TWI698702B - Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device - Google Patents
Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device Download PDFInfo
- Publication number
- TWI698702B TWI698702B TW106140657A TW106140657A TWI698702B TW I698702 B TWI698702 B TW I698702B TW 106140657 A TW106140657 A TW 106140657A TW 106140657 A TW106140657 A TW 106140657A TW I698702 B TWI698702 B TW I698702B
- Authority
- TW
- Taiwan
- Prior art keywords
- phase shift
- layer
- film
- chromium
- shift mask
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/54—Absorbers, e.g. of opaque materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/26—Phase shift masks [PSM]; PSM blanks; Preparation thereof
- G03F1/32—Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/54—Absorbers, e.g. of opaque materials
- G03F1/56—Organic absorbers, e.g. of photo-resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/66—Containers specially adapted for masks, mask blanks or pellicles; Preparation thereof
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70691—Handling of masks or workpieces
- G03F7/70716—Stages
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/708—Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
- G03F7/70958—Optical materials or coatings, e.g. with particular transmittance, reflectance or anti-reflection properties
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Drying Of Semiconductors (AREA)
- Weting (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本發明提供一種具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之顯示裝置用之相移光罩之形成所使用的相移光罩基底。 設置於透明基板上之相移膜具有第1及第2功能層、以及配置於其等之間之中間層,第1及第2功能層包含含有鉻、氧及氮之鉻系材料,鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%,第1功能層中所包含之氮之含有率相同於或者多於第2功能層中所包含之氮之含有率,第2功能層中所包含之氧之含有率多於第1功能層中所包含之氧之含有率,中間層含有鉻及碳,鉻之含有率為55~90原子%,碳之含有率為10~45原子%,中間層中所包含之鉻之含有率多於第1及第2功能層中所包含之鉻之含有率。The present invention provides a phase shift mask substrate used in the formation of a phase shift mask for a display device with excellent pattern cross-sectional shape and excellent CD uniformity and formed with fine patterns. The phase shift film disposed on the transparent substrate has first and second functional layers, and an intermediate layer arranged between them. The first and second functional layers include chromium-based materials containing chromium, oxygen and nitrogen, and chromium is 30 to 70 atomic %, oxygen is 20 to 60 atomic %, and nitrogen is 0.4 to 30 atomic %. The content of nitrogen contained in the first functional layer is the same as or more than the nitrogen contained in the second functional layer The content of oxygen contained in the second functional layer is higher than that of the oxygen contained in the first functional layer. The intermediate layer contains chromium and carbon. The content of chromium is 55-90 atomic %, and the content of carbon The rate is 10 to 45 atomic %, and the content of chromium contained in the intermediate layer is higher than the content of chromium contained in the first and second functional layers.
Description
本發明係關於一種相移光罩基底及使用其之相移光罩之製造方法、與顯示裝置之製造方法。 The invention relates to a phase shift mask substrate, a method for manufacturing a phase shift mask using the same, and a method for manufacturing a display device.
近年來,伴隨著FPD(Flat Panel Display,平板顯示器)等顯示裝置之高解像度化、高精細化,需求一種具有優異之圖案剖面形狀及優異之CD(Critical Dimension,臨界尺寸)均勻性且形成有微細之圖案之顯示裝置用之相移光罩。 In recent years, with the high resolution and high definition of display devices such as FPD (Flat Panel Display), there is a demand for a pattern with excellent cross-sectional shape and excellent CD (Critical Dimension) uniformity and formation of Phase shift mask for display devices with fine patterns.
又,受到FPD等顯示裝置之低價格化之影響,需要削減相移光罩之製造成本。於在相移膜上形成有遮光性膜之先前之相移光罩基底之情形時,將抗蝕劑膜圖案作為光罩並對遮光性膜進行蝕刻而形成遮光性膜圖案,其後,將遮光性膜圖案作為光罩並對相移膜進行蝕刻而形成相移膜圖案,其後,將抗蝕劑膜圖案剝離,進而,將遮光性膜圖案剝離,而製造具有相移膜圖案之相移光罩。另一方面,於在相移膜上未形成有遮光性膜之相移光罩基底之情形時,不需要相移膜上之遮光性膜圖案之形成步驟及剝離步驟,可削減製造成本。 In addition, due to the lower prices of display devices such as FPDs, it is necessary to reduce the manufacturing cost of the phase shift mask. In the case of the previous phase shift mask base with a light-shielding film formed on the phase shift film, the resist film pattern is used as a mask and the light-shielding film is etched to form the light-shielding film pattern. The light-shielding film pattern is used as a mask and the phase shift film is etched to form a phase shift film pattern. After that, the resist film pattern is peeled off, and the light-shielding film pattern is peeled off to produce a phase shift film pattern. Shift the mask. On the other hand, in the case of a phase shift mask base with no light-shielding film formed on the phase shift film, the step of forming the light-shielding film pattern on the phase shift film and the peeling step are not required, which can reduce the manufacturing cost.
應對此種近年來之狀況,需求如下之顯示裝置用之相移光罩,其係使用在相移膜上未形成有遮光性膜之相移光罩基底而製造,具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案。 To cope with the situation in recent years, the following phase shift masks for display devices are required, which are manufactured using a phase shift mask substrate without a light-shielding film formed on the phase shift film, and have an excellent pattern cross-sectional shape and Excellent CD uniformity and fine patterns formed.
例如,於專利文獻1中,提出了如下顯示裝置用之相移光罩基底,其具備於透明基板上積層有2層以上之薄膜之構成之相移膜。構成該相移膜之各薄膜雖具有相互不同之組成,但共同包含可藉由相同蝕刻溶液而蝕刻之物質,因組成相互不同而具有不同之蝕刻速度。於專利文獻1中,於相移膜之圖案化時,以陡峭地形成相移膜圖案之邊緣部分之剖面梯度之方式,調整構成相移膜之各薄膜之蝕刻速度。
For example,
再者,於專利文獻1中,亦提出了如下顯示裝置用之相移光罩基底,其於相位反轉膜之上部或下部,以遮光性膜、半透過膜、蝕刻阻止膜、及硬質光罩膜為代表而配置有包含轉印用圖案所需之膜中之一種以上之膜之功能性膜。
Furthermore, in
[專利文獻1]日本專利特開2014-26281號公報 [Patent Document 1] Japanese Patent Laid-Open No. 2014-26281
先前提出之顯示裝置用之相移光罩中所使用之相移膜並未考慮用以形成相移膜圖案之抗蝕劑膜之圖案化時所使用之雷射繪圖光之反射所導致的對抗蝕劑膜之影響而設計。因此,相移膜對雷射繪圖光之膜面反射率超過20%。其結果為,存在如下情況:抗蝕劑膜中產生駐波,隨之,抗蝕劑膜圖案之CD均勻性變差,甚至將抗蝕劑膜圖案作為光罩並進行圖案化而形成之相移膜圖案之CD均勻性無法滿足近年來要求之值。 The phase shift film used in the phase shift mask for the previously proposed display device does not consider the resistance caused by the reflection of the laser drawing light used in the patterning of the resist film used to form the phase shift film pattern. Designed for the influence of etchant film. Therefore, the reflectivity of the phase shift film to the laser drawing light exceeds 20%. As a result, there are cases where standing waves are generated in the resist film, and consequently, the CD uniformity of the resist film pattern deteriorates, and even the resist film pattern is used as a mask and patterned to form a phase The CD uniformity of the film transfer pattern cannot meet the value required in recent years.
因此,本發明係鑒於上述問題方面而成者,目的在於藉由具備降低了對用作雷射繪圖光之350nm~436nm之波長區域之光之膜面反射率之 相移膜,而提供一種具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之顯示裝置用之相移光罩之形成所使用的相移光罩基底、及使用其之相移光罩之製造方法。進而,目的在於藉由使用具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之顯示裝置用之相移光罩,而提供一種高解像度、高精細之顯示裝置之製造方法。 Therefore, the present invention was made in view of the above-mentioned problems, and the purpose is to reduce the reflectance of the film surface to light in the 350nm~436nm wavelength region used as laser drawing light. Phase shift film to provide a phase shift mask substrate used in the formation of a phase shift mask for display devices with excellent pattern cross-sectional shape and excellent CD uniformity and formed with fine patterns, and a phase using the same Manufacturing method of shifting mask. Furthermore, the purpose is to provide a high-resolution, high-definition manufacturing method for a display device by using a phase shift mask for a display device with excellent pattern cross-sectional shape and excellent CD uniformity and fine patterns formed.
本發明人為了達成上述目的而努力研究,獲得了如下見解:藉由以至少3層構成包含鉻系材料之相移膜,並對構成相移膜之各層之組成或膜厚進行研究,可一面使相移膜對曝光之光之透過率及相位差滿足作為相移膜所需之特定之光學特性,一面降低相移膜對350nm~436nm之波長區域之光之膜面反射率。 In order to achieve the above-mentioned object, the present inventors have made diligent research and obtained the following knowledge: by constructing a phase shift film containing a chromium-based material with at least three layers, and studying the composition or film thickness of each layer constituting the phase shift film, The transmittance and phase difference of the phase shift film to the exposure light meet the specific optical characteristics required as a phase shift film, while reducing the film surface reflectivity of the phase shift film to light in the 350nm~436nm wavelength region.
本發明係基於該見解而成者,具有以下之構成。 This invention is based on this knowledge, and has the following structure.
(構成1) (Composition 1)
一種相移光罩基底,其特徵在於:其係於透明基板上具備包含鉻系材料之相移膜者,且上述相移膜具有構成其下層之第1功能層、構成其上層之第2功能層、及配置於上述第1功能層與上述第2功能層之間之中間層,上述第1功能層及上述第2功能層包含含有鉻、氧及氮之鉻系材料,鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%,上述第1功能層中所包含之氮之含有率相同於或者多於上述第2功能層中所包含之氮之含有率,上述第2功能層中所包含之氧之含有率多於上述第1功能層中所包含之氧之含有率,上述中間層含有鉻及碳,鉻之含有率為55~90原子%,碳之含有率 為10~45原子%,上述中間層中所包含之鉻之含有率多於上述第1功能層、上述第2功能層中所包含之鉻之含有率。 A phase shift mask substrate, characterized in that it is provided with a phase shift film containing a chromium-based material on a transparent substrate, and the phase shift film has a first functional layer constituting its lower layer and a second function constituting its upper layer Layer and an intermediate layer arranged between the first functional layer and the second functional layer, the first functional layer and the second functional layer include chromium-based materials containing chromium, oxygen and nitrogen, and the chromium is 30 to 70 Atomic %, oxygen is 20-60 atomic%, nitrogen is 0.4-30 atomic%, the content of nitrogen contained in the first functional layer is the same as or more than the content of nitrogen contained in the second functional layer The content of oxygen contained in the second functional layer is greater than the content of oxygen contained in the first functional layer. The intermediate layer contains chromium and carbon. The content of chromium is 55 to 90 atomic %. Content rate The content of chromium contained in the intermediate layer is greater than the content of chromium contained in the first functional layer and the second functional layer.
(構成2) (Composition 2)
如構成1所記載之相移光罩基底,其特徵在於:上述第1功能層具有主要調整對曝光之光之透過率及相位差之功能,上述第2功能層具有降低對自上述相移膜側入射之光之反射率之功能,上述第1功能層之膜厚較上述第2功能層之膜厚更厚。
The phase shift mask substrate described in
(構成3) (Composition 3)
如構成1或2所記載之相移光罩基底,其特徵在於:上述第1功能層包含一氮化鉻,上述第2功能層包含鉻與氧鍵結而成之氧化鉻Ⅲ。
The phase shift mask substrate described in
(構成4) (Composition 4)
如構成1至3中任一項所記載之相移光罩基底,其特徵在於:上述中間層進而包含含有氧之鉻系材料,上述第1功能層、上述中間層、及上述第2功能層包含氧化鉻Ⅲ。
The phase shift mask substrate as described in any one of
(構成5) (Composition 5)
如構成1至4中任一項所記載之相移光罩基底,其特徵在於:上述相移膜對自上述相移膜側入射之光之膜面反射率於350~436nm之波長區域中,為15%以下。
The phase shift mask substrate described in any one of
(構成6) (Composition 6)
如構成1至5中任一項所記載之相移光罩基底,其特徵在於:上述相移膜對自上述透明基板側入射之光之背面反射率於313~436nm之波長區域中,為20%以下。
The phase shift mask base described in any one of
(構成7) (Composition 7)
如構成1至6中任一項所記載之相移光罩基底,其特徵在於:於上述透明基板與上述相移膜之間具備遮光性膜圖案。
The phase shift mask base as described in any one of
(構成8) (Composition 8)
一種相移光罩之製造方法,其特徵在於具有如下步驟:於如構成1至7中任一項所記載之相移光罩基底之上述相移膜上,藉由使用具有選自350nm~436nm之波長區域中之任一波長之雷射光之繪圖處理、及顯影處理,而形成抗蝕劑膜圖案之步驟;及將該抗蝕劑膜圖案作為光罩並對上述相移膜進行蝕刻,而於上述透明基板上形成相移膜圖案之步驟。 A method for manufacturing a phase shift mask, which is characterized in that it has the following steps: on the above-mentioned phase shift film of the phase shift mask substrate as described in any one of 1 to 7, by using a phase shift film selected from 350nm~436nm The step of forming a resist film pattern by drawing and developing laser light of any wavelength in the wavelength range; and using the resist film pattern as a mask and etching the phase shift film, and The step of forming a phase shift film pattern on the above-mentioned transparent substrate.
(構成9) (Composition 9)
一種顯示裝置之製造方法,其特徵在於具有如下步驟:將由如構成8所記載之相移光罩之製造方法製造之相移光罩載置於曝光裝置之光罩台之步驟;及對上述相移光罩照射曝光之光,並將上述相移膜圖案轉印於形成於顯示裝置基板上之抗蝕劑膜之步驟。 A method of manufacturing a display device is characterized by the steps of: placing the phase shift mask manufactured by the method of manufacturing the phase shift mask as described in Composition 8 on the mask stage of the exposure device; and The step of irradiating the exposure light with the light shift mask and transferring the above-mentioned phase shift film pattern to the resist film formed on the substrate of the display device.
(構成10) (Composition 10)
如構成9所記載之顯示裝置之製造方法,其特徵在於:上述曝光之光係包含選自313nm~436nm之波長區域中之複數個波長之光之複合光。 The manufacturing method of the display device as described in Composition 9, characterized in that the light for the above exposure includes a composite light of light of a plurality of wavelengths selected from the wavelength region of 313 nm to 436 nm.
如上所述,本發明之相移光罩基底係於透明基板上具備包含鉻系材料之相移膜者,上述相移膜具有構成其上層之第1功能層、構成其下層之第2功能層、及配置於上述第1功能層與上述第2功能層之間之中間層,上 述第1功能層及上述第2功能層包含含有鉻、氧及氮之鉻系材料,鉻為30~70原子%,氧為20~60原子%,氮為0.5~30原子%,上述第1功能層中所包含之氮之含有率相同於或者多於上述第2功能層中所包含之氮之含有率,上述第2功能層中所包含之氧之含有率多於上述第1功能層中所包含之氧之含有率,上述中間層含有鉻及碳,鉻之含有率為55~90原子%,碳之含有率為10~45原子%,上述中間層中所包含之鉻之含有率多於上述第1功能層、上述第2功能層中所包含之鉻之含有率。因此,使用該相移光罩基底,可製造具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之相移光罩。又,使用該相移光罩,可製造高解像度、高精細之顯示裝置。 As described above, the phase shift mask base of the present invention is provided with a phase shift film containing a chromium-based material on a transparent substrate. The phase shift film has a first functional layer constituting its upper layer and a second functional layer constituting its lower layer. , And an intermediate layer arranged between the first functional layer and the second functional layer, above The first functional layer and the second functional layer include chromium-based materials containing chromium, oxygen and nitrogen, chromium is 30 to 70 atomic %, oxygen is 20 to 60 atomic %, and nitrogen is 0.5 to 30 atomic %. The content rate of nitrogen contained in the functional layer is the same as or greater than the content rate of nitrogen contained in the second functional layer, and the content rate of oxygen contained in the second functional layer is higher than that in the first functional layer The content of oxygen contained in the intermediate layer contains chromium and carbon. The content of chromium is 55 to 90 atomic %, and the content of carbon is 10 to 45 atomic %. The content of chromium in the intermediate layer is high The content rate of chromium contained in the first functional layer and the second functional layer. Therefore, by using the phase shift mask substrate, it is possible to manufacture a phase shift mask with excellent pattern cross-sectional shape and excellent CD uniformity and fine patterns formed. Moreover, by using this phase shift mask, a high-resolution, high-definition display device can be manufactured.
10:相移光罩基底 10: Phase shift mask substrate
20:透明基板 20: Transparent substrate
30:相移膜 30: Phase shift film
31:相移層 31: Phase shift layer
32:反射率降低層 32: reflectivity reduction layer
33:金屬層 33: Metal layer
40:遮光性膜圖案 40: Shading film pattern
圖1係表示相移光罩基底之膜構成之模式圖。 Figure 1 is a schematic diagram showing the film composition of the phase shift mask substrate.
圖2係表示相移光罩基底之其他膜構成之模式圖。 Fig. 2 is a schematic diagram showing another film composition of the phase shift mask substrate.
圖3係實施例1、2、3、比較例1中之相移光罩基底之相移膜之膜面反射率光譜。 Fig. 3 shows the reflectance spectrum of the phase shift film of the phase shift mask substrate in Examples 1, 2, 3 and Comparative Example 1.
圖4係實施例1、2、3、比較例1中之相移光罩基底之相移膜之背面反射率光譜。 4 shows the back reflectance spectra of the phase shift film of the phase shift mask substrate in Examples 1, 2, 3 and Comparative Example 1.
圖5係表示對實施例1中之相移光罩基底之相移膜之深度方向之組成分析結果之曲線圖。 FIG. 5 is a graph showing the composition analysis result in the depth direction of the phase shift film of the phase shift mask substrate in Example 1. FIG.
圖6係表示對實施例2中之相移光罩基底之相移膜之深度方向之組成分析結果之曲線圖。 6 is a graph showing the composition analysis result of the phase shift film of the phase shift mask substrate in Example 2 in the depth direction.
圖7係表示對實施例3中之相移光罩基底之相移膜之深度方向之組成分析結果之曲線圖。 FIG. 7 is a graph showing the composition analysis result of the phase shift film of the phase shift mask substrate in Example 3 in the depth direction.
以下,一面參照圖式,一面對本發明之實施形態詳細地進行說明。再者,以下之實施形態係將本發明具體化時之一形態,並非將本發明限定於其範圍內者。再者,於圖中,存在對於同一或同等之部分,附上同一符號並簡化或省略其說明之情況。 Hereinafter, the embodiments of the present invention will be described in detail while referring to the drawings. In addition, the following embodiment is an aspect when the present invention is embodied, and the present invention is not limited to the scope thereof. Furthermore, in the figures, for the same or equivalent parts, the same symbols are attached and the descriptions thereof are simplified or omitted.
於實施形態1中,對相移光罩基底進行說明。 In the first embodiment, the phase shift mask substrate will be described.
圖1係表示相移光罩基底10之膜構成之模式圖。相移光罩基底10具備對曝光之光呈透明之透明基板20、及配置於透明基板20上之包含鉻系材料之相移膜30。於假設無表面反射損失時,透明基板20對曝光之光具有85%以上之透過率,較佳為具有90%以上之透過率。相移膜30自透明基板20側具有作為構成其下層之第1功能層之相移層31、作為構成其上層之第2功能層之反射率降低層32、及作為配置於相移層31與反射率降低層32之間之中間層之金屬層33。相移層31、金屬層33及反射率降低層32之各者由包含鉻(Cr)之鉻系材料形成。因此,相移層31、金屬層33及反射率降低層32可藉由相同蝕刻溶液而進行蝕刻。
FIG. 1 is a schematic diagram showing the film composition of the phase
相移層31配置於透明基板20之主表面上。相移層31具有主要調整對曝光之光之透過率及相位差之功能。相移層31係於相移膜30中與反射率降低層32、金屬層33之膜厚相比膜厚最厚之層。再者,構成下述相移層31、金屬層33、反射率降低層32之各元素之含有率係設為利用X射線光電子光譜法(XPS、ESCA)測得之值。
The
相移層31包含含有鉻(Cr)、氧(O)及氮(N)之鉻系材料,關於各元素之平均含有率,鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原
子%。又,關於相移層31,就以構成該相移層31之成分之鍵結狀態(化學狀態)之形式藉由濕式蝕刻而形成優異之圖案剖面形狀之觀點而言,較佳為包含鉻與氮鍵結而成之鉻氮化物,尤其是包含一氮化鉻(CrN)或氮化二鉻(Cr2N)。進而,相移層31亦可設為包含碳(C)及氟(F)中之至少一種之鉻系材料。例如,作為形成相移層31之材料,可列舉:CrON、CrOCN、CrFCON。
The
相移層31可藉由濺鍍法而形成。
The
反射率降低層32配置於相移層31之上側。反射率降低層32主要具有降低對自相移膜30側(即,反射率降低層32之與透明基板20側相反之側)入射之光之反射率之功能。反射率降低層32係為了藉由金屬層33與反射率降低層32之界面所產生之反射及反射率降低層32之表面所產生之反射所引起之干涉效果而降低相移膜30之反射率而經膜厚調整之層。
The
反射率降低層32包含含有鉻(Cr)、氧(O)及氮(N)之鉻系材料,關於各元素之平均含有率,鉻為30~70原子%,氧為20~60原子%,氮為0.4~30原子%。又,關於反射率降低層32,就以構成該反射率降低層32之成分之鍵結狀態(化學狀態)之形式獲得利用濕式蝕刻所產生之優異之圖案剖面形狀之觀點而言,較佳為包含鉻與氧鍵結而成之鉻氧化物,尤其是包含氧化鉻Ⅲ(Cr2O3)。進而,反射率降低層32亦可設為包含碳(C)及氟(F)中之至少一種之鉻系材料。例如,作為形成反射率降低層32之材料,可列舉:CrON、CrOCN、CrFON。
The
就對自相移膜30側(反射率降低層32之表面側)入射之光之反射率之降低效果、及作為相移膜30整體,藉由濕式蝕刻而形成優異之圖案剖面形狀之觀點而言,設為相移層31中所包含之氮(N)之含有率相同於或者多於
反射率降低層32中所包含之氮(N)之含有率,反射率降低層32中所包含之氧(O)之含有率多於相移層31中所包含之氧(O)之含有率之狀態。又,就膜面反射率之降低效果之方面而言,較佳為使反射率降低層32中所包含之氧(O)之含有率較相移層31中所包含之氧(O)之含有率多至少1原子%以上,較佳為多5原子%以上。
In terms of the effect of reducing the reflectance of light incident from the side of the phase shift film 30 (the surface side of the reflectance reducing layer 32), and the viewpoint of forming an excellent cross-sectional shape of the pattern by wet etching as a whole of the
反射率降低層32可藉由濺鍍法而形成。
The
金屬層33配置於相移層31與反射率降低層32之間。金屬層33具有調整對曝光之光之透過率之功能,並且具有與反射率降低層32組合而降低對自相移膜30側入射之光之反射率之功能。進而,具有與相移層組合而降低對自透明基板20側入射之光之反射率之功能。
The
金屬層33含有鉻(Cr)及碳(C),關於各元素之平均含有率,鉻(Cr)之含有率為55~90原子%,碳(C)之含有率為10~45原子%。進而,金屬層33在與相移層31、反射率降低層32之關係上,金屬層33中所包含之鉻之含有率多於相移層31、反射率降低層32中所包含之鉻之含有率。藉由將碳(C)之含有率設為10原子%以上,可抑制由側面蝕刻速率加快所導致之金屬層33之剖面形狀發生侵蝕(corrosion)。又,藉由將碳(C)之含有率設為45原子%以下,可抑制金屬層33之剖面形狀變為錐形狀。藉由將金屬層33中所包含之碳(C)含有率設為上述適當之範圍,可利用適當之光罩製程於金屬層33形成圖案。又,金屬層33亦可設為包含氮(N)、氧(O)及氟(F)中之至少一種之鉻系材料。例如,作為形成金屬層33之材料,可列舉:CrC、CrCN、CrCO、CrCF、CrCON。其中,金屬層33較佳為設為含有鉻(Cr)、碳(C)及氧(O)之鉻系材料。並且,就以構成相移層31、反射率降低層32、及金屬層33之成分之鍵結狀態(化學狀態)之形式獲得利用濕式蝕
刻所產生之優異之圖案剖面形狀的觀點而言,進而較佳為於該等所有層中包含氧化鉻Ⅲ(Cr2O3)。
The
藉由具備金屬層33,而相移膜之薄片電阻會下降,故而可防止相移光罩基底及相移光罩之電荷累積。於不具備金屬層33之情形時,使相移光罩基底及相移光罩自殼體進出時產生之電不會漏出,而電會儲存於相移光罩基底及相移光罩,故而易於附著異物。又,於相移光罩形成有較小之圖案時,電自圖案跳至圖案,易於引起靜電破壞。
By providing the
金屬層33可藉由濺鍍法而形成。
The
金屬層33較佳為於350nm~436nm之波長區域中具有較反射率降低層32之消光係數更高之消光係數。又,較佳為於313nm~436nm之波長區域中具有較反射率降低層32之消光係數更高之消光係數。
The
金屬層33之消光係數與反射率降低層32之消光係數之差較佳為1.5~3.5,更佳為1.8~3.5。若消光係數之差為1.5~3.5,則可提高金屬層33與反射率降低層32之界面之上述波長區域(350nm~436nm之波長區域、或313nm~436nm之波長區域)中之反射率,故而進一步發揮反射率降低效果,因此較佳。
The difference between the extinction coefficient of the
再者,金屬層33較佳為於350nm~436nm之波長區域中具有較相移層31之消光係數更高之消光係數。又,較佳為於313nm~436nm之波長區域中具有較相移層31之消光係數更高之消光係數。
Furthermore, the
消光係數可使用n & k分析儀或橢偏計等進行測定。 The extinction coefficient can be measured with n & k analyzer or ellipsometer.
金屬層33具有較相移層31及反射率降低層32之鉻(Cr)含有率(原子%)更高之鉻(Cr)含有率(原子%)。
The
金屬層33之平均Cr含有率與相移層31及反射率降低層32之平均Cr含
有率之差較佳為10~80原子%,更佳為15~80原子%。若平均Cr含有率之差為10~80原子%,則可提高金屬層33與反射率降低層32之界面之上述波長區域(350nm~436nm之波長區域、或313nm~436nm之波長區域)中之反射率,故而進一步發揮反射率降低效果,因此較佳。
The average Cr content of the
金屬層33之平均Cr含有率與相移層31及反射率降低層32之平均Cr含有率之差進而較佳為設為15~60原子%,較理想為設為20~50原子%。藉由將平均Cr含有率之差設為上述範圍,而對於自反射率降低層側入射之光發揮金屬層33與反射率降低層32之界面之上述波長區域(350nm~436nm之波長區域、或313nm~436nm之波長區域)中之反射率降低效果,除此以外,對於自透明基板側入射之光發揮金屬層33與相移層31之界面之上述波長區域(313nm~436nm之波長區域)中之反射率降低效果,故而較佳。
The difference between the average Cr content of the
再者,金屬層33之蝕刻速度可藉由使鉻(Cr)含有氮(N)、氧(O)、碳(C)、氟(F)而使其為鉻系材料而進行調整。例如,藉由使鉻(Cr)含有碳(C)或氟(F),可減慢濕式蝕刻速度,藉由使鉻(Cr)含有氮(N)或氧(O),可加速濕式蝕刻速度。考慮到與形成於金屬層33之上下之相移層31、反射率降低層32之濕式蝕刻速度,藉由在鉻中添加上述元素而使其為鉻系材料,可使蝕刻後之相移膜30之剖面形狀變得良好。
Furthermore, the etching rate of the
相移層31、金屬層33及反射率降低層32之各者較佳為於350nm~436nm之波長區域中具有2.0以上之折射率。若具有2.0以上之折射率,則為了獲得所需之光學特性(透過率及相位差),可將所需之相移膜30之膜厚薄膜化。因此,使用具備該相移膜30之相移光罩基底10製作之相移光罩可具備具有優異之圖案剖面形狀及優異之CD均勻性之相移膜圖案。
Each of the
折射率可使用n & k分析儀或橢偏計等進行測定。 The refractive index can be measured with an n & k analyzer or an ellipsometer.
藉由相移層31、金屬層33及反射率降低層32之積層構造,從而相移膜30對曝光之光之透過率及相位差具有特定之光學特性。
With the layered structure of the
相移膜30對曝光之光之透過率滿足作為相移膜30所需之值。相移膜30之透過率相對於曝光之光中所包含之特定之波長之光(以下,稱為代表波長),較佳為1%~30%,更佳為2%~20%,進而較佳為3%~10%。即,於曝光之光為包含313nm以上且436nm以下之波長範圍之光之複合光之情形時,相移膜30對於其波長範圍中所包含之代表波長之光具有上述透過率。例如,於曝光之光為包含j線、i線、h線及g線之複合光之情形時,相移膜30對於j線、i線、h線及g線中之任一者具有上述透過率。
The transmittance of the
相移膜30對曝光之光之相位差滿足作為相移膜30所需之值。相移膜30之相位差相對於曝光之光中所包含之代表波長之光,較佳為160°~200°,更佳為170°~190°。因該性質,可將曝光之光中所包含之代表波長之光之相位改變160°~200°。因此,透過相移膜30之代表波長之光與僅透過透明基板20之代表波長之光之間會產生160~200°之相位差。即,於曝光之光為包含313nm以上且436nm以下之波長範圍之光之複合光之情形時,相移膜30對於其波長範圍中所包含之代表波長之光具有上述相位差。例如,於曝光之光為包含j線、i線、h線及g線之複合光之情形時,相移膜30對於j線、i線、h線及g線中之任一者具有上述相位差。
The phase difference of the
相移膜30之透過率及相位差可藉由調整構成相移膜30之相移層31、金屬層33及反射率降低層32之各者之組成及厚度而控制。因此,於本實施形態中,以相移膜30之透過率及相位差具有上述特定之光學特性之方式調整相移層31、金屬層33及反射率降低層32之各者之組成及厚度。再
者,相移膜30之透過率主要受到相移層31及金屬層33之組成及厚度影響。相移膜30之折射率主要受到相移層31之組成及厚度影響。
The transmittance and phase difference of the
透過率及相位差可使用相移量測定裝置等進行測定。 The transmittance and phase difference can be measured using a phase shift measuring device or the like.
相移膜30對自相移膜30側入射之光之膜面反射率於350nm~436nm之波長區域中,為15%以下。又,較佳為於313nm~436nm之波長區域中,為22.5%以下。即,相移膜30對自相移膜30側入射之光之膜面反射率於350nm~436nm之波長區域中,為15%以下,較佳為即便將波長區域擴大為313nm~436nm,亦為22%以下。若相移膜30之膜面反射率於350nm~436nm之波長區域中為15%以下,則對雷射繪圖光之膜面反射率降低,故而可形成具有優異之CD均勻性之相移光罩。又,若相移膜30之膜面反射率於313nm~436nm之波長區域中為22.5%以下,則對曝光之光之膜面反射率降低,故而轉印形成於相移光罩之圖案時,可防止起因於來自顯示裝置基板之反射光之轉印圖案之模糊(眩光)。相移膜30之膜面反射率較理想為於313nm~436nm中,較佳為20%以下,進而較佳為15%以下。
The film surface reflectivity of the
相移膜30之膜面反射率之變動幅度較佳為於350nm~436nm之波長區域中,為9%以下,進而較佳為8.5%以下。又,較佳為於313nm~436nm之波長區域中,為12.5%以下,進而較佳為12%。即,相移膜30之膜面反射率之變動幅度較佳為於350nm~436nm之波長區域中,為9%以下,進而較佳為8.5%以下,較佳為即便將波長區域擴大為313nm~436nm,亦為12.5%以下,進而,亦為12%以下。
The variation range of the reflectance of the film surface of the
相移膜30之膜面反射率及其變動幅度可藉由調整構成相移膜30之相移層31、金屬層33及反射率降低層32之各者之折射率、消光係數及厚度
而控制。消光係數及折射率可藉由調整組成而控制,故而於本實施形態中,以相移膜30之膜面反射率及其變動幅度具有上述特定之物性之方式調整相移層31、金屬層33及反射率降低層32之各者之組成及厚度。再者,相移膜30之膜面反射率及其變動幅度主要受到金屬層33及反射率降低層32之各者之組成及厚度影響。
The film surface reflectance of the
膜面反射率可使用分光光度計等進行測定。膜面反射率之變動幅度係由350nm~436nm或313nm~436nm之波長區域中之最大之反射率與最小之反射率之差求出。 The reflectance of the film surface can be measured using a spectrophotometer or the like. The variation range of the reflectance of the film surface is calculated from the difference between the maximum reflectance and the minimum reflectance in the wavelength region of 350nm~436nm or 313nm~436nm.
相移層31可為包含組成均勻之單一膜之情況,亦可為包含組成不同之複數個膜之情況,亦可為包含組成於厚度方向上連續地變化之單一膜之情況。關於金屬層33及反射率降低層32,亦同樣。
The
又,亦可於相移層31與金屬層33之界面、金屬層33與反射率降低層32之界面具有構成相移層31、金屬層33、反射率降低層23之各者之各元素形成組成梯度之組成梯度區域。再者,於組成梯度區域中,可遍及區域整體而連續地形成組成梯度,亦可階段性地形成組成梯度,進而,亦可一部分階段性地形成組成梯度,另一部分連續地形成組成梯度。
In addition, the interface between the
圖2係表示相移光罩基底10之其他膜構成之模式圖。如圖2所示,相移光罩基底10亦可於透明基板20與相移膜30之間具備遮光性膜圖案40。
FIG. 2 is a schematic diagram showing another film composition of the phase
於相移光罩基底10具備遮光性膜圖案40之情形時,遮光性膜圖案40配置於透明基板20之主表面上。遮光性膜圖案40具有遮斷曝光之光之透過之功能。
When the phase
形成遮光性膜圖案40之材料只要為具有遮斷曝光之光之透過之功能的材料,則並無特別限定。例如,可列舉鉻系材料。作為鉻系材料,可列
舉鉻(Cr)、或包含鉻(Cr)、以及碳(C)及氮(N)中之至少一種之鉻系材料。除此以外,可列舉:包含鉻(Cr)、以及氧(O)及氟(F)中之至少一種之鉻系材料、或者包含鉻(Cr)、以及碳(C)及氮(N)中之至少一種,進而包含氧(O)及氟(F)中之至少一種之鉻系材料。例如,作為形成遮光性膜圖案40之材料,可列舉:Cr、CrC、CrN、CrCN。
The material for forming the light-shielding
遮光性膜圖案40可藉由利用蝕刻將由濺鍍法成膜之遮光性膜圖案化而形成。
The light-shielding
於相移膜30與遮光性膜圖案40積層之部分中,對曝光之光之光學濃度較佳為3以上,更佳為3.5以上。
In the portion where the
光學濃度可使用分光光度計或OD(Optical Density,光學濃度)測定計等進行測定。 The optical density can be measured using a spectrophotometer, an OD (Optical Density) meter, or the like.
遮光性膜圖案40可為包含組成均勻之單一膜之情況,亦可為包含組成不同之複數個膜之情況,亦可為包含組成於厚度方向上連續地變化之單一膜之情況。
The light-shielding
再者,相移光罩基底10亦可於相移膜30上具備抗蝕劑膜。
Furthermore, the phase
其次,對本實施形態之相移光罩基底10之製造方法進行說明。相移光罩基底10係藉由進行以下之準備步驟及相移膜形成步驟而製造。
Next, the manufacturing method of the phase
以下,對各步驟詳細地進行說明。 Hereinafter, each step will be described in detail.
於準備步驟中,首先,準備透明基板20。透明基板20之材料只要為對所使用之曝光之光具有透光性之材料,則並無特別限制。例如,可列舉:合成石英玻璃、鈉鈣玻璃、無鹼玻璃。
In the preparation step, first, the
於製造具備遮光性膜圖案40之相移光罩基底10之情形時,其後,於
透明基板20上,藉由濺鍍法而形成例如包含鉻系材料之遮光性膜。其後,於遮光性膜上形成抗蝕劑膜圖案,將抗蝕劑膜圖案作為光罩並對遮光性膜進行蝕刻,而形成遮光性膜圖案40。其後,將抗蝕劑膜圖案剝離。
In the case of manufacturing the phase
於相移膜形成步驟中,於透明基板20上,藉由濺鍍法而形成包含鉻系材料之相移膜30。此處,於在透明基板20上形成有遮光性膜圖案40之情形時,以覆蓋遮光性膜圖案40之方式形成相移膜30。
In the phase shift film forming step, a
相移膜30係藉由在透明基板20之主表面上成膜相移層31,於相移層31上成膜金屬層33,並於金屬層33上成膜反射率降低層32而形成。
The
相移層31之成膜係使用包含鉻或鉻系材料之濺鍍靶,於濺鍍氣體氛圍中進行,該濺鍍氣體氛圍例如包括包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、及包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體。作為烴系氣體,例如,可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除了鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、碳氮氧化鉻等鉻系材料。
The film formation of the
同樣地,金屬層33之成膜係使用包含鉻或鉻系材料之濺鍍靶,於濺鍍氣體氛圍中進行,該濺鍍氣體氛圍例如包括包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體,或者包括包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、及包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣
體。作為烴系氣體,例如,可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除了鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、碳氮氧化鉻等鉻系材料。
Similarly, the film formation of the
同樣地,反射率降低層32之成膜係使用包含鉻或鉻系材料之濺鍍靶,於濺鍍氣體氛圍中進行,該濺鍍氣體氛圍例如包括包含選自由氦氣、氖氣、氬氣、氪氣及氙氣所組成之群中之至少一種之惰性氣體、及包含選自由氧氣、氮氣、一氧化氮氣體、二氧化氮氣體、二氧化碳氣體、烴系氣體、氟系氣體所組成之群中之至少一種之活性氣體之混合氣體。作為烴系氣體,例如,可列舉:甲烷氣體、丁烷氣體、丙烷氣體、苯乙烯氣體等。作為濺鍍靶,除了鉻金屬以外,亦可使用氧化鉻、氮化鉻、氮氧化鉻、碳氮氧化鉻等鉻系材料。
Similarly, the formation of the
成膜相移層31、金屬層33及反射率降低層32時,相移層31、金屬層33及反射率降低層32之各者之組成及厚度係以相移膜30之透過率及相位差具有上述特定之光學特性且相移膜30之膜面反射率及其變動幅度具有上述特定之物性之方式進行調整。相移層31、金屬層33及反射率降低層32之各者之組成可根據濺鍍氣體之組成及流量等而控制。相移層31、金屬層33及反射率降低層32之各者之厚度可根據濺鍍功率、濺鍍時間等而控制。又,於濺鍍裝置為連續型濺鍍裝置之情形時,亦可根據基板之搬送速度而控制相移層31、金屬層33及反射率降低層32之各者之厚度。
When the
於相移層31包含組成均勻之單一膜、或複數個膜之情形時,在不改變濺鍍氣體之組成及流量之情況下僅進行1次上述成膜製程,或進行複數次。於相移層31包含組成不同之複數個膜之情形時,針對每個成膜製程,改變濺鍍氣體之組成及流量而進行複數次上述成膜製程。於相移層31包含
組成於厚度方向上連續地變化之單一膜之情形時,一面改變濺鍍氣體之組成及流量,一面僅進行1次上述成膜製程。關於金屬層33之成膜及反射率降低層32之成膜,亦同樣。於進行複數次成膜製程之情形時,可減小施加於濺鍍靶之濺鍍功率。
When the
相移層31、金屬層33及反射率降低層32較佳為使用連續型濺鍍裝置,在不會將透明基板20取出至裝置外而導致其暴露於大氣之情況下連續地成膜。藉由在不取出至裝置外之情況下連續地成膜,可防止意料之外之各層之表面氧化或表面碳化。各層之意料之外之表面氧化或表面碳化存在改變對進行形成於相移膜30上之抗蝕劑膜之繪圖時所使用之雷射光或將相移膜圖案轉印於形成於顯示裝置基板上之抗蝕劑膜時所使用之曝光之光的反射率,又,或者改變氧化部分或碳化部分之蝕刻速率之虞。
The
再者,於製造具備抗蝕劑膜之相移光罩基底10之情形時,其次,於相移膜上形成抗蝕劑膜。
Furthermore, in the case of manufacturing the phase
關於本實施形態1之相移光罩基底10,設置於透明基板20上之包含鉻系材料之相移膜30具有:相移層31;反射率降低層32;及金屬層33,其設置於相移層31與反射率降低層32之間,於350nm~436nm之波長區域中,具有較反射率降低層32之消光係數更高之消光係數;相移膜30對曝光之光之透過率及相位差滿足作為相移膜30所需之特定之光學特性,並且相移膜30之膜面反射率於350nm~436nm之波長區域中,為15%以下。因此,使用該相移光罩基底10,可製造具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之相移光罩。
Regarding the phase
又,關於本實施形態1之相移光罩基底10,設置於透明基板20上之包含鉻系材料之相移膜30具有:相移層31;反射率降低層32;及金屬層
33,其設置於相移層31與反射率降低層32之間,具有較反射率降低層32之鉻含有率更高之鉻含有率;相移膜30對曝光之光之透過率及相位差滿足作為相移膜30所需之特定之光學特性,並且相移膜30之膜面反射率於350nm~436nm之波長區域中,為15%以下。因此,使用該相移光罩基底10,可製造具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之相移光罩。
Furthermore, regarding the phase
又,關於本實施形態1之相移光罩基底10,相移膜之背面反射率於365~436nm之波長區域中,為20%以下。因此,可抑制反射對曝光裝置側之影響,故而可製造一種可進行高精度之圖案轉印之相移光罩。
In addition, regarding the phase
於實施形態2中,對相移光罩之製造方法進行說明。相移光罩基底係藉由進行以下之抗蝕劑膜圖案形成步驟及相移膜圖案形成步驟而製造。 In the second embodiment, the manufacturing method of the phase shift mask will be described. The phase shift mask substrate is manufactured by performing the following resist film pattern forming step and phase shift film pattern forming step.
以下,對各步驟詳細地進行說明。 Hereinafter, each step will be described in detail.
於抗蝕劑膜圖案形成步驟中,首先,於實施形態1之相移光罩基底10之相移膜30上形成抗蝕劑膜。但是,於相移光罩基底10在相移膜30上具備抗蝕劑膜之情形時,不進行抗蝕劑膜之形成。所使用之抗蝕劑膜材料並無特別限制。只要為對下述具有選自350nm~436nm之波長區域中之任一波長之雷射光感光者即可。又,抗蝕劑膜可為正型、負型中之任一者。
In the resist film pattern forming step, first, a resist film is formed on the
其後,使用具有選自350nm~436nm之波長區域中之任一波長之雷射光,於抗蝕劑膜繪圖特定之圖案。作為繪圖於抗蝕劑膜之圖案,可列舉線與間隙圖案或孔圖案。 Thereafter, using laser light having any wavelength selected from the wavelength region of 350 nm to 436 nm, a specific pattern is drawn on the resist film. As the pattern drawn on the resist film, a line and gap pattern or a hole pattern can be cited.
其後,利用特定之顯影液將抗蝕劑膜顯影,而於相移膜30上形成抗
蝕劑膜圖案。
Thereafter, the resist film is developed with a specific developer, and the resist film is formed on the
於相移膜圖案形成步驟中,首先,將抗蝕劑膜圖案作為光罩並對相移膜30進行蝕刻,而形成相移膜圖案。構成相移膜30之相移層31、金屬層33及反射率降低層32之各者係由包含鉻(Cr)之鉻系材料形成。因此,相移層31、金屬層33及反射率降低層32可藉由相同蝕刻介質(蝕刻溶液、蝕刻氣體)而進行蝕刻。對相移膜30進行蝕刻之蝕刻介質(蝕刻溶液、蝕刻氣體)只要為可選擇性地對相移膜30進行蝕刻者,則並無特別限制。具體而言,可列舉:包含硝酸鈰銨及過氯酸之蝕刻溶液、或包含氯氣及氧氣之混合氣體之蝕刻氣體。
In the phase shift film pattern forming step, first, the resist film pattern is used as a mask and the
其後,使用抗蝕劑剝離液,或者藉由灰化,而將抗蝕劑膜圖案剝離。 After that, a resist stripping solution is used or ashing is used to strip the resist film pattern.
根據本實施形態2之相移光罩之製造方法,可製造具有優異之圖案剖面形狀及優異之CD均勻性且形成有微細之圖案之相移光罩。 According to the manufacturing method of the phase shift mask of the second embodiment, it is possible to manufacture a phase shift mask with excellent pattern cross-sectional shape and excellent CD uniformity, and with fine patterns formed.
於實施形態3中,對顯示裝置之製造方法進行說明。顯示裝置係藉由進行以下之光罩載置步驟及圖案轉印步驟而製造。 In Embodiment 3, a method of manufacturing the display device will be described. The display device is manufactured by performing the following photomask placement step and pattern transfer step.
以下,對各步驟詳細地進行說明。 Hereinafter, each step will be described in detail.
於載置步驟中,將實施形態2中製造之相移光罩載置於曝光裝置之光罩台。此處,相移光罩係以經由曝光裝置之投影光學系統而與形成於顯示裝置基板上之抗蝕劑膜對向之方式配置。 In the placing step, the phase shift mask manufactured in Embodiment 2 is placed on the mask stage of the exposure apparatus. Here, the phase shift mask is arranged to face the resist film formed on the substrate of the display device through the projection optical system of the exposure device.
於圖案轉印步驟中,對相移光罩照射曝光之光,而將相移膜圖案轉印於形成於顯示裝置基板上之抗蝕劑膜。曝光之光係包含選自313nm~436nm之波長區域中之複數個波長之光之複合光,或利用濾波器等自313nm~436nm之波長區域中截斷某一波長區域而選擇之單色光。例如,曝光之光係包含i線、h線及g線之複合光、或包含j線、i線、h線及g線之混合光、或i線之單色光。若將複合光用作曝光之光,則可提高曝光之光之強度而提高產能,故而可降低顯示裝置之製造成本。 In the pattern transfer step, the phase shift mask is irradiated with exposure light, and the phase shift film pattern is transferred to the resist film formed on the substrate of the display device. The light for exposure includes composite light of multiple wavelengths selected from the wavelength region of 313nm~436nm, or monochromatic light selected by cutting off a certain wavelength region from the wavelength region of 313nm~436nm using a filter or the like. For example, the exposure light includes composite light of i-line, h-line, and g-line, or mixed light of j-line, i-line, h-line, and g-line, or monochromatic light of i-line. If the composite light is used as the light for exposure, the intensity of the light for exposure can be increased and the productivity can be increased, so the manufacturing cost of the display device can be reduced.
進而,由於其係相移膜之背面反射率於365~436nm之波長區域中為20%以下之相移光罩,故而可抑制反射對曝光裝置側之影響,可對形成於顯示裝置基板上之抗蝕劑膜進行高精度之圖案轉印。 Furthermore, since it is a phase shift mask whose back reflectance of the phase shift film is 20% or less in the wavelength region of 365 to 436 nm, the influence of reflection on the exposure device side can be suppressed, and it can affect the substrate formed on the display device. The resist film performs high-precision pattern transfer.
根據本實施形態3之顯示裝置之製造方法,可製造高解像度、高精細之顯示裝置。 According to the manufacturing method of the display device of the third embodiment, a high-resolution, high-definition display device can be manufactured.
以下,基於實施例及比較例,對本發明更具體地進行說明。再者,以下之實施例為本發明之一例,並不限定本發明。 Hereinafter, the present invention will be described in more detail based on Examples and Comparative Examples. Furthermore, the following embodiment is an example of the present invention and does not limit the present invention.
實施例1~3及比較例1之相移光罩基底具備透明基板、及配置於透明基板上之包含鉻系材料之相移膜。作為透明基板,使用大小為800mm×920mm、厚度為10mm之合成石英玻璃基板。 The phase shift mask base of Examples 1 to 3 and Comparative Example 1 includes a transparent substrate and a phase shift film containing a chromium-based material disposed on the transparent substrate. As the transparent substrate, a synthetic quartz glass substrate with a size of 800 mm×920 mm and a thickness of 10 mm was used.
圖3表示實施例1、2、3、比較例1中之相移光罩基底之相移膜之膜面反射率光譜,圖4表示實施例1、2、3、比較例1中之相移光罩基底之相移膜之背面反射率光譜。圖5係表示對實施例1中之相移光罩基底之相移膜之深度方向之組成分析結果之曲線圖。圖6係表示對實施例2中之相移光罩基底之相移膜之深度方向之組成分析結果的曲線圖。圖7係表示對實施例3中 之相移光罩基底之相移膜之深度方向之組成分析結果的曲線圖。 Fig. 3 shows the reflectance spectrum of the phase shift film of the phase shift mask substrate in Examples 1, 2, 3 and Comparative Example 1, and Fig. 4 shows the phase shift in Examples 1, 2, 3 and Comparative Example 1. The back reflectance spectrum of the phase shift film of the mask substrate. FIG. 5 is a graph showing the composition analysis result in the depth direction of the phase shift film of the phase shift mask substrate in Example 1. FIG. FIG. 6 is a graph showing the composition analysis result of the phase shift film of the phase shift mask substrate in Example 2 in the depth direction. Figure 7 shows the A graph showing the composition analysis results of the phase shift film in the depth direction of the phase shift mask substrate.
以下,對實施例1~3及比較例1詳細地進行說明。 Hereinafter, Examples 1 to 3 and Comparative Example 1 will be described in detail.
實施例1之相移光罩基底中之相移膜包含自透明基板側依序配置之相移層、金屬層、及反射率降低層,進而,於相移層與金屬層之界面、金屬層與反射率降低層之界面形成有組成梯度區域(參照圖5)。 The phase shift film in the phase shift mask base of Example 1 includes a phase shift layer, a metal layer, and a reflectance reduction layer sequentially arranged from the transparent substrate side, and further, at the interface between the phase shift layer and the metal layer, the metal layer A composition gradient region is formed at the interface with the reflectance reduction layer (refer to FIG. 5).
實施例1之相移光罩基底係藉由以下之方法而製造。 The phase shift mask substrate of Example 1 is manufactured by the following method.
首先,準備作為透明基板之合成石英玻璃基板。透明基板之兩主表面經鏡面研磨。實施例2、3及比較例1中準備之透明基板之兩主表面亦同樣地經鏡面研磨。 First, prepare a synthetic quartz glass substrate as a transparent substrate. The two main surfaces of the transparent substrate are mirror-polished. The two main surfaces of the transparent substrates prepared in Examples 2, 3 and Comparative Example 1 were also mirror-polished in the same manner.
其次,將透明基板搬入至連續型濺鍍裝置。於連續型濺鍍裝置中設置有濺鍍室。 Next, the transparent substrate is loaded into a continuous sputtering device. A sputtering chamber is provided in the continuous sputtering device.
其次,對配置於濺鍍室之鉻靶施加2.7kW之濺鍍功率,一面將Ar氣體、N2氣體、CO2氣體及O2氣體之混合氣體導入至濺鍍室內,一面以200mm/min之速度搬送透明基板。此處,混合氣體係以Ar成為35sccm,N2成為35sccm,CO2成為13sccm,O2成為10sccm之流量之方式導入至濺鍍室內。透明基板通過鉻靶附近時,於透明基板上成膜包含含有Cr、C、O及N之鉻系材料(CrCON)之相移層。 Secondly, apply a sputtering power of 2.7kW to the chromium target arranged in the sputtering chamber, while introducing the mixed gas of Ar gas, N 2 gas, CO 2 gas and O 2 gas into the sputtering chamber, with a rate of 200 mm/min. Transport transparent substrates at high speed. Here, the mixed gas system is introduced into the sputtering chamber so that Ar becomes 35 sccm, N 2 becomes 35 sccm, CO 2 becomes 13 sccm, and O 2 becomes 10 sccm. When the transparent substrate passes near the chromium target, a phase shift layer including a chromium-based material (CrCON) containing Cr, C, O, and N is formed on the transparent substrate.
其次,對鉻靶施加0.6kW之濺鍍功率,一面將Ar氣體及CH4氣體之混合氣體(Ar氣體中以4%之濃度包含CH4氣體之混合氣體)導入至濺鍍室內,一面以400mm/min之速度搬送透明基板。透明基板通過鉻靶附近時,於相移層上成膜包含含有Cr及C之鉻系材料(CrC)之金屬層。 Next, apply a sputtering power of 0.6kW to the chromium target, while introducing a mixed gas of Ar gas and CH 4 gas (a mixed gas containing CH 4 gas at a concentration of 4% in the Ar gas) into the sputtering chamber, and a side of 400mm /min speed to transport transparent substrates. When the transparent substrate passes near the chromium target, a metal layer including a chromium-based material (CrC) containing Cr and C is formed on the phase shift layer.
其次,對鉻靶施加3.3kW之濺鍍功率,一面將Ar氣體、N2氣體、 CO2氣體及O2氣體之混合氣體導入至濺鍍室內,一面以400mm/min之速度搬送透明基板。透明基板通過鉻靶附近時,於金屬層上成膜包含含有Cr、C、O及N之鉻系材料(CrCON)之反射率降低層。此處,混合氣體係以Ar成為35sccm,N2成為35sccm,CO2成為13sccm,O2成為9sccm之流量之方式導入至濺鍍室內。 Next, a sputtering power of 3.3kW is applied to the chromium target, while introducing a mixed gas of Ar gas, N 2 gas, CO 2 gas and O 2 gas into the sputtering chamber, the transparent substrate is transported at a speed of 400 mm/min. When the transparent substrate passes near the chromium target, a reflectance reduction layer including a chromium-based material (CrCON) containing Cr, C, O, and N is formed on the metal layer. Here, the mixed gas system is introduced into the sputtering chamber so that Ar becomes 35 sccm, N 2 becomes 35 sccm, CO 2 becomes 13 sccm, and O 2 becomes 9 sccm.
其次,將形成有包含相移層、金屬層及反射率降低層之相移膜之透明基板自連續型濺鍍裝置取出,並進行洗淨。 Secondly, the transparent substrate on which the phase shift film including the phase shift layer, the metal layer and the reflectance reduction layer is formed is taken out from the continuous sputtering device and washed.
再者,相移層之成膜、金屬層之成膜、及反射率降低層之成膜係在不會將透明基板取出至連續型濺鍍裝置外而導致其暴露於大氣之情況下,於連續型濺鍍裝置內連續地進行。 Furthermore, the formation of the phase shift layer, the formation of the metal layer, and the formation of the reflectance reduction layer are performed without taking the transparent substrate out of the continuous sputtering device and causing it to be exposed to the atmosphere. Continuously in a continuous sputtering device.
由於實施例1之包含相移層、金屬層、反射率降低層之相移膜於連續型濺鍍裝置中成膜,故而於相移層與金屬層之界面、金屬層與反射率降低層之界面形成有構成各層之元素連續地形成組成梯度之組成梯度區域。 Since the phase shift film including the phase shift layer, the metal layer, and the reflectance reduction layer of Example 1 was formed in a continuous sputtering device, the interface between the phase shift layer and the metal layer, the metal layer and the reflectance reduction layer The interface is formed with a composition gradient region where the elements constituting each layer continuously form a composition gradient.
關於實施例1之相移膜,將利用X射線光電子光譜法(ESCA)測定深度方向之組成之結果示於圖5中。 Regarding the phase shift film of Example 1, the result of measuring the composition in the depth direction by X-ray photoelectron spectroscopy (ESCA) is shown in FIG. 5.
相移層包含含有鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率為Cr:49.8原子%,O:40.0原子%,N:8.2原子%,C:2.0原子%。又,金屬層包含含有鉻(Cr)、碳(C)及氧(O)之鉻系材料,各元素之平均含有率為Cr:69.9原子%,C:22.7原子%,O:7.4原子%。進而,反射率降低層包含含有鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率為Cr:48.5原子%,O:47.4原子%,N:3.7原子%,C:0.4原子%。又,於相移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。 The phase shift layer contains chromium-based materials containing chromium (Cr), oxygen (O), nitrogen (N) and carbon (C). The average content of each element is Cr: 49.8 atomic %, O: 40.0 atomic %, and N: 8.2 atomic %, C: 2.0 atomic %. In addition, the metal layer includes a chromium-based material containing chromium (Cr), carbon (C), and oxygen (O), and the average content of each element is Cr: 69.9 atomic %, C: 22.7 atomic %, and O: 7.4 atomic %. Furthermore, the reflectance reduction layer includes a chromium-based material containing chromium (Cr), oxygen (O), nitrogen (N), and carbon (C), and the average content of each element is Cr: 48.5 atomic %, O: 47.4 atomic% , N: 3.7 at%, C: 0.4 at%. In addition, between the phase shift layer and the metal layer, and between the metal layer and the reflectance reduction layer, there is a composition gradient region in which each element continuously decreases or increases.
又,由各層之Cr、O、N之光譜對元素之鍵結狀態(化學狀態)進行評價。其結果為,可確認到,相移層主要包含一氮化鉻(CrN),進而,存在氧化鉻Ⅲ(Cr2O3)。 In addition, the bonding state (chemical state) of the elements was evaluated from the spectra of Cr, O, and N in each layer. As a result, it was confirmed that the phase shift layer mainly contained chromium nitride (CrN), and further, chromium oxide III (Cr 2 O 3 ) was present.
又,可確認到,構成金屬層之元素之鍵結狀態(化學狀態)主要包含鉻(Cr),進而,存在氧化鉻Ⅲ(Cr2O3)。 In addition, it was confirmed that the bonding state (chemical state) of the elements constituting the metal layer mainly contained chromium (Cr), and further, chromium oxide III (Cr 2 O 3 ) was present.
又,可確認到,構成反射率降低層之元素之鍵結狀態(化學狀態)主要包含氧化鉻Ⅲ(Cr2O3),存在一氮化鉻(CrN)及氮化二鉻(Cr2N)。 In addition, it can be confirmed that the bonding state (chemical state) of the elements constituting the reflectance reduction layer mainly includes chromium oxide III (Cr 2 O 3 ), and there are chromium nitride (CrN) and chromium nitride (Cr 2 N). ).
相移膜藉由上述3層構造,而具有4.9%之對365nm之光之透過率及187°之相位差。 The phase shift film has a transmittance of 4.9% to 365nm light and a phase difference of 187° through the above three-layer structure.
再者,透過率及相位差係使用Lasertec公司製造之MPM-100(商品名)進行測定。於實施例2、3及比較例1中,亦同樣地進行測定。 In addition, the transmittance and phase difference were measured using MPM-100 (trade name) manufactured by Lasertec. In Examples 2, 3 and Comparative Example 1, the same measurement was performed.
圖3中之曲線a表示實施例1之相移光罩基底之相移膜之膜面反射率光譜。圖4中之曲線a表示實施例1之相移光罩基底之相移膜之背面反射率光譜。 Curve a in FIG. 3 represents the reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 1. Curve a in FIG. 4 represents the back reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 1.
由圖3可見,關於相移膜,膜面反射率於313nm之波長下,為13.3%,於350nm下,為9.6%,於365nm之波長下,為8.3%,於405nm之波長下,為7.1%,於413nm之波長下,為7.3%,於436nm之波長下,為8.1%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為2.5%,於365nm~436nm之波長區域中,為1.2%,於313nm~436nm之波長區域中,為6.2%。 As can be seen from Figure 3, regarding the phase shift film, the reflectance of the film surface is 13.3% at a wavelength of 313nm, 9.6% at 350nm, 8.3% at a wavelength of 365nm, and 7.1 at a wavelength of 405nm %, at a wavelength of 413nm, 7.3%, at a wavelength of 436nm, 8.1%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 2.5% in the 350nm~436nm wavelength region, 1.2% in the 365nm~436nm wavelength region, and 313nm~436nm in the wavelength region 6.2%.
由圖4可見,關於相移膜,背面反射率於313nm之波長下,為9.7%,於350nm下,為8.8%,於365nm之波長下,為9.0%,於405nm之波長下,為12.3%,於413nm之波長下,為13.2%,於436nm之波長 下,為16.1%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為7.3%,於365nm~436nm之波長區域中,為7.1%,於313nm~436nm之波長區域中,為7.3%。 As can be seen from Figure 4, for the phase shift film, the back surface reflectance is 9.7% at a wavelength of 313nm, 8.8% at 350nm, 9.0% at a wavelength of 365nm, and 12.3% at a wavelength of 405nm , At a wavelength of 413nm, 13.2%, at a wavelength of 436nm Down, 16.1%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 7.3% in the wavelength region of 350nm~436nm, 7.1% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 7.3%.
再者,膜面反射率及背面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。於實施例2、3及比較例1中,亦同樣地進行測定。 In addition, the film surface reflectance and the back reflectance were measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation. In Examples 2, 3 and Comparative Example 1, the same measurement was performed.
使用上述相移光罩基底,藉由以下之方法而製造相移光罩。 Using the above-mentioned phase shift mask substrate, the phase shift mask is manufactured by the following method.
首先,於上述相移光罩基底之相移膜上形成包含酚醛清漆系之正型之光阻劑之抗蝕劑膜。 First, a resist film containing a novolak-based positive photoresist is formed on the phase shift film of the aforementioned phase shift mask substrate.
其後,利用雷射繪圖機,使用波長413nm之雷射光,於抗蝕劑膜繪圖特定之圖案。 Thereafter, a laser plotter is used to draw a specific pattern on the resist film using laser light with a wavelength of 413 nm.
其後,利用特定之顯影液將抗蝕劑膜顯影,而於相移膜上形成抗蝕劑膜圖案。 After that, the resist film is developed with a specific developer to form a resist film pattern on the phase shift film.
其後,將抗蝕劑膜圖案作為光罩並對相移膜進行蝕刻,而形成相移膜圖案。構成相移膜之相移層、金屬層及反射率降低層之各者係由包含鉻(Cr)之鉻系材料形成。因此,相移層、金屬層及反射率降低層可藉由相同蝕刻溶液而進行蝕刻。此處,作為對相移膜進行蝕刻之蝕刻溶液,使用包含硝酸鈰銨及過氯酸之蝕刻溶液。 After that, the resist film pattern is used as a mask and the phase shift film is etched to form a phase shift film pattern. Each of the phase shift layer, the metal layer, and the reflectance reduction layer constituting the phase shift film is formed of a chromium-based material containing chromium (Cr). Therefore, the phase shift layer, the metal layer, and the reflectance reduction layer can be etched by the same etching solution. Here, as an etching solution for etching the phase shift film, an etching solution containing cerium ammonium nitrate and perchloric acid is used.
其後,使用抗蝕劑剝離液,將抗蝕劑膜圖案剝離。 After that, a resist stripping solution was used to strip the resist film pattern.
使用上述相移光罩基底製造之相移光罩之相移膜圖案剖面在位於相移膜圖案之膜厚方向之中央部之金屬層中發生了若干侵蝕,但其係不會對光罩特性造成影響之程度。 The cross section of the phase shift film pattern of the phase shift mask manufactured by using the above phase shift mask substrate has some erosion in the metal layer located in the center of the film thickness direction of the phase shift film pattern, but it does not affect the characteristics of the mask. The extent of the impact.
再者,相移光罩之相移膜圖案剖面係使用電子顯微鏡(日本電子股份 有限公司製造之JSM7401F(商品名))進行觀察。於實施例2、3及比較例1中,亦同樣地進行測定。 In addition, the cross-section of the phase shift film pattern of the phase shift mask was performed using an electron microscope (JEOL JSM7401F (trade name) manufactured by Co., Ltd. for observation. In Examples 2, 3 and Comparative Example 1, the same measurement was performed.
使用上述相移光罩基底製造之相移光罩之相移膜圖案之CD偏差為70nm,較為良好。CD偏差係距作為目標之線與間隙圖案(線圖案之寬度:2.0μm,間隙圖案之寬度:2.0μm)之偏離寬度。 The CD deviation of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is 70 nm, which is relatively good. The CD deviation is the deviation width from the target line and gap pattern (the width of the line pattern: 2.0 μm, the width of the gap pattern: 2.0 μm).
再者,相移光罩之相移膜圖案之CD偏差係使用Seiko Instruments Technology公司製造之SIR8000進行測定。於實施例2及比較例1中,亦同樣地進行測定。 Furthermore, the CD deviation of the phase shift film pattern of the phase shift mask was measured using SIR8000 manufactured by Seiko Instruments Technology. In Example 2 and Comparative Example 1, the same measurement was performed.
由於上述相移光罩具有優異之圖案剖面形狀及優異之CD均勻性,又,對曝光之光之相移膜圖案之膜面反射率較低,故而使用上述相移光罩,可製造高解像度、高精細之顯示裝置。 Since the above-mentioned phase shift mask has excellent pattern cross-sectional shape and excellent CD uniformity, and the film surface reflectivity of the phase shift film pattern to the exposure light is low, the use of the above-mentioned phase shift mask can produce high resolution , High-definition display device.
實施例2之相移光罩基底中之相移膜包含自透明基板側依序配置之相移層、金屬層及反射率降低層(參照圖6)。 The phase shift film in the phase shift mask base of Example 2 includes a phase shift layer, a metal layer, and a reflectance reduction layer arranged in order from the transparent substrate side (refer to FIG. 6).
在以下之成膜條件下成膜構成實施例2之相移光罩基底之反射率降低層,除此以外,與實施例1同樣地製造相移光罩基底。關於反射率降低層,對鉻靶施加2.15kW之濺鍍功率,一面將Ar氣體、N2氣體及O2氣體之混合氣體導入至濺鍍室內,一面以200mm/min之速度搬送透明基板。透明基板通過鉻靶附近時,於金屬層上成膜包含CrON之反射率降低層。此處,混合氣體係以Ar成為35sccm,N2成為35sccm,O2成為22sccm之流量之方式導入至濺鍍室內。 Except that the reflectance reducing layer constituting the phase shift mask substrate of Example 2 was formed under the following film forming conditions, the phase shift mask substrate was manufactured in the same manner as in Example 1. Regarding the reflectance reduction layer, a sputtering power of 2.15 kW was applied to the chromium target, while introducing a mixed gas of Ar gas, N 2 gas, and O 2 gas into the sputtering chamber, the transparent substrate was transported at a speed of 200 mm/min. When the transparent substrate passes near the chromium target, a reflectance reduction layer containing CrON is formed on the metal layer. Here, the mixed gas system is introduced into the sputtering chamber so that Ar becomes 35 sccm, N 2 becomes 35 sccm, and O 2 becomes 22 sccm.
關於實施例2之相移膜,將利用X射線光電子光譜法(ESCA)測定深度方向之組成之結果示於圖6中。 Regarding the phase shift film of Example 2, the result of measuring the composition in the depth direction by X-ray photoelectron spectroscopy (ESCA) is shown in FIG. 6.
相移層包含含有鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率為Cr:50.6原子%,O:39.5原子%,N:8.3原子%,C:1.6原子%。又,金屬層包含含有鉻(Cr)、碳(C)及氧(O)之鉻系材料,各元素之平均含有率為Cr:69.2原子%,C:22.8原子%,O:8.0原子%。進而,反射率降低層32包含含有鉻(Cr)、氧(O)及氮(N)之鉻系材料,各元素之平均含有率為Cr:46.6原子%,O:51.5原子%,N:1.7原子%,C:0.2原子%。又,於相移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。
The phase shift layer contains chromium-based materials containing chromium (Cr), oxygen (O), nitrogen (N) and carbon (C). The average content of each element is Cr: 50.6 atomic %, O: 39.5 atomic %, and N: 8.3 at%, C: 1.6 at%. In addition, the metal layer includes a chromium-based material containing chromium (Cr), carbon (C), and oxygen (O), and the average content of each element is Cr: 69.2 atomic %, C: 22.8 atomic %, and O: 8.0 atomic %. Furthermore, the
又,由相移層、金屬層、反射率降低層之各層之Cr、O、N之光譜對元素之鍵結狀態(化學狀態)進行評價,其結果為,鍵結狀態(化學狀態)與實施例1相同。 In addition, the bonding state (chemical state) of the elements was evaluated by the Cr, O, and N spectra of each layer of the phase shift layer, the metal layer, and the reflectance reduction layer. The result was that the bonding state (chemical state) and the implementation Example 1 is the same.
又,由圖5、圖6可見,實施例2之反射率降低層相對於實施例1之反射率降低層,氧(O)之含有率增大了4.1原子%,另一方面,鉻(Cr)之含有率減少了1.9原子%。如此,由於相對於實施例1之反射率降低層,氧(O)之含有率更多,故而就與抗蝕劑膜之密接性之觀點而言,實施例2之相移膜更優異。 Also, as can be seen from Figures 5 and 6, the reflectance reduction layer of Example 2 has an oxygen (O) content increased by 4.1 atomic% compared to the reflectance reduction layer of Example 1. On the other hand, chromium (Cr The content rate of) is reduced by 1.9 atomic %. In this way, since the content of oxygen (O) is higher than that of the reflectance reducing layer of Example 1, the phase shift film of Example 2 is more excellent in terms of adhesion to the resist film.
相移膜藉由上述3層構造,而具有5.2%之對365nm之光之透過率及183°之相位差。 The phase shift film has a transmittance of 5.2% to 365nm light and a phase difference of 183° through the above three-layer structure.
圖3中之曲線b表示實施例2之相移光罩基底之相移膜之膜面反射率光譜。圖4中之曲線b表示實施例2之相移光罩基底之相移膜之背面反射率光譜。 The curve b in FIG. 3 represents the reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 2. The curve b in FIG. 4 represents the back reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 2.
由圖3可見,關於相移膜,膜面反射率於313nm之波長下,為8.8%,於350nm下,為7.5%,於365nm之波長下,為8.1%,於405nm 之波長下,為10.6%,於413nm之波長下,為11.1%,於436nm之波長下,為12.4%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為4.8%,於365nm~436nm之波長區域中,為4.3%,於313nm~436nm之波長區域中,為4.9%。 As can be seen from Figure 3, regarding the phase shift film, the reflectance of the film surface is 8.8% at a wavelength of 313nm, 7.5% at 350nm, and 8.1% at a wavelength of 365nm, at 405nm It is 10.6% at a wavelength of 413nm, 11.1% at a wavelength of 413nm, and 12.4% at a wavelength of 436nm. Also, regarding the phase shift film, the variation range of the reflectance of the film surface is 4.8% in the wavelength region of 350nm~436nm, 4.3% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 4.9%.
由圖4可見,關於相移膜,背面反射率於313nm之波長下,為8.7%,於350nm下,為8.9%,於365nm之波長下,為10.1%,於405nm之波長下,為15.0%,於413nm之波長下,為16.0%,於436nm之波長下,為18.1%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為9.2%,於365nm~436nm之波長區域中,為8.0%,於313nm~436nm之波長區域中,為9.7%。 As can be seen from Figure 4, with regard to the phase shift film, the back reflectivity is 8.7% at a wavelength of 313nm, 8.9% at 350nm, 10.1% at a wavelength of 365nm, and 15.0% at a wavelength of 405nm , At a wavelength of 413nm, 16.0%, at a wavelength of 436nm, 18.1%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 9.2% in the wavelength region of 350nm~436nm, 8.0% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 9.7%.
如此,就膜面反射率之觀點而言,實施例1之相移膜更優異。 In this way, the phase shift film of Example 1 is more excellent from the viewpoint of film surface reflectance.
使用上述相移光罩基底,藉由與實施例1同樣之方法而製造相移光罩。 Using the above-mentioned phase shift mask substrate, a phase shift mask was manufactured by the same method as in Example 1.
使用上述相移光罩基底製造之相移光罩之相移膜圖案剖面係垂直,於金屬層中未發生侵蝕。 The cross section of the phase shift film pattern of the phase shift mask manufactured by using the above phase shift mask substrate is vertical, and no corrosion occurs in the metal layer.
使用上述相移光罩基底製造之相移光罩之相移膜圖案之CD偏差為60nm,較為良好。 The CD deviation of the phase shift film pattern of the phase shift mask manufactured using the above phase shift mask substrate is 60 nm, which is relatively good.
如此,比較將抗蝕劑膜圖案作為光罩而形成之實施例1與實施例2之相移膜圖案之CD偏差,實施例2之CD偏差更少,故而就與抗蝕劑膜之密接性之觀點而言,認為實施例2之相移膜更優異。 In this way, comparing the CD deviation of the phase shift film pattern of Example 1 and Example 2 formed by using the resist film pattern as a photomask, the CD deviation of Example 2 is less, and therefore the adhesion to the resist film From a standpoint, it is considered that the phase shift film of Example 2 is more excellent.
由於上述相移光罩具有優異之圖案剖面形狀及優異之CD均勻性,又,對曝光之光之相移膜圖案之膜面反射率較低,故而使用上述相移光罩,可製造高解像度、高精細之顯示裝置。 Since the above-mentioned phase shift mask has excellent pattern cross-sectional shape and excellent CD uniformity, and the film surface reflectivity of the phase shift film pattern to the exposure light is low, the use of the above-mentioned phase shift mask can produce high resolution , High-definition display device.
實施例3之相移光罩基底中之相移膜包含自透明基板側依序配置之相移層、金屬層及反射率降低層(參照圖7)。 The phase shift film in the phase shift mask base of Example 3 includes a phase shift layer, a metal layer, and a reflectance reduction layer arranged in order from the transparent substrate side (refer to FIG. 7).
實施例3之相移光罩基底中之相移層、金屬層、反射率降低層之各層係藉由以下之成膜條件而成膜。 Each layer of the phase shift layer, the metal layer, and the reflectance reduction layer in the phase shift mask substrate of Example 3 was formed under the following film forming conditions.
關於相移層,作為混合氣體,以Ar成為35sccm,N2成為35sccm,CO2成為100sccm,O2成為35sccm之流量之方式導入至濺鍍室內,除此以外,與實施例1同樣地於透明基板上成膜包含含有Cr、O及N之鉻系材料(CrON)之相移層。 Regarding the phase shift layer, as the mixed gas, Ar becomes 35 sccm, N 2 becomes 35 sccm, CO 2 becomes 100 sccm, and O 2 becomes 35 sccm. The flow rate is introduced into the sputtering chamber, except that it is transparent in the same way as in Example 1. The film formed on the substrate includes a phase shift layer of chromium-based material (CrON) containing Cr, O and N.
其次,關於金屬層,對配置於濺鍍室之鉻靶施加0.5kW之濺鍍功率,除此以外,與實施例1同樣地於相移層上成膜包含含有Cr及C之鉻系材料(CrC)之金屬層。 Next, regarding the metal layer, a sputtering power of 0.5 kW was applied to the chromium target arranged in the sputtering chamber. Except for this, in the same manner as in Example 1, a film was formed on the phase shift layer containing a chromium-based material containing Cr and C ( CrC) metal layer.
其次,關於反射率降低層,作為混合氣體,以Ar成為35sccm,N2成為35sccm,CO2成為100sccm,O2成為35sccm之流量之方式導入至濺鍍室內,除此以外,與實施例1同樣地於金屬層上成膜包含含有Cr、O及N之鉻系材料(CrCO)之反射率降低層。
Next, as for the reflectance reduction layer, the mixed gas was introduced into the sputtering chamber so that the flow rate of Ar was 35 sccm, N 2 was 35 sccm,
關於實施例3之相移膜,將利用X射線光電子光譜法(ESCA)測定深度方向之組成之結果示於圖7中。 Regarding the phase shift film of Example 3, the result of measuring the composition in the depth direction by X-ray photoelectron spectroscopy (ESCA) is shown in FIG. 7.
相移層包含含有鉻(Cr)、氧(O)、氮(N)及碳(C)之鉻系材料,各元素之平均含有率為Cr:45.5原子%,O:53.8原子%,N:0.6原子%,C:0.1原子%。又,金屬層包含含有鉻(Cr)、碳(C)及氧(O)之鉻系材料,各元素之平均含有率為Cr:74.7原子%,C:15.8原子%,O:8.8原子%,N:0.7原子%。進而,反射率降低層32包含含有鉻(Cr)、氧(O)、氮(N)及碳
(C)之鉻系材料,各元素之平均含有率為Cr:44.4原子%,O:55.0原子%,N:0.5原子%,C:0.1原子%。又,於相移層與金屬層之間、金屬層與反射率降低層之間具有各元素連續地減少或增加之組成梯度區域。
The phase shift layer contains chromium-based materials containing chromium (Cr), oxygen (O), nitrogen (N) and carbon (C). The average content of each element is Cr: 45.5 atomic %, O: 53.8 atomic %, and N: 0.6 at%, C: 0.1 at%. In addition, the metal layer includes a chromium-based material containing chromium (Cr), carbon (C), and oxygen (O), and the average content of each element is Cr: 74.7 atomic%, C: 15.8 atomic%, O: 8.8 atomic%, N: 0.7 atomic %. Furthermore, the
又,由各層之Cr、O、N之光譜對元素之鍵結狀態(化學狀態)進行評價。其結果為,可確認到,相移層主要包含氮化二鉻(Cr2N),進而,存在氧化鉻Ⅲ(Cr2O3)及氧化鉻Ⅵ(CrO3)。 In addition, the bonding state (chemical state) of the elements was evaluated from the spectra of Cr, O, and N in each layer. As a result, it was confirmed that the phase shift layer mainly contained chromium nitride (Cr 2 N), and furthermore, chromium oxide III (Cr 2 O 3 ) and chromium oxide VI (CrO 3 ) were present.
又,可確認到,構成金屬層之元素之鍵結狀態(化學狀態)主要包含鉻(Cr),進而,存在氧化鉻Ⅲ(Cr2O3)。 In addition, it was confirmed that the bonding state (chemical state) of the elements constituting the metal layer mainly contained chromium (Cr), and further, chromium oxide III (Cr 2 O 3 ) was present.
又,可確認到,構成反射率降低層之元素之鍵結狀態(化學狀態)主要包含氧化鉻Ⅲ(Cr2O3)。 It was also confirmed that the bonding state (chemical state) of the elements constituting the reflectance reduction layer mainly contained chromium oxide III (Cr 2 O 3 ).
相移膜藉由上述3層構造,而具有4.9%之對365nm之光之透過率及187°之相位差。 The phase shift film has a transmittance of 4.9% to 365nm light and a phase difference of 187° through the above three-layer structure.
圖3中之曲線c表示實施例3之相移光罩基底之相移膜的膜面反射率光譜。圖4中之曲線c表示實施例3之相移光罩基底之相移膜的背面反射率光譜。 The curve c in FIG. 3 represents the reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 3. The curve c in FIG. 4 represents the back surface reflectance spectrum of the phase shift film of the phase shift mask substrate of Example 3.
由圖3可見,關於相移膜,膜面反射率於313nm之波長下,為21%,於350nm下,為14.7%,於365nm之波長下,為12.8%,於405nm之波長下,為10.2%,於413nm之波長下,為9.8%,於436nm之波長下,為9.0%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為5.7%,於365nm~436nm之波長區域中,為3.8%,於313nm~436nm之波長區域中,為12.0%。 As can be seen from Figure 3, regarding the phase shift film, the film surface reflectance is 21% at a wavelength of 313nm, 14.7% at 350nm, 12.8% at a wavelength of 365nm, and 10.2 at a wavelength of 405nm %, at a wavelength of 413nm, 9.8%, at a wavelength of 436nm, 9.0%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 5.7% in the 350nm~436nm wavelength region, 3.8% in the 365nm~436nm wavelength region, and 313nm~436nm in the wavelength region 12.0%.
由圖4可見,關於相移膜,背面反射率於313nm之波長下,為7.5%,於350nm下,為8.3%,於365nm之波長下,為9.8%,於405nm 之波長下,為14.9%,於413nm之波長下,為15.9%,於436nm之波長下,為18.2%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為9.9%,於365nm~436nm之波長區域中,為8.3%,於313nm~436nm之波長區域中,為11.0%。 As can be seen from Figure 4, for the phase shift film, the back surface reflectivity is 7.5% at a wavelength of 313nm, 8.3% at 350nm, and 9.8% at a wavelength of 365nm, at 405nm At the wavelength of 413nm, it is 14.9%, at the wavelength of 413nm, it is 15.9%, and at the wavelength of 436nm, it is 18.2%. Also, regarding the phase shift film, the variation range of the reflectance of the film surface is 9.9% in the wavelength region of 350nm~436nm, 8.3% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 11.0%.
再者,膜面反射率及背面反射率係使用島津製作所公司製造之SolidSpec-3700(商品名)進行測定。 In addition, the film surface reflectance and the back reflectance were measured using SolidSpec-3700 (trade name) manufactured by Shimadzu Corporation.
與上述實施例同樣地,使用實施例3之相移光罩基底製造相移光罩。所獲得之相移光罩之相移膜圖案之CD偏差為65nm,較為良好。CD偏差係距作為目標之線與間隙圖案(線圖案之寬度:2.0μm,間隙圖案之寬度:2.0μm)之偏離寬度。 In the same manner as the above-mentioned embodiment, the phase shift mask substrate of the third embodiment is used to manufacture a phase shift mask. The CD deviation of the phase shift film pattern of the obtained phase shift mask is 65 nm, which is relatively good. The CD deviation is the deviation width from the target line and gap pattern (the width of the line pattern: 2.0 μm, the width of the gap pattern: 2.0 μm).
由於上述相移光罩具有優異之圖案剖面形狀及優異之CD均勻性,又,對曝光之光之相移膜圖案之膜面反射率較低,故而使用上述相移光罩,可製造高解像度、高精細之顯示裝置。 Since the above-mentioned phase shift mask has excellent pattern cross-sectional shape and excellent CD uniformity, and the film surface reflectivity of the phase shift film pattern to the exposure light is low, the use of the above-mentioned phase shift mask can produce high resolution , High-definition display device.
比較例1之相移光罩基底中之相移膜僅包含相移層(CrOCN,膜厚122nm)。比較例1之相移光罩基底於相移膜不具備金屬層及反射率降低層之方面,與上述實施例之相移光罩基底不同。 The phase shift film in the phase shift mask substrate of Comparative Example 1 only includes the phase shift layer (CrOCN, film thickness 122 nm). The phase shift mask substrate of Comparative Example 1 is different from the phase shift mask substrate of the foregoing embodiment in that the phase shift film does not have a metal layer and a reflectance reduction layer.
比較例1之相移光罩基底中之相移層係藉由以下之成膜條件而成膜。 The phase shift layer in the phase shift mask substrate of Comparative Example 1 was formed under the following film forming conditions.
關於相移層,對配置於濺鍍室之鉻靶施加3.5kW之濺鍍功率,一面將Ar氣體、N2氣體及CO2氣體之混合氣體導入至濺鍍室內,一面以200mm/min之速度搬送透明基板。透明基板通過鉻靶附近時,於透明基板之主表面上成膜包含CrOCN之膜厚122nm之相移層。此處,混合氣體係以Ar成為46sccm,N2成為32sccm,CO2成為18.5sccm之流量之方式導入 至濺鍍室內。 Regarding the phase shift layer, a sputtering power of 3.5kW is applied to the chromium target arranged in the sputtering chamber, and a mixture of Ar gas, N 2 gas and CO 2 gas is introduced into the sputtering chamber at a speed of 200 mm/min. Transport transparent substrates. When the transparent substrate passes near the chromium target, a 122nm phase shift layer containing CrOCN is formed on the main surface of the transparent substrate. Here, the mixed gas system is introduced into the sputtering chamber so that Ar becomes 46 sccm, N 2 becomes 32 sccm, and CO 2 becomes 18.5 sccm.
關於比較例1之相移膜,利用X射線光電子光譜法(ESCA)測定深度方向之組成。相移膜於深度方向均勻,Cr:44原子%,C:8原子%,O:30原子%,N:18原子%。 Regarding the phase shift film of Comparative Example 1, the composition in the depth direction was measured by X-ray photoelectron spectroscopy (ESCA). The phase shift film is uniform in the depth direction, Cr: 44 at%, C: 8 at%, O: 30 at%, and N: 18 at%.
相移膜藉由上述1層構造,而具有4.5%之對365nm之光之透過率及181°之相位差。 The phase shift film has a transmittance of 4.5% to 365nm light and a phase difference of 181° through the above-mentioned one-layer structure.
圖3中之曲線d表示比較例1之相移光罩基底之相移膜的膜面反射率光譜。圖4中之曲線d表示比較例1之相移光罩基底之相移膜的背面反射率光譜。 The curve d in FIG. 3 represents the reflectance spectrum of the phase shift film of the phase shift mask substrate of Comparative Example 1. The curve d in FIG. 4 represents the back reflectance spectrum of the phase shift film of the phase shift mask substrate of Comparative Example 1.
由圖3可見,關於相移膜,膜面反射率於313nm之波長下,為21.0%,於350nm下,為23.9%,於365nm之波長下,為24.0%,於405nm之波長下,為25.1%,於413nm之波長下,為25.3%,於436nm之波長下,為26.0%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為2.1%,於365nm~436nm之波長區域中,為2.0%,於313nm~436nm之波長區域中,為12.0%。 As can be seen from Figure 3, regarding the phase shift film, the reflectance of the film surface is 21.0% at a wavelength of 313nm, 23.9% at 350nm, 24.0% at a wavelength of 365nm, and 25.1 at a wavelength of 405nm %, at a wavelength of 413nm, 25.3%, at a wavelength of 436nm, 26.0%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 2.1% in the wavelength region of 350nm~436nm, 2.0% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 12.0%.
由圖4可見,關於相移膜,背面反射率於313nm之波長下,為7.5%,於350nm下,為17.1%,於365nm之波長下,為17.9%,於405nm之波長下,為19.9%,於413nm之波長下,為20.2%,於436nm之波長下,為20.3%。又,關於相移膜,膜面反射率之變動幅度於350nm~436nm之波長區域中,為3.2%,於365nm~436nm之波長區域中,為2.4%,於313nm~436nm之波長區域中,為11.0%。 As can be seen from Figure 4, for the phase shift film, the back reflectance is 7.5% at a wavelength of 313nm, 17.1% at 350nm, 17.9% at a wavelength of 365nm, and 19.9% at a wavelength of 405nm , At a wavelength of 413nm, 20.2%, at a wavelength of 436nm, 20.3%. In addition, regarding the phase shift film, the variation range of the reflectance of the film surface is 3.2% in the wavelength region of 350nm~436nm, 2.4% in the wavelength region of 365nm~436nm, and in the wavelength region of 313nm~436nm, it is 11.0%.
使用上述相移光罩基底,藉由與實施例1同樣之方法製造相移光罩。 Using the above-mentioned phase shift mask substrate, a phase shift mask was manufactured by the same method as in Example 1.
使用上述相移光罩基底製造之相移光罩之相移膜圖案剖面係垂直。 The cross section of the phase shift film pattern of the phase shift mask manufactured by using the above phase shift mask substrate is vertical.
使用上述相移光罩基底製造之相移光罩之相移膜圖案之CD偏差為90nm,未達到用於高解像度、高精細之顯示裝置之製造之相移光罩所需的水準。 The CD deviation of the phase shift film pattern of the phase shift mask manufactured by using the above-mentioned phase shift mask substrate is 90 nm, which does not reach the level required for the manufacture of the phase shift mask for high-resolution, high-definition display devices.
上述相移光罩雖具有優異之圖案剖面形狀,但CD偏差較大,又,對曝光之光之相移膜圖案之膜面反射率較高,故而使用上述相移光罩,無法製造高解像度、高精細之顯示裝置。 Although the above-mentioned phase shift mask has an excellent cross-sectional shape of the pattern, the CD deviation is large, and the film surface reflectivity of the phase shift film pattern to the exposure light is relatively high. Therefore, the use of the above-mentioned phase shift mask cannot produce high resolution , High-definition display device.
如上所述,基於實施形態及實施例對本發明詳細地進行說明,但本發明並不限定於此。顯而易見的是,只要為本領域中具有通常之知識者,則可進行本發明之技術思想內之變形或改良。例如,於實施形態中,具有反射率降低層作為第1功能層,具有相移層作為第2功能層,但於滿足特定之光學特性之情形時,亦可具有相移層作為第1功能層,具有反射率降低層作為第2功能層。 As described above, the present invention will be described in detail based on the embodiments and examples, but the present invention is not limited to this. It is obvious that as long as the person has general knowledge in the field, modifications or improvements within the technical idea of the present invention can be made. For example, in the embodiment, the reflectance reduction layer is used as the first functional layer and the phase shift layer is used as the second functional layer. However, when the specific optical characteristics are satisfied, the phase shift layer may be used as the first functional layer. , With a reflectance reduction layer as the second functional layer.
10‧‧‧相移光罩基底 10‧‧‧Phase shift mask base
20‧‧‧透明基板 20‧‧‧Transparent substrate
30‧‧‧相移膜 30‧‧‧Phase Shift Film
31‧‧‧相移層 31‧‧‧Phase shift layer
32‧‧‧反射率降低層 32‧‧‧Reflectance reduction layer
33‧‧‧金屬層 33‧‧‧Metal layer
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252703A JP6812236B2 (en) | 2016-12-27 | 2016-12-27 | A phase shift mask blank, a method for manufacturing a phase shift mask using the blank, and a method for manufacturing a display device. |
JP2016-252703 | 2016-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201826010A TW201826010A (en) | 2018-07-16 |
TWI698702B true TWI698702B (en) | 2020-07-11 |
Family
ID=62701037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106140657A TWI698702B (en) | 2016-12-27 | 2017-11-23 | Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6812236B2 (en) |
KR (1) | KR102271751B1 (en) |
CN (1) | CN108241251B (en) |
TW (1) | TWI698702B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7115281B2 (en) * | 2018-12-12 | 2022-08-09 | 信越化学工業株式会社 | Photomask blank and photomask manufacturing method |
JP7044095B2 (en) | 2019-05-31 | 2022-03-30 | 信越化学工業株式会社 | Photomask blank, photomask manufacturing method and photomask |
JP7303077B2 (en) * | 2019-09-10 | 2023-07-04 | アルバック成膜株式会社 | Method for manufacturing mask blanks, method for manufacturing photomask, mask blanks and photomask |
KR102598440B1 (en) * | 2019-12-20 | 2023-11-07 | 주식회사 에스앤에스텍 | Phase-Shift Blankmask and Photomask for use in Flat Panel Display |
CN112259557B (en) * | 2020-10-15 | 2022-12-06 | Tcl华星光电技术有限公司 | Display panel and preparation method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200602803A (en) * | 2004-03-31 | 2006-01-16 | Shinetsu Chemical Co | Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method |
TW201118503A (en) * | 2009-11-27 | 2011-06-01 | S&S Tech Co Ltd | Blankmask, photomask, and method for manufacturing the same |
CN102534502A (en) * | 2010-12-06 | 2012-07-04 | 信越化学工业株式会社 | Silicon target for sputtering film formation and method for forming silicon-containing thin film |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100295385B1 (en) * | 1993-04-09 | 2001-09-17 | 기타지마 요시토시 | Halftone Phase Shift Photomask, Blanks for Halftone Phase Shift Photomask and Manufacturing Method thereof |
JP3262302B2 (en) * | 1993-04-09 | 2002-03-04 | 大日本印刷株式会社 | Phase shift photomask, blank for phase shift photomask, and method of manufacturing the same |
US5604060A (en) * | 1993-08-31 | 1997-02-18 | Dai Nippon Printing Co., Ltd. | Halftone phase shift photomask comprising a single layer of halftone light blocking and phase shifting |
US5415953A (en) * | 1994-02-14 | 1995-05-16 | E. I. Du Pont De Nemours And Company | Photomask blanks comprising transmissive embedded phase shifter |
JP2983020B1 (en) * | 1998-12-18 | 1999-11-29 | ホーヤ株式会社 | Halftone type phase shift mask blank and halftone type phase shift mask |
KR100725214B1 (en) * | 1999-12-15 | 2007-06-07 | 다이니폰 인사츠 가부시키가이샤 | Blanks for half tone phase shift mask and half tone phase shift mask |
KR101621985B1 (en) * | 2008-03-31 | 2016-05-17 | 호야 가부시키가이샤 | Photomask blank and method for manufacturing the same |
JP2010008532A (en) * | 2008-06-25 | 2010-01-14 | Toppan Printing Co Ltd | Half tone photomask and color filter substrate produced by using it |
KR101282040B1 (en) * | 2012-07-26 | 2013-07-04 | 주식회사 에스앤에스텍 | Phase shift blankmask and photomask using the flat pannel display |
WO2014171512A1 (en) * | 2013-04-17 | 2014-10-23 | アルバック成膜株式会社 | Phase shift mask production method and phase shift mask |
JP6266322B2 (en) * | 2013-11-22 | 2018-01-24 | Hoya株式会社 | Phase shift mask blank for manufacturing display device, phase shift mask for manufacturing display device, method for manufacturing the same, and method for manufacturing display device |
JP6229466B2 (en) * | 2013-12-06 | 2017-11-15 | 信越化学工業株式会社 | Photomask blank |
JP6722421B2 (en) * | 2014-04-04 | 2020-07-15 | 大日本印刷株式会社 | Phase shift mask and manufacturing method thereof |
JP6661262B2 (en) * | 2014-05-29 | 2020-03-11 | Hoya株式会社 | Phase shift mask blank, method for manufacturing the same, and method for manufacturing phase shift mask |
JP6594742B2 (en) * | 2014-11-20 | 2019-10-23 | Hoya株式会社 | Photomask blank, photomask manufacturing method using the same, and display device manufacturing method |
US10365556B2 (en) * | 2015-03-27 | 2019-07-30 | Hoya Corporation | Mask blank, phase shift mask, method for manufacturing phase shift mask, and method for manufacturing semiconductor device |
-
2016
- 2016-12-27 JP JP2016252703A patent/JP6812236B2/en active Active
-
2017
- 2017-11-23 TW TW106140657A patent/TWI698702B/en active
- 2017-12-01 KR KR1020170164146A patent/KR102271751B1/en active IP Right Grant
- 2017-12-08 CN CN201711295074.2A patent/CN108241251B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200602803A (en) * | 2004-03-31 | 2006-01-16 | Shinetsu Chemical Co | Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method |
TW201137510A (en) * | 2004-03-31 | 2011-11-01 | Shinetsu Chemical Co | Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method |
TW201137511A (en) * | 2004-03-31 | 2011-11-01 | Shinetsu Chemical Co | Halftone phase shift mask blank, halftone phase shift mask, and pattern transfer method |
TW201118503A (en) * | 2009-11-27 | 2011-06-01 | S&S Tech Co Ltd | Blankmask, photomask, and method for manufacturing the same |
CN102534502A (en) * | 2010-12-06 | 2012-07-04 | 信越化学工业株式会社 | Silicon target for sputtering film formation and method for forming silicon-containing thin film |
Also Published As
Publication number | Publication date |
---|---|
JP6812236B2 (en) | 2021-01-13 |
KR102271751B1 (en) | 2021-06-30 |
CN108241251A (en) | 2018-07-03 |
KR20180076296A (en) | 2018-07-05 |
CN108241251B (en) | 2023-02-28 |
TW201826010A (en) | 2018-07-16 |
JP2018106023A (en) | 2018-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI698702B (en) | Manufacturing method of phase shift mask base and phase shift mask using the same, and manufacturing method of display device | |
KR101935171B1 (en) | Phase-shift mask blank for display device manufacture, phase-shift mask for display device manufacture and its manufacturing method, and method for manufacturing display device | |
KR102003650B1 (en) | A phase shift mask blank and a method for manufacturing phase shift mask using the same, and a method for manufacturing the display device | |
KR20180070530A (en) | Phase shift mask blank and its manufacturing method, and method for manufacturing phase shift mask | |
TWI813644B (en) | Phase shift mask substrate, manufacturing method of phase shift mask, and manufacturing method of display device | |
TWI784733B (en) | Mask base, method of manufacturing transfer mask, and method of manufacturing semiconductor device | |
JP7095157B2 (en) | A method for manufacturing a phase shift mask blank and a phase shift mask using the blank, and a method for manufacturing a display device. | |
CN108319103B (en) | Phase shift mask blank, method for manufacturing phase shift mask using the same, and method for manufacturing display device | |
JP2021144146A (en) | Photomask blank, photomask blank production method, photomask production method, and display device production method | |
JP2019148789A (en) | Phase shift mask blank, method for manufacturing phase shift mask, and method for manufacturing display device | |
KR20180109697A (en) | Phase shift mask blank and method for manufacturing phase shift mask using the same, and pattern transfer method | |
JP6999460B2 (en) | A phase shift mask blank, a phase shift mask intermediate, a method for manufacturing a phase shift mask using these, and a method for manufacturing a display device. | |
JP2019061106A (en) | Phase shift mask blank and method for manufacturing phase shift mask using the same, and method for manufacturing display device | |
CN115145110A (en) | Photomask blank, method for manufacturing photomask, and method for manufacturing display device | |
TW202141169A (en) | Photomask blank, method for manufacturing photomask, and method for manufacturing display device | |
JP2018173644A (en) | Phase shift mask blank, manufacturing method of phase shift mask, and manufacturing method of display device | |
CN108319104B (en) | Phase shift mask blank for manufacturing display device, method for manufacturing phase shift mask for manufacturing display device, and method for manufacturing display device | |
TW202336522A (en) | Photomask blank, photomask, method for manufacturing a photomask, and method for manufacturing a display device | |
JP2023051759A (en) | Photomask blank, photomask, manufacturing method of photomask, and manufacturing method of display device |