移光罩基底係於透明基板上具備相位偏移膜,相位偏移膜包含金屬系材料或金屬矽化物系材料,相位偏移膜具有相位偏移層、配置於該相位偏移層之上側之反射率降低層、及配置於該等之間之中間層,中間層係具有金屬含有率高於反射率降低層之金屬含有率的金屬系材料,或者為具有金屬與矽之合計含有率高於反射率降低層之合計含有率的金屬矽化物系材料,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域為15%以下,且相位偏移膜對自透明基板側入射之光之背面反射率於365 nm~436 nm之波長區域為20%以下。 The present invention provides a phase shift mask base used for forming a phase shift mask for a display device having an excellent pattern cross-sectional shape and excellent CD uniformity, forming a fine pattern and improving transfer accuracy. The phase shift mask base of the present invention is provided with a phase shift film on a transparent substrate. The phase shift film includes a metal-based material or a metal silicide-based material. The phase-shift film has a phase-shift layer, a reflectivity-reducing layer arranged on the upper side of the phase-shift layer, and an intermediate layer disposed between them. The ratio is 15% or less in the wavelength region of 350 nm to 436 nm, and the back reflectance of the phase shift film for light incident from the transparent substrate side is 20% or less in the wavelength region of 365 nm to 436 nm.

Description

相位偏移光罩基底及使用其之相位偏移光罩之製造方法、與顯示裝置之製造方法Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device

本發明係關於一種相位偏移光罩基底及使用其之相位偏移光罩之製造方法、與顯示裝置之製造方法。The present invention relates to a phase shift mask substrate, a method for manufacturing a phase shift mask using the same, and a method for manufacturing a display device.

近年來,隨著FPD(Flat Panel Display,平板顯示器)等顯示裝置之高解像度化、高精細化,謀求一種具有優異之圖案剖面形狀及優異之CD(critical dimension,關鍵尺寸)均一性,且形成有微細之圖案之顯示裝置用相位偏移光罩。 又,受到FPD等顯示裝置之低價格化之影響,必須降低相位偏移光罩之製造成本。於在相位偏移膜上形成有遮光性膜之先前之相位偏移光罩基底之情形時,以抗蝕膜圖案作為遮罩,蝕刻遮光性膜而形成遮光性膜圖案,其後,以遮光性膜圖案作為遮罩,蝕刻相位偏移膜而形成相位偏移膜圖案,其後,剝離抗蝕膜圖案,進而,剝離遮光性膜圖案而製造具有相位偏移膜圖案之相位偏移光罩。另一方面,於在相位偏移膜上未形成遮光性膜之相位偏移光罩基底之情形時,無需相位偏移膜上之遮光性膜圖案之形成步驟及剝離步驟,從而可降低製造成本。 應對此種近年來之狀況,要求一種使用於相位偏移膜上未形成遮光性膜之相位偏移光罩基底而製造之具有優異之圖案剖面形狀及優異之CD均一性且形成有微細之圖案的顯示裝置用相位偏移光罩。 例如,於專利文獻1中提出一種於透明基板上具備積層2層以上之薄膜而成之構成之相位偏移膜的顯示裝置用相位偏移光罩基底。構成該相位偏移膜之各薄膜具有相互不同之組成,但均包含可藉由相同之蝕刻液進行蝕刻之物質,藉由組成不同而具有不同之蝕刻速度。於專利文獻1中,於相位偏移膜之圖案化時,以陡峭地形成相位偏移膜圖案之邊緣部分之剖面傾斜之方式,調整構成相位偏移膜之各薄膜之蝕刻速度。 再者,於專利文獻1中亦提出一種顯示裝置用相位偏移光罩基底,其係於相位反轉膜之上部或下部配置有包含包括遮光性膜、半透過膜、蝕刻阻止膜及硬遮罩膜在內之轉印用圖案所需之膜中之一種以上之膜的功能性膜。 [先前技術文獻] [專利文獻] [專利文獻1]日本專利特開2014-26281號公報 In recent years, with the high-resolution and high-definition of display devices such as FPD (Flat Panel Display), a phase shift mask for display devices with excellent pattern cross-sectional shape and excellent CD (critical dimension) uniformity and fine patterns formed is sought. In addition, under the influence of low price of display devices such as FPD, it is necessary to reduce the manufacturing cost of the phase shift mask. In the case of the previous phase shift mask substrate with a light-shielding film formed on the phase shift film, the light-shielding film pattern is formed by etching the light-shielding film using the resist film pattern as a mask, and then the phase shift film is etched to form a phase shift film pattern using the light-shielding film pattern as a mask. After that, the resist film pattern is peeled off, and then the light-shielding film pattern is peeled off to manufacture a phase shift mask with a phase shift film pattern. On the other hand, in the case of a phase shift mask substrate in which no light-shielding film is formed on the phase shift film, the step of forming a light-shielding film pattern on the phase shift film and the step of stripping are unnecessary, thereby reducing manufacturing costs. To deal with this situation in recent years, there is a demand for a phase shift mask for a display device, which is manufactured using a phase shift mask substrate on which no light-shielding film is formed on the phase shift film, has an excellent pattern cross-sectional shape and excellent CD uniformity, and is formed with a fine pattern. For example, Patent Document 1 proposes a phase shift mask base for a display device including a phase shift film formed by laminating two or more thin films on a transparent substrate. The thin films constituting the phase shift film have different compositions, but all include substances that can be etched by the same etching solution, and have different etching rates due to the different compositions. In Patent Document 1, when patterning the phase shift film, the etching rate of each thin film constituting the phase shift film is adjusted so that the cross-section of the edge portion of the phase shift film pattern is formed steeply. Furthermore, Patent Document 1 also proposes a phase-shift mask substrate for a display device, which is a functional film including one or more films required for pattern transfer including a light-shielding film, a semi-permeable film, an etching stopper film, and a hard mask film, disposed above or below the phase-reversal film. [Prior Art Literature] [Patent Document] [Patent Document 1] Japanese Patent Laid-Open No. 2014-26281

[發明所欲解決之問題] 先前提出之顯示裝置用相位偏移光罩中所使用之相位偏移膜未考慮由用於形成相位偏移膜圖案之抗蝕膜之圖案化時使用之雷射繪圖光之反射所引起之對抗蝕膜的影響而設計。因此,相位偏移膜對雷射繪圖光之膜面反射率超過20%。其結果為有如下情形:於抗蝕膜中產生駐波,伴隨於此,抗蝕膜圖案之CD均一性惡化,甚至以抗蝕膜圖案作為遮罩進行圖案化而形成之相位偏移膜圖案之CD均一性無法滿足近年來要求之值。 除此以外,先前提出之顯示裝置用相位偏移光罩中所使用之相位偏移膜未考慮與曝光機之光學系統之反射、或與貼附於相位偏移光罩之光罩護膜或顯示裝置基板之反射之影響而設計。因此,存在如下問題:於使用顯示裝置用相位偏移光罩,轉印形成於相位偏移光罩之圖案時,產生由來自顯示裝置基板之反射光所引起之轉印圖案之模糊(閃光),轉印精度惡化,或者有產生轉印至顯示裝置基板之轉印圖案之CD誤差之危險性。 因此,本發明係鑒於上述問題而完成者,其目的在於提供一種顯示裝置用相位偏移光罩之形成中使用之相位偏移光罩基底、及使用其之相位偏移光罩之製造方法,該顯示裝置用相位偏移光罩藉由具備降低對用作雷射繪圖光之350 nm~436 nm之波長區域之光之膜面反射率、及對用作曝光之光之365 nm~436 nm之波長區域之光之背面反射率的相位偏移膜,具有優異之圖案剖面形狀及優異之CD均一性,形成有微細之圖案且轉印精度變得良好。進而,其目的在於提供一種藉由使用具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之顯示裝置用相位偏移光罩,不會產生CD誤差之高解像度、高精細之顯示裝置之製造方法。 [解決問題之技術手段] 本發明者為了達成上述目的而進行努力研究,獲得如下見解:以至少3層構成相位偏移膜,研究構成相位偏移膜之各層之組成或膜厚,藉此可使相位偏移膜對曝光之光之透過率及相位差滿足作為相位偏移膜所需之特定之光學特性,並且降低相位偏移膜對350 nm~436 nm之波長區域之光之膜面反射率、及對365 nm~436 nm之波長區域之光之背面反射率。 本發明係基於該見解而完成者,具有以下之構成。 (構成1) 一種相位偏移光罩基底,其特徵在於:其係於透明基板上具備相位偏移膜者,且 上述相位偏移膜包含含有1種以上之金屬及選自氧、氮、碳中之至少一者之金屬系材料、或含有1種以上之金屬、矽及選自氧、氮、碳中之至少一者之金屬矽化物系材料中之至少任一者, 上述相位偏移膜具有:相位偏移層,其主要具有調整對曝光之光之透過率及相位差之功能;反射率降低層,其配置於該相位偏移層之上側,主要具有降低對自上述相位偏移膜側入射之光之反射率之功能;及中間層,其配置於上述相位偏移層與上述反射率降低層之間, 上述中間層係具有金屬含有率高於上述反射率降低層之金屬含有率的金屬系材料,或者為具有高於上述反射率降低層之上述金屬含有率或金屬與矽之合計含有率高於上述反射率降低層之合計含有率的金屬矽化物系材料, 藉由上述相位偏移層、上述中間層及上述反射率降低層之積層構造,上述相位偏移膜對曝光之光之透過率及相位差具有特定之光學特性, 上述相位偏移膜對自上述相位偏移膜側入射之光之膜面反射率於350 nm~436 nm之波長區域為15%以下,且上述相位偏移膜對自上述透明基板側入射之光之背面反射率於365 nm~436 nm之波長區域為20%以下。 (構成2) 如構成1記載之相位偏移光罩基底,其特徵在於上述相位偏移膜包含可藉由同一蝕刻劑進行蝕刻之材料。 (構成3) 如構成1或2記載之相位偏移光罩基底,其特徵在於上述金屬為鉻。 (構成4) 如構成3記載之相位偏移光罩基底,其特徵在於:上述相位偏移層及上述反射率降低層包含含有鉻、氧及氮之鉻系材料,鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%,且上述相位偏移層中所含之氮之含有率係與上述反射率降低層中所含之氮之含有率相同或者多於其,上述反射率降低層中所含之氧之含有率多於上述相位偏移層中所含之氧之含有率, 上述中間層含有鉻及碳,鉻之含有率為55~90原子%,碳之含有率為10~45原子%,上述中間層中所含之鉻之含有率多於上述相位偏移層、上述反射率降低層中所含之鉻含有率。 (構成5) 如構成3或4記載之相位偏移光罩基底,其特徵在於:上述相位偏移層包含一氮化鉻或氮化二鉻,且 上述反射率降低層包含鉻與氧鍵結而成之氧化鉻(III)。 (構成6) 如構成3至5中任一項記載之相位偏移光罩基底,其特徵在於:上述中間層包含進而含有氧之鉻系材料,且 上述相位偏移層、上述中間層及上述反射率降低層包含鉻與氧鍵結而成之氧化鉻(III)。 (構成7) 如構成1或2記載之相位偏移光罩基底,其特徵在於:上述相位偏移層包含含有氧或氮中之至少一者之金屬矽化物系材料,上述反射率降低層包含含有氧或氮中之至少一者之金屬系材料。 (構成8) 如構成7記載之相位偏移光罩基底,其特徵在於上述金屬矽化物系材料為矽化鉬系材料、矽化鋯系材料、矽化鈦系材料、矽化鉬鋯系材料。 (構成9) 如構成1記載之相位偏移光罩基底,其特徵在於上述相位偏移層、上述中間層、上述反射率降低層中之1層或2層包含與其他層具有蝕刻選擇性之材料。 (構成10) 如構成9記載之相位偏移光罩基底,其特徵在於:上述相位偏移層及上述中間層含有包含鉻系材料之材料,上述反射率降低層包含與上述相位偏移層、上述中間層具有蝕刻選擇性之金屬系材料。 (構成11) 如構成10記載之相位偏移光罩基底,其特徵在於上述反射率降低層包含含有鈦及氧、氮中之任一者之鈦系材料。 (構成12) 如構成1至11中任一項記載之相位偏移光罩基底,其特徵在於在上述透明基板與上述相位偏移膜之間具備遮光性膜圖案。 (構成13) 如構成12記載之相位偏移光罩基底,其特徵在於上述遮光性膜圖案對自上述透明基板側入射之光之背面反射率於365 nm~436 nm之波長區域為20%以下。 (構成14) 如構成1至11中任一項記載之相位偏移光罩基底,其特徵在於:於上述相位偏移膜上具備遮光性膜,且上述遮光性膜之膜面反射率於350 nm~436 nm之波長區域為15%以下。 (構成15) 一種相位偏移光罩之製造方法,其特徵在於包括如下步驟: 於如構成1至8、12、13中任一項記載之相位偏移光罩基底之上述相位偏移膜上形成抗蝕膜,藉由繪圖處理及顯影處理,而於該抗蝕膜形成抗蝕膜圖案;及 以該抗蝕膜圖案作為遮罩,蝕刻上述相位偏移膜,而於上述透明基板上形成相位偏移膜圖案。 (構成16) 一種相位偏移光罩之製造方法,其特徵在於包括如下步驟: 於如構成9至13中任一項記載之相位偏移光罩基底之上述相位偏移膜上形成抗蝕膜,藉由使用雷射光之繪圖處理及顯影處理,而於該抗蝕膜形成抗蝕膜圖案; 以該抗蝕膜圖案作為遮罩,蝕刻上述反射率降低層,而形成反射率降低層圖案;及 以上述反射率降低層圖案作為遮罩,蝕刻上述中間層及上述相位偏移層,而於上述透明基板上形成相位偏移膜圖案。 (構成17) 一種相位偏移光罩之製造方法,其特徵在於包括如下步驟: 於如構成14記載之相位偏移光罩基底之上述遮光性膜上形成抗蝕膜,藉由繪圖處理及顯影處理,而於該抗蝕膜形成抗蝕膜圖案; 以該抗蝕膜圖案作為遮罩,蝕刻上述遮光性膜,而於上述相位偏移膜上形成遮光性膜圖案;及 以上述遮光性膜圖案作為遮罩,蝕刻上述相位偏移膜,而於上述透明基板上形成相位偏移膜圖案。 (構成18) 一種顯示裝置之製造方法,其特徵在於包括如下步驟: 將藉由如構成15至17中任一項記載之相位偏移光罩之製造方法所獲得之相位偏移光罩載置於曝光裝置之光罩台;及 對上述相位偏移光罩照射曝光之光,而於形成於顯示裝置基板上之抗蝕膜轉印上述相位偏移膜圖案。 (構成19) 如構成18記載之顯示裝置之製造方法,其特徵在於上述曝光之光係包含選自313 nm~436 nm之波長區域中之複數個波長之光的複合光。 [發明之效果] 如上所述,本發明之相位偏移光罩基底係於透明基板上具備相位偏移膜者,並且上述相位偏移膜包含含有1種以上之金屬及選自氧、氮、碳中之至少一者之金屬系材料、或含有1種以上之金屬、矽及選自氧、氮、碳中之至少一者之金屬矽化物系材料中之至少任一者,上述相位偏移膜具有:相位偏移層,其主要具有調整對曝光之光之透過率及相位差之功能;反射率降低層,其配置於該相位偏移層之上側,主要具有降低對自上述相位偏移膜側入射之光之反射率之功能;及中間層,其配置於上述相位偏移層與上述反射率降低層之間,上述中間層係具有高於上述反射率降低層之金屬含有率之金屬含有率的金屬系材料,或者為具有高於上述反射率降低層之上述金屬含有率或上述反射率降低層之金屬與矽之合計含有率之合計含有率的金屬矽化物系材料,藉由上述相位偏移層、上述中間層及上述反射率降低層之積層構造,上述相位偏移膜對曝光之光之透過率及相位差具有特定之光學特性,上述相位偏移膜對自上述相位偏移膜側入射之光之膜面反射率於350 nm~436 nm之波長區域為15%以下,且上述相位偏移膜對自上述透明基板側入射之光之背面反射率於365 nm~436 nm之波長區域為20%以下。因此,可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。又,可使用該相位偏移光罩,製造不會產生CD誤差之高解像度、高精細之顯示裝置。 [Problem to be solved by the invention] The previously proposed phase shift film used in the phase shift mask for display devices is designed without considering the influence on the resist film caused by the reflection of laser drawing light used for patterning the resist film for forming the phase shift film pattern. Therefore, the film surface reflectance of the phase shift film to the laser drawing light exceeds 20%. As a result, standing waves are generated in the resist film, and with this, the CD uniformity of the resist film pattern deteriorates, and even the CD uniformity of the phase shift film pattern formed by patterning using the resist film pattern as a mask cannot satisfy the value required in recent years. In addition, the phase shift film used in the previously proposed phase shift mask for display devices is not designed considering the reflection with the optical system of the exposure machine, or the influence of reflection with the mask protective film attached to the phase shift mask or the display device substrate. Therefore, there is a problem that, when a pattern formed on the phase shift mask is transferred using a phase shift mask for a display device, blurring (flicker) of the transferred pattern due to reflected light from the display device substrate occurs, the transfer accuracy deteriorates, or there is a risk of a CD error of the transferred pattern transferred to the display device substrate. Therefore, the present invention was made in view of the above-mentioned problems, and its object is to provide a phase shift mask base used in the formation of a phase shift mask for a display device, and a method of manufacturing a phase shift mask using the same. The cross-sectional shape of the pattern and the excellent CD uniformity form a fine pattern and the transfer accuracy becomes good. Furthermore, the object is to provide a method of manufacturing a high-resolution, high-definition display device that does not cause CD errors by using a phase shift mask for a display device that has an excellent pattern cross-sectional shape and excellent CD uniformity, and is formed with a fine pattern and has good transfer accuracy. [Technical means to solve the problem] In order to achieve the above purpose, the present inventors have worked hard to study and obtained the following insights: at least three layers are used to form a phase shift film, and the composition or film thickness of each layer constituting the phase shift film is studied, so that the transmittance and phase difference of the phase shift film to exposed light can meet the specific optical characteristics required as a phase shift film, and reduce the surface reflectance of the phase shift film for light in the wavelength range of 350 nm to 436 nm and the back reflectance of light in the wavelength range of 365 nm to 436 nm. This invention was completed based on this knowledge, and has the following structures. (composition 1) A phase shift mask substrate, characterized in that: it is equipped with a phase shift film on a transparent substrate, and The phase shift film includes at least one of metal-based materials containing one or more metals and at least one selected from oxygen, nitrogen, and carbon, or at least any one of metal silicide-based materials containing one or more metals, silicon, and at least one selected from oxygen, nitrogen, and carbon, The above-mentioned phase shift film has: a phase shift layer, which mainly has the function of adjusting the transmittance and phase difference of exposed light; a reflectance reducing layer, which is arranged on the upper side of the phase shift layer, and mainly has the function of reducing the reflectance of light incident from the side of the above-mentioned phase shift film; and an intermediate layer, which is arranged between the above-mentioned phase shift layer and the above-mentioned reflectance reducing layer, The above-mentioned intermediate layer is a metal-based material having a metal content higher than that of the reflectance reducing layer, or a metal silicide-based material having a higher metal content than the above-mentioned reflectance reducing layer or a total content of metal and silicon higher than the total content of the above-mentioned reflectance reducing layer, Through the laminated structure of the above-mentioned phase shift layer, the above-mentioned intermediate layer and the above-mentioned reflectance reducing layer, the above-mentioned phase shift film has specific optical characteristics for the transmittance and phase difference of the exposed light, The surface reflectance of the phase shift film for light incident from the side of the phase shift film is 15% or less in the wavelength range of 350 nm to 436 nm, and the back reflectance of the phase shift film for light incident from the transparent substrate side is 20% or less in the wavelength range of 365 nm to 436 nm. (composition 2) According to the configuration of the phase shift mask substrate described in 1, it is characterized in that the phase shift film includes a material that can be etched by the same etchant. (composition 3) If the phase shift mask substrate described in 1 or 2 is constituted, the above-mentioned metal is chromium. (composition 4) According to the phase shift mask substrate described in 3, it is characterized in that: the phase shift layer and the reflectance reducing layer contain chromium-based materials containing chromium, oxygen and nitrogen, chromium is 30 to 70 atomic %, oxygen is 20 to 60 atomic %, and nitrogen is 0.4 to 30 atomic %, and the nitrogen content in the phase shift layer is the same as or higher than that contained in the reflectance reducing layer, and the oxygen content in the reflectance reducing layer is higher than that in the phase shift layer The content rate of the contained oxygen, The intermediate layer contains chromium and carbon. The content of chromium is 55 to 90 atomic %, and the content of carbon is 10 to 45 atomic %. The content of chromium contained in the intermediate layer is higher than that contained in the phase shift layer and the reflectance reducing layer. (composition 5) If the phase-shift mask substrate described in 3 or 4 is constituted, it is characterized in that: the above-mentioned phase-shift layer contains chromium nitride or dichromium nitride, and The above-mentioned reflectance reducing layer contains chromium (III) oxide in which chromium and oxygen are bonded. (composition 6) If the phase shift mask substrate described in any one of 3 to 5 is constituted, it is characterized in that: the above-mentioned intermediate layer contains a chromium-based material that further contains oxygen, and The phase shift layer, the intermediate layer, and the reflectance reducing layer include chromium (III) oxide in which chromium and oxygen are bonded. (composition 7) If the phase shift mask substrate according to 1 or 2 is constituted, it is characterized in that the phase shift layer includes a metal silicide-based material containing at least one of oxygen or nitrogen, and the reflectance reducing layer includes a metal-based material containing at least one of oxygen or nitrogen. (composition 8) Such as forming the phase shift mask substrate described in 7, characterized in that the metal silicide-based materials are molybdenum silicide-based materials, zirconium silicide-based materials, titanium silicide-based materials, and molybdenum silicide-based zirconium silicide-based materials. (composition 9) According to the configuration of the phase shift mask substrate described in 1, it is characterized in that one or both of the phase shift layer, the intermediate layer, and the reflectance lowering layer contain a material having etching selectivity with other layers. (composition 10) As described in 9, the phase-shift mask substrate is characterized in that: the above-mentioned phase-shift layer and the above-mentioned intermediate layer contain a material containing a chromium-based material, and the above-mentioned reflectance reduction layer contains a metal-based material having etching selectivity with the above-mentioned phase-shift layer and the above-mentioned intermediate layer. (composition 11) According to the configuration of the phase shift mask substrate described in 10, it is characterized in that the above-mentioned reflectance lowering layer comprises a titanium-based material containing titanium and any one of oxygen and nitrogen. (composition 12) The configuration of the phase shift mask base described in any one of 1 to 11 is characterized in that a light-shielding film pattern is provided between the transparent substrate and the phase shift film. (composition 13) The phase shift mask base described in 12 is configured, wherein the back reflectance of the light-shielding film pattern for light incident from the transparent substrate side is 20% or less in the wavelength region of 365 nm to 436 nm. (composition 14) The phase shift mask base according to any one of 1 to 11 is configured, wherein a light-shielding film is provided on the above-mentioned phase shift film, and the surface reflectance of the light-shielding film is 15% or less in the wavelength region of 350 nm to 436 nm. (composition 15) A method of manufacturing a phase shift mask, characterized by comprising the following steps: Forming a resist film on the above-mentioned phase shift film constituting the phase shift mask substrate as described in any one of 1 to 8, 12, and 13, and forming a resist film pattern on the resist film through drawing processing and development processing; and Using the resist film pattern as a mask, the phase shift film is etched to form a phase shift film pattern on the transparent substrate. (composition 16) A method of manufacturing a phase shift mask, characterized by comprising the following steps: Forming a resist film on the phase shift film constituting the phase shift mask substrate described in any one of 9 to 13, and forming a resist film pattern on the resist film by drawing and developing using laser light; Using the resist film pattern as a mask, etching the above-mentioned reflectivity reducing layer to form a reflectivity reducing layer pattern; and Using the reflectance reducing layer pattern as a mask, etching the intermediate layer and the phase shift layer to form a phase shift film pattern on the transparent substrate. (composition 17) A method of manufacturing a phase shift mask, characterized by comprising the following steps: Form a resist film on the above-mentioned light-shielding film constituting the phase shift mask substrate as described in 14, and form a resist film pattern on the resist film by drawing and developing; Using the resist film pattern as a mask, etching the light-shielding film to form a light-shielding film pattern on the phase shift film; and Using the light-shielding film pattern as a mask, the phase shift film is etched to form a phase shift film pattern on the transparent substrate. (composition 18) A method of manufacturing a display device, characterized by comprising the following steps: Mounting the phase shift mask obtained by the method of manufacturing the phase shift mask as described in any one of 15 to 17, on the mask stage of the exposure device; and Exposure light is irradiated to the phase shift mask, and the phase shift film pattern is transferred to the resist film formed on the display device substrate. (composition 19) According to the method of manufacturing a display device described in 18, it is characterized in that the above-mentioned exposure light is composite light including light of a plurality of wavelengths selected from the wavelength region of 313 nm to 436 nm. [Effect of Invention] As mentioned above, the phase shift mask base of the present invention is provided with a phase shift film on a transparent substrate, and the phase shift film includes a metal-based material containing at least one metal and at least one selected from oxygen, nitrogen, and carbon, or at least any one of a metal silicide-based material containing at least one metal, silicon, and at least one selected from oxygen, nitrogen, and carbon. The upper side of the shift layer mainly has the function of reducing the reflectance of light incident from the side of the above-mentioned phase shift film; and an intermediate layer, which is arranged between the above-mentioned phase shift layer and the above-mentioned reflectance reducing layer. The layered structure of the rate-reducing layer, the above-mentioned phase shift film has specific optical characteristics for the transmittance and phase difference of the exposed light, the film surface reflectance of the above-mentioned phase-shift film for light incident from the side of the above-mentioned phase-shift film in the wavelength range of 350 nm to 436 nm is 15% or less, and the back-side reflectance of the above-mentioned phase shift film for light incident from the side of the transparent substrate is 20% or less in the wavelength range of 365 nm-436 nm. Therefore, using this phase shift mask base, it is possible to manufacture a phase shift mask having an excellent pattern cross-sectional shape and excellent CD uniformity, in which a fine pattern is formed, and in which transfer accuracy becomes good. In addition, the phase shift mask can be used to manufacture a high-resolution, high-definition display device that does not cause CD errors.

以下,一面參照圖式一面對本發明之實施形態詳細地進行說明。再者,以下之實施形態係將本發明具體化時之一形態,並非將本發明限定於該範圍內。再者,圖中,有對同一或同等之部分標註同一符號而簡化或省略其說明之情形。 實施形態1(實施形態1-1、1-2、1-3). 於實施形態1中,對相位偏移光罩基底進行說明。 圖1係表示實施形態1-1中之相位偏移光罩基底10之膜構成的模式圖。相位偏移光罩基底10具備對曝光之光透明之透明基板20、及配置於透明基板20上之相位偏移膜30。透明基板20係於設為不存在表面反射損耗時,對曝光之光具有85%以上之透過率、較佳為90%以上之透過率。 相位偏移膜30包含含有1種以上之金屬及選自氧、氮、碳中之至少一者之金屬系材料、或含有1種以上之金屬、矽及選自氧、氮、碳中之至少一者之金屬矽化物系材料。 作為金屬系材料中所含有之金屬,可列舉:鉻(Cr)、Zr(鋯)、鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)等過渡金屬、鋁(Al)等典型金屬。 作為金屬矽化物系材料,例如可列舉:金屬矽化物之氮化物、金屬矽化物之氧化物、金屬矽化物之氮氧化物、金屬矽化物之碳氮化物、金屬矽化物之碳氧化物及金屬矽化物之氧碳氮化物。作為金屬矽化物系材料中所含有之金屬,可列舉上述過渡金屬及典型金屬。 相位偏移膜30係自透明基板20側起,具有相位偏移層31、作為中間層之金屬層33及反射率降低層32。 相位偏移膜30係如實施例中詳述般,可均藉由金屬系材料構成相位偏移層31、反射率降低層32及金屬層33(實施例1、2),又,亦可藉由金屬系材料構成相位偏移層31、反射率降低層32及金屬層33中之任1層或2層,藉由金屬矽化物系材料構成其他層(實施例3)。 相位偏移層31配置於透明基板20之主表面上。相位偏移層31具有主要調整對曝光之光之透過率及相位差之功能。相位偏移層31係於相位偏移膜30中,與反射率降低層32、金屬層33之膜厚相比膜厚最厚之層。再者,下述構成相位偏移層31、金屬層33、反射率降低層32之各元素之含有率係設為藉由X射線光電子光譜法(XPS、ESCA(electron spectroscopy for chemical analysis,化學分析用電子光譜法))測得之值。 相位偏移層31包含金屬系材料或金屬矽化物系材料。 於相位偏移膜30整體包含鉻(Cr)系材料之情形時,相位偏移層31包含含有鉻(Cr)、氧(O)及氮(N)之鉻系材料,各元素之平均含有率較佳為鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%。又,關於相位偏移層31,作為構成該相位偏移層31之成分之結合狀態(化學狀態),包含鉻與氮鍵結而成之鉻氮化物,尤佳為包含一氮化鉻(CrN)或氮化二鉻(Cr 2N)。進而,相位偏移層31亦可具有包含碳(C)及氟(F)中之至少一種之鉻系材料。例如,作為形成相位偏移層31之材料,可列舉:CrON、CrOCN、CrFCON。 又,於構成相位偏移膜30之金屬矽化物系材料之金屬中包含鉬(Mo)、鋯(Zr)或鈦(Ti)之情形時,相位偏移層31包含:含有鉬(Mo)、矽(Si)、氮(N)及/或氧(O)之矽化鉬系材料;含有鋯(Zr)、矽(Si)、氮(N)及/或氧(O)之矽化鋯系材料;或含有鈦(Ti)、矽(Si)、氮(N)及/或氧(O)之矽化鈦系材料。於矽化鉬系材料之情形時,各元素之平均含有率較佳為鉬(Mo)為5~20原子%,矽(Si)為15~45原子%,氮(N)為0~75原子%,氧(O)為0~45原子%。又,於矽化鋯系材料之情形時,各元素之平均含有率較佳為鋯(Zr)為5~35原子%,矽(Si)為5~45原子%,氮(N)為0~70原子%,氧(O)為0~70原子%。又,於矽化鈦系材料之情形時,各元素之平均含有率較佳為鈦(Ti)為5~30原子%,矽(Si)為10~45原子%,氮(N)為0~70原子%,氧(O)為0~60原子%。進而,相位偏移層31亦可具有包含碳(C)之矽化鉬系材料、或包含碳(C)之矽化鋯系材料。 相位偏移層31可藉由濺鍍法形成。 反射率降低層32配置於相位偏移層31之上側。反射率降低層32主要具有降低對自相位偏移膜30側(即反射率降低層32之與透明基板20側相反之一側)入射之光之反射率之功能。反射率降低層32係為了藉由干渉效果使相位偏移膜30之反射率降低,而進行膜厚調整的層,該干渉效果之起因係基於由金屬層33與反射率降低層32之界面所引起之反射及由反射率降低層32表面所引起之反射。 反射率降低層32包含金屬系材料或金屬矽化物系材料。 於相位偏移膜30整體包含鉻(Cr)系材料之情形時,反射率降低層32包含含有鉻(Cr)、氧(O)及氮(N)之鉻系材料,各元素之平均含有率係鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%。又,關於反射率降低層32,作為構成該反射率降低層32之成分之結合狀態(化學狀態),包含鉻與氧鍵結而成之鉻氧化物,尤佳為主要包含氧化鉻(III)(Cr 2O 3)。進而,反射率降低層32可具有包含碳(C)及氟(F)中之至少一種之鉻系材料。例如,作為形成反射率降低層32之材料,可列舉:CrON、CrOCN、CrFON。於此情形時,就對自相位偏移膜側(反射率降低層32之表面側)入射之光之反射率之降低效果、及相位偏移膜30整體藉由濕式蝕刻而形成優異之圖案剖面形狀之觀點而言,採用如下狀態:相位偏移層31中所含之氮(N)之平均含有率與反射率降低層32中所含之氮(N)之平均含有率相同或者多於其,反射率降低層32中所含之氧(O)之平均含有率多於相位偏移層31中所含之氧(O)之平均含有率。又,就膜面反射率之降低效果之方面而言,較佳為使反射率降低層32中所含之氧(O)之平均含有率與相位偏移層31中所含之氧(O)之平均含有率相比多至少1原子%以上、較佳為5原子%以上。 又,於構成相位偏移膜30之金屬矽化物系材料之金屬中包含鉬(Mo)、鋯(Zr)或鈦(Ti)之情形時,較佳為反射率降低層32包含:含有鈦(Ti)、氮(N)及氧(O)之鈦系材料、或含有鈦(Ti)及氧(O)之鈦系材料,各元素之平均含有率係鈦(Ti)為15~45原子%,氮(N)為20~50原子%,氧(O)為15~65原子%。又,於構成相位偏移膜30之金屬矽化物系材料之情形時,反射率降低層32可包含:含有鉬(Mo)、矽(Si)、氮(N)及氧(O)之矽化鉬系材料;含有鉬(Mo)、矽(Si)及氧(O)之矽化鉬系材料;含有鋯(Zr)、矽(Si)、氮(N)及氧(O)之矽化鋯系材料;含有鋯(Zr)、矽(Si)及氧(O)之矽化鋯系材料;含有鈦(Ti)、矽(Si)、氮(N)及氧(O)之矽化鈦系材料;含有鈦(Ti)、矽(Si)及氧(O)之矽化鈦系材料,但為了確保與形成於表面之抗蝕膜(未圖示)之密接性,較佳為進行HMDS(hexamethyl disilazane,六甲基二矽氮烷)等之表面處理。 反射率降低層32可藉由濺鍍法形成。 金屬層33配置於相位偏移層31與反射率降低層32之間。金屬層33具有調整對曝光之光之透過率之功能,並且與反射率降低層32組合,具有降低對自相位偏移膜30側入射之光之反射率之功能。進而,與相位偏移層組合,具有降低對自透明基板20側入射之光之反射率之功能。 金屬層33包含具有高於反射率降低層32之金屬之平均含有率之金屬之平均含有率的金屬系材料、或具有高於反射率降低層32之金屬與矽之合計之平均含有率之合計之平均含有率的金屬矽化物系材料。 於相位偏移膜30整體包含鉻(Cr)系材料之情形時,或者於構成相位偏移膜30之金屬矽化物系材料之金屬中包含鉬(Mo)、鋯(Zr)、鈦(Ti)之情形時,金屬層33含有鉻(Cr)及碳(C),各元素之平均含有率係鉻(Cr)之含有率為55~90原子%,碳(C)之含有率為10~45原子%,金屬層33中所含之鉻之平均含有率多於相位偏移層31、反射率降低層32中所含之鉻之平均含有率。於藉由同一蝕刻劑蝕刻相位偏移膜30整體之情形時,藉由將碳(C)之平均含有率設為10原子%以上,可抑制金屬層33之剖面形狀成為錐形形狀。又,藉由將金屬層33中所含之碳(C)之平均含有率設為45原子%以下,可抑制金屬層33之剖面形狀成為錐形形狀。藉由將金屬層33中所含之碳(C)之平均含有率設為上述適當之範圍,可藉由適當之光罩製程於金屬層33形成圖案。又,金屬層33可進而具有包含氮(N)、氧(O)及氟(F)中之至少一種之鉻系材料。例如,作為形成金屬層33之材料,可列舉:CrC、CrCN、CrCO、CrCF、CrCON。其中,金屬層33較佳為採用含有鉻(Cr)、碳(C)及氧(O)之鉻系材料。而且,作為構成相位偏移層31、反射率降低層32及金屬層33之成分之結合狀態(化學狀態),就獲得由濕式蝕刻所帶來之優異之圖案剖面形狀之觀點而言,進而較佳為於該等所有層中均包含氧化鉻(III)(Cr 2O 3)。 又,於構成相位偏移膜30之金屬系材料之金屬中包含鈦(Ti),且金屬矽化物系材料之金屬中包含鉬(Mo)、鋯(Zr)或鈦(Ti)之情形時,金屬層33包含:含有鉬(Mo)、矽(Si)、碳(C)及/或氮(N)之矽化鉬系材料;含有鋯(Zr)、矽(Si)、碳(C)及/或氮(N)之矽化鋯系材料;或含有鈦(Ti)、矽(Si)、碳(C)及/或氮(N)之矽化鈦系材料。於矽化鉬系材料之情形時,各元素之平均含有率較佳為鉬(Mo)為5~20原子%,矽(Si)為15~70原子%,碳(C)為0~20原子%,氮(N)為0~30原子%。又,於矽化鋯系材料之情形時,各元素之平均含有率較佳為鋯(Zr)為5~35原子%,矽(Si)為5~70原子%,碳(C)為0~20原子%,氮(N)為0~20原子%。又,於矽化鈦系材料之情形時,各元素之平均含有率較佳為鈦(Ti)為5~35原子%,矽(Si)為5~70原子%,碳(C)為0~20原子%,氮(N)為0~20原子%。金屬層33中所含之矽化鉬之平均含有率、矽化鋯之平均含有率、矽化鈦之平均含有率多於相位偏移層31、反射率降低層32中所含之矽化鉬之平均含有率、矽化鋯之平均含有率、矽化鈦之平均含有率。進而,金屬層33亦可為包含碳(C)、氮(N)及氧(O)中之至少一種之矽化鉬系材料、矽化鋯系材料或矽化鈦系材料。例如,作為形成金屬層33之材料,可列舉:MoSiC、MoSiN、MoSiCN、MoSiCO、MoSiCON、ZrSiC、ZrSiN、ZrSiCN、ZrSiCO、ZrSiCON、TiSiC、TiSiN、TiSiCN、TiSiCO、TiSiCON。 藉由具備金屬層33,相位偏移膜30之薄片電阻降低,故而可防止相位偏移光罩基底及相位偏移光罩之充電。於不具備金屬層33之情形時,自殼體取放相位偏移光罩基底及相位偏移光罩時產生之電氣不散逸而電氣儲存於相位偏移光罩基底及相位偏移光罩,故而容易使異物附著。又,於在相位偏移光罩形成較小之圖案時,電氣自圖案飛濺至圖案,容易發生靜電破壞。 金屬層33可藉由濺鍍法形成。 金屬層33較佳為於350 nm~436 nm之波長區域具有高於反射率降低層32之消光係數的消光係數。又,較佳為於313 nm~436 nm之波長區域具有高於反射率降低層32之消光係數的消光係數。 金屬層33之消光係數與反射率降低層32之消光係數之差較佳為1.5~3.5,更佳為1.8~3.5。若消光係數之差為1.5~3.5,則可提高金屬層33與反射率降低層32之界面之上述波長區域(350 nm~436 nm之波長區域或313 nm~436 nm之波長區域)中之反射率,故而進一步發揮反射率降低效果,因此較佳。 再者,金屬層33較佳為於350 nm~436 nm之波長區域具有高於相位偏移層31之消光係數的消光係數。又,較佳為於313 nm~436 nm之波長區域具有高於相位偏移層31之消光係數的消光係數。 消光係數可使用n&k分析儀或橢圓偏光儀等進行測定。 於金屬層33及反射率降低層32包含鉻系材料之情形時,金屬層33具有高於反射率降低層32之鉻(Cr)平均含有率(原子%)的鉻(Cr)平均含有率(原子%)。 金屬層33之Cr平均含有率與反射率降低層32之Cr平均含有率之差較佳為10~80原子%,更佳為15~80原子%。若Cr平均含有率之差為10~80原子%,則可提高金屬層33與反射率降低層32之界面之上述波長區域(350 nm~436 nm之波長區域或313 nm~436 nm之波長區域)中之反射率,故而進一步發揮反射率降低效果,因此較佳。再者,金屬層33之蝕刻速度可藉由使鉻(Cr)中含有氮(N)、氧(O)、碳(C)、氟(F)而製成鉻系材料進行調整。例如,藉由使鉻(Cr)中含有碳(C)或氟(F),可減慢濕式蝕刻速度,藉由使鉻(Cr)中含有氮(N)或氧(O),可加快濕式蝕刻速度。考慮與形成於金屬層33之上下之相位偏移層31、反射率降低層32之濕式蝕刻速度,採用於鉻中添加有上述元素之鉻系材料,藉此可使蝕刻後之相位偏移膜30之剖面形狀良好。 再者,金屬層33具有高於相位偏移層31之鉻(Cr)平均含有率的鉻(Cr)平均含有率。 相位偏移層31、金屬層33及反射率降低層32之各者較佳為於350 nm~436 nm之波長區域具有2.0以上之折射率。若具有2.0以上之折射率,則可將為了獲得所需之光學特性(透過率及相位差)而所需之相位偏移膜30之膜厚薄膜化。因此,使用具備該相位偏移膜30之相位偏移光罩基底10而製作之相位偏移光罩可具備具有優異之圖案剖面形狀及優異之CD均一性之相位偏移膜圖案。 折射率可使用n&k分析儀或橢圓偏光儀等進行測定。 藉由相位偏移層31、金屬層33及反射率降低層32之積層構造,相位偏移膜30對曝光之光之透過率及相位差具有特定之光學特性。 相位偏移膜30可包含相位偏移層31、金屬層33及反射率降低層32中之任一層均可藉由同一蝕刻劑進行蝕刻之材料,亦可包含相位偏移層31、金屬層33及反射率降低層32中之1層或2層與其他層具有蝕刻選擇性之材料。 相位偏移膜30對曝光之光之透過率滿足作為相位偏移膜30所需之值。相位偏移膜30之透過率係對曝光之光中所含之特定之波長之光(以下,稱為代表波長),較佳為1%~70%,更佳為2%~60%,進而較佳為3%~50%。即,於曝光之光為包含313 nm以上且436 nm以下之波長範圍之光之複合光的情形時,相位偏移膜30對該波長範圍中所含之代表波長之光具有上述透過率。例如,於曝光之光為包含j射線(波長:313 nm)、i射線(波長:365 nm)、h射線(波長:405 nm)及g射線(波長:436 nm)之複合光之情形時,相位偏移膜30對j射線、i射線、h射線及g射線中之任一者具有上述透過率。 相位偏移膜30對曝光之光之相位差滿足作為相位偏移膜30所需之值。相位偏移膜30之相位差係對曝光之光中所含之代表波長之光,較佳為160°~200°,更佳為170°~190°。根據該性質,可將曝光之光中所含之代表波長之光之相位改變160°~200°。因此,於透過相位偏移膜30之代表波長之光與僅透過透明基板20之代表波長之光之間產生160~200°之相位差。即,於曝光之光為包含313 nm以上且436 nm以下之波長範圍之光之複合光的情形時,相位偏移膜30係對該波長範圍中所含之代表波長之光具有上述相位差。例如,於曝光之光為包含j射線、i射線、h射線及g射線之複合光之情形時,相位偏移膜30係對j射線、i射線、h射線及g射線中之任一者具有上述相位差。 相位偏移膜30之透過率及相位差可藉由調整構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各者之組成及厚度進行控制。因此,於該實施形態中,以相位偏移膜30之透過率及相位差具有上述特定之光學特性之方式,調整相位偏移層31、金屬層33及反射率降低層32之各者之組成及厚度。再者,相位偏移膜30之透過率主要受相位偏移層31及金屬層33之組成及厚度影響。相位偏移膜30之折射率主要受相位偏移層31之組成及厚度影響。 透過率及相位差可使用相位偏移量測定裝置等進行測定。 相位偏移膜30對自相位偏移膜30側入射之光之膜面反射率係於350 nm~436 nm之波長區域為15%以下。又,較佳為於313 nm~436 nm之波長區域為22.5%以下。即,較佳為相位偏移膜30對自相位偏移膜30側入射之光之膜面反射率於350 nm~436 nm之波長區域為15%以下,即便將波長區域擴大至313 nm~436 nm,亦為22%以下。若相位偏移膜30之膜面反射率於350 nm~436 nm之波長區域為15%以下,則對雷射繪圖光之膜面反射率降低,故而可形成具有優異之CD均一性之相位偏移光罩。又,若相位偏移膜30之膜面反射率於313 nm~436 nm之波長區域為22.5%以下,則對曝光之光之膜面反射率降低,故而於轉印形成於相位偏移光罩之圖案時,可防止由來自顯示裝置基板之反射光所引起之轉印圖案之模糊(閃光)。相位偏移膜30之膜面反射率係於313 nm~436 nm下,較理想為較佳為20%以下、進而較佳為15%以下。 相位偏移膜30之膜面反射率之變動幅度較佳為於350 nm~436 nm之波長區域為9%以下,進而較佳為8.5%以下。又,較佳為於313 nm~436 nm之波長區域為12.5%以下,進而較佳為12%以下。即,相位偏移膜30之膜面反射率之變動幅度較佳為於350 nm~436 nm之波長區域為9%以下,進而為8.5%以下,較佳為即便將波長區域擴大至313 nm~436 nm,亦為12.5%以下,進而為12%以下。 相位偏移膜30對自透明基板20側入射之光之背面反射率係於365 nm~436 nm之波長區域為20%以下。又,較佳為於313 nm~436 nm之波長區域亦為20%以下。藉由將相位偏移膜30之背面反射率設為上述範圍,相位偏移膜30對曝光之光之背面反射率降低,故而於轉印形成於相位偏移光罩之圖案時,可抑制由與曝光機之光學系統之反射光所引起的轉印精度之惡化。除相位偏移膜30之背面反射率之要件以外,若相位偏移膜30之膜面反射率於350 nm~436 nm之波長區域為20%以下,則可降低與曝光機之光學系統之反射、或與貼附於相位偏移光罩之光罩護膜或顯示裝置基板之反射之影響,故而可形成轉印精度變得良好,又,防止轉印至顯示裝置基板之轉印圖案之CD誤差之相位偏移光罩。 相位偏移膜30之背面反射率之變動幅度較佳為於365 nm~436 nm之波長區域為18%以下,進而較佳為16%以下。又,較佳為於313 nm~436 nm之波長區域為18%以下,進而較佳為16%以下。即,相位偏移膜30之膜面反射率之變動幅度較佳為於350 nm~436 nm之波長區域為9%以下,進而為8.5%以下,又,較佳為於波長區域313 nm~436 nm下為12.5%以下,進而為12%以下。 相位偏移膜30之膜面反射率、背面反射率及該等之變動幅度可藉由調整構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各者之折射率、消光係數及厚度進行控制。消光係數及折射率可藉由調整組成進行控制,故而於該實施形態中,以相位偏移膜30之膜面反射率、背面反射率及該等之變動幅度具有上述特定之物性之方式,調整相位偏移層31、金屬層33及反射率降低層32之各者之組成及厚度。再者,相位偏移膜30之膜面反射率、背面反射率及該等之變動幅度主要受金屬層33及反射率降低層32之各者之組成及厚度影響。 膜面反射率及背面反射率可使用分光光度計等進行測定。膜面反射率之變動幅度係根據350 nm~436 nm或313 nm~436 nm之波長區域中之最大之反射率與最小之反射率的差求出。 相位偏移層31可為包含組成均一之單一之膜之情形,可為包含組成不同之複數層膜之情形,亦可為包含於厚度方向組成連續地變化之單一之膜之情形。關於金屬層33及反射率降低層32,亦相同。 又,可於相位偏移層31與金屬層33之界面、金屬層33與反射率降低層32之界面具有構成各相位偏移層31、金屬層33、反射率降低層32之各元素連續地發生組成梯度而成之組成梯度區域。 圖2係表示實施形態1-2中之相位偏移光罩基底10之另一膜構成之模式圖。如圖2所示,相位偏移光罩基底10可於透明基板20與相位偏移膜30之間具備遮光性膜圖案40。實施形態1-2中之相位偏移膜30係與實施形態1-1相同,從而省略說明。 於相位偏移光罩基底10具備遮光性膜圖案40之情形時,遮光性膜圖案40配置於透明基板20之主表面上。遮光性膜圖案40具有阻擋曝光之光之透過之功能。 形成遮光性膜圖案40之材料只要為具有阻擋曝光之光之透過之功能的材料,則並無特別限制。可視需要於遮光性膜圖案40之透明基板20側,形成用以降低遮光性膜圖案40對自透明基板20側入射之光之背面反射率之背面反射率降低層41。於此情形時,遮光性膜圖案40成為自透明基板20側起具備背面反射率降低層41、及具有阻擋曝光之光之透過之功能之遮光層42的構成。例如,作為遮光性膜圖案之材料,可列舉鉻系材料等金屬系材料或金屬矽化物系材料。作為鉻系材料,可列舉包含鉻(Cr)、或鉻(Cr)以及碳(C)及氮(N)中之至少一種之鉻系材料。除此以外,亦可列舉:包含鉻(Cr)以及氧(O)及氟(F)中之至少一種之鉻系材料;或包含鉻(Cr)以及碳(C)及氮(N)中之至少一種,進而包含氧(O)及氟(F)中之至少一種之鉻系材料。例如,作為形成遮光性膜圖案40之材料,可列舉:Cr、CrC、CrN、CrCN、CrO、CrON、CrCO、CrCON。 作為金屬矽化物系材料,可列舉:金屬矽化物、金屬矽化物之氮化物、金屬矽化物之氧化物、金屬矽化物之氮氧化物、金屬矽化物之碳氮化物、金屬矽化物之碳氧化物及金屬矽化物之氧碳氮化物。作為金屬矽化物系材料中所含有之金屬,可列舉上述過渡金屬及典型金屬。 再者,於遮光性膜圖案40具備背面反射率降低層41之情形時,背面反射率降低層41較佳為具有於365 nm~436 nm之波長區域成為20%以下之特性。進而,背面反射率降低層41較佳為具有於313 nm~436 nm之波長區域成為20%以下之特性。 遮光性膜圖案40可藉由利用蝕刻將藉由濺鍍法所成膜之遮光性膜圖案化而形成。 於相位偏移膜30與遮光性膜圖案40積層之部分,對曝光之光之光學濃度較佳為3以上,更佳為3.5以上。 光學濃度可使用分光光度計或OD(optical density,光密度)計等進行測定。 遮光性膜圖案40可為包含組成均一之單一之膜之情形,可為包含組成不同之複數層膜之情形,亦可為包含於厚度方向組成連續地變化之單一之膜之情形。 遮光性膜圖案40之材料可採用對相位偏移膜30(相位偏移層31、金屬層33、反射率降低層32)具有蝕刻選擇性之材料,亦可採用不具有蝕刻選擇性之材料。 其次,圖3係表示實施形態1-3中之相位偏移光罩基底10之另一膜構成之模式圖。如圖3所示,相位偏移光罩基底10可具備透明基板20、相位偏移膜30及遮光性膜45。遮光性膜45可為包含組成均一之單一之膜之情形,可為包含組成不同之複數層膜之情形,亦可為包含於厚度方向組成連續地變化之單一之膜之情形。實施形態1-3中之相位偏移膜30係與實施形態1-1相同,從而省略說明。又,形成遮光性膜45之材料只要為具有阻擋曝光之光之透過之功能的材料,則並無特別限制。可視需要形成用以降低遮光性膜45對入射至遮光性膜45之表面側之光之膜面反射率的表面反射率降低層47。於此情形時,遮光性膜45成為自相位偏移膜30側起具備具有阻擋曝光之光之透過之功能之遮光層46、及表面反射率降低層47的構成。例如,作為遮光性膜45之材料,可使用與上述遮光性膜圖案40相同之材料。再者,於遮光性膜45具備表面反射率降低層47之情形時,表面反射率降低層47較佳為具有於365 nm~436 nm之波長區域成為20%以下之特性。又,進而,表面反射率降低層47較佳為具有於313 nm~436 nm之波長區域成為22.5%以下之特性。再者,遮光層46及表面反射率降低層47分別可為單一之層,或者至少任一者可為複數層之積層構造。 遮光性膜45可藉由濺鍍法形成。 於實施形態1-3中,遮光性膜45之材料可採用對相位偏移膜30(相位偏移層31、金屬層33、反射率降低層32)具有蝕刻選擇性之材料,亦可採用不具有蝕刻選擇性之材料。若考慮相位偏移光罩之製造製程,則遮光性膜45之材料較佳為採用對相位偏移膜30具有蝕刻選擇性之材料。 再者,於實施形態1-2或實施形態1-3之相位偏移光罩基底10中,亦可視需要於相位偏移膜30與遮光性膜圖案40之間、相位偏移膜30與遮光性膜45之間,於遮光性膜45上形成其他功能膜。作為上述功能膜,可列舉蝕刻阻止膜或蝕刻遮罩膜等。 再者,實施形態1-1或實施形態1-2之相位偏移光罩基底10可於相位偏移膜30上具備抗蝕膜,實施形態1-3之相位偏移光罩基底10可於遮光性膜45上具備抗蝕膜。 其次,對上述實施形態1-1、1-2之相位偏移光罩基底10之製造方法進行說明。相位偏移光罩基底10係藉由進行以下之準備步驟及相位偏移膜形成步驟而製造。 以下,詳細地說明各步驟。 1.準備步驟 於準備步驟中,首先,準備透明基板20。透明基板20之材料只要為對使用之曝光之光具有透光性的材料,則並無特別限制。例如可列舉:合成石英玻璃、鈉鈣玻璃、無鹼玻璃。 於製造實施形態1-2之具備遮光性膜圖案40之相位偏移光罩基底10之情形時,其後,於透明基板20上,藉由濺鍍法,例如形成包含鉻系材料之遮光性膜。其後,於遮光性膜上形成抗蝕膜圖案,以抗蝕膜圖案作為遮罩,蝕刻遮光性膜,形成遮光性膜圖案40。其後,剝離抗蝕膜圖案。再者,於遮光性膜圖案40具有降低對自透明基板20側入射之光之背面反射率之功能的情形時,於透明基板20上,藉由濺鍍法,例如形成包含含有鉻及氧之氧化鉻之背面反射率降低層41,且於背面反射率降低層41上形成含有鉻之鉻系材料之遮光層42而形成遮光性膜。其後,於遮光性膜上形成抗蝕膜圖案,以抗蝕膜圖案作為遮罩,蝕刻遮光性膜,形成遮光性膜圖案40。其後,剝離抗蝕膜圖案,於透明基板20上獲得遮光性膜圖案40。 2.相位偏移膜形成步驟 於相位偏移膜形成步驟中,於透明基板20上,藉由濺鍍法,形成包含金屬系材料或金屬矽化物系材料之相位偏移膜30。此處,於在透明基板20上形成有遮光性膜圖案40之情形時,以覆蓋遮光性膜圖案40之方式形成相位偏移膜30。 相位偏移膜30係藉由於透明基板20之主表面上將相位偏移層31成膜,於相位偏移層31上將金屬層33成膜,於金屬層33上將反射率降低層32成膜而形成。以下,對藉由鉻系材料形成相位偏移膜30之情形進行說明。再者,於藉由其他金屬系材料或金屬矽化物系材料形成相位偏移膜30之情形時,亦可藉由調整濺鍍靶之材料及濺鍍環境,同樣地藉由濺鍍法形成。 相位偏移層31之成膜係使用包含鉻或鉻系材料之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、與包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體的濺鍍氣體環境下進行。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、氮碳氧化鉻等鉻系材料。 同樣地,金屬層33之成膜係使用包含鉻或鉻系材料之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體之濺鍍氣體環境、或含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、與包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體的濺鍍氣體環境下進行。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、氮碳氧化鉻等鉻系材料。 同樣地,反射率降低層32之成膜係使用包含鉻或鉻系材料之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、與包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體的濺鍍氣體環境下進行。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、氮碳氧化鉻等鉻系材料。 於將相位偏移層31、金屬層33及反射率降低層32成膜時,相位偏移層31、金屬層33及反射率降低層32之各者之組成及厚度係以相位偏移膜30之透過率及相位差具有上述特定之光學特性,且相位偏移膜30之膜面反射率、背面反射率及該等之變動幅度具有上述特定之物性、光學特性之方式進行調整。相位偏移層31、金屬層33及反射率降低層32之各者之組成可藉由濺鍍氣體之組成及流量等進行控制。相位偏移層31、金屬層33及反射率降低層32之各者之厚度可藉由濺鍍功率、濺鍍時間等進行控制。又,於濺鍍裝置為直列式濺鍍裝置之情形時,藉由基板之搬送速度,亦可控制相位偏移層31、金屬層33及反射率降低層32之各者之厚度。 於相位偏移層31包含組成均一之單一之膜之情形時,或者於包含複數層膜之情形時,不改變濺鍍氣體之組成及流量而進行僅1次或複數次上述成膜製程。 於相位偏移層31包含組成不同之複數層膜之情形時,針對每一成膜製程改變濺鍍氣體之組成及流量而進行複數次上述成膜製程,改變濺鍍靶之材料或組成而進行複數次,或者進行複數次該等之組合。 例如,於相位偏移層31包含於厚度方向組成連續地變化之單一之膜之情形時,改變濺鍍氣體之組成及流量,並且僅進行1次上述成膜製程。關於金屬層33之成膜及反射率降低層32之成膜,亦相同。於進行複數次成膜製程之情形時,可減小施加至濺鍍靶之濺鍍功率。於金屬層33及反射率降低層32中之至少任一者之組成與相位偏移層31不同之情形時,只要不同之組成為C、N、O等非金屬之組成,則亦可藉由針對每一成膜製程改變濺鍍氣體之組成及流量進行上述成膜製程而成膜。再者,於不同之組成為金屬(Cr、Si、Zr)之情形時,必須變更靶。於此情形時,預先設置複數個組成不同之靶,根據目標組成,變更放電之靶之位置。 相位偏移層31、金屬層33及反射率降低層32較佳為使用直列式濺鍍裝置,於不存在藉由將透明基板20取出至裝置外而暴露於大氣之情況下連續成膜。藉由不取出至裝置外而連續成膜,可防止無意之各層之表面氧化或表面碳化。各層之無意之表面氧化或表面碳化有改變對將形成於相位偏移膜30上之抗蝕膜進行繪圖時使用之雷射光、或於形成於顯示裝置基板上之抗蝕膜轉印相位偏移膜圖案時使用之曝光之光的反射率,又,改變氧化部分或碳化部分之蝕刻速率之虞。 再者,於製造具備抗蝕膜之相位偏移光罩基底10之情形時,其次,於相位偏移膜上形成抗蝕膜。 關於該實施形態1-1之相位偏移光罩基底10,設置於透明基板20上之包含金屬系材料或金屬矽化物系材料之相位偏移膜30具有相位偏移層31、反射率降低層32、及設置於相位偏移層31與反射率降低層32之間之具有高於反射率降低層32之鉻平均含有率之平均鉻含有率的金屬層33,相位偏移膜30對曝光之光之透過率及相位差滿足作為相位偏移膜30所需之特定之光學特性,並且相位偏移膜30之膜面反射率於350 nm~436 nm之波長區域為15%以下,相位偏移膜30之背面反射率於365 nm~436 nm之波長區域為20%以下。因此,可使用該相位偏移光罩基底10,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 其次,對實施形態1-3中之相位偏移光罩基底10之製造方法進行說明。上述所說明之實施形態1-3之相位偏移光罩基底10之製造方法由於與上述「1.準備步驟」、「2.相位偏移膜形成步驟」相同,故而省略說明,以下,對遮光性膜形成步驟進行說明。 3.遮光性膜形成步驟 於遮光性膜形成步驟中,於相位偏移膜30上,藉由濺鍍法,形成包含金屬系或金屬矽化物系材料之遮光性膜45。 遮光性膜45係藉由於相位偏移膜30上將遮光層46成膜,視需要於遮光層46上將表面反射率降低層47成膜而形成。以下,對相位偏移膜30採用金屬矽化物系材料,藉由鉻系材料形成遮光性膜45之情形進行說明。再者,於相位偏移膜30為金屬系材料(例如鉻系材料)之情形時,於藉由金屬矽化物系材料形成遮光性膜45之情形時,或者於相位偏移膜30及遮光性膜45為金屬系材料(例如鉻系材料)之情形時,於藉由於相位偏移膜30與遮光性膜45之間具有蝕刻選擇性之材料(例如金屬矽化物系材料)形成之情形時,均可藉由調整濺鍍靶之材料及濺鍍環境,同樣地藉由濺鍍法形成。 遮光層46之成膜係使用包含鉻或鉻系材料之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、與包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體的濺鍍氣體環境下進行。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除鉻金屬以外,亦可使用氧化鉻、氮化鉻、碳化鉻、氮氧化鉻、碳氧化鉻、氮化碳化鉻、氮碳氧化鉻等鉻系材料。 同樣地,表面反射率降低層47之成膜係使用包含鉻或鉻系材料之濺鍍靶,例如於含有包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、與包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體的濺鍍氣體環境下進行。作為烴系氣體,例如可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除鉻金屬以外,亦可使用氧化鉻、氮化鉻、碳化鉻、氮氧化鉻、碳氧化鉻、氮化碳化鉻、氮碳氧化鉻等鉻系材料。 於將遮光層46、表面反射率降低層47成膜時,遮光層46及表面反射率降低層47之各者之組成及厚度係以遮光性膜45之光學濃度、膜面反射率具有上述特定之物性、光學特性(於相位偏移膜30與遮光性膜45之組合中,光學濃度為3.0以上,遮光性膜45之膜面反射率於350 nm~436 nm之波長區域為15%以下)之方式進行調整。遮光性膜45之遮光層46、表面反射率降低層47之各者之組成可藉由濺鍍氣體之組成及流量等進行控制。遮光層46、表面反射率降低層47之各者之厚度可藉由濺鍍功率、濺鍍時間等進行控制。又,於濺鍍裝置為直列式濺鍍裝置之情形時,藉由基板之搬送速度,亦可控制遮光層46、表面反射率降低層47之各者之厚度。 實施形態2(實施形態2-1、2-2). 於實施形態2中,對相位偏移光罩之製造方法進行說明。實施形態2-1係使用實施形態1-1、1-2之相位偏移光罩基底之相位偏移光罩之製造方法。實施形態2-2係使用實施形態1-3之相位偏移光罩基底之相位偏移光罩之製造方法。實施形態2-1之相位偏移光罩之製造方法係使用實施形態1-1、1-2之相位偏移光罩基底,具有以下之形成抗蝕膜圖案之步驟(抗蝕膜圖案形成步驟)、及形成相位偏移膜圖案之步驟(相位偏移膜圖案形成步驟),實施形態2-2之相位偏移光罩之製造方法係使用實施形態1-3之相位偏移光罩基底,具有以下之抗蝕膜圖案形成步驟、形成遮光性膜圖案之步驟(遮光性膜圖案形成步驟)及相位偏移膜圖案形成步驟。 以下,詳細地說明各步驟。 實施形態2-1之相位偏移光罩之製造方法 1.抗蝕膜圖案形成步驟 於抗蝕膜圖案形成步驟中,首先,於實施形態1-1、1-2之相位偏移光罩基底10之相位偏移膜30上形成抗蝕膜。但是,於相位偏移光罩基底10於相位偏移膜30上具備抗蝕膜之情形時,不形成抗蝕膜。使用之抗蝕膜材料並無特別限制。只要為對下述具有選自350 nm~436 nm之波長區域中之任一波長之雷射光感光者即可。又,抗蝕膜為正型、負型均可。 其後,使用具有選自350 nm~436 nm之波長區域中之任一波長之雷射光,於抗蝕膜描繪特定之圖案。作為於抗蝕膜描繪之圖案,可列舉線與間隙圖案或孔圖案。 其後,藉由特定之顯影液將抗蝕膜顯影,於相位偏移膜30上形成抗蝕膜圖案。 2.相位偏移膜圖案形成步驟 於相位偏移膜圖案形成步驟中,首先,以抗蝕膜圖案作為遮罩,蝕刻相位偏移膜30,而形成相位偏移膜圖案。蝕刻相位偏移膜30之蝕刻介質(蝕刻溶液、蝕刻氣體)只要為可蝕刻構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各層者,則並無特別限制。例如,於構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各者包含含有鉻(Cr)之鉻系材料之情形時,可列舉:包含硝酸鈰銨及過氯酸之蝕刻溶液;或包含氯氣與氧氣之混合氣體之蝕刻氣體。又,於構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各者包含金屬矽化物系材料之情形時,可列舉:包含選自氫氟酸、矽氟氫酸及氟化氫銨中之至少一種氟化合物、以及選自過氧化氫、硝酸及硫酸中之至少一種氧化劑之蝕刻溶液;包含過氧化氫、氟化銨、及選自磷酸、硫酸、硝酸中之至少一種氧化劑之蝕刻溶液;CF 4氣體、CHF 3氣體、SF 6氣體等氟系氣體;或於該等氣體中混合有氧氣之蝕刻氣體。 其後,使用抗蝕劑剝離液或者藉由灰化,剝離抗蝕膜圖案。 再者,於相位偏移層31、金屬層33及反射率降低層32中之1層或2層包含與其他層具有蝕刻選擇性之材料之情形時,藉由根據層變更蝕刻介質,可進行所需之蝕刻。 根據該實施形態2-1之相位偏移光罩之製造方法,可製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 實施形態2-2之相位偏移光罩之製造方法 1.第1抗蝕膜圖案形成步驟 於第1抗蝕膜圖案形成步驟中,首先,於實施形態1-3之相位偏移光罩基底10之遮光性膜45上形成抗蝕膜。但是,於相位偏移光罩基底10於遮光性膜45上具備抗蝕膜之情形時,不形成抗蝕膜。使用之抗蝕膜材料並無特別限制。只要為對下述具有選自350 nm~436 nm之波長區域中之任一波長之雷射光感光者即可。又,抗蝕膜為正型、負型均可。 其後,使用具有選自350 nm~436 nm之波長區域中之任一波長之雷射光,於抗蝕膜描繪特定之圖案。作為於抗蝕膜描繪之圖案,可列舉線與間隙圖案或孔圖案。 其後,藉由特定之顯影液將抗蝕膜顯影,於遮光性膜45上形成第1抗蝕膜圖案。 2.相位偏移膜圖案形成用遮罩圖案形成步驟(第1遮光性膜圖案形成步驟) 遮罩圖案形成步驟係以第1抗蝕膜圖案作為遮罩,蝕刻遮光性膜45,而形成相位偏移膜圖案形成用遮罩圖案。蝕刻遮光性膜45之蝕刻介質(蝕刻溶液、蝕刻氣體)只要為可蝕刻構成遮光性膜45之遮光層46、表面反射率降低層47之各層者,則並無特別限制。例如,於構成遮光性膜45之遮光層46、表面反射率降低層47之各者包含含有鉻(Cr)之鉻系材料之情形時,可列舉:包含硝酸鈰銨及過氯酸之蝕刻溶液;或包含氯氣與氧氣之混合氣體之蝕刻氣體。又,於構成遮光性膜45之遮光層46、表面反射率降低層47之各者包含金屬矽化物系材料之情形時,可列舉:包含選自氫氟酸、矽氟氫酸及氟化氫銨中之至少一種氟化合物、以及選自過氧化氫、硝酸及硫酸中之至少一種氧化劑之蝕刻溶液;包含過氧化氫、氟化銨、及選自磷酸、硫酸、硝酸中之至少一種氧化劑之蝕刻溶液;CF 4氣體、CHF 3氣體、SF 6氣體等氟系氣體;或於該等氣體中混合有氧氣之蝕刻氣體。 其後,使用抗蝕劑剝離液或者藉由灰化,剝離抗蝕膜圖案。 3.相位偏移膜圖案形成步驟 相位偏移膜圖案形成步驟係以上述遮罩圖案(第1遮光性膜圖案)作為遮罩,蝕刻相位偏移膜30,而形成相位偏移膜圖案。蝕刻相位偏移膜30之蝕刻介質(蝕刻溶液、蝕刻氣體)只要為可蝕刻構成相位偏移膜30之相位偏移層31、金屬層33及反射率降低層32之各層者,則並無特別限制。關於蝕刻介質,由於與實施形態2-1相同,故而省略說明。 4.第2抗蝕膜圖案形成步驟 第2抗蝕膜圖案形成步驟係用以於相位偏移膜圖案上形成特定之遮光性膜圖案者,為於第1遮光性膜圖案(上述遮罩圖案)上形成第2抗蝕膜圖案之步驟。以覆蓋上述步驟中所獲得之相位偏移膜圖案、第1遮光性膜圖案之方式形成抗蝕膜。 其後,使用具有選自350 nm~436 nm之波長區域中之任一波長之雷射光,於抗蝕膜描繪特定之圖案。作為於抗蝕膜描繪之圖案,可列舉線與間隙圖案或孔圖案。 其後,藉由特定之顯影液將抗蝕膜顯影,於第1遮光性膜圖案上形成第2抗蝕膜圖案。 5.遮光性膜圖案形成步驟 以第2抗蝕膜圖案作為遮罩,蝕刻第1遮光性膜圖案,而於相位偏移膜圖案上形成遮光性膜圖案。蝕刻第1遮光性膜圖案之蝕刻介質(蝕刻溶液、蝕刻氣體)由於與上述所說明之蝕刻遮光性膜45之蝕刻介質相同,故而省略說明。 其後,使用抗蝕劑剝離液或者藉由灰化,剝離第2抗蝕膜圖案。 根據該實施形態2-2之相位偏移光罩之製造方法,可製造如下相位偏移光罩:於相位偏移膜圖案上形成有遮光性膜圖案,且具有優異之圖案剖面形狀及優異之CD均一性,形成有微細之圖案且轉印精度變得良好。 實施形態3. 於實施形態3中,對顯示裝置之製造方法進行說明。顯示裝置係藉由進行以下之光罩載置步驟及圖案轉印步驟而製造。 以下,詳細地說明各步驟。 1.載置步驟 於載置步驟中,將實施形態2-1、2-2中所製造之相位偏移光罩載置於曝光裝置之光罩台。此處,相位偏移光罩係以與經由曝光裝置之投影光學系統形成於顯示裝置基板上之抗蝕膜對向之方式配置。 2.圖案轉印步驟 於圖案轉印步驟中,對相位偏移光罩照射曝光之光,而於形成於顯示裝置基板上之抗蝕膜轉印相位偏移膜圖案。曝光之光係包含選自313 nm~436 nm之波長區域中之複數個波長之光的複合光、或自313 nm~436 nm之波長區域藉由過濾器等截斷某一波長區域而選擇之單色光。例如,曝光之光係包含i射線、h射線及g射線之複合光;包含j射線、i射線、h射線及g射線之混合光;或i射線之單色光。若使用複合光作為曝光之光,則可提高曝光之光強度而提高產能,故而可降低顯示裝置之製造成本。 進而,由於為相位偏移膜之背面反射率於365~436 nm之波長區域成為20%以下之相位偏移光罩,故而可抑制反射對曝光裝置側之影響,可對形成於顯示裝置基板上之抗蝕膜進行高精度之圖案轉印。又,於相位偏移膜之膜面反射率於313 nm~436 nm之波長區域成為22.5%以下之相位偏移光罩中,可防止由來自顯示裝置基板側之反射光所引起之轉印圖案之模糊(閃光),進而,可對形成於顯示裝置基板上之抗蝕膜進行高精度之圖案轉印。 上述實施形態1之相位偏移光罩基底、及藉由實施形態2之相位偏移光罩之製造方法所製造之相位偏移光罩較佳為於等倍曝光之投影曝光用相位偏移光罩基底及相位偏移光罩中使用。尤佳為於開口數(NA)為0.06~0.15之等倍曝光之投影曝光之曝光環境下使用。 根據該實施形態3之顯示裝置之製造方法,可製造不會產生CD誤差之高解像度、高精細之顯示裝置。 [實施例] 以下,基於實施例及比較例,更具體地說明本發明。再者,以下之實施例係本發明之一例,並不限定本發明。 實施例1~5及比較例1之相位偏移光罩基底具備透明基板、及配置於透明基板上之相位偏移膜。作為透明基板,使用大小為800 mm×920 mm,厚度為10 mm之合成石英玻璃基板。 以下,對實施例1~5及比較例1詳細地進行說明。 實施例1. 實施例1之相位偏移光罩基底中之相位偏移膜包含自透明基板側起依序配置之相位偏移層、金屬層及反射率降低層,進而,於相位偏移層與金屬層之界面、金屬層與反射率降低層之界面形成有組成梯度區域(參照圖6)。 實施例1之相位偏移光罩基底係藉由以下之方法製造。 首先,準備作為透明基板之合成石英玻璃基板。透明基板之兩主表面係經鏡面研磨。實施例2~5及比較例1中準備之透明基板之兩主表面亦同樣地經鏡面研磨。 其次,將透明基板搬入至直列式濺鍍裝置。於直列式濺鍍裝置設置有濺鍍室。 其次,對配置於濺鍍室之鉻靶施加2.7 kW之濺鍍功率,一面將氬氣、氮氣、二氧化碳氣體及氧氣之混合氣體導入至濺鍍室內,一面以200 mm/分鐘之速度搬送透明基板。此處,混合氣體係以成為Ar為35 sccm、N 2為35 sccm、CO 2為13 sccm、O 2為10 sccm之流量之方式導入至濺鍍室內。於透明基板通過鉻靶附近時,於透明基板上將含有包含Cr、C、O及N之鉻系材料(CrCON)之相位偏移層成膜。 其次,對鉻靶施加0.6 kW之濺鍍功率,一面將氬氣與CH 4氣體之混合氣體(於氬氣中以4%之濃度包含CH 4氣體之混合氣體)導入至濺鍍室內,一面以400 mm/分鐘之速度搬送透明基板。於透明基板通過鉻靶附近時,於相位偏移層上將含有包含Cr及C之鉻系材料(CrC)之金屬層成膜。 其次,對鉻靶施加3.3 kW之濺鍍功率,一面將氬氣、氮氣、二氧化碳氣體及氧氣之混合氣體導入至濺鍍室內,一面以400 mm/分鐘之速度搬送透明基板。於透明基板通過鉻靶附近時,於金屬層上將含有包含Cr、C、O及N之鉻系材料(CrCON)之反射率降低層成膜。此處,混合氣體係以成為Ar為35 sccm、N 2為35 sccm、CO 2為13 sccm、O 2為9 sccm之流量之方式導入至濺鍍室內。 其次,將形成有包含相位偏移層、金屬層及反射率降低層之相位偏移膜之透明基板自直列式濺鍍裝置取出,進行清洗。 再者,相位偏移層之成膜、金屬層之成膜及反射率降低層之成膜係於不存在藉由將透明基板取出至直列式濺鍍裝置外而暴露於大氣之情況下,於直列式濺鍍裝置內連續進行。 實施例1之包含相位偏移層、金屬層、反射率降低層之相位偏移膜由於藉由直列式濺鍍裝置進行成膜,故而於相位偏移層與金屬層之界面、金屬層與反射率降低層之界面形成有構成各層之元素連續地發生組成梯度之組成梯度區域。 將針對實施例1之相位偏移膜,藉由X射線光電子光譜法(ESCA)測定深度方向之組成所獲得之結果示於圖6。 相位偏移層係含有包含鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率係Cr:49.8原子%、O:40.0原子%、N:8.2原子%、C:2.0原子%。又,金屬層係含有包含鉻(Cr)、碳(C)及氧(O)之鉻系材料,各元素之平均含有率係Cr:69.9原子%、C:22.7原子%、O:7.4原子%。進而,反射率降低層係含有包含鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率係Cr:48.5原子%、O:47.4原子%、N:3.7原子%、C:0.4原子%。又,於相位偏移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。 又,根據各層之Cr、O、N之圖譜,評價元素之結合狀態(化學狀態)。其結果為,可確認到相位偏移層主要包含一氮化鉻(CrN),進而存在氧化鉻(III)(Cr 2O 3)。 又,可確認到構成金屬層之元素之結合狀態(化學狀態)主要包含鉻(Cr),進而存在氧化鉻(III)(Cr 2O 3)。 又,可確認到構成反射率降低層之元素之結合狀態(化學狀態)主要包含氧化鉻(III)(Cr 2O 3),且存在一氮化鉻(CrN)及氮化二鉻(Cr 2N)。 相位偏移膜係藉由上述3層構造,對365 nm之光之透過率具有4.9%,且相位差具有187°。 再者,透過率及相位差係使用Lasertec公司製造之MPM-100(商品名)進行測定。於實施例2~5及比較例1中,亦以相同之方式進行測定。 圖4中之曲線a係表示實施例1之相位偏移光罩基底之相位偏移膜的膜面反射率圖譜。圖5中之曲線a係表示實施例1之相位偏移光罩基底之相位偏移膜的背面反射率圖譜。 如圖4所示,相位偏移膜之膜面反射率於313 nm之波長下為13.3%,於350 nm下為9.6%,於365 nm之波長下為8.3%,於405 nm之波長下為7.1%,於413 nm波長下為7.3%,於436 nm之波長下為8.1%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為2.5%,於365 nm~436 nm之波長區域為1.2%,於313 nm~436 nm之波長區域為6.2%。 如圖5所示,相位偏移膜之背面反射率於313 nm之波長下為9.7%,於350 nm下為8.8%,於365 nm之波長下為9.0%,於405 nm之波長下為12.3%,於413 nm波長下為13.2%,於436 nm之波長下為16.1%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為7.3%,於365 nm~436 nm之波長區域為7.1%,於313 nm~436 nm之波長區域為7.3%。 如此,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,進而,相位偏移膜之背面反射率於365 nm~436 nm之波長區域成為20%以下,故而可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 再者,膜面反射率及背面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。於實施例2~5及比較例1中,亦以相同之方式進行測定。 使用上述相位偏移光罩基底,藉由以下之方法製造相位偏移光罩。 首先,於上述相位偏移光罩基底之相位偏移膜上形成包含酚醛清漆系正型光阻之抗蝕膜。 其後,藉由雷射繪圖機,使用波長413 nm之雷射光,於抗蝕膜描繪特定之圖案。 其後,藉由特定之顯影液將抗蝕膜顯影,於相位偏移膜上形成抗蝕膜圖案。 其後,以抗蝕膜圖案作為遮罩,蝕刻相位偏移膜,而形成相位偏移膜圖案。構成相位偏移膜之相位偏移層、金屬層及反射率降低層之各者係由包含鉻(Cr)之鉻系材料形成。因此,相位偏移層、金屬層及反射率降低層可藉由相同之蝕刻溶液進行蝕刻。此處,作為蝕刻相位偏移膜之蝕刻溶液,使用包含硝酸鈰銨及過氯酸之蝕刻溶液。 其後,使用抗蝕劑剝離液,剝離抗蝕膜圖案。 使用上述相位偏移光罩基底所製造之相位偏移光罩之相位偏移膜圖案剖面係雖於位於相位偏移膜圖案之膜厚方向之中央部之金屬層產生若干腐蝕,但對光罩特性無影響之程度者。 再者,相位偏移光罩之相位偏移膜圖案剖面係使用電子顯微鏡(日本電子股份有限公司製造之JSM7401F(商品名))進行觀察。於實施例2~3及比較例1中,亦以相同之方式進行測定。 使用上述相位偏移光罩基底所製造之相位偏移光罩之相位偏移膜圖案之CD偏差(CD均一性)為70 nm,較為良好。CD偏差(CD均一性)係距目標線與間隙圖案(線圖案之寬度:2.0 μm,間隙圖案之寬度:2.0 μm)之偏移寬度。 再者,相位偏移光罩之相位偏移膜圖案之CD偏差係使用Seiko Instruments NanoTechnology公司製造之SIR8000進行測定。於實施例2~5及比較例1中,亦以相同之方式進行測定。 上述相位偏移光罩具有優異之圖案剖面形狀及優異之CD均一性、良好之轉印精度,又,相位偏移膜圖案對曝光之光之膜面反射率及背面反射率較低,相位偏移膜圖案之背面反射率亦較低,故而使用上述相位偏移光罩製造顯示裝置,結果可製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 實施例2. 實施例2之相位偏移光罩基底中之相位偏移膜包含自透明基板側起依序配置之相位偏移層、金屬層及反射率降低層。 實施例2之相位偏移光罩基底中之相位偏移層、金屬層、反射率降低層之各層係藉由以下之成膜條件成膜。 相位偏移層係以混合氣體成為Ar為35 sccm、N 2為35 sccm、CO 2為100 sccm、O 2為35 sccm之流量之方式導入至濺鍍室內,除此以外,以與實施例1相同之方式於透明基板上將含有包含Cr、O及N之鉻系材料(CrON)之相位偏移層成膜。 其次,金屬層係對配置於濺鍍室之鉻靶施加0.5 kW之濺鍍功率,除此以外,以與實施例1相同之方式於相位偏移層上將含有包含Cr及C之鉻系材料(CrC)之金屬層成膜。 其次,反射率降低層係以混合氣體成為Ar為35 sccm、N 2為35 sccm、CO 2為100 sccm、O 2為35 sccm之流量之方式導入至濺鍍室內,除此以外,以與實施例1相同之方式於金屬層上將含有包含Cr、O及N之鉻系材料(CrON)之反射率降低層成膜。 針對實施例2之相位偏移膜,藉由X射線光電子光譜法(ESCA)測定深度方向之組成,結果為相位偏移層主要含有包含鉻(Cr)、氧(O)及氮(N)之鉻系材料,各元素之平均含有率係Cr:45.5原子%、O:53.8原子%、N:0.6原子%、C:0.1原子%。又,金屬層含有包含鉻(Cr)、碳(C)及氧(O)之鉻系材料,各元素之平均含有率係Cr:74.7原子%、C:15.8原子%、O:8.8原子%、N:0.7原子%。進而,反射率降低層主要含有包含鉻(Cr)、氧(O)及氮(N)之鉻系材料,各元素之平均含有率係Cr:44.4原子%、O:55.0原子%、N:0.5原子%、C:0.1原子%。又,於相位偏移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。 又,根據各層之Cr、O、N之圖譜,評價元素之結合狀態(化學狀態)。其結果為,可確認到相位偏移層主要包含氮化二鉻(Cr 2N),進而存在氧化鉻(III)(Cr 2O 3)及氧化鉻(VI)(CrO 3)。 又,可確認到構成金屬層之元素之結合狀態(化學狀態)主要包含鉻(Cr),進而存在氧化鉻(III)(Cr 2O 3)。 又,可確認到構成反射率降低層之元素之結合狀態(化學狀態)主要包含氧化鉻(III)(Cr 2O 3)。 相位偏移膜係藉由上述3層構造,具有對365 nm之光之透過率4.9%及相位差187°。 圖4中之曲線b係表示實施例2之相位偏移光罩基底之相位偏移膜的膜面反射率圖譜。圖5中之曲線b係表示實施例2之相位偏移光罩基底之相位偏移膜的背面反射率圖譜。 如圖4所示,相位偏移膜之膜面反射率於313 nm之波長下為21%,於350 nm下為14.7%,於365 nm之波長下為12.8%,於405 nm之波長下為10.2%,於413 nm波長下為9.8%,於436 nm之波長下為9.0%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為5.7%,於365 nm~436 nm之波長區域為3.8%,於313 nm~436 nm之波長區域為12.0%。 如圖5所示,相位偏移膜之背面反射率於313 nm之波長下為7.5%,於350 nm下為8.3%,於365 nm之波長下為9.8%,於405 nm之波長下為14.9%,於413 nm波長下為15.9%,於436 nm之波長下為18.2%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為9.9%,於365 nm~436 nm之波長區域為8.3%,於313 nm~436 nm之波長區域為11.0%。 如此,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,進而,相位偏移膜之背面反射率於365 nm~436 nm之波長區域成為20%以下,故而可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 再者,膜面反射率及背面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。 以與上述實施例相同之方式,使用實施例2之相位偏移光罩基底,製造相位偏移光罩。所獲得之相位偏移光罩之相位偏移膜圖案之CD偏差(CD均一性)為65 nm,較為良好。CD偏差(CD均一性)係距目標線與間隙圖案(線圖案之寬度:2.0 μm,間隙圖案之寬度:2.0 μm)之偏移寬度。 上述相位偏移光罩具有優異之圖案剖面形狀及優異之CD均一性、良好之轉印精度,又,相位偏移膜圖案對曝光之光之膜面反射率較低,相位偏移膜圖案之背面反射率亦較低,故而使用上述相位偏移光罩製造顯示裝置,結果可製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 實施例3. 實施例3之相位偏移光罩基底中之相位偏移膜包含自透明基板側起依序配置之相位偏移層、金屬層及反射率降低層。於實施例3之相位偏移光罩基底中,藉由矽化鉬系材料構成相位偏移層及金屬層(中間層),藉由與相位偏移層及金屬層具有蝕刻選擇性之鈦系材料構成反射率降低層。 實施例3之相位偏移光罩基底中之相位偏移層、金屬層及反射率降低層係藉由以下之成膜條件成膜。 相位偏移層係對矽化鉬靶(Mo:Si=1:4)施加6.0 kW之濺鍍功率,一面將氬氣、氧氣及氮氣導入至濺鍍室內,一面於透明基板上將含有包含Mo、Si、O及N之矽化鉬系材料(MoSiON)之相位偏移層(膜厚:100 nm)成膜。此處,以成為Ar為50 sccm、O 2為40 sccm、N 2為50 sccm之流量之方式導入至濺鍍室內。 金屬層(中間層)係對(Mo:Si=1:4)施加1.5 kW之濺鍍功率,一面將氬氣及氮氣導入至濺鍍室內,一面於透明基板上將含有包含Mo、Si及N之矽化鉬系材料(MoSiN)之金屬層(中間層)(膜厚:30 nm)成膜。此處,以成為氬氣為60 sccm、氮氣為40 sccm之流量之方式導入至濺鍍室內。 反射率降低層係對鈦靶施加2.0 kW之濺鍍功率,一面將氬氣、氧氣及氮氣導入至濺鍍室內,一面於金屬層上將含有包含Ti、O及N之鈦系材料(TiON)之反射率降低層(膜厚:60 nm)成膜。此處,以成為氬氣為100 sccm、氧氣為60 sccm、氮氣為60 sccm之流量之方式導入至濺鍍室內。 針對實施例3之相位偏移膜,藉由X射線光電子光譜法(ESCA)測定深度方向之組成,結果為相位偏移層係Mo:10原子%、Si:40原子%、O:25原子%、N:25原子%,金屬層(中間層)係Mo:15原子%、Si:60原子%、N:25原子%,反射率降低層係Ti:50.5原子%、O:40.5原子%、N:9.0原子%。又,於相位偏移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。 相位偏移膜係藉由上述3層構造,具有對365 nm之光之透過率6.60%及相位差183.3°。 相位偏移膜之膜面反射率於313 nm之波長下為7.60%,於350 nm下為0.79%,於365 nm之波長下為0.05%,於405 nm之波長下為4.34%,於413 nm之波長下為5.53%,於436 nm之波長下為8.74%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為8.69%,於365 nm~436 nm之波長區域為8.69%,於313 nm~436 nm之波長區域為8.69%。 相位偏移膜之背面反射率於313 nm之波長下為12.52%,於350 nm下為15.87%,於365 nm之波長下為17.36%,於405 nm之波長下為19.17%,於413 nm之波長下為19.07%,於436 nm之波長下為18.10%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為3.30%,於365 nm~436 nm之波長區域為1.81%,於313 nm~436 nm之波長區域為6.65%。 如此,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,進而,相位偏移膜之背面反射率於365 nm~436 nm之波長區域成為20%以下,故而可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 再者,膜面反射率及背面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。 使用上述相位偏移光罩基底,藉由與實施例1相同之方法於相位偏移膜上形成抗蝕膜圖案。然後,以抗蝕膜圖案作為遮罩,利用藉由純水稀釋氟化氫銨與過氧化氫之混合溶液而成之蝕刻液對包含鈦系材料之反射率降低層進行濕式蝕刻,於反射率降低層形成圖案。進而,利用藉由純水稀釋氟化氫銨與過氧化氫之混合溶液而成之蝕刻液對包含矽化鉬系材料之相位偏移層及金屬層進行濕式蝕刻,於相位偏移層及金屬層形成圖案。再者,藉由該濕式蝕刻,亦去除殘存於反射率降低層上之抗蝕膜圖案。如此,藉由於相位偏移層、金屬層、反射率降低層形成相位偏移膜圖案,製造相位偏移光罩。 所獲得之相位偏移光罩之相位偏移膜圖案之CD偏差(CD均一性)為58.0 nm,較為良好。CD偏差(CD均一性)係距目標線與間隙圖案(線圖案之寬度:2.0 μm,間隙圖案之寬度:2.0 μm)之偏移寬度。 上述相位偏移光罩具有優異之圖案剖面形狀及優異之CD均一性、良好之轉印精度,又,相位偏移膜圖案對曝光之光之膜面反射率較低,故而製造顯示裝置,結果可使用上述相位偏移光罩,製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 除此以外,該相位偏移光罩由於藉由矽化鉬系材料構成相位偏移層及金屬層(中間層),並且藉由鈦系材料構成反射率降低層,故而可提昇與抗蝕膜之密接性,對微細之圖案形成較為有利。 比較例1. 比較例1之相位偏移光罩基底中之相位偏移膜僅包含相位偏移層(CrOCN,膜厚122 nm)。比較例1之相位偏移光罩基底就相位偏移膜不具備金屬層及反射率降低層之方面而言與上述實施例之相位偏移光罩基底不同。 比較例1之相位偏移光罩基底中之相位偏移層係藉由以下之成膜條件成膜。 相位偏移層係對配置於濺鍍室之鉻靶施加3.5 kW之濺鍍功率,一面將氬氣、氮氣及二氧化碳氣體之混合氣體導入至濺鍍室內,一面以200 mm/分鐘之速度搬送透明基板。於透明基板通過鉻靶附近時,於透明基板之主表面上將包含CrOCN之膜厚122 nm之相位偏移層成膜。此處,混合氣體係以成為Ar為46 sccm、N 2為32 sccm、CO 2為18.5 sccm之流量之方式導入至濺鍍室內。 針對比較例1之相位偏移膜,藉由X射線光電子光譜法(ESCA)測定深度方向之組成。相位偏移膜係於深度方向較為均一,為Cr:44原子%、C:8原子%、O:30原子%、N:18原子%。 相位偏移膜係藉由上述1層構造,具有對365 nm之光之透過率4.5%及相位差181°。 圖4中之曲線c係表示比較例1之相位偏移光罩基底之相位偏移膜的膜面反射率圖譜。圖5中之曲線c係表示比較例1之相位偏移光罩基底之相位偏移膜的背面反射率圖譜。 如圖4所示,相位偏移膜之膜面反射率於313 nm之波長下為21.0%,於350 nm下為23.9%,於365 nm之波長下為24.0%,於405 nm之波長下為25.1%,於413 nm波長下為25.3%,於436 nm之波長下為26.0%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為2.1%,於365 nm~436 nm之波長區域為2.0%,於313 nm~436 nm之波長區域為12.0%。 如圖5所示,相位偏移膜之背面反射率於313 nm之波長下為7.5%,於350 nm下為17.1%,於365 nm之波長下為17.9%,於405 nm之波長下為19.9%,於413 nm波長下為20.2%,於436 nm之波長下為20.3%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為3.2%,於365 nm~436 nm之波長區域為2.4%,於313 nm~436 nm之波長區域為11.0%。 使用上述相位偏移光罩基底,藉由與實施例1相同之方法製造相位偏移光罩。 使用上述相位偏移光罩基底所製造之相位偏移光罩之相位偏移膜圖案剖面係垂直。 使用上述相位偏移光罩基底所製造之相位偏移光罩之相位偏移膜圖案之CD偏差為90 nm,未達到高解像度、高精細之顯示裝置之製造中所使用之相位偏移光罩所要求的水準。 上述相位偏移光罩雖具有優異之圖案剖面形狀,但相位偏移膜之膜面反射率於350 nm~436 nm之波長區域超過15%,故而CD偏差較大(CD均一性較差),又,相位偏移膜圖案對曝光之光之膜面反射率較高,相位偏移膜圖案之背面反射率亦與實施例相比較高,故而無法使用上述相位偏移光罩,製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 實施例4. 實施例4之相位偏移光罩基底係於實施例3之相位偏移膜上形成有遮光性膜之相位偏移光罩基底。 以與上述實施例3相同之方式於透明基板上成膜相位偏移膜後,藉由以下之成膜條件成膜遮光性膜。遮光性膜採用自相位偏移膜側起具備遮光層及表面反射率降低層之構成,遮光層採用下層遮光層與上層遮光層之積層構造,表面反射率降低層採用第1表面反射率降低層與第2表面反射率降低層之積層構造。 下層遮光層係對配置於濺鍍室之鉻靶施加1.5 kW之濺鍍功率,一面將氬氣與氮氣之混合氣體導入至濺鍍室內,一面以400 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr及N之CrN之下層遮光層成膜。再者,混合氣體係以成為Ar為65 sccm、N 2為15 sccm之流量之方式導入至濺鍍室內。 其次,於下層遮光層上,對配置於濺鍍室內之鉻靶施加8.5 kW之濺鍍功率,一面將作為氬氣與CH 4氣體之混合氣體之Ar/CH 4(4.9%)氣體導入至濺鍍室內,一面以400 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr及C之CrC之上層遮光層成膜。再者,作為混合氣體之Ar/CH 4(4.9%)係以成為31 sccm之流量之方式導入至濺鍍室內。 其次,於上層遮光層上,對配置於濺鍍室內之鉻靶施加1.5 kW之濺鍍功率,一面將作為氬氣與CH 4氣體之混合氣體之Ar/CH 4(5.5%)氣體、及氮氣與氧氣之混合氣體導入至濺鍍室內,一面以400 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr、C、O及N之CrCON之第1表面反射率降低層成膜。再者,混合氣體係以成為Ar/CH 4(5.5%)為31 sccm、N 2為8 sccm、O 2為3 sccm之流量之方式導入至濺鍍室內。 最後,於第1表面反射率降低層上,對配置於濺鍍室內之鉻靶施加1.95 kW之濺鍍功率,一面將作為氬氣與CH 4氣體之混合氣體之Ar/CH 4(5.5%)氣體、及氮氣與氧氣之混合氣體導入至濺鍍室內,一面以400 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr、C、O及N之CrCON之第2表面反射率降低層成膜,獲得相位偏移光罩基底。再者,混合氣體係以成為Ar/CH 4(5.5%)為31 sccm、N 2為8 sccm、O 2為3 sccm之流量之方式導入至濺鍍室內。 於透明基板上形成有相位偏移膜及遮光性膜之相位偏移光罩基底之遮光性膜之膜面反射率係於313 nm之波長下為17.2%,於350 nm之波長下為12.1%,於365 nm下為11.0%,於405 nm之波長下為8.2%,於413 nm之波長下為7.5%,於436 nm之波長下為8.4%。又,相位偏移膜與遮光性膜之積層膜中之365 nm之光學濃度為4.0以上。又,該相位偏移光罩基底中之相位偏移膜之背面反射率係於313 nm之波長下為12.5%,於365 nm之波長下為17.4%,於405 nm之波長下為19.2%,於436 nm之波長下為18.1%。 如此,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,遮光性膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,進而,相位偏移膜之背面反射率於365 nm~436 nm之波長區域成為20%以下,故而可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 使用上述相位偏移光罩基底,藉由以下之方法製造相位偏移光罩。首先,於遮光性膜上形成第1抗蝕膜圖案。然後,以第1抗蝕膜圖案作為遮罩,藉由包含硝酸鈰銨及過氯酸之蝕刻液對遮光性膜進行濕式蝕刻,於相位偏移膜上形成包含遮光性膜圖案之遮罩圖案。 其次,以上述遮罩圖案作為遮罩,利用藉由純水稀釋氟化氫銨與過氧化氫之混合溶液而成之蝕刻液對相位偏移膜進行濕式蝕刻,形成相位偏移膜圖案。再者,藉由該濕式蝕刻液,亦去除殘存於遮罩圖案上之抗蝕膜圖案。 其次,為了於上述相位偏移膜圖案之中心部形成遮光性膜圖案,於上述遮罩圖案及相位偏移膜圖案上形成抗蝕膜,以與上述相同之方式於遮罩圖案上形成第2抗蝕膜圖案。然後,以第2抗蝕膜圖案作為遮罩,藉由包含硝酸鈰銨及過氯酸之蝕刻液對遮光性膜進行濕式蝕刻,於相位偏移膜上之中央部形成遮光性膜圖案,最後,使用抗蝕劑剝離液,剝離抗蝕膜圖案而製造相位偏移光罩。 該所獲得之相位偏移光罩之相位偏移膜圖案之CD偏差(CD均一性)為57.0 nm,較為良好。CD偏差(CD均一性)係距目標線與間隙圖案(線圖案之寬度:2.0 μm,間隙圖案之寬度:2.0 μm)之偏移寬度。 上述相位偏移光罩具有優異之圖案剖面形狀及優異之CD均一性、良好之轉印精度,又,相位偏移膜圖案及遮光性膜圖案對曝光之光之膜面反射率較低,相位偏移膜圖案之背面反射率亦較低,故而使用上述相位偏移光罩製造顯示裝置,結果可製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 實施例5. 實施例5之相位偏移光罩基底係於透明基板上,於包含背面反射率降低層與遮光層之積層膜之遮光性膜圖案上形成有相位偏移膜之相位偏移光罩基底。 上述遮光性膜圖案中之背面反射率降低層及遮光層係藉由以下之成膜條件成膜遮光性膜,進行圖案化而成者。 背面反射率降低層係對配置於濺鍍室之鉻靶施加4.0 kW之濺鍍功率,一面將氬氣、氮氣及氧氣之混合氣體導入至濺鍍室內,一面以350 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr、O及N之CrON之背面反射率降低層成膜。再者,以成為Ar為100 sccm、N 2為45 sccm、O 2為25 sccm之流量之方式導入至濺鍍室內。 其次,於背面反射率降低層上,對配置於濺鍍室內之鉻靶施加5.0 kW之濺鍍功率,一面將氬氣與氮氣之混合氣體導入至濺鍍室內,一面以200 mm/分鐘之搬送速度搬送透明基板,將含有包含Cr及N之CrN之遮光層成膜。再者,以成為Ar為130 sccm、N 2為30 sccm之流量之方式導入至濺鍍室內。 如上所述般形成於透明基板上之包含背面反射率降低層與遮光層之積層膜之遮光性膜的背面反射率係於313 nm之波長下為10.4%,於365 nm之波長下為6.2%,於405 nm之波長下為4.7%,於436 nm之波長下為4.8%。 然後,藉由利用蝕刻將上述遮光性膜圖案化,於透明基板上形成遮光性膜圖案。 其次,於遮光性膜圖案上形成實施例1之相位偏移膜而製造相位偏移光罩基底。該相位偏移光罩基底之相位偏移膜之膜面反射率具有與實施例1相同之光學特性,膜面反射率係於313 nm之波長下為13.3%,於350 nm下為9.6%,於365 nm之波長下為8.3%,於405 nm之波長下為7.1%,於413 nm波長下為7.3%,於436 nm之波長下為8.1%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為2.5%,於365 nm~436 nm之波長區域為1.2%,於313 nm~436 nm之波長區域為6.2%。又,未形成遮光性膜圖案之相位偏移膜之背面反射率亦具有與實施例1相同之光學特性,背面反射率係於313 nm之波長下為9.7%,於350 nm下為8.8%,於365 nm之波長下為9.0%,於405 nm之波長下為12.3%,於413 nm波長下為13.2%,於436 nm之波長下為16.1%。又,相位偏移膜之膜面反射率之變動幅度於350 nm~436 nm之波長區域為7.3%,於365 nm~436 nm之波長區域為7.1%,於313 nm~436 nm之波長區域為7.3%。 如此,相位偏移膜之膜面反射率於350 nm~436 nm之波長區域成為15%以下,進而,遮光性膜圖案之背面反射率於350 nm~436 nm之波長區域成為15%以下,相位偏移膜之背面反射率於365 nm~436 nm之波長區域成為20%以下,故而可使用該相位偏移光罩基底,製造具有優異之圖案剖面形狀及優異之CD均一性、形成有微細之圖案且轉印精度變得良好之相位偏移光罩。 進而,以與上述實施例1相同之方式,使用該相位偏移光罩基底製造相位偏移光罩。其結果為,相位偏移膜圖案之CD偏差(CD均一性)為70 nm,較為良好。 上述相位偏移光罩具有優異之圖案剖面形狀及優異之CD均一性、良好之轉印精度,又,相位偏移膜圖案對曝光之光之膜面反射率及背面反射率較低,相位偏移膜圖案之背面反射率亦較低,故而使用上述相位偏移光罩製造顯示裝置,結果可製造不會產生CD誤差之高解像度、高精細之顯示裝置。再者,顯示裝置之製造步驟中之使用相位偏移光罩之圖案轉印步驟係開口數(NA)為0.1之等倍曝光之投影曝光,曝光之光採用包含j射線、i射線、h射線及g射線之複合光。 如上所述,基於實施形態及實施例詳細地說明了本發明,但本發明並不限定於此。該領域中之具有通常之知識者應當明白可於本發明之技術思想內進行變化或改良。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In addition, the following embodiment is an aspect at the time of actualizing this invention, and does not limit this invention in this range. In addition, in the drawings, the same symbols are attached to the same or equivalent parts to simplify or omit their descriptions. Embodiment 1 (Embodiments 1-1, 1-2, 1-3). In Embodiment 1, a phase shift mask base will be described. FIG. 1 is a schematic diagram showing the film configuration of a phase shift mask substrate 10 in Embodiment 1-1. The phase shift mask base 10 is provided with a transparent substrate 20 transparent to exposed light, and a phase shift film 30 arranged on the transparent substrate 20 . The transparent substrate 20 has a transmittance of more than 85%, preferably more than 90%, for the exposed light when there is no surface reflection loss. The phase shift film 30 includes a metal-based material containing one or more metals and at least one selected from oxygen, nitrogen, and carbon, or a metal silicide-based material containing one or more metals, silicon, and at least one selected from oxygen, nitrogen, and carbon. Examples of the metal contained in the metal-based material include transition metals such as chromium (Cr), Zr (zirconium), molybdenum (Mo), tantalum (Ta), tungsten (W), and titanium (Ti), and typical metals such as aluminum (Al). Examples of metal silicide-based materials include nitride of metal silicide, oxide of metal silicide, oxynitride of metal silicide, carbonitride of metal silicide, carbon oxide of metal silicide, and oxycarbonitride of metal silicide. Examples of the metal contained in the metal silicide-based material include the aforementioned transition metals and typical metals. The phase shift film 30 has a phase shift layer 31 , a metal layer 33 as an intermediate layer, and a reflectance lowering layer 32 from the transparent substrate 20 side. The phase shift film 30 is as described in detail in the embodiment, and the phase shift layer 31, the reflectance reduction layer 32, and the metal layer 33 can all be formed of a metal-based material (Example 1, 2). In addition, any one or two layers of the phase shift layer 31, the reflectance reduction layer 32, and the metal layer 33 can also be formed of a metal-based material, and other layers can be formed of a metal silicide-based material (Example 3). The phase shift layer 31 is disposed on the main surface of the transparent substrate 20 . The phase shift layer 31 mainly has the function of adjusting the transmittance and phase difference of the exposed light. The phase shift layer 31 is the thickest layer in the phase shift film 30 compared with the film thicknesses of the reflectance reducing layer 32 and the metal layer 33 . In addition, the content of each element constituting the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 described below is a value measured by X-ray photoelectron spectroscopy (XPS, ESCA (electron spectroscopy for chemical analysis, electron spectroscopy for chemical analysis)). The phase shift layer 31 includes metal-based materials or metal silicide-based materials. When the entire phase shift film 30 includes a chromium (Cr)-based material, the phase shift layer 31 includes a chromium-based material containing chromium (Cr), oxygen (O) and nitrogen (N), and the average content of each element is preferably 30-70 atomic % for chromium, 20-60 atomic % for oxygen, and 0.4-30 atomic % for nitrogen. Also, the phase shift layer 31 includes, as the combination state (chemical state) of the components constituting the phase shift layer 31, chromium nitride in which chromium and nitrogen are bonded, and particularly preferably chromium nitride (CrN) or dichromium nitride (Cr 2 N). Furthermore, the phase shift layer 31 may have a chromium-based material containing at least one of carbon (C) and fluorine (F). For example, as a material for forming the phase shift layer 31, CrON, CrOCN, and CrFCON may be mentioned. Also, when the metal of the metal silicide-based material constituting the phase shift film 30 contains molybdenum (Mo), zirconium (Zr) or titanium (Ti), the phase shift layer 31 includes: a molybdenum silicide-based material containing molybdenum (Mo), silicon (Si), nitrogen (N) and/or oxygen (O); a zirconium silicide-based material containing zirconium (Zr), silicon (Si), nitrogen (N) and/or oxygen (O); And/or titanium silicide-based materials of oxygen (O). In the case of molybdenum silicide-based materials, the average content of each element is preferably 5-20 atomic % for molybdenum (Mo), 15-45 atomic % for silicon (Si), 0-75 atomic % for nitrogen (N), and 0-45 atomic % for oxygen (O). In addition, in the case of zirconium silicide-based materials, the average content of each element is preferably 5 to 35 atomic % for zirconium (Zr), 5 to 45 atomic % for silicon (Si), 0 to 70 atomic % for nitrogen (N), and 0 to 70 atomic % for oxygen (O). In addition, in the case of titanium silicide-based materials, the average content of each element is preferably 5 to 30 atomic % for titanium (Ti), 10 to 45 atomic % for silicon (Si), 0 to 70 atomic % for nitrogen (N), and 0 to 60 atomic % for oxygen (O). Furthermore, the phase shift layer 31 may have a molybdenum silicide-based material containing carbon (C), or a zirconium silicide-based material containing carbon (C). The phase shift layer 31 can be formed by sputtering. The reflectance reducing layer 32 is arranged on the upper side of the phase shift layer 31 . The reflectance reducing layer 32 mainly has the function of reducing the reflectance of light incident from the phase shift film 30 side (ie, the side of the reflectance reducing layer 32 opposite to the transparent substrate 20 side). The reflectance reducing layer 32 is a layer for adjusting the thickness of the phase shift film 30 by reducing the reflectance of the phase shift film 30 by an interference effect. The reflectivity reducing layer 32 includes a metal-based material or a metal silicide-based material. When the entire phase shift film 30 is made of a chromium (Cr)-based material, the reflectance reducing layer 32 includes a chromium-based material containing chromium (Cr), oxygen (O) and nitrogen (N), and the average content of each element is 30 to 70 atomic % for chromium, 20 to 60 atomic % for oxygen, and 0.4 to 30 atomic % for nitrogen. Also, the reflectance reducing layer 32 includes, as the bonding state (chemical state) of the components constituting the reflectance reducing layer 32, chromium oxide in which chromium and oxygen are bonded, and preferably mainly contains chromium (III) oxide (Cr 2 O 3 ). Furthermore, the reflectance reduction layer 32 may have a chromium-based material containing at least one of carbon (C) and fluorine (F). For example, CrON, CrOCN, CrFON are mentioned as a material which forms the reflectance reduction layer 32. In this case, from the viewpoint of the effect of reducing the reflectance of light incident from the phase shift film side (the surface side of the reflectance reducing layer 32 ) and the excellent pattern cross-sectional shape of the phase shift film 30 as a whole by wet etching, the following state is adopted: the average content rate of nitrogen (N) contained in the phase shift layer 31 is equal to or greater than the average content rate of nitrogen (N) contained in the reflectance reducing layer 32 , and the average content of oxygen (O) contained in the reflectance reducing layer 32 The ratio is higher than the average content ratio of oxygen (O) contained in the phase shift layer 31 . In addition, in terms of the effect of reducing the reflectance of the film surface, it is preferable that the average content of oxygen (O) contained in the reflectance reducing layer 32 is at least 1 atomic % or more, preferably 5 atomic % or more, than the average content of oxygen (O) contained in the phase shift layer 31. Also, when the metal of the metal silicide-based material constituting the phase shift film 30 contains molybdenum (Mo), zirconium (Zr) or titanium (Ti), it is preferable that the reflectance reducing layer 32 includes: a titanium-based material containing titanium (Ti), nitrogen (N) and oxygen (O), or a titanium-based material containing titanium (Ti) and oxygen (O), and the average content of each element is 15 to 45 atomic % for titanium (Ti), 20 to 50 atomic % for nitrogen (N), and 20 to 50 atomic % for oxygen ( O) is 15 to 65 atomic %. Also, in the case of the metal silicide-based material constituting the phase shift film 30, the reflectance reducing layer 32 may include: a molybdenum silicide-based material containing molybdenum (Mo), silicon (Si), nitrogen (N) and oxygen (O); a molybdenum silicide-based material containing molybdenum (Mo), silicon (Si) and oxygen (O); ) zirconium silicide-based materials; titanium silicide-based materials containing titanium (Ti), silicon (Si), nitrogen (N) and oxygen (O); titanium silicide-based materials containing titanium (Ti), silicon (Si) and oxygen (O), but in order to ensure the adhesion with the resist film (not shown) formed on the surface, it is better to carry out surface treatment such as HMDS (hexamethyldisilazane, hexamethyldisilazane). The reflectance reducing layer 32 can be formed by sputtering. The metal layer 33 is disposed between the phase shift layer 31 and the reflectivity reducing layer 32 . The metal layer 33 has the function of adjusting the transmittance of exposed light, and in combination with the reflectance reducing layer 32 , has the function of reducing the reflectance of light incident from the phase shift film 30 side. Furthermore, in combination with the phase shift layer, it has the function of reducing the reflectance of light incident from the transparent substrate 20 side. Metal layer 33 includes a metal-based material having an average metal content higher than the average metal content of reflectance reducing layer 32 , or a metal silicide-based material having an average content higher than the total average content of metal and silicon in reflectance reducing layer 32 . When the entire phase shift film 30 contains a chromium (Cr)-based material, or when molybdenum (Mo), zirconium (Zr), and titanium (Ti) are included in the metal of the metal silicide-based material constituting the phase shift film 30, the metal layer 33 contains chromium (Cr) and carbon (C). More than the average content of chromium contained in the phase shift layer 31 and the reflectance reducing layer 32 . When the entire phase shift film 30 is etched with the same etchant, the cross-sectional shape of the metal layer 33 can be suppressed from becoming tapered by setting the average content of carbon (C) to 10 atomic % or more. Moreover, by making the average content rate of the carbon (C) contained in the metal layer 33 into 45 atomic % or less, the cross-sectional shape of the metal layer 33 can be suppressed from becoming a tapered shape. By setting the average content of carbon (C) contained in the metal layer 33 in the above-mentioned appropriate range, a pattern can be formed on the metal layer 33 by an appropriate photomask process. In addition, the metal layer 33 may further include a chromium-based material containing at least one of nitrogen (N), oxygen (O), and fluorine (F). For example, examples of the material forming the metal layer 33 include CrC, CrCN, CrCO, CrCF, and CrCON. Among them, the metal layer 33 is preferably a chromium-based material containing chromium (Cr), carbon (C) and oxygen (O). Furthermore, as the combination state (chemical state) of the components constituting the phase shift layer 31, the reflectance reducing layer 32, and the metal layer 33, it is further preferable that all of these layers contain chromium (III) oxide (Cr 2 O 3 ) from the viewpoint of obtaining an excellent pattern cross-sectional shape by wet etching. Also, when the metal of the metal-based material constituting the phase shift film 30 includes titanium (Ti), and the metal of the metal silicide-based material includes molybdenum (Mo), zirconium (Zr) or titanium (Ti), the metal layer 33 includes: a molybdenum silicide-based material containing molybdenum (Mo), silicon (Si), carbon (C) and/or nitrogen (N); a zirconium silicide-based material containing zirconium (Zr), silicon (Si), carbon (C) and/or nitrogen (N); Titanium silicide-based materials of Ti), silicon (Si), carbon (C) and/or nitrogen (N). In the case of molybdenum silicide-based materials, the average content of each element is preferably 5-20 atomic % for molybdenum (Mo), 15-70 atomic % for silicon (Si), 0-20 atomic % for carbon (C), and 0-30 atomic % for nitrogen (N). In addition, in the case of zirconium silicide-based materials, the average content of each element is preferably 5 to 35 atomic % for zirconium (Zr), 5 to 70 atomic % for silicon (Si), 0 to 20 atomic % for carbon (C), and 0 to 20 atomic % for nitrogen (N). Also, in the case of titanium silicide-based materials, the average content of each element is preferably 5 to 35 atomic % for titanium (Ti), 5 to 70 atomic % for silicon (Si), 0 to 20 atomic % for carbon (C), and 0 to 20 atomic % for nitrogen (N). The average content of molybdenum silicide, zirconium silicide, and titanium silicide contained in the metal layer 33 is higher than the average content of molybdenum silicide, zirconium silicide, and titanium silicide contained in the phase shift layer 31 and the reflectance reduction layer 32 . Furthermore, the metal layer 33 may also be a molybdenum silicide-based material, a zirconium silicide-based material, or a titanium silicide-based material including at least one of carbon (C), nitrogen (N) and oxygen (O). For example, examples of the material forming the metal layer 33 include MoSiC, MoSiN, MoSiCN, MoSiCO, MoSiCON, ZrSiC, ZrSiN, ZrSiCN, ZrSiCO, ZrSiCON, TiSiC, TiSiN, TiSiCN, TiSiCO, and TiSiCON. Since the sheet resistance of the phase shift film 30 is reduced by having the metal layer 33 , charging of the phase shift mask base and the phase shift mask can be prevented. When the metal layer 33 is not provided, the electricity generated when the phase-shift mask base and the phase-shift mask are taken and placed from the casing is not dissipated, but the electricity is stored in the phase-shift mask base and the phase-shift mask, so foreign matter is easy to adhere. Also, when a small pattern is formed on a phase shift mask, electricity is splashed from pattern to pattern, and electrostatic damage is likely to occur. The metal layer 33 can be formed by sputtering. The metal layer 33 preferably has an extinction coefficient higher than that of the reflectance reducing layer 32 in the wavelength region of 350 nm to 436 nm. Also, it is preferable to have an extinction coefficient higher than that of the reflectance reducing layer 32 in the wavelength region of 313 nm to 436 nm. The difference between the extinction coefficient of the metal layer 33 and the extinction coefficient of the reflectance reducing layer 32 is preferably 1.5-3.5, more preferably 1.8-3.5. If the difference in extinction coefficient is 1.5 to 3.5, the reflectance in the above-mentioned wavelength region (the wavelength region of 350 nm to 436 nm or the wavelength region of 313 nm to 436 nm) at the interface between the metal layer 33 and the reflectance reducing layer 32 can be increased, so that the reflectance reducing effect can be further exerted, so it is preferable. Furthermore, the metal layer 33 preferably has an extinction coefficient higher than that of the phase shift layer 31 in the wavelength region of 350 nm˜436 nm. Also, it is preferable to have an extinction coefficient higher than that of the phase shift layer 31 in the wavelength region of 313 nm to 436 nm. The extinction coefficient can be measured using an n&k analyzer, an ellipsometer, or the like. When the metal layer 33 and the reflectance reducing layer 32 contain a chromium-based material, the metal layer 33 has an average chromium (Cr) content (atomic %) higher than that of the reflectance reducing layer 32 (atomic %). The difference between the average Cr content of the metal layer 33 and the average Cr content of the reflectance reducing layer 32 is preferably from 10 to 80 atomic %, more preferably from 15 to 80 atomic %. If the difference in the average Cr content is 10 to 80 atomic %, the reflectance in the above-mentioned wavelength region (the wavelength region of 350 nm to 436 nm or the wavelength region of 313 nm to 436 nm) at the interface between the metal layer 33 and the reflectance reducing layer 32 can be increased, so that the reflectance reducing effect can be further exhibited, so it is preferable. Furthermore, the etching rate of the metal layer 33 can be adjusted by making chromium (Cr) contain nitrogen (N), oxygen (O), carbon (C), and fluorine (F) to be a chromium-based material. For example, by adding carbon (C) or fluorine (F) to chromium (Cr), the wet etching rate can be slowed down, and by adding nitrogen (N) or oxygen (O) to chromium (Cr), the wet etching rate can be increased. Considering the wet etching speed of the phase shift layer 31 and the reflectance reducing layer 32 formed above and below the metal layer 33, a chromium-based material in which the above-mentioned elements are added to chromium can be used to make the cross-sectional shape of the phase shift film 30 after etching good. Furthermore, the metal layer 33 has an average chromium (Cr) content higher than the average chromium (Cr) content of the phase shift layer 31 . Each of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 preferably has a refractive index of 2.0 or higher in the wavelength range of 350 nm to 436 nm. If it has a refractive index of 2.0 or more, the film thickness of the phase shift film 30 required to obtain desired optical characteristics (transmittance and retardation) can be reduced. Therefore, a phase shift mask produced using the phase shift mask substrate 10 provided with the phase shift film 30 can have a phase shift film pattern having an excellent pattern cross-sectional shape and excellent CD uniformity. The refractive index can be measured using an n&k analyzer, an ellipsometer, or the like. Through the laminated structure of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 , the phase shift film 30 has specific optical characteristics for the transmittance and phase difference of the exposed light. The phase shift film 30 may include a material that any one of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 can be etched by the same etchant, and may also include a material that has etching selectivity between one or two of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 and other layers. The transmittance of the phase shift film 30 to the exposed light satisfies the value required as the phase shift film 30 . The transmittance of the phase shift film 30 is preferably 1% to 70%, more preferably 2% to 60%, and still more preferably 3% to 50% for light of a specific wavelength (hereinafter referred to as representative wavelength) contained in the exposed light. That is, when the light to be exposed is composite light including light in a wavelength range of 313 nm to 436 nm, the phase shift film 30 has the above-mentioned transmittance for light of a representative wavelength included in the wavelength range. For example, when the exposed light is composite light including j-rays (wavelength: 313 nm), i-rays (wavelength: 365 nm), h-rays (wavelength: 405 nm), and g-rays (wavelength: 436 nm), the phase shift film 30 has the above-mentioned transmittance for any one of j-rays, i-rays, h-rays, and g-rays. The phase difference of the phase shift film 30 with respect to the exposed light satisfies the value required as the phase shift film 30 . The phase difference of the phase shift film 30 is preferably 160° to 200°, more preferably 170° to 190° for the light of the representative wavelength contained in the exposed light. According to this property, the phase of the light of the representative wavelength contained in the exposed light can be changed by 160° to 200°. Therefore, a phase difference of 160˜200° is generated between the light of the representative wavelength transmitted through the phase shift film 30 and the light of the representative wavelength transmitted only through the transparent substrate 20 . That is, when the light to be exposed is composite light including light in a wavelength range of 313 nm to 436 nm, the phase shift film 30 has the above-mentioned phase difference for light of a representative wavelength included in the wavelength range. For example, when the exposure light is composite light including j-rays, i-rays, h-rays, and g-rays, the phase shift film 30 has the above-mentioned phase difference for any one of j-rays, i-rays, h-rays, and g-rays. The transmittance and phase difference of the phase shift film 30 can be controlled by adjusting the composition and thickness of each of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 constituting the phase shift film 30 . Therefore, in this embodiment, the composition and thickness of each of the phase shift layer 31 , the metal layer 33 , and the reflectance reducing layer 32 are adjusted so that the transmittance and phase difference of the phase shift film 30 have the above-mentioned specific optical characteristics. Furthermore, the transmittance of the phase shift film 30 is mainly affected by the composition and thickness of the phase shift layer 31 and the metal layer 33 . The refractive index of the phase shift film 30 is mainly affected by the composition and thickness of the phase shift layer 31 . The transmittance and the phase difference can be measured using a phase shift measurement device or the like. The film surface reflectance of the phase shift film 30 for light incident from the side of the phase shift film 30 is 15% or less in the wavelength range of 350 nm to 436 nm. In addition, it is preferable that it is 22.5% or less in the wavelength region of 313 nm to 436 nm. That is, it is preferable that the film surface reflectance of the phase shift film 30 for light incident from the side of the phase shift film 30 is 15% or less in the wavelength region of 350 nm to 436 nm, and even if the wavelength region is expanded to 313 nm to 436 nm, it is also 22% or less. If the film surface reflectance of the phase shift film 30 is 15% or less in the wavelength region of 350 nm to 436 nm, the film surface reflectance to laser drawing light will decrease, so a phase shift mask with excellent CD uniformity can be formed. In addition, if the film surface reflectance of the phase shift film 30 is 22.5% or less in the wavelength region of 313 nm to 436 nm, the film surface reflectance to the exposure light will decrease, so when transferring the pattern formed on the phase shift mask, it can prevent blurring (flare) of the transfer pattern caused by the reflected light from the display device substrate. The film surface reflectance of the phase shift film 30 is in the range of 313 nm to 436 nm, more preferably 20% or less, and more preferably 15% or less. The variation range of the film surface reflectance of the phase shift film 30 is preferably 9% or less in the wavelength region of 350 nm to 436 nm, and more preferably 8.5% or less. Also, it is preferably 12.5% or less in the wavelength region of 313 nm to 436 nm, and more preferably 12% or less. That is, the variation range of the film surface reflectance of the phase shift film 30 is preferably 9% or less, further 8.5% or less in the wavelength range of 350 nm to 436 nm, preferably 12.5% or less, and further 12% or less even if the wavelength range is extended to 313 nm to 436 nm. The back reflectance of the phase shift film 30 for light incident from the side of the transparent substrate 20 is 20% or less in the wavelength range of 365 nm to 436 nm. In addition, it is also preferable that it is 20% or less in the wavelength region of 313 nm to 436 nm. By setting the back surface reflectance of the phase shift film 30 in the above range, the back surface reflectance of the phase shift film 30 for exposure light is reduced, so when transferring the pattern formed on the phase shift mask, the deterioration of the transfer accuracy caused by the reflected light from the optical system of the exposure machine can be suppressed. In addition to the requirements of the reflectivity of the back surface of the phase shift film 30, if the reflectance of the film surface of the phase shift film 30 is less than 20% in the wavelength range of 350 nm to 436 nm, the reflection with the optical system of the exposure machine, or the influence of the reflection with the mask protective film attached to the phase shift mask or the display device substrate can be reduced, so that the transfer accuracy can be improved, and the phase shift mask that prevents the CD error of the transfer pattern transferred to the display device substrate can be formed. The variation range of the back surface reflectance of the phase shift film 30 is preferably 18% or less in the wavelength range of 365 nm to 436 nm, and more preferably 16% or less. Also, it is preferably 18% or less in the wavelength region of 313 nm to 436 nm, and more preferably 16% or less. That is, the variation range of the film surface reflectance of the phase shift film 30 is preferably 9% or less, further 8.5% or less in the wavelength range of 350 nm to 436 nm, and preferably 12.5% or less, further 12% or less in the wavelength range of 313 nm to 436 nm. The reflectivity of the film surface, the reflectivity of the back surface of the phase shift film 30, and the range of variation thereof can be controlled by adjusting the refractive index, extinction coefficient, and thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reduction layer 32 constituting the phase shift film 30. The extinction coefficient and the refractive index can be controlled by adjusting the composition. Therefore, in this embodiment, the composition and thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 are adjusted in such a manner that the film surface reflectance, the back surface reflectance, and the variation range of the phase shift film 30 have the above-mentioned specific physical properties. Furthermore, the film surface reflectance, back surface reflectance and their variation ranges of the phase shift film 30 are mainly affected by the composition and thickness of the metal layer 33 and the reflectance reducing layer 32 . The film surface reflectance and the back surface reflectance can be measured using a spectrophotometer or the like. The variation range of the reflectance of the film surface is obtained from the difference between the maximum reflectance and the minimum reflectance in the wavelength region of 350 nm to 436 nm or 313 nm to 436 nm. The phase shift layer 31 may include a single film with a uniform composition, a plurality of films with different compositions, or a single film whose composition continuously changes in the thickness direction. The same applies to the metal layer 33 and the reflectance reducing layer 32 . In addition, at the interface between the phase shift layer 31 and the metal layer 33, and at the interface between the metal layer 33 and the reflectance reducing layer 32, there may be a composition gradient region in which each element constituting each of the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 continuously undergoes a composition gradient. FIG. 2 is a schematic diagram showing another film composition of the phase shift mask substrate 10 in Embodiment 1-2. As shown in FIG. 2 , the phase shift mask substrate 10 may have a light-shielding film pattern 40 between the transparent substrate 20 and the phase shift film 30 . The phase shift film 30 in the embodiment 1-2 is the same as that in the embodiment 1-1, so the description thereof will be omitted. When the phase shift mask base 10 has the light-shielding film pattern 40 , the light-shielding film pattern 40 is arranged on the main surface of the transparent substrate 20 . The light-shielding film pattern 40 has the function of blocking the transmission of the exposure light. The material for forming the light-shielding film pattern 40 is not particularly limited as long as it has a function of blocking the transmission of light for exposure. Optionally, on the transparent substrate 20 side of the light-shielding film pattern 40 , a back reflectance reducing layer 41 for reducing the back reflectance of the light-shielding film pattern 40 for light incident from the transparent substrate 20 side may be formed. In this case, the light-shielding film pattern 40 has the structure which has the back reflectance reduction layer 41 from the transparent substrate 20 side, and the light-shielding layer 42 which has the function of blocking the transmission of the light of exposure. For example, as the material of the light-shielding film pattern, metal-based materials such as chromium-based materials or metal silicide-based materials are mentioned. Examples of the chromium-based material include chromium (Cr), or chromium (Cr) and at least one of carbon (C) and nitrogen (N). In addition, chromium-based materials including chromium (Cr) and at least one of oxygen (O) and fluorine (F); or chromium-based materials including chromium (Cr), at least one of carbon (C) and nitrogen (N), and further including at least one of oxygen (O) and fluorine (F). For example, Cr, CrC, CrN, CrCN, CrO, CrON, CrCO, CrCON are mentioned as a material which forms the light-shielding film pattern 40. Examples of metal silicide-based materials include metal silicide, metal silicide nitride, metal silicide oxide, metal silicide oxynitride, metal silicide carbonitride, metal silicide oxycarbide, and metal silicide oxycarbonitride. Examples of the metal contained in the metal silicide-based material include the aforementioned transition metals and typical metals. Furthermore, when the light-shielding film pattern 40 has the back surface reflectance reduction layer 41, it is preferable that the back surface reflection rate reduction layer 41 has the characteristic which becomes 20% or less in the wavelength region of 365 nm - 436 nm. Furthermore, it is preferable that the back surface reflectance reduction layer 41 has the characteristic which becomes 20% or less in the wavelength region of 313 nm - 436 nm. The light-shielding film pattern 40 can be formed by patterning the light-shielding film formed by the sputtering method by etching. In the laminated portion of the phase shift film 30 and the light-shielding film pattern 40 , the optical density to the exposed light is preferably 3 or more, more preferably 3.5 or more. The optical density can be measured using a spectrophotometer, an OD (optical density, optical density) meter, or the like. The light-shielding film pattern 40 may include a single film with a uniform composition, a plurality of films with different compositions, or a single film whose composition continuously changes in the thickness direction. The material of the light-shielding film pattern 40 can be a material with etch selectivity to the phase shift film 30 (phase shift layer 31 , metal layer 33 , reflectance reducing layer 32 ), or a material without etch selectivity. Next, FIG. 3 is a schematic diagram showing another film composition of the phase shift mask substrate 10 in Embodiment 1-3. As shown in FIG. 3 , the phase shift mask base 10 may include a transparent substrate 20 , a phase shift film 30 and a light-shielding film 45 . The light-shielding film 45 may include a single film with a uniform composition, a plurality of layers with different compositions, or a single film whose composition continuously changes in the thickness direction. The phase shift film 30 in Embodiment 1-3 is the same as that in Embodiment 1-1, so description thereof will be omitted. In addition, the material forming the light-shielding film 45 is not particularly limited as long as it has a function of blocking the transmission of exposed light. The surface reflectance reduction layer 47 for reducing the film surface reflectance of the light-shielding film 45 with respect to the light incident on the surface side of the light-shielding film 45 may be formed as needed. In this case, the light-shielding film 45 has a light-shielding layer 46 having a function of blocking transmission of exposed light from the phase shift film 30 side, and a surface reflectance reducing layer 47 . For example, as the material of the light-shielding film 45, the same material as that of the above-mentioned light-shielding film pattern 40 can be used. Furthermore, when the light-shielding film 45 has the surface reflectance reduction layer 47, it is preferable that the surface reflectance reduction layer 47 has the characteristic which becomes 20% or less in the wavelength region of 365 nm - 436 nm. Further, it is preferable that the surface reflectance reducing layer 47 has a characteristic of being 22.5% or less in the wavelength region of 313 nm to 436 nm. Furthermore, each of the light-shielding layer 46 and the surface reflectance reducing layer 47 may be a single layer, or at least any one of them may have a laminated structure of a plurality of layers. The light-shielding film 45 can be formed by a sputtering method. In Embodiments 1-3, the material of the light-shielding film 45 can be a material that has etching selectivity to the phase shift film 30 (phase shift layer 31, metal layer 33, reflectance reducing layer 32), or a material that does not have etch selectivity. Considering the manufacturing process of the phase shift mask, the material of the light-shielding film 45 is preferably a material that has etching selectivity to the phase shift film 30 . Furthermore, in the phase shift mask substrate 10 of Embodiment 1-2 or Embodiment 1-3, other functional films may also be formed on the light shielding film 45 between the phase shift film 30 and the light shielding film pattern 40 and between the phase shift film 30 and the light shielding film 45 as required. As said functional film, an etching stopper film, an etching mask film, etc. are mentioned. Furthermore, the phase shift mask substrate 10 of Embodiment 1-1 or Embodiment 1-2 may have a resist film on the phase shift film 30 , and the phase shift mask substrate 10 of Embodiment 1-3 may have a resist film on the light-shielding film 45 . Next, the manufacturing method of the phase shift mask substrate 10 according to the above-mentioned Embodiments 1-1 and 1-2 will be described. The phase shift mask substrate 10 is manufactured by performing the following preparation steps and phase shift film forming steps. Hereinafter, each step will be described in detail. 1. Preparation Step In the preparation step, first, the transparent substrate 20 is prepared. The material of the transparent substrate 20 is not particularly limited as long as it is a material that is transparent to the exposure light used. For example, synthetic quartz glass, soda lime glass, and non-alkali glass are mentioned. In the case of manufacturing the phase shift mask substrate 10 having the light-shielding film pattern 40 of Embodiment 1-2, thereafter, a light-shielding film containing a chromium-based material is formed on the transparent substrate 20 by sputtering, for example. Thereafter, a resist film pattern is formed on the light-shielding film, and the light-shielding film is etched using the resist film pattern as a mask to form the light-shielding film pattern 40 . Thereafter, the resist film pattern is peeled off. Furthermore, when the light-shielding film pattern 40 has the function of reducing the back reflectance of light incident from the side of the transparent substrate 20, on the transparent substrate 20, for example, a back reflectance reducing layer 41 including chromium oxide containing chromium and oxygen is formed by sputtering, and a light-shielding layer 42 of a chromium-based material containing chromium is formed on the back reflectance reducing layer 41 to form a light-shielding film. Thereafter, a resist film pattern is formed on the light-shielding film, and the light-shielding film is etched using the resist film pattern as a mask to form the light-shielding film pattern 40 . Thereafter, the resist film pattern is peeled off to obtain a light-shielding film pattern 40 on the transparent substrate 20 . 2. Step of forming phase shift film In the step of forming the phase shift film, the phase shift film 30 comprising a metal-based material or a metal silicide-based material is formed on the transparent substrate 20 by sputtering. Here, when the light-shielding film pattern 40 is formed on the transparent substrate 20 , the phase shift film 30 is formed so as to cover the light-shielding film pattern 40 . The phase shift film 30 is formed by forming a phase shift layer 31 on the main surface of the transparent substrate 20 , forming a metal layer 33 on the phase shift layer 31 , and forming a reflectance reducing layer 32 on the metal layer 33 . Hereinafter, the case where the phase shift film 30 is formed of a chromium-based material will be described. Furthermore, when forming the phase shift film 30 with other metal-based materials or metal silicide-based materials, it can also be formed by sputtering method by adjusting the material of the sputtering target and the sputtering environment. The phase shift layer 31 is formed using a sputtering target containing chromium or a chromium-based material, for example, under a sputtering gas atmosphere containing a mixed gas containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, and an active gas selected from at least one of the group consisting of oxygen, nitrogen, nitrogen monoxide gas, nitrogen dioxide gas, carbon dioxide gas, hydrocarbon gas, and fluorine-based gas. As hydrocarbon-based gas, methane gas, butane gas, propane gas, styrene gas, etc. are mentioned, for example. As a sputtering target, chromium-based materials such as chromium oxide, chromium nitride, chromium oxynitride, and chromium oxycarbide can be used in addition to chromium metal. Similarly, the metal layer 33 is formed using a sputtering target containing chromium or chromium-based materials, for example, in a sputtering gas environment containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, or containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, and a sputtering gas environment containing at least one selected from the group consisting of oxygen, nitrogen, nitrogen monoxide, nitrogen dioxide, carbon dioxide, hydrocarbons, and fluorine. It is performed under the sputtering gas environment of the mixed gas of at least one active gas in the formed group. As hydrocarbon-based gas, methane gas, butane gas, propane gas, styrene gas, etc. are mentioned, for example. As a sputtering target, chromium-based materials such as chromium oxide, chromium nitride, chromium oxynitride, and chromium oxycarbide can be used in addition to chromium metal. Similarly, the film formation of the reflectance reducing layer 32 is performed using a sputtering target containing chromium or a chromium-based material, for example, under a sputtering gas atmosphere containing a mixed gas containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, and an active gas containing at least one active gas selected from the group consisting of oxygen, nitrogen, nitrogen monoxide gas, nitrogen dioxide gas, carbon dioxide gas, hydrocarbon gas, and fluorine-based gas. As hydrocarbon-based gas, methane gas, butane gas, propane gas, styrene gas, etc. are mentioned, for example. As a sputtering target, chromium-based materials such as chromium oxide, chromium nitride, chromium oxynitride, and chromium oxycarbide can be used in addition to chromium metal. When the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 are formed into films, the composition and thickness of each of the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 are adjusted in such a way that the transmittance and phase difference of the phase shift film 30 have the above-mentioned specific optical characteristics, and the film surface reflectance, back surface reflectance, and the variation range of the phase shift film 30 have the above-mentioned specific physical properties and optical characteristics. The composition of each of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 can be controlled by the composition and flow rate of the sputtering gas. The thickness of each of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 can be controlled by sputtering power, sputtering time, and the like. In addition, when the sputtering device is an in-line sputtering device, the thicknesses of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 can also be controlled by the transfer speed of the substrate. When the phase shift layer 31 includes a single film with a uniform composition, or when it includes multiple layers of films, the above-mentioned film-forming process is performed only once or a plurality of times without changing the composition and flow rate of the sputtering gas. When the phase shift layer 31 includes a plurality of layers of films with different compositions, the above-mentioned film formation process is performed multiple times by changing the composition and flow rate of the sputtering gas for each film formation process, multiple times by changing the material or composition of the sputtering target, or a combination thereof. For example, when the phase shift layer 31 includes a single film whose composition continuously changes in the thickness direction, the composition and flow rate of the sputtering gas are changed, and the above-mentioned film-forming process is performed only once. The same applies to the formation of the metal layer 33 and the formation of the reflectance reducing layer 32 . In the case of performing multiple film-forming processes, the sputtering power applied to the sputtering target can be reduced. When the composition of at least any one of the metal layer 33 and the reflectance reducing layer 32 is different from that of the phase shift layer 31, as long as the different composition is a composition of non-metals such as C, N, O, etc., the above-mentioned film formation process can also be performed by changing the composition and flow rate of the sputtering gas for each film formation process. Furthermore, when a different composition is a metal (Cr, Si, Zr), it is necessary to change the target. In this case, a plurality of targets with different compositions are set in advance, and the positions of the discharge targets are changed according to the composition of the targets. The phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 are preferably formed continuously using an in-line sputtering device without being exposed to the atmosphere by taking the transparent substrate 20 out of the device. By continuously forming films without taking them out of the device, unintentional surface oxidation or surface carbonization of each layer can be prevented. Unintentional surface oxidation or surface carbonization of each layer may change the reflectance of the laser light used when drawing the resist film to be formed on the phase shift film 30, or the exposure light used when transferring the phase shift film pattern to the resist film formed on the display device substrate, and may change the etching rate of the oxidized portion or the carbonized portion. Furthermore, in the case of manufacturing the phase shift mask substrate 10 provided with a resist film, next, a resist film is formed on the phase shift film. Regarding the phase shift mask substrate 10 of Embodiment 1-1, the phase shift film 30 comprising a metal-based material or a metal silicide-based material disposed on the transparent substrate 20 has a phase shift layer 31, a reflectance reducing layer 32, and a metal layer 33 disposed between the phase shift layer 31 and the reflectance reducing layer 32 with an average chromium content higher than that of the reflectance reducing layer 32. Optical properties, and the film surface reflectance of the phase shift film 30 is less than 15% in the wavelength region of 350 nm to 436 nm, and the back reflectivity of the phase shift film 30 is less than 20% in the wavelength region of 365 nm to 436 nm. Therefore, using this phase shift mask base 10 , it is possible to manufacture a phase shift mask having an excellent pattern cross-sectional shape and excellent CD uniformity, in which a fine pattern is formed, and in which transfer accuracy becomes good. Next, a method of manufacturing the phase shift mask substrate 10 in Embodiments 1-3 will be described. The manufacturing method of the phase shift mask substrate 10 of Embodiments 1-3 described above is the same as the above-mentioned "1. Preparatory step" and "2. Phase shift film forming step", so the description is omitted, and the light-shielding film forming step will be described below. 3. Light-shielding film forming step In the light-shielding film forming step, a light-shielding film 45 made of a metal-based or metal silicide-based material is formed on the phase shift film 30 by sputtering. The light-shielding film 45 is formed by forming a light-shielding layer 46 on the phase shift film 30 , and forming a surface reflectance reducing layer 47 on the light-shielding layer 46 as needed. Hereinafter, a case where a metal silicide-based material is used for the phase shift film 30 and the light-shielding film 45 is formed of a chromium-based material will be described. Furthermore, when the phase shift film 30 is a metal-based material (such as a chromium-based material), when the light-shielding film 45 is formed from a metal silicide-based material, or when the phase-shift film 30 and the light-shielding film 45 are metal-based materials (such as a chromium-based material), when the phase shift film 30 and the light-shielding film 45 are formed by a material (such as a metal silicide-based material) that has etching selectivity between the phase shift film 30 and the light-shielding film 45, all can be adjusted by adjusting the material of the sputtering target and the sputtering environment. formed by sputtering. The light-shielding layer 46 is formed using a sputtering target containing chromium or a chromium-based material, for example, under a sputtering gas atmosphere containing a mixed gas containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, and an active gas selected from at least one of oxygen, nitrogen, nitrogen monoxide gas, nitrogen dioxide gas, carbon dioxide gas, hydrocarbon-based gas, and fluorine-based gas. As hydrocarbon-based gas, methane gas, butane gas, propane gas, styrene gas, etc. are mentioned, for example. As a sputtering target, chromium-based materials such as chromium oxide, chromium nitride, chromium carbide, chromium oxynitride, chromium oxycarbide, chromium nitride carbide, and chromium oxycarbide can be used in addition to chromium metal. Similarly, the film formation of the surface reflectance reducing layer 47 is performed using a sputtering target containing chromium or a chromium-based material, for example, under a sputtering gas atmosphere containing a mixed gas containing at least one inert gas selected from the group consisting of helium, neon, argon, krypton, and xenon, and an active gas containing at least one active gas selected from the group consisting of oxygen, nitrogen, nitrogen monoxide gas, nitrogen dioxide gas, carbon dioxide gas, hydrocarbon gas, and fluorine-based gas. As hydrocarbon-based gas, methane gas, butane gas, propane gas, styrene gas, etc. are mentioned, for example. As a sputtering target, chromium-based materials such as chromium oxide, chromium nitride, chromium carbide, chromium oxynitride, chromium oxycarbide, chromium nitride carbide, and chromium oxycarbide can be used in addition to chromium metal. When the light-shielding layer 46 and the surface reflectance reducing layer 47 are formed into a film, the composition and thickness of each of the light-shielding layer 46 and the surface reflectance reducing layer 47 are based on the optical density and film surface reflectance of the light-shielding film 45 having the above-mentioned specific physical properties and optical characteristics (in the combination of the phase shift film 30 and the light-shielding film 45, the optical density is 3.0 or more, and the film surface reflectance of the light-shielding film 45 is 15% or less in the wavelength range of 350 nm to 436 nm. ) to adjust. The compositions of the light-shielding layer 46 and the surface reflectance reduction layer 47 of the light-shielding film 45 can be controlled by the composition and flow rate of the sputtering gas. The thicknesses of the light-shielding layer 46 and the surface reflectance reducing layer 47 can be controlled by sputtering power, sputtering time, and the like. Moreover, when the sputtering apparatus is an in-line type sputtering apparatus, the thickness of each of the light shielding layer 46 and the surface reflectance reduction layer 47 can also be controlled by the conveyance speed of a board|substrate. Embodiment 2 (Embodiment 2-1, 2-2). In Embodiment 2, the manufacturing method of a phase shift mask is demonstrated. Embodiment 2-1 is a method of manufacturing a phase shift mask using the phase shift mask substrates of Embodiments 1-1 and 1-2. Embodiment 2-2 is a method of manufacturing a phase shift mask using the phase shift mask base of Embodiment 1-3. The method of manufacturing the phase shift mask of Embodiment 2-1 uses the phase shift mask substrate of Embodiment 1-1 and 1-2, and has the following step of forming a resist film pattern (resist film pattern forming step) and the step of forming a phase shift film pattern (phase shift film pattern forming step). and a phase shift film pattern forming step. Hereinafter, each step will be described in detail. Method of Manufacturing the Phase Shift Mask of Embodiment 2-1 1. Resist Film Pattern Formation Step In the resist film pattern formation step, first, a resist film is formed on the phase shift film 30 of the phase shift mask substrate 10 of Embodiment 1-1 and 1-2. However, when the phase shift mask base 10 has a resist film on the phase shift film 30, no resist film is formed. The resist film material used is not particularly limited. It only needs to be sensitive to laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm described below. In addition, the resist film may be positive type or negative type. Thereafter, a specific pattern is drawn on the resist film using laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm. As a pattern drawn on a resist film, a line and space pattern or a hole pattern is mentioned. Thereafter, the resist film is developed with a specific developer to form a resist film pattern on the phase shift film 30 . 2. Phase shift film pattern forming step In the phase shift film pattern forming step, first, the phase shift film 30 is etched using the resist film pattern as a mask to form a phase shift film pattern. The etching medium (etching solution, etching gas) for etching the phase shift film 30 is not particularly limited as long as it can etch each layer of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 constituting the phase shift film 30 . For example, when each of the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 constituting the phase shift film 30 contains a chromium-based material containing chromium (Cr), examples include: an etching solution containing cerium ammonium nitrate and perchloric acid; or an etching gas containing a mixed gas of chlorine gas and oxygen gas. In addition, when each of the phase shift layer 31, the metal layer 33, and the reflectance reducing layer 32 constituting the phase shift film 30 includes a metal silicide-based material, examples include: an etching solution containing at least one fluorine compound selected from hydrofluoric acid, hydrosilicic acid, and ammonium bifluoride, and at least one oxidizing agent selected from hydrogen peroxide, nitric acid, and sulfuric acid; an etching solution containing hydrogen peroxide, ammonium fluoride, and at least one oxidizing agent selected from phosphoric acid, sulfuric acid, and nitric acid; CF gas, CHF gas , SF 6 gas and other fluorine-based gases; or etching gases mixed with oxygen in these gases. Thereafter, the resist film pattern is stripped using a resist stripping solution or by ashing. Furthermore, when one or two layers of the phase shift layer 31, the metal layer 33, and the reflectance lowering layer 32 contain materials having etching selectivity with other layers, desired etching can be performed by changing the etching medium according to the layer. According to the method of manufacturing a phase shift mask according to Embodiment 2-1, it is possible to manufacture a phase shift mask having an excellent pattern cross-sectional shape and excellent CD uniformity, a fine pattern formed thereon, and good transfer accuracy. Method of Manufacturing the Phase Shift Mask of Embodiment 2-2 1. First Resist Film Pattern Formation Step In the first resist film pattern formation step, first, a resist film is formed on the light-shielding film 45 of the phase shift mask substrate 10 of Embodiment 1-3. However, when the phase shift mask base 10 has a resist film on the light-shielding film 45, no resist film is formed. The resist film material used is not particularly limited. It only needs to be sensitive to laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm described below. In addition, the resist film may be positive type or negative type. Thereafter, a specific pattern is drawn on the resist film using laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm. As a pattern drawn on a resist film, a line and space pattern or a hole pattern is mentioned. Thereafter, the resist film is developed with a specific developer to form a first resist film pattern on the light-shielding film 45 . 2. Mask pattern formation step for phase shift film pattern formation (first light-shielding film pattern formation step) The mask pattern formation step is to use the first resist film pattern as a mask to etch the light-shielding film 45 to form a phase shift film pattern formation mask pattern. The etching medium (etching solution, etching gas) for etching the light-shielding film 45 is not particularly limited as long as it can etch each layer of the light-shielding layer 46 and the surface reflectance reducing layer 47 constituting the light-shielding film 45 . For example, when each of the light-shielding layer 46 and the surface reflectance reducing layer 47 constituting the light-shielding film 45 contains a chromium-based material containing chromium (Cr), examples include: an etching solution containing cerium ammonium nitrate and perchloric acid; or an etching gas containing a mixed gas of chlorine and oxygen. In addition, when each of the light-shielding layer 46 and the surface reflectance reducing layer 47 constituting the light-shielding film 45 includes a metal silicide-based material, examples include: an etching solution containing at least one fluorine compound selected from hydrofluoric acid, hydrosilicic acid, and ammonium bifluoride, and at least one oxidizing agent selected from hydrogen peroxide, nitric acid, and sulfuric acid; an etching solution containing hydrogen peroxide, ammonium fluoride, and at least one oxidizing agent selected from phosphoric acid, sulfuric acid, and nitric acid; CF Gas, CHF Gas, SF 6 Fluorine gas such as gas; or etching gas mixed with oxygen in such gas. Thereafter, the resist film pattern is stripped using a resist stripping solution or by ashing. 3. Phase shift film pattern forming step In the phase shift film pattern forming step, the phase shift film 30 is etched using the mask pattern (first light-shielding film pattern) as a mask to form a phase shift film pattern. The etching medium (etching solution, etching gas) for etching the phase shift film 30 is not particularly limited as long as it can etch each layer of the phase shift layer 31 , the metal layer 33 and the reflectance reducing layer 32 constituting the phase shift film 30 . Regarding the etching medium, since it is the same as that in Embodiment 2-1, description thereof will be omitted. 4. Second resist film pattern formation step The second resist film pattern formation step is used to form a specific light-shielding film pattern on the phase shift film pattern, and is a step of forming a second resist film pattern on the first light-shielding film pattern (the above-mentioned mask pattern). A resist film is formed so as to cover the phase shift film pattern and the first light-shielding film pattern obtained in the above steps. Thereafter, a specific pattern is drawn on the resist film using laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm. As a pattern drawn on a resist film, a line and space pattern or a hole pattern is mentioned. Thereafter, the resist film is developed with a specific developer to form a second resist film pattern on the first light-shielding film pattern. 5. Light-shielding film pattern forming step Using the second resist film pattern as a mask, the first light-shielding film pattern is etched to form a light-shielding film pattern on the phase shift film pattern. The etching medium (etching solution, etching gas) for etching the first light-shielding film pattern is the same as the etching medium for etching the light-shielding film 45 described above, so the description thereof will be omitted. Thereafter, the second resist film pattern is stripped using a resist stripping solution or by ashing. According to the method of manufacturing a phase shift mask according to Embodiment 2-2, a phase shift mask having a light-shielding film pattern formed on a phase shift film pattern, having an excellent cross-sectional shape of the pattern and excellent CD uniformity, forming a fine pattern and having good transfer accuracy can be manufactured. Embodiment 3. In Embodiment 3, a method of manufacturing a display device will be described. The display device was manufactured by performing the following mask placement step and pattern transfer step. Hereinafter, each step will be described in detail. 1. Mounting step In the mounting step, the phase shift mask manufactured in Embodiment 2-1 and 2-2 is mounted on the mask stage of the exposure device. Here, the phase shift mask is disposed so as to face the resist film formed on the display device substrate through the projection optical system of the exposure device. 2. Pattern transfer step In the pattern transfer step, the phase shift mask is irradiated with exposure light, and the phase shift film pattern is transferred to the resist film formed on the display device substrate. The light for exposure is composite light including light of multiple wavelengths selected from the wavelength region of 313 nm to 436 nm, or monochromatic light selected by cutting a certain wavelength region from the wavelength region of 313 nm to 436 nm by a filter or the like. For example, the exposure light is composite light including i-ray, h-ray and g-ray; mixed light including j-ray, i-ray, h-ray and g-ray; or monochromatic light of i-ray. If the composite light is used as the light for exposure, the intensity of the light for exposure can be increased and the production capacity can be increased, so the manufacturing cost of the display device can be reduced. Furthermore, since it is a phase shift mask in which the backside reflectance of the phase shift film becomes 20% or less in the wavelength region of 365 to 436 nm, the influence of reflection on the exposure device side can be suppressed, and high-precision pattern transfer can be performed on the resist film formed on the display device substrate. In addition, in the phase shift mask in which the film surface reflectance of the phase shift film is 22.5% or less in the wavelength region of 313 nm to 436 nm, it is possible to prevent blurring (flicker) of the transfer pattern caused by reflected light from the display device substrate side, and further, high-precision pattern transfer can be performed on the resist film formed on the display device substrate. The phase shift mask base of the first embodiment and the phase shift mask manufactured by the phase shift mask manufacturing method of the second embodiment are preferably used in the phase shift mask base and the phase shift mask for projection exposure of equal exposure. It is especially preferred to be used in the exposure environment of projection exposure with an aperture number (NA) of 0.06 to 0.15. According to the method of manufacturing a display device according to the third embodiment, a high-resolution, high-definition display device that does not cause CD errors can be manufactured. [Examples] Hereinafter, the present invention will be more specifically described based on Examples and Comparative Examples. In addition, the following examples are examples of the present invention and do not limit the present invention. The phase shift mask bases of Examples 1 to 5 and Comparative Example 1 include a transparent substrate and a phase shift film arranged on the transparent substrate. As the transparent substrate, a synthetic quartz glass substrate with a size of 800 mm×920 mm and a thickness of 10 mm was used. Hereinafter, Examples 1 to 5 and Comparative Example 1 will be described in detail. Embodiment 1. The phase shift film in the phase shift mask base of Embodiment 1 includes a phase shift layer, a metal layer, and a reflectance-reducing layer arranged in order from the transparent substrate side, and further, a composition gradient region is formed at the interface between the phase shift layer and the metal layer, and the interface between the metal layer and the reflectance-reducing layer (refer to FIG. 6 ). The phase shift mask substrate of Example 1 was manufactured by the following method. First, a synthetic quartz glass substrate is prepared as a transparent substrate. The two main surfaces of the transparent substrate are mirror polished. Both main surfaces of the transparent substrates prepared in Examples 2 to 5 and Comparative Example 1 were similarly mirror-polished. Next, the transparent substrate is loaded into an in-line sputtering device. A sputtering chamber is provided in the in-line sputtering device. Next, a sputtering power of 2.7 kW was applied to the chromium target arranged in the sputtering chamber, and a mixed gas of argon, nitrogen, carbon dioxide gas and oxygen was introduced into the sputtering chamber while the transparent substrate was transported at a speed of 200 mm/min. Here, the mixed gas system was introduced into the sputtering chamber so that Ar was 35 sccm, N 2 was 35 sccm, CO 2 was 13 sccm, and O 2 was 10 sccm. When the transparent substrate passes near the chromium target, a phase shift layer containing a chromium-based material (CrCON) containing Cr, C, O, and N is formed on the transparent substrate. Next, a sputtering power of 0.6 kW was applied to the chromium target, and a mixed gas of argon and CH 4 gas (a mixed gas containing CH 4 gas at a concentration of 4% in argon gas) was introduced into the sputtering chamber while the transparent substrate was transported at a speed of 400 mm/min. When the transparent substrate passes near the chromium target, a metal layer containing a chromium-based material (CrC) containing Cr and C is formed on the phase shift layer. Next, a sputtering power of 3.3 kW was applied to the chromium target, and a mixed gas of argon, nitrogen, carbon dioxide, and oxygen was introduced into the sputtering chamber while the transparent substrate was transported at a speed of 400 mm/min. When the transparent substrate passes near the chromium target, a reflectance reduction layer containing a chromium-based material (CrCON) containing Cr, C, O, and N is formed on the metal layer. Here, the mixed gas system was introduced into the sputtering chamber so that Ar was 35 sccm, N 2 was 35 sccm, CO 2 was 13 sccm, and O 2 was 9 sccm. Next, the transparent substrate formed with the phase shift film including the phase shift layer, the metal layer and the reflectance lowering layer was taken out from the in-line sputtering device and cleaned. Furthermore, the film formation of the phase shift layer, the film formation of the metal layer, and the film formation of the reflectance reduction layer were performed continuously in the in-line sputtering apparatus without exposing the transparent substrate to the atmosphere by taking it out of the in-line sputtering apparatus. The phase shift film comprising the phase shift layer, the metal layer, and the reflectance lowering layer of Example 1 is formed by an in-line sputtering device, so at the interface between the phase shift layer and the metal layer, and at the interface between the metal layer and the reflectance lowering layer, there is a composition gradient region in which the elements constituting each layer continuously generate a composition gradient. For the phase shift film of Example 1, the results obtained by measuring the composition in the depth direction by X-ray photoelectron spectroscopy (ESCA) are shown in FIG. 6 . The phase shift layer contains chromium-based materials including chromium (Cr), oxygen (O), nitrogen (N) and carbon (C), and the average content of each element is Cr: 49.8 atomic%, O: 40.0 atomic%, N: 8.2 atomic%, C: 2.0 atomic%. In addition, the metal layer contains chromium-based materials including chromium (Cr), carbon (C) and oxygen (O), and the average content of each element is Cr: 69.9 atomic %, C: 22.7 atomic %, and O: 7.4 atomic %. Furthermore, the reflectance reducing layer contains chromium-based materials including chromium (Cr), oxygen (O), nitrogen (N) and carbon (C), and the average content of each element is Cr: 48.5 atomic %, O: 47.4 atomic %, N: 3.7 atomic %, and C: 0.4 atomic %. Also, there is a composition gradient region in which each element continuously decreases or increases between the phase shift layer and the metal layer, and between the metal layer and the reflectance reducing layer. Also, based on the patterns of Cr, O, and N in each layer, the bonding state (chemical state) of elements was evaluated. As a result, it was confirmed that the phase shift layer mainly contained chromium nitride (CrN), and chromium (III) oxide (Cr 2 O 3 ) was further present. In addition, it was confirmed that the bonding state (chemical state) of the elements constituting the metal layer mainly contained chromium (Cr), and chromium (III) oxide (Cr 2 O 3 ) was further present. In addition, it was confirmed that the bonding state (chemical state) of elements constituting the reflectance lowering layer mainly includes chromium (III) oxide (Cr 2 O 3 ), and chromium nitride (CrN) and dichromium nitride (Cr 2 N) exist. The phase shift film has a transmittance of 4.9% for 365 nm light and a phase difference of 187° by the above-mentioned 3-layer structure. In addition, the transmittance and phase difference were measured using MPM-100 (trade name) manufactured by Lasertec Corporation. Also in Examples 2-5 and Comparative Example 1, it measured in the same manner. Curve a in FIG. 4 represents the film surface reflectance spectrum of the phase shift film on the phase shift mask substrate of the first embodiment. Curve a in FIG. 5 represents the backside reflectance spectrum of the phase shift film on the phase shift mask substrate of Example 1. As shown in Figure 4, the film surface reflectance of the phase shift film is 13.3% at a wavelength of 313 nm, 9.6% at a wavelength of 350 nm, 8.3% at a wavelength of 365 nm, 7.1% at a wavelength of 405 nm, 7.3% at a wavelength of 413 nm, and 8.1% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 2.5% in the wavelength range of 350 nm to 436 nm, 1.2% in the wavelength range of 365 nm to 436 nm, and 6.2% in the wavelength range of 313 nm to 436 nm. As shown in Figure 5, the back reflectance of the phase shift film is 9.7% at a wavelength of 313 nm, 8.8% at a wavelength of 350 nm, 9.0% at a wavelength of 365 nm, 12.3% at a wavelength of 405 nm, 13.2% at a wavelength of 413 nm, and 16.1% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 7.3% in the wavelength range of 350 nm to 436 nm, 7.1% in the wavelength range of 365 nm to 436 nm, and 7.3% in the wavelength range of 313 nm to 436 nm. In this way, the surface reflectance of the phase shift film becomes 15% or less in the wavelength region of 350 nm to 436 nm, and the back reflectance of the phase shift film becomes 20% or less in the wavelength region of 365 nm to 436 nm. Therefore, the phase shift mask substrate can be used to manufacture a phase shift mask with excellent pattern cross-sectional shape and excellent CD uniformity, fine patterns formed, and good transfer accuracy. In addition, the film surface reflectance and the back surface reflectance were measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation. Also in Examples 2-5 and Comparative Example 1, it measured in the same manner. Using the above phase shift mask base, a phase shift mask was produced by the following method. First, a resist film comprising a novolak-based positive photoresist is formed on the phase shift film of the phase shift mask substrate. Afterwards, a laser plotter is used to draw a specific pattern on the resist film using laser light with a wavelength of 413 nm. Thereafter, the resist film is developed with a specific developer to form a resist film pattern on the phase shift film. Thereafter, using the resist film pattern as a mask, the phase shift film is etched to form a phase shift film pattern. Each of the phase shift layer, the metal layer, and the reflectance reducing layer constituting the phase shift film is formed of a chromium-based material including chromium (Cr). Therefore, the phase shift layer, the metal layer and the reflectance reducing layer can be etched by the same etching solution. Here, as an etching solution for etching the phase shift film, an etching solution containing ammonium cerium nitrate and perchloric acid was used. Thereafter, the resist film pattern is stripped using a resist stripping solution. The cross section of the phase shift film pattern of the phase shift film pattern manufactured by using the above phase shift film substrate is to the extent that the metal layer located in the center of the phase shift film pattern in the film thickness direction is slightly corroded, but has no influence on the characteristics of the photo mask. In addition, the cross section of the phase shift film pattern of a phase shift mask was observed using the electron microscope (JSM7401F (trade name) by JEOL Ltd.). Also in Examples 2-3 and Comparative Example 1, it measured in the same manner. The CD deviation (CD uniformity) of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate was 70 nm, which was relatively good. CD deviation (CD uniformity) is the offset width from the target line and space pattern (width of line pattern: 2.0 μm, width of space pattern: 2.0 μm). In addition, the CD deviation of the phase shift film pattern of the phase shift mask was measured using SIR8000 by Seiko Instruments NanoTechnology company. Also in Examples 2-5 and Comparative Example 1, it measured in the same manner. The above-mentioned phase shift mask has excellent pattern cross-sectional shape, excellent CD uniformity, and good transfer accuracy. In addition, the reflectance of the film surface and the back reflectivity of the phase shift film pattern to the exposed light are low, and the back reflectivity of the phase shift film pattern is also low. Therefore, using the above phase shift mask to manufacture a display device can result in the manufacture of a high-resolution, high-definition display device that does not produce CD errors. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. Embodiment 2. The phase shift film in the phase shift mask base of Embodiment 2 includes a phase shift layer, a metal layer, and a reflectance reducing layer arranged sequentially from the transparent substrate side. Each layer of the phase shift layer, the metal layer, and the reflectance lowering layer in the phase shift mask substrate of Example 2 was formed under the following film forming conditions. The phase shift layer is introduced into the sputtering chamber in such a way that the mixed gas is 35 sccm for Ar, 35 sccm for N2 , 100 sccm for CO2 , and 35 sccm for O2 . Except for this, a phase shift layer containing a chromium-based material (CrON) containing Cr, O, and N is formed on a transparent substrate in the same manner as in Example 1. Next, the metal layer was applied to the chromium target arranged in the sputtering chamber with a sputtering power of 0.5 kW. In the same manner as in Example 1, a metal layer containing a chromium-based material (CrC) containing Cr and C was formed on the phase shift layer. Next, the reflectance-reducing layer was introduced into the sputtering chamber in such a way that the mixed gas was 35 sccm for Ar, 35 sccm for N2 , 100 sccm for CO2 , and 35 sccm for O2. Except for this, a reflectance-reducing layer containing a chromium-based material (CrON) containing Cr, O, and N was formed on the metal layer in the same manner as in Example 1. For the phase shift film of Example 2, the composition in the depth direction was measured by X-ray photoelectron spectroscopy (ESCA). The result is that the phase shift layer mainly contains chromium-based materials including chromium (Cr), oxygen (O) and nitrogen (N), and the average content of each element is Cr: 45.5 atomic%, O: 53.8 atomic%, N: 0.6 atomic%, and C: 0.1 atomic%. In addition, the metal layer contains a chromium-based material including chromium (Cr), carbon (C) and oxygen (O), and the average content of each element is Cr: 74.7 atomic%, C: 15.8 atomic%, O: 8.8 atomic%, and N: 0.7 atomic%. Furthermore, the reflectance reducing layer mainly contains chromium-based materials including chromium (Cr), oxygen (O) and nitrogen (N), and the average content of each element is Cr: 44.4 atomic%, O: 55.0 atomic%, N: 0.5 atomic%, and C: 0.1 atomic%. Also, there is a composition gradient region in which each element continuously decreases or increases between the phase shift layer and the metal layer, and between the metal layer and the reflectance reducing layer. Also, based on the patterns of Cr, O, and N in each layer, the bonding state (chemical state) of elements was evaluated. As a result, it was confirmed that the phase shift layer mainly contained dichromium nitride (Cr 2 N), and chromium (III) oxide (Cr 2 O 3 ) and chromium (VI) oxide (CrO 3 ) were further present. In addition, it was confirmed that the bonding state (chemical state) of the elements constituting the metal layer mainly contained chromium (Cr), and chromium (III) oxide (Cr 2 O 3 ) was further present. In addition, it was confirmed that the bonding state (chemical state) of elements constituting the reflectance reducing layer mainly contained chromium (III) oxide (Cr 2 O 3 ). The phase shift film has a transmittance of 4.9% for 365 nm light and a phase difference of 187° by the above-mentioned 3-layer structure. Curve b in FIG. 4 represents the film surface reflectance spectrum of the phase shift film on the phase shift mask substrate of Example 2. Curve b in FIG. 5 represents the backside reflectance spectrum of the phase shift film on the phase shift mask substrate of Example 2. As shown in Figure 4, the film surface reflectance of the phase shift film is 21% at a wavelength of 313 nm, 14.7% at a wavelength of 350 nm, 12.8% at a wavelength of 365 nm, 10.2% at a wavelength of 405 nm, 9.8% at a wavelength of 413 nm, and 9.0% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 5.7% in the wavelength range of 350 nm to 436 nm, 3.8% in the wavelength range of 365 nm to 436 nm, and 12.0% in the wavelength range of 313 nm to 436 nm. As shown in Figure 5, the back reflectance of the phase shift film is 7.5% at a wavelength of 313 nm, 8.3% at a wavelength of 350 nm, 9.8% at a wavelength of 365 nm, 14.9% at a wavelength of 405 nm, 15.9% at a wavelength of 413 nm, and 18.2% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 9.9% in the wavelength range of 350 nm to 436 nm, 8.3% in the wavelength range of 365 nm to 436 nm, and 11.0% in the wavelength range of 313 nm to 436 nm. In this way, the surface reflectance of the phase shift film becomes 15% or less in the wavelength region of 350 nm to 436 nm, and the back reflectance of the phase shift film becomes 20% or less in the wavelength region of 365 nm to 436 nm. Therefore, the phase shift mask substrate can be used to manufacture a phase shift mask with excellent pattern cross-sectional shape and excellent CD uniformity, fine patterns formed, and good transfer accuracy. In addition, the film surface reflectance and the back surface reflectance were measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation. In the same manner as in the above-mentioned example, using the phase-shift mask substrate of Example 2, a phase-shift mask was produced. The CD deviation (CD uniformity) of the phase shift film pattern of the obtained phase shift mask was 65 nm, which was relatively good. CD deviation (CD uniformity) is the offset width from the target line and space pattern (width of line pattern: 2.0 μm, width of space pattern: 2.0 μm). The above-mentioned phase shift mask has excellent pattern cross-sectional shape, excellent CD uniformity, and good transfer accuracy. In addition, the reflectivity of the phase shift film pattern to the exposed light is relatively low, and the reflectivity of the back surface of the phase shift film pattern is also low. Therefore, the above-mentioned phase shift mask is used to manufacture a display device. As a result, a high-resolution, high-definition display device that does not produce CD errors can be manufactured. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. Embodiment 3. The phase shift film in the phase shift mask base of Embodiment 3 includes a phase shift layer, a metal layer, and a reflectance reducing layer arranged sequentially from the transparent substrate side. In the phase-shift mask substrate of Example 3, the phase-shift layer and the metal layer (intermediate layer) are formed of molybdenum silicide-based materials, and the reflectance reduction layer is formed of titanium-based materials having etching selectivity to the phase-shift layer and the metal layer. The phase shift layer, the metal layer, and the reflectance reduction layer in the phase shift mask substrate of Example 3 were formed under the following film forming conditions. The phase shift layer is applied to the molybdenum silicide target (Mo:Si=1:4) with a sputtering power of 6.0 kW. While introducing argon, oxygen, and nitrogen into the sputtering chamber, a phase shift layer (film thickness: 100 nm) containing molybdenum silicide materials (MoSiON) containing Mo, Si, O, and N is formed on a transparent substrate. Here, Ar was introduced into the sputtering chamber so that Ar was 50 sccm, O 2 was 40 sccm, and N 2 was 50 sccm. The metal layer (intermediate layer) is applied with a sputtering power of 1.5 kW (Mo: Si = 1:4), and while argon and nitrogen gas are introduced into the sputtering chamber, a metal layer (intermediate layer) (film thickness: 30 nm) containing molybdenum silicide (MoSiN) containing Mo, Si, and N is formed on a transparent substrate. Here, the argon gas was introduced into the sputtering chamber so that the flow rate of the argon gas was 60 sccm and the nitrogen gas was 40 sccm. The reflectance-reducing layer is applied to the titanium target with a sputtering power of 2.0 kW. While argon, oxygen and nitrogen are introduced into the sputtering chamber, a reflectance-reducing layer (film thickness: 60 nm) containing a titanium-based material (TiON) containing Ti, O and N is formed on the metal layer. Here, the argon gas was introduced into the sputtering chamber at a flow rate of 100 sccm, oxygen gas of 60 sccm, and nitrogen gas of 60 sccm. For the phase shift film of Example 3, X-ray photoelectron spectroscopy (ESCA) was used to measure the composition in the depth direction. The result was that the phase shift layer system was Mo: 10 atom%, Si: 40 atom%, O: 25 atom%, N: 25 atom%, the metal layer (intermediate layer) was Mo: 15 atom%, Si: 60 atom%, N: 25 atom%, and the reflectance reduction layer was Ti: 50.5 atom%, O: 40.5 atom%, N: 9.0 atom%. Also, there is a composition gradient region in which each element continuously decreases or increases between the phase shift layer and the metal layer, and between the metal layer and the reflectance reducing layer. The phase shift film has a transmittance of 6.60% for 365 nm light and a phase difference of 183.3° by the above-mentioned 3-layer structure. The surface reflectance of the phase shift film is 7.60% at a wavelength of 313 nm, 0.79% at a wavelength of 350 nm, 0.05% at a wavelength of 365 nm, 4.34% at a wavelength of 405 nm, 5.53% at a wavelength of 413 nm, and 8.74% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 8.69% in the wavelength range of 350 nm to 436 nm, 8.69% in the wavelength range of 365 nm to 436 nm, and 8.69% in the wavelength range of 313 nm to 436 nm. The back reflectance of the phase shift film is 12.52% at a wavelength of 313 nm, 15.87% at a wavelength of 350 nm, 17.36% at a wavelength of 365 nm, 19.17% at a wavelength of 405 nm, 19.07% at a wavelength of 413 nm, and 18.10% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 3.30% in the wavelength range of 350 nm to 436 nm, 1.81% in the wavelength range of 365 nm to 436 nm, and 6.65% in the wavelength range of 313 nm to 436 nm. In this way, the surface reflectance of the phase shift film becomes 15% or less in the wavelength region of 350 nm to 436 nm, and the back reflectance of the phase shift film becomes 20% or less in the wavelength region of 365 nm to 436 nm. Therefore, the phase shift mask substrate can be used to manufacture a phase shift mask with excellent pattern cross-sectional shape and excellent CD uniformity, fine patterns formed, and good transfer accuracy. In addition, the film surface reflectance and the back surface reflectance were measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation. Using the above phase shift mask substrate, a resist film pattern was formed on the phase shift film by the same method as in Example 1. Then, using the resist film pattern as a mask, wet etching is performed on the reflectance-reducing layer containing the titanium-based material using an etching solution prepared by diluting a mixed solution of ammonium bifluoride and hydrogen peroxide with pure water to form a pattern on the reflectance-reducing layer. Furthermore, wet etching is performed on the phase shift layer and the metal layer including the molybdenum silicide-based material with an etchant prepared by diluting a mixed solution of ammonium bifluoride and hydrogen peroxide with pure water, and patterns are formed on the phase shift layer and the metal layer. In addition, the resist film pattern remaining on the reflectance reducing layer is also removed by this wet etching. In this way, a phase shift mask is manufactured by forming a phase shift film pattern from the phase shift layer, the metal layer, and the reflectance reducing layer. The CD deviation (CD uniformity) of the phase shift film pattern of the obtained phase shift mask was 58.0 nm, which was relatively good. CD deviation (CD uniformity) is the offset width from the target line and space pattern (width of line pattern: 2.0 μm, width of space pattern: 2.0 μm). The above-mentioned phase shift mask has excellent pattern cross-sectional shape, excellent CD uniformity, and good transfer accuracy. In addition, the reflectivity of the film surface of the phase-shift film pattern to the exposed light is low, so the display device can be manufactured. As a result, the above-mentioned phase-shift mask can be used to manufacture a high-resolution and high-definition display device that does not cause CD errors. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. In addition, since the phase shift mask is composed of a molybdenum silicide-based material for the phase shift layer and the metal layer (intermediate layer), and a titanium-based material for reducing the reflectivity, the adhesion to the resist film can be improved, which is more beneficial for fine pattern formation. Comparative Example 1. The phase shift film in the phase shift mask substrate of Comparative Example 1 only includes the phase shift layer (CrOCN, film thickness 122 nm). The phase shift mask base of Comparative Example 1 is different from the phase shift mask base of the above-mentioned embodiment in that the phase shift film does not have a metal layer and a reflectance reducing layer. The phase shift layer in the phase shift mask base of Comparative Example 1 was formed under the following film forming conditions. For the phase shift layer, a sputtering power of 3.5 kW is applied to the chromium target arranged in the sputtering chamber, and a mixture of argon, nitrogen and carbon dioxide gas is introduced into the sputtering chamber while the transparent substrate is transported at a speed of 200 mm/min. When the transparent substrate passed near the chromium target, a phase shift layer containing CrOCN with a film thickness of 122 nm was formed on the main surface of the transparent substrate. Here, the mixed gas system was introduced into the sputtering chamber so that Ar was 46 sccm, N 2 was 32 sccm, and CO 2 was 18.5 sccm. Regarding the phase shift film of Comparative Example 1, the composition in the depth direction was measured by X-ray photoelectron spectroscopy (ESCA). The phase shift film is relatively uniform in the depth direction, and is Cr: 44 atomic %, C: 8 atomic %, O: 30 atomic %, and N: 18 atomic %. The phase shift film has a transmittance of 4.5% for 365 nm light and a phase difference of 181° by the above-mentioned one-layer structure. Curve c in FIG. 4 represents the film surface reflectance spectrum of the phase shift film on the phase shift mask substrate of Comparative Example 1. Curve c in FIG. 5 represents the backside reflectance spectrum of the phase shift film on the phase shift mask substrate of Comparative Example 1. As shown in Figure 4, the film surface reflectance of the phase shift film is 21.0% at a wavelength of 313 nm, 23.9% at a wavelength of 350 nm, 24.0% at a wavelength of 365 nm, 25.1% at a wavelength of 405 nm, 25.3% at a wavelength of 413 nm, and 26.0% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 2.1% in the wavelength range of 350 nm to 436 nm, 2.0% in the wavelength range of 365 nm to 436 nm, and 12.0% in the wavelength range of 313 nm to 436 nm. As shown in Figure 5, the back reflectance of the phase shift film is 7.5% at a wavelength of 313 nm, 17.1% at a wavelength of 350 nm, 17.9% at a wavelength of 365 nm, 19.9% at a wavelength of 405 nm, 20.2% at a wavelength of 413 nm, and 20.3% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 3.2% in the wavelength range of 350 nm to 436 nm, 2.4% in the wavelength range of 365 nm to 436 nm, and 11.0% in the wavelength range of 313 nm to 436 nm. Using the above-mentioned phase-shift mask base, a phase-shift mask was produced by the same method as in Example 1. The cross section of the phase shift film pattern of the phase shift mask manufactured by using the above phase shift mask substrate is vertical. The CD deviation of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate was 90 nm, which did not reach the level required for the phase shift mask used in the manufacture of high-resolution, high-definition display devices. Although the above-mentioned phase shift mask has an excellent pattern cross-sectional shape, the film surface reflectance of the phase shift film exceeds 15% in the wavelength region of 350 nm to 436 nm, so the CD deviation is relatively large (CD uniformity is poor). In addition, the film surface reflectance of the phase shift film pattern to the exposed light is high, and the back reflectivity of the phase shift film pattern is also higher than that of the embodiment. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. Embodiment 4. The phase shift mask substrate of Embodiment 4 is a phase shift mask substrate in which a light-shielding film is formed on the phase shift film of Embodiment 3. After forming a phase shift film on a transparent substrate in the same manner as in Example 3 above, a light-shielding film was formed under the following film-forming conditions. The light-shielding film is composed of a light-shielding layer and a surface reflectance reducing layer from the phase shift film side. The light-shielding layer has a laminated structure of a lower light-shielding layer and an upper light-shielding layer, and the surface reflectance reducing layer has a laminated structure of a first surface reflectance reducing layer and a second surface reflectance reducing layer. The lower light-shielding layer is applied to the chromium target arranged in the sputtering chamber with a sputtering power of 1.5 kW. While introducing the mixed gas of argon and nitrogen into the sputtering chamber, the transparent substrate is transported at a conveying speed of 400 mm/min, and the lower light-shielding layer containing CrN containing Cr and N is formed into a film. In addition, the mixed gas system was introduced into the sputtering chamber so that Ar was 65 sccm and N 2 was 15 sccm. Next, on the lower light-shielding layer, a sputtering power of 8.5 kW was applied to the chromium target arranged in the sputtering chamber, and Ar/CH 4 (4.9%) gas, which is a mixed gas of argon gas and CH 4 gas, was introduced into the sputtering chamber while the transparent substrate was transported at a conveying speed of 400 mm/min, and the upper light-shielding layer containing CrC containing Cr and C was formed into a film. In addition, Ar/CH 4 (4.9%) which is a mixed gas was introduced into the sputtering chamber at a flow rate of 31 sccm. Next, on the upper light-shielding layer, a sputtering power of 1.5 kW was applied to the chromium target arranged in the sputtering chamber. Ar/CH 4 (5.5%) gas, which is a mixed gas of argon and CH 4 gas, and a mixed gas of nitrogen and oxygen gas were introduced into the sputtering chamber, while the transparent substrate was transported at a transport speed of 400 mm/min, and the first surface reflectance reducing layer containing CrCON containing Cr, C, O, and N was formed into a film. In addition, the mixed gas system was introduced into the sputtering chamber so that the flow rate of Ar/CH 4 (5.5%) was 31 sccm, N 2 was 8 sccm, and O 2 was 3 sccm. Finally, at the lower surface of the first surface, the chromium target configured in the splashing room applies 1.95 kW to 1.95 kW. It will be imported as an AR/CH 4 (5.5%) gas of the mixed gas of the gaseous and CH 4 gas, and the mixed gas of nitrogen and oxygen is introduced to the spatter plating room. The transparent substrate will reduce the layer of the film with the second surface reflectance of CRCON containing CR, C, O, and N, and obtain the base of the phase offset mask. In addition, the mixed gas system was introduced into the sputtering chamber so that the flow rate of Ar/CH 4 (5.5%) was 31 sccm, N 2 was 8 sccm, and O 2 was 3 sccm. The reflectance of the light-shielding film on the base of the phase-shift mask formed on the transparent substrate is 17.2% at a wavelength of 313 nm, 12.1% at a wavelength of 350 nm, 11.0% at a wavelength of 365 nm, 8.2% at a wavelength of 405 nm, 7.5% at a wavelength of 413 nm, and 8.4% at a wavelength of 436 nm . In addition, the optical density at 365 nm in the laminated film of the phase shift film and the light-shielding film is 4.0 or more. Also, the backside reflectance of the phase shift film in the phase shift mask substrate was 12.5% at a wavelength of 313 nm, 17.4% at a wavelength of 365 nm, 19.2% at a wavelength of 405 nm, and 18.1% at a wavelength of 436 nm. In this way, the film surface reflectance of the phase shift film becomes 15% or less in the wavelength range of 350 nm to 436 nm, the film surface reflectance of the light-shielding film becomes 15% or less in the wavelength range of 350 nm to 436 nm, and the backside reflectance of the phase shift film becomes 20% or less in the wavelength range of 365 nm to 436 nm. Phase shift mask with fine pattern and excellent transfer accuracy. Using the above phase shift mask base, a phase shift mask was produced by the following method. First, a first resist film pattern is formed on a light-shielding film. Then, using the first resist film pattern as a mask, the light-shielding film is wet-etched with an etchant containing ammonium cerium nitrate and perchloric acid, and a mask pattern including the light-shielding film pattern is formed on the phase shift film. Next, using the above mask pattern as a mask, the phase shift film is wet-etched using an etchant prepared by diluting a mixed solution of ammonium bifluoride and hydrogen peroxide with pure water to form a phase shift film pattern. Moreover, the resist film pattern remaining on the mask pattern is also removed by the wet etching solution. Next, in order to form a light-shielding film pattern at the center of the phase shift film pattern, a resist film was formed on the mask pattern and the phase shift film pattern, and a second resist film pattern was formed on the mask pattern in the same manner as above. Then, using the second resist film pattern as a mask, the light-shielding film was wet-etched with an etchant containing cerium ammonium nitrate and perchloric acid to form a light-shielding film pattern in the center of the phase shift film. Finally, the resist stripping solution was used to peel off the resist film pattern to manufacture a phase shift mask. The CD deviation (CD uniformity) of the phase shift film pattern of the obtained phase shift mask was 57.0 nm, which was relatively good. CD deviation (CD uniformity) is the offset width from the target line and space pattern (width of line pattern: 2.0 μm, width of space pattern: 2.0 μm). The above-mentioned phase shift mask has excellent pattern cross-sectional shape, excellent CD uniformity, and good transfer accuracy. In addition, the reflectivity of the film surface of the phase shift film pattern and the light-shielding film pattern to the exposed light is low, and the reflectivity of the back surface of the phase shift film pattern is also low. Therefore, using the above-mentioned phase shift mask to manufacture a display device, as a result, a high-resolution and high-definition display device that does not produce CD errors can be manufactured. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. Example 5. The phase shift mask base of Example 5 is a phase shift mask base on which a phase shift film is formed on a light-shielding film pattern of a laminated film including a rear reflectance reducing layer and a light-shielding layer on a transparent substrate. The back reflectance reducing layer and the light shielding layer in the above-mentioned light-shielding film pattern are formed by forming a light-shielding film under the following film-forming conditions and patterning it. The rear reflectance reducing layer is applied to the chromium target arranged in the sputtering chamber with a sputtering power of 4.0 kW. While introducing the mixed gas of argon, nitrogen and oxygen into the sputtering chamber, the transparent substrate is transported at a conveying speed of 350 mm/min, and the rear reflectance reducing layer containing CrON containing Cr, O and N is formed into a film. In addition, it introduced into the sputtering chamber so that the flow rate of 100 sccm of Ar, 45 sccm of N2 , and 25 sccm of O2 may become. Next, a sputtering power of 5.0 kW was applied to the chromium target placed in the sputtering chamber on the backside reflectance-reducing layer, while a mixed gas of argon and nitrogen was introduced into the sputtering chamber, while the transparent substrate was transported at a conveying speed of 200 mm/min, a light-shielding layer containing CrN containing Cr and N was formed. In addition, it was introduced into the sputtering chamber so that the flow rate of Ar was 130 sccm and N 2 was 30 sccm. The back reflectance of the light-shielding film formed on the transparent substrate as described above, including the laminated film of the back reflectance reducing layer and the light-shielding layer, was 10.4% at a wavelength of 313 nm, 6.2% at a wavelength of 365 nm, 4.7% at a wavelength of 405 nm, and 4.8% at a wavelength of 436 nm. Then, by patterning the above-mentioned light-shielding film by etching, a light-shielding film pattern is formed on the transparent substrate. Next, the phase shift film of Example 1 was formed on the light-shielding film pattern to manufacture a phase shift mask base. The film surface reflectance of the phase shift film on the base of the phase shift mask has the same optical characteristics as in Example 1. The film surface reflectance is 13.3% at a wavelength of 313 nm, 9.6% at 350 nm, 8.3% at a wavelength of 365 nm, 7.1% at a wavelength of 405 nm, 7.3% at a wavelength of 413 nm, and 8.1% at a wavelength of 436 nm. In addition, the variation range of the film surface reflectance of the phase shift film is 2.5% in the wavelength range of 350 nm to 436 nm, 1.2% in the wavelength range of 365 nm to 436 nm, and 6.2% in the wavelength range of 313 nm to 436 nm. Also, the back reflectance of the phase shift film without a light-shielding film pattern also has the same optical characteristics as in Example 1. The back reflectance is 9.7% at a wavelength of 313 nm, 8.8% at 350 nm, 9.0% at a wavelength of 365 nm, 12.3% at a wavelength of 405 nm, 13.2% at a wavelength of 413 nm, and 16.1% at a wavelength of 436 nm. . In addition, the variation range of the film surface reflectance of the phase shift film is 7.3% in the wavelength range of 350 nm to 436 nm, 7.1% in the wavelength range of 365 nm to 436 nm, and 7.3% in the wavelength range of 313 nm to 436 nm. In this way, the film surface reflectance of the phase shift film becomes less than 15% in the wavelength region of 350 nm to 436 nm, and furthermore, the back reflectance of the light-shielding film pattern becomes less than 15% in the wavelength region of 350 nm to 436 nm, and the rear reflectance of the phase shift film becomes less than 20% in the wavelength region of 365 nm to 436 nm. Phase shift mask with fine pattern and excellent transfer accuracy. Furthermore, in the same manner as in Embodiment 1 above, a phase shift mask was manufactured using this phase shift mask base. As a result, the CD variation (CD uniformity) of the phase shift film pattern was 70 nm, which was good. The above-mentioned phase shift mask has excellent pattern cross-sectional shape, excellent CD uniformity, and good transfer accuracy. In addition, the reflectance of the film surface and the back reflectivity of the phase shift film pattern to the exposed light are low, and the back reflectivity of the phase shift film pattern is also low. Therefore, using the above phase shift mask to manufacture a display device can result in the manufacture of a high-resolution, high-definition display device that does not produce CD errors. Furthermore, the pattern transfer step using a phase shift mask in the manufacturing steps of the display device is a projection exposure with an aperture number (NA) of 0.1 equal exposure, and the exposure light uses composite light including j-rays, i-rays, h-rays, and g-rays. As mentioned above, although this invention was demonstrated in detail based on embodiment and an Example, this invention is not limited to this. Those with ordinary knowledge in this field should understand that changes or improvements can be made within the technical idea of the present invention.

10:相位偏移光罩基底 20:透明基板 30:相位偏移膜 31:相位偏移層 32:反射率降低層 33:金屬層 40:遮光性膜圖案 41:背面反射率降低層 42:遮光層 45:遮光性膜 46:遮光層 47:表面反射率降低層10: Phase shift mask substrate 20: Transparent substrate 30:Phase shift film 31:Phase offset layer 32:Reflectivity reduction layer 33: metal layer 40: Shading film pattern 41: Rear reflectance reduction layer 42: shading layer 45: Shading film 46: shading layer 47: Surface reflectance reduction layer

圖1係表示相位偏移光罩基底之膜構成之模式圖。 圖2係表示相位偏移光罩基底之另一膜構成之模式圖。 圖3係表示相位偏移光罩基底之另一膜構成之模式圖。 圖4係實施例1、2、比較例1中之相位偏移光罩基底之相位偏移膜之膜面反射率圖譜。 圖5係實施例1、2、比較例1中之相位偏移光罩基底之相位偏移膜之背面反射率圖譜。 圖6係表示實施例1中之相位偏移光罩基底相對於相位偏移膜之深度方向之組成分析結果的曲線圖。 FIG. 1 is a schematic diagram showing the film composition of a phase shift mask base. FIG. 2 is a schematic diagram showing another film composition of a phase shift mask substrate. Fig. 3 is a schematic diagram showing another film composition of the phase shift mask substrate. FIG. 4 is the film surface reflectance spectrum of the phase shift film of the phase shift mask substrate in Examples 1, 2, and Comparative Example 1. FIG. Fig. 5 is the backside reflectance spectrum of the phase shift film of the phase shift mask substrate in Examples 1, 2 and Comparative Example 1. 6 is a graph showing the composition analysis results of the phase shift mask substrate in the depth direction of the phase shift film in Example 1. FIG.

10:相位偏移光罩基底 10: Phase shift mask substrate

20:透明基板 20: Transparent substrate

30:相位偏移膜 30:Phase shift film

31:相位偏移層 31:Phase offset layer

32:反射率降低層 32:Reflectivity reduction layer

33:金屬層 33: metal layer

Claims (13)

一種相位偏移光罩基底,其特徵在於:其係於透明基板上具備相位偏移膜者,且 上述相位偏移膜包含含有1種以上之金屬及選自氧、氮、碳中之至少一者之金屬系材料、或含有1種以上之金屬、矽及選自氧、氮、碳中之至少一者之金屬矽化物系材料中之至少任一者, 上述相位偏移膜具有:相位偏移層,其主要具有調整對曝光之光之透過率及相位差之功能;反射率降低層,其配置於該相位偏移層之上側,主要具有降低對自上述相位偏移膜側入射之光之反射率之功能;及中間層,其配置於上述相位偏移層與上述反射率降低層之間, 上述中間層係具有金屬含有率高於上述反射率降低層之金屬含有率的金屬系材料,或者為具有較上述反射率降低層之上述金屬含有率或上述反射率降低層之金屬與矽之合計含有率為高之合計含有率的金屬矽化物系材料, 藉由上述相位偏移層、上述中間層及上述反射率降低層之積層構造,上述相位偏移膜對曝光之光之透過率及相位差具有特定之光學特性, 上述相位偏移膜對自上述相位偏移膜側入射之光之膜面反射率於313 nm~436 nm之波長區域為22.5%以下,且上述相位偏移膜對自上述透明基板側入射之光之背面反射率於313 nm~436 nm之波長區域為20%以下。 A phase shift mask substrate, characterized in that: it is equipped with a phase shift film on a transparent substrate, and The phase shift film includes at least one of metal-based materials containing one or more metals and at least one selected from oxygen, nitrogen, and carbon, or at least any one of metal silicide-based materials containing one or more metals, silicon, and at least one selected from oxygen, nitrogen, and carbon, The above-mentioned phase shift film has: a phase shift layer, which mainly has the function of adjusting the transmittance and phase difference of exposed light; a reflectance reducing layer, which is arranged on the upper side of the phase shift layer, and mainly has the function of reducing the reflectance of light incident from the side of the above-mentioned phase shift film; and an intermediate layer, which is arranged between the above-mentioned phase shift layer and the above-mentioned reflectance reducing layer, The above-mentioned intermediate layer is a metal-based material having a metal content higher than that of the reflectance reducing layer, or a metal silicide-based material having a higher total content than the above-mentioned metal content of the above-mentioned reflectance reducing layer or the total content of metal and silicon in the above-mentioned reflectance reducing layer, Through the laminated structure of the above-mentioned phase shift layer, the above-mentioned intermediate layer and the above-mentioned reflectance reducing layer, the above-mentioned phase shift film has specific optical characteristics for the transmittance and phase difference of the exposed light, The surface reflectance of the phase shift film for light incident from the side of the phase shift film is 22.5% or less in the wavelength range of 313 nm to 436 nm, and the back reflectance of the phase shift film for light incident from the transparent substrate side is 20% or less in the wavelength range of 313 nm to 436 nm. 一種相位偏移光罩基底,其特徵在於:其係於透明基板上具備相位偏移膜者,且 上述相位偏移膜包含含有1種以上之金屬及選自氧、氮、碳中之至少一者之金屬系材料、或含有1種以上之金屬、矽及選自氧、氮、碳中之至少一者之金屬矽化物系材料中之至少任一者, 上述相位偏移膜具有:相位偏移層,其主要具有調整對曝光之光之透過率及相位差之功能;反射率降低層,其配置於該相位偏移層之上側,主要具有降低對自上述相位偏移膜側入射之光之反射率之功能;及中間層,其配置於上述相位偏移層與上述反射率降低層之間, 上述中間層係具有金屬含有率高於上述反射率降低層之金屬含有率的金屬系材料,或者為具有較上述反射率降低層之上述金屬含有率或上述反射率降低層之金屬與矽之合計含有率為高之合計含有率的金屬矽化物系材料, 藉由上述相位偏移層、上述中間層及上述反射率降低層之積層構造,上述相位偏移膜對曝光之光之透過率及相位差具有特定之光學特性, 上述相位偏移膜對自上述相位偏移膜側入射之光之膜面反射率於313 nm~436 nm之波長區域為22.5%以下,且上述相位偏移膜對自上述透明基板側入射之光之背面反射率於365 nm~436 nm之波長區域為20%以下。 A phase shift mask substrate, characterized in that: it is equipped with a phase shift film on a transparent substrate, and The phase shift film includes at least one of metal-based materials containing one or more metals and at least one selected from oxygen, nitrogen, and carbon, or at least any one of metal silicide-based materials containing one or more metals, silicon, and at least one selected from oxygen, nitrogen, and carbon, The above-mentioned phase shift film has: a phase shift layer, which mainly has the function of adjusting the transmittance and phase difference of exposed light; a reflectance reducing layer, which is arranged on the upper side of the phase shift layer, and mainly has the function of reducing the reflectance of light incident from the side of the above-mentioned phase shift film; and an intermediate layer, which is arranged between the above-mentioned phase shift layer and the above-mentioned reflectance reducing layer, The above-mentioned intermediate layer is a metal-based material having a metal content higher than that of the reflectance reducing layer, or a metal silicide-based material having a higher total content than the above-mentioned metal content of the above-mentioned reflectance reducing layer or the total content of metal and silicon in the above-mentioned reflectance reducing layer, Through the laminated structure of the above-mentioned phase shift layer, the above-mentioned intermediate layer and the above-mentioned reflectance reducing layer, the above-mentioned phase shift film has specific optical characteristics for the transmittance and phase difference of the exposed light, The surface reflectance of the phase shift film for light incident from the side of the phase shift film is 22.5% or less in the wavelength range of 313 nm to 436 nm, and the back reflectance of the phase shift film for light incident from the transparent substrate side is 20% or less in the wavelength range of 365 nm to 436 nm. 如請求項1或2之相位偏移光罩基底,其中上述相位偏移膜之膜面反射率於313 nm~436 nm之波長區域之變動幅度為12.5%以下。The phase shift mask substrate according to claim 1 or 2, wherein the variation range of the film surface reflectance of the above phase shift film in the wavelength range of 313 nm to 436 nm is 12.5% or less. 如請求項1或2之相位偏移光罩基底,其中上述相位偏移膜之背面反射率於313 nm~436 nm之波長區域之變動幅度為18%以下。The phase shift mask substrate according to claim 1 or 2, wherein the variation range of the back reflectivity of the phase shift film in the wavelength region of 313 nm to 436 nm is 18% or less. 如請求項1或2之相位偏移光罩基底,其中上述相位偏移膜包含可藉由同一蝕刻劑進行蝕刻之材料。The phase shift mask substrate according to claim 1 or 2, wherein the phase shift film includes a material that can be etched by the same etchant. 如請求項1或2之相位偏移光罩基底,其中上述相位偏移膜包含之金屬矽化物系材料為金屬矽化物之氮化物、金屬矽化物之氧化物、金屬矽化物之氮氧化物、金屬矽化物之碳氮化物、金屬矽化物之碳氧化物及金屬矽化物之氧碳氮化物中之任一者。The phase shift mask substrate according to claim 1 or 2, wherein the metal silicide-based material contained in the phase shift film is any one of metal silicide nitride, metal silicide oxide, metal silicide oxynitride, metal silicide carbonitride, metal silicide carbon oxide, and metal silicide oxycarbonitride. 如請求項6之相位偏移光罩基底,其中上述金屬矽化物系材料為矽化鉬系材料、矽化鋯系材料、矽化鈦系材料、矽化鉬鋯系材料。Such as the phase shift mask substrate of claim 6, wherein the metal silicide-based materials are molybdenum silicide-based materials, zirconium silicide-based materials, titanium silicide-based materials, and molybdenum silicide-based zirconium silicide-based materials. 如請求項1或2之相位偏移光罩基底,其中上述相位偏移膜包含之金屬系材料中所含有之金屬為鉻(Cr)、鋯(Zr)、鉬(Mo)、鉭(Ta)、鎢(W)、鈦(Ti)、鋁(Al)中之任一者。The phase shift mask substrate as claimed in claim 1 or 2, wherein the metal contained in the metal-based material contained in the phase shift film is any one of chromium (Cr), zirconium (Zr), molybdenum (Mo), tantalum (Ta), tungsten (W), titanium (Ti), and aluminum (Al). 如請求項1或2之相位偏移光罩基底,其係於上述相位偏移膜上具備遮光性膜,且上述遮光性膜之膜面反射率於350 nm~436 nm之波長區域為15%以下。The phase shift mask substrate according to Claim 1 or 2, which is provided with a light-shielding film on the above-mentioned phase-shift film, and the film surface reflectance of the above-mentioned light-shielding film is 15% or less in the wavelength range of 350 nm to 436 nm. 一種相位偏移光罩之製造方法,其特徵在於包括如下步驟: 於如請求項1至8中任一項之相位偏移光罩基底之上述相位偏移膜上形成抗蝕膜,藉由繪圖處理及顯影處理,而於該抗蝕膜形成抗蝕膜圖案;及 以該抗蝕膜圖案作為遮罩,蝕刻上述相位偏移膜,而於上述透明基板上形成相位偏移膜圖案。 A method of manufacturing a phase shift mask, characterized by comprising the following steps: Forming a resist film on the above-mentioned phase shift film of the phase shift mask substrate according to any one of claims 1 to 8, and forming a resist film pattern on the resist film through drawing processing and development processing; and Using the resist film pattern as a mask, the phase shift film is etched to form a phase shift film pattern on the transparent substrate. 一種相位偏移光罩之製造方法,其特徵在於包括如下步驟: 於如請求項9之相位偏移光罩基底之上述遮光性膜上形成抗蝕膜,藉由繪圖處理及顯影處理,而於該抗蝕膜形成抗蝕膜圖案; 以該抗蝕膜圖案作為遮罩,蝕刻上述遮光性膜,而於上述相位偏移膜上形成遮光性膜圖案;及 以上述遮光性膜圖案作為遮罩,蝕刻上述相位偏移膜,而於上述透明基板上形成相位偏移膜圖案。 A method of manufacturing a phase shift mask, characterized by comprising the following steps: Form a resist film on the above-mentioned light-shielding film of the phase shift mask substrate as claimed in claim 9, and form a resist film pattern on the resist film through drawing processing and development processing; Using the resist film pattern as a mask, etching the light-shielding film to form a light-shielding film pattern on the phase shift film; and Using the light-shielding film pattern as a mask, the phase shift film is etched to form a phase shift film pattern on the transparent substrate. 一種顯示裝置之製造方法,其特徵在於包括如下步驟: 將藉由如請求項10或11之相位偏移光罩之製造方法所獲得之相位偏移光罩載置於曝光裝置之光罩台;及 對上述相位偏移光罩照射曝光之光,而於形成於顯示裝置基板上之抗蝕膜轉印上述相位偏移膜圖案。 A method of manufacturing a display device, characterized by comprising the following steps: Mounting the phase shift mask obtained by the manufacturing method of the phase shift mask according to claim 10 or 11 on the mask stage of the exposure device; and Exposure light is irradiated to the phase shift mask, and the phase shift film pattern is transferred to the resist film formed on the display device substrate. 如請求項12之顯示裝置之製造方法,其中上述曝光之光係包含選自313 nm~436 nm之波長區域中之複數個波長之光的複合光。The method for manufacturing a display device according to claim 12, wherein the above-mentioned exposure light is composite light comprising light of a plurality of wavelengths selected from the wavelength region of 313 nm to 436 nm.
TW112111541A 2017-01-16 2017-12-28 Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device TWI808927B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-004875 2017-01-16
JP2017004875 2017-01-16
JP2017230282A JP6891099B2 (en) 2017-01-16 2017-11-30 A phase shift mask blank, a method for manufacturing a phase shift mask using the blank, and a method for manufacturing a display device.
JP2017-230282 2017-11-30

Publications (2)

Publication Number Publication Date
TWI808927B true TWI808927B (en) 2023-07-11
TW202328801A TW202328801A (en) 2023-07-16

Family

ID=62985516

Family Applications (2)

Application Number Title Priority Date Filing Date
TW106146200A TWI800499B (en) 2017-01-16 2017-12-28 Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device
TW112111541A TWI808927B (en) 2017-01-16 2017-12-28 Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106146200A TWI800499B (en) 2017-01-16 2017-12-28 Phase shift mask substrate, method of manufacturing phase shift mask using same, and method of manufacturing display device

Country Status (4)

Country Link
JP (2) JP6891099B2 (en)
KR (2) KR102505733B1 (en)
CN (1) CN117518704A (en)
TW (2) TWI800499B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420065B2 (en) * 2018-03-15 2024-01-23 大日本印刷株式会社 large photomask
JP7151774B2 (en) * 2018-09-14 2022-10-12 株式会社ニコン Phase shift mask blanks, phase shift mask, exposure method, device manufacturing method, phase shift mask blank manufacturing method, phase shift mask manufacturing method, exposure method, and device manufacturing method
JPWO2022230694A1 (en) * 2021-04-30 2022-11-03

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092241A (en) * 2002-03-01 2005-04-07 Hoya Corp Method for producing halftone phase shift mask blank

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342205A (en) * 1986-08-07 1988-02-23 Nec Corp Oscillation circuit
JP3262302B2 (en) * 1993-04-09 2002-03-04 大日本印刷株式会社 Phase shift photomask, blank for phase shift photomask, and method of manufacturing the same
JPH10186632A (en) * 1996-10-24 1998-07-14 Toppan Printing Co Ltd Blank for halftone type phase shift mask and halftone type phase shift mask
JP2983020B1 (en) * 1998-12-18 1999-11-29 ホーヤ株式会社 Halftone type phase shift mask blank and halftone type phase shift mask
JP2001083687A (en) * 1999-09-09 2001-03-30 Dainippon Printing Co Ltd Halftone phase shift photomask and blank for halftone phase shift photomask for producing same
US6500587B1 (en) * 2001-02-02 2002-12-31 Advanced Micro Devices, Inc. Binary and attenuating phase-shifting masks for multiple wavelengths
JP2003322947A (en) * 2002-04-26 2003-11-14 Hoya Corp Halftone phase shifting mask blank and halftone phase shifting mask
JP4525893B2 (en) * 2003-10-24 2010-08-18 信越化学工業株式会社 Phase shift mask blank, phase shift mask and pattern transfer method
JP4784983B2 (en) * 2006-01-10 2011-10-05 Hoya株式会社 Halftone phase shift mask blank and halftone phase shift mask
JP5121020B2 (en) * 2008-09-26 2013-01-16 Hoya株式会社 Multi-tone photomask, photomask blank, and pattern transfer method
KR101282040B1 (en) 2012-07-26 2013-07-04 주식회사 에스앤에스텍 Phase shift blankmask and photomask using the flat pannel display
JP6138676B2 (en) * 2013-12-27 2017-05-31 Hoya株式会社 Phase shift mask blank, method for manufacturing the same, and method for manufacturing the phase shift mask
JP5743008B2 (en) * 2014-06-06 2015-07-01 信越化学工業株式会社 Photomask blank and manufacturing method thereof, photomask, optical pattern irradiation method, and halftone phase shift film design method
WO2016103843A1 (en) * 2014-12-26 2016-06-30 Hoya株式会社 Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP6322250B2 (en) * 2016-10-05 2018-05-09 Hoya株式会社 Photomask blank

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005092241A (en) * 2002-03-01 2005-04-07 Hoya Corp Method for producing halftone phase shift mask blank

Also Published As

Publication number Publication date
CN117518704A (en) 2024-02-06
KR102505733B1 (en) 2023-03-03
JP2021144237A (en) 2021-09-24
KR20230035005A (en) 2023-03-10
TW201832921A (en) 2018-09-16
KR20180084636A (en) 2018-07-25
TW202328801A (en) 2023-07-16
JP6891099B2 (en) 2021-06-18
KR102548886B1 (en) 2023-06-30
JP2018116263A (en) 2018-07-26
JP7095157B2 (en) 2022-07-04
TWI800499B (en) 2023-05-01

Similar Documents

Publication Publication Date Title
JP6266322B2 (en) Phase shift mask blank for manufacturing display device, phase shift mask for manufacturing display device, method for manufacturing the same, and method for manufacturing display device
JP2015156037A (en) Photomask blank, photomask, and method of manufacturing photomask blank
KR102548886B1 (en) Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device
TWI813644B (en) Phase shift mask substrate, manufacturing method of phase shift mask, and manufacturing method of display device
TWI698702B (en) Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device
JP7176843B2 (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
CN109643056B (en) Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
CN108319103B (en) Phase shift mask blank, method for manufacturing phase shift mask using the same, and method for manufacturing display device
TWI758382B (en) Phase shift mask blanke, method of manufacturing a phase shift mask, and method of manufacturing a display device
TW201902684A (en) Phase shift mask substrate, method of manufacturing phase offset mask using same, and method of manufacturing display device
JPWO2018056033A1 (en) Mask blank, phase shift mask, phase shift mask manufacturing method, and semiconductor device manufacturing method
TWI784131B (en) Phase shift mask substrate, manufacturing method of phase shift mask, and manufacturing method of display device
JP2021144146A (en) Photomask blank, photomask blank production method, photomask production method, and display device production method
TWI828864B (en) Photomask blank, method for manufacturing photomask, and method for manufacturing display device
CN108319104B (en) Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device
JP6532919B2 (en) Phase shift mask blank for manufacturing display device, phase shift mask for manufacturing display device, and method of manufacturing display device
JP2019061106A (en) Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device
KR20180109697A (en) Phase shift mask blank and method for manufacturing phase shift mask using the same, and pattern transfer method
JP7371198B2 (en) Photomask blank, photomask manufacturing method, and display device manufacturing method
TWI769223B (en) Phase-shift photomask substrate and method for manufacturing phase-shift photomask using the same, and pattern transfer method
TW202235996A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
TW202321811A (en) Mask blank, transfer mask, method for manufacturing mask blank, method for manufacturing transfer mask, and method for manufacturing display device
JP2024004082A (en) Mask blank, mask for transcription, method for manufacturing mask for transcription, and method for manufacturing display device
JP2020046468A (en) Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device
JP2008242500A (en) Manufacturing method of phase shift mask blank and manufacturing method of phase shift photomask