TWI806525B - 半導體裝置 - Google Patents

半導體裝置 Download PDF

Info

Publication number
TWI806525B
TWI806525B TW111111756A TW111111756A TWI806525B TW I806525 B TWI806525 B TW I806525B TW 111111756 A TW111111756 A TW 111111756A TW 111111756 A TW111111756 A TW 111111756A TW I806525 B TWI806525 B TW I806525B
Authority
TW
Taiwan
Prior art keywords
region
metal oxide
type
oxide semiconductor
well region
Prior art date
Application number
TW111111756A
Other languages
English (en)
Other versions
TW202339272A (zh
Inventor
游思穎
張瑞鈺
彭秐韶
張盼
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW111111756A priority Critical patent/TWI806525B/zh
Application granted granted Critical
Publication of TWI806525B publication Critical patent/TWI806525B/zh
Publication of TW202339272A publication Critical patent/TW202339272A/zh

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Bipolar Transistors (AREA)
  • Noodles (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本案提供一種半導體裝置,包含一半導體基板、至少一第一金屬氧化半導體、至少一第二金屬氧化半導體、一第一摻雜井區、一第二摻雜井區以及一深摻雜井區。第一金屬氧化半導體及第二金屬氧化半導體係位於半導體基板上。第一摻雜井區位於半導體基板內,且第二金屬氧化半導體位於第一摻雜井區內。第二摻雜井區位於半導體基板內,且第一金屬氧化半導體及第一摻雜井區係位於第二摻雜井區內。深摻雜井區位於第二摻雜井區與半導體基板之間,使深摻雜井區同時覆蓋其上方的第一金屬氧化半導體與第二金屬氧化半導體。

Description

半導體裝置
本案係有關一種半導體裝置,特別是關於一種具有共用之深N型井區(Deep N-type Well,DNW)之半導體裝置。
在習知之半導體裝置60的結構中,如圖1所示,在P型基板62上形成有N型金屬氧化半導體(NMOS)64及P型金屬氧化半導體(PMOS)66時,深N型井區68通常用來隔絕P型井(P-Well)70和P型基板62,以避免N型金屬氧化半導體64受到雜訊干擾。
並且,在習知技術中,如圖2所示,在半導體裝置60中,將複數N型金屬氧化半導體分別聚集設置成為一第一N型金屬氧化半導體區域72與一第二N型金屬氧化半導體區域74,以及將複數P型金屬氧化半導體分別聚集設置成為一第一P型金屬氧化半導體區域76與一第二P型金屬氧化半導體區域78時,且由上而下依序排列為第一N型金屬氧化半導體區域72、第一P型金屬氧化半導體區域76、第二N型金屬氧化半導體區域74及第二P型金屬氧化半導體區域78。其中,第一N型金屬氧化半導體區域72係設置在第一深N型井區68’,第二N型金屬氧化半導體區域74係設置在第二深N型井區68”內,然而,為符合設計規則檢查(Design Rule Check,DRC)規則,第一深N型井區68’與第二深N型井區68”之間有固定規格與尺寸,且因為接線關係,使得第一深N型井區68’與第二深N型井區68”必須分開,且兩者之間的距離必須維持一較大的間隔,增加深N型井區68的應用,也增加了整體面積的使用。
本案提供一種半導體裝置,包含一半導體基板、至少一第一金屬氧化半導體、至少一第二金屬氧化半導體、一第一摻雜井區、一第二摻雜井區以及一深摻雜井區。第一金屬氧化半導體及第二金屬氧化半導體係位於半導體基板上;第一摻雜井區位於半導體基板內,且第二金屬氧化半導體位於第一摻雜井區內;第二摻雜井區位於半導體基板內,且第一金屬氧化半導體及第一摻雜井區係位於該第二摻雜井區內;深摻雜井區位於第二摻雜井區與半導體基板之間。
在一些實施例中,半導體基板係為一P型半導體基板。
在一些實施例中,第一金屬氧化半導體係為一N型金屬氧化半導體,第二金屬氧化半導體係為一P型金屬氧化半導體。
在一些實施例中,第一摻雜井區係為一N型井,第二摻雜井區係為一P型井。
在一些實施例中,深摻雜井區係為一深N型井區。
在一些實施例中,第一金屬氧化半導體包含位於半導體基板上之一第一閘極結構,以及位於第二摻雜井區內之一N型源極摻雜區、一N型汲極摻雜區與一P型基極摻雜區。
在一些實施例中,第二金屬氧化半導體包含位於半導體基板上之一第二閘極結構,以及位於第一摻雜井區內之一P型源極摻雜區、一P型汲極摻雜區與一N型基極摻雜區。
在一些實施例中,半導體裝置更包含一電容結構,位於半導體基板上且對應於下方之深摻雜井區,使深摻雜井區覆蓋電容結構。
在一些實施例中,半導體裝置更包含一電阻結構,位於半導體基板上且對應於下方之深摻雜井區,使深摻雜井區覆蓋電阻結構。
在一些實施例中,半導體裝置更包含一電容結構及一電阻結構,位於半導體基板上且對應於下方之深摻雜井區,使深摻雜井區亦覆蓋電容結構及電阻結構。
本案另外提供一種半導體裝置,包含一半導體基板、至少一N型金屬氧化半導體區域、至少一P型金屬氧化半導體區域以及一深N型井區。N型金屬氧化半導體區域及P型金屬氧化半導體區域分別位於半導體基板上;深N型井區形成於半導體基板內,且位於半導體基板與N型金屬氧化半導體區域及P型金屬氧化半導體區域之間,使深N型井區覆蓋N型金屬氧化半導體區域及P型金屬氧化半導體區域。
在一些實施例中,半導體裝置更包含一電容結構區域,位於半導體基板上且對應於下方之深N型井區,使深N型井區覆蓋電容結構區域。
在一些實施例中,半導體裝置更包含一電阻結構區域,位於半導體基板上且對應於下方之深N型井區,使深N型井區覆蓋電阻結構區域。
在一些實施例中,半導體裝置更包含一電容結構區域及一電阻結構區域,位於半導體基板上且對應於下方之深N型井區,使深N型井區覆蓋電容結構區域及電阻結構區域。
在一些實施例中,N型金屬氧化半導體區域及P型金屬氧化半導體區域分別為複數個時,該些N型金屬氧化半導體區域與該些P型金屬氧化半導體區域係依序為間隔排列者。
綜上所述,由於深N型井區有固定的規則與尺寸,若能透過有效的佈局,對於縮小面積將會有很大的幫助。本案提出一種半導體裝置,其係符合標準元件(standard cell)模式配置,以利用共用的深摻雜井區(深N型井區)覆蓋第一金屬氧化半導體(N型金屬氧化半導體,NMOS)及第二金屬氧化半導體(P型金屬氧化半導體,PMOS),甚至是涵蓋到電容結構及電阻結構,使深摻雜井區可以全面涵蓋所有元件,不需要額外分開,接線長度較短,也可以減少高度及面積。基此,在晶片(chip)尺寸面積日趨縮小的條件下,本案有助於減少面積的使用,以達到面積利用率的提升。
以下提出較佳實施例進行詳細說明,然而,實施例僅用以作為範例說明,並不會限縮本案欲保護之範圍。此外,實施例中的圖式有省略部份元件或結構,以清楚顯示本案的技術特點。在所有圖式中相同的標號將用於表示相同或相似的元件。
圖3為根據本案一實施例之半導體裝置的結構剖視圖,請參閱圖3所示,一半導體裝置10包含有一半導體基板12、至少一第一金屬氧化半導體14、至少一第二金屬氧化半導體16、一第一摻雜井區18、一第二摻雜井區20以及一深摻雜井區22。在本實施例中,半導體基板12係為P型半導體基板。在此半導體裝置10中,第一金屬氧化半導體14位於半導體基板12上,第二金屬氧化半導體16亦位於半導體基板12上且位於第一金屬氧化半導體14一側。第一摻雜井區18位於半導體基板12內,且第二金屬氧化半導體16位於第一摻雜井區18內,第二摻雜井區20位於半導體基板12內,且第一金屬氧化半導體14及第一摻雜井區18係位於第二摻雜井區20內,深摻雜井區22位於第二摻雜井區20與半導體基板12之間,第一金屬氧化半導體14與第二金屬氧化半導體16同時位於深摻雜井區22上方,使深摻雜井區22同時覆蓋其上方的第一金屬氧化半導體14與第二金屬氧化半導體16。
其中,第一金屬氧化半導體14係為一N型金屬氧化半導體(NMOS),第二金屬氧化半導體16係為一P型金屬氧化半導體(PMOS)。第一摻雜井區18係為一N型井(N-well),第二摻雜井區20係為一P型井(P-well)。深摻雜井區22係為一深N型井區(Deep N-well)。
如圖3所示,第一金屬氧化半導體14基本包含一第一閘極結構141、一N型源極摻雜區142、一N型汲極摻雜區143以及一P型基極摻雜區144。第一閘極結構141位於半導體基板12上,N型源極摻雜區142與N型汲極摻雜區143位於第二摻雜井區20內且位於第一閘極結構141之二側,P型基極摻雜區144位於第二摻雜井區20內且鄰接N型源極摻雜區142。第二金屬氧化半導體16基本包含一第二閘極結構161、一P型源極摻雜區162、一P型汲極摻雜區163以及一N型基極摻雜區164。第二閘極結構161位於半導體基板12上,P型源極摻雜區162與P型汲極摻雜區163位於第一摻雜井區18內且位於第二閘極結構161之二側,N型基極摻雜區164位於第一摻雜井區18內且鄰接P型源極摻雜區162。
在一實施例中,半導體裝置10更包含一電容結構(圖中未示),電容結構位於半導體基板12上且對應於下方之深摻雜井區22,使深摻雜井區22覆蓋其上方的電容結構。在一實施例中,半導體裝置10更包含一電阻結構(圖中未示),電阻結構位於半導體基板12上且對應於下方之深摻雜井區22,使深摻雜井區22可以覆蓋其上方的電阻結構。在另一實施例中,半導體裝置10更可同時包含電容結構及電阻結構,電容結構及電阻結構皆位於半導體基板12上且對應於下方之深摻雜井區22,使深摻雜井區22可以同時覆蓋其上方的電容結構及電阻結構。是以,共用的深摻雜井區22可以同時覆蓋第一金屬氧化半導體14、第二金屬氧化半導體16、電容結構或/及電阻結構。
圖4為根據本案一實施例之半導體裝置的佈局結構示意圖,請參閱圖4所示,一半導體裝置10包含一半導體基板12、至少一N型金屬氧化半導體區域30、32(在此係以第一N型金屬氧化半導體區域30及第二N型金屬氧化半導體區域32為例,但本案不以此數量為限)、至少一P型金屬氧化半導體區域34、36(在此係以第一P型金屬氧化半導體區域34及第二P型金屬氧化半導體區域36為例,但本案不以此數量為限)以及一深N型井區38。在本實施例中,半導體基板12係為一P型半導體基板。
如圖4所示,在此半導體裝置10中,第一N型金屬氧化半導體區域30、第二N型金屬氧化半導體區域32、第一P型金屬氧化半導體區域34及第二P型金屬氧化半導體區域36係分別位於半導體基板12上且依序為間隔排列者,即由上而下依序排列為第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32以及第二P型金屬氧化半導體區域36。深N型井區38係形成於半導體基板12內,且位於半導體基板12與第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32及第二P型金屬氧化半導體區域36之間,使共同使用之深N型井區38同時覆蓋其上方的第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32以及第二P型金屬氧化半導體區域36。
其中,為清楚呈現深N型井區38可以同時覆蓋其上方的第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32以及第二P型金屬氧化半導體區域36,在圖4所示之半導體裝置10中,本案僅於深N型井區38上方僅繪製出氧化擴散層40及多晶矽層42作為元件佈局示意,其餘元件層則予以省略。
請同時參閱圖3及圖4所示,每一第一N型金屬氧化半導體區域30及每一第二N型金屬氧化半導體區域32各別包含複數個N型金屬氧化半導體(即第一金屬氧化半導體14)及相對應的第二摻雜井區20,如圖3所示,每一N型金屬氧化半導體至少包含第一閘極結構141、N型源極摻雜區142、N型汲極摻雜區143以及P型基極摻雜區144等結構。每一第一P型金屬氧化半導體區域34及每一第二P型金屬氧化半導體區域36亦各別包含複數個P型金屬氧化半導體(即第二金屬氧化半導體16)及相對應的第一摻雜井區18,如圖3所示,每一P型金屬氧化半導體至少包含第二閘極結構161、P型源極摻雜區162、P型汲極摻雜區163以及N型基極摻雜區164等結構。
在一實施例中,圖5為根據本案另一實施例之半導體裝置的佈局結構示意圖。請參閱圖5所示,此半導體裝置10更包含一電容結構區域44以及一電阻結構區域46,電容結構區域44位於半導體基板12上且對應於下方之深N型井區38,電阻結構區域46亦位於半導體基板12上且對應於下方之深N型井區38,使深N型井區38除了覆蓋第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32及第二P型金屬氧化半導體區域36之外,亦同時覆蓋電容結構區域44及電阻結構區域46。
其中,為清楚呈現深N型井區38可以同時覆蓋其上方的第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32、第二P型金屬氧化半導體區域36、電容結構區域44及電阻結構區域46,在圖5所示之半導體裝置10中,本案僅於深N型井區38上方僅繪製出氧化擴散層40、多晶矽層42、電阻保護氧化層(Resistor Protection Oxide,RPO)48及金屬層50作為元件佈局示意,其餘元件層則予以省略。
在另一實施例中,半導體裝置10更可依實際電路設計而具有單獨的電容結構區域44或電阻結構區域46設計。換言之,半導體裝置10亦可僅包含電容結構區域44,使深N型井區38同時覆蓋電容結構區域44。亦或是,半導體裝置10僅包含有電阻結構區域46,使深N型井區38同時覆蓋電阻結構區域46。
在一實施例中,本案係以半導體裝置10實際佈局結構來進行說明,請同時參閱圖2及圖4所示,以藉由比較習知技術與本案之差異,來呈現出本案可以達到之效果。如圖2所示,習知半導體裝置60使用第一深N型井區68’與第二深N型井區68”,因此整個佈局高度為17.61 µm,佈局面積為449.05 µm 2。反觀本案,如圖4所示,本案之半導體裝置10使用共用的深N型井區38,整個佈局高度為12.34 µm,佈局面積為314.67 µm 2,相較於習知半導體裝置60,本案之半導體裝置10的高度減少了5.27 µm,且減少了14.7%的面積,故可以有效縮小佈局佔用面積,符合未來積集度愈來愈高的趨勢。
在另一實施例中,本案係以具有包含電容結構區域44及電阻結構區域46之半導體裝置10實際佈局結構來進行說明,請參閱圖6所示,以藉由比較習知技術與本案之差異,來呈現出本案可以達到之效果。如圖6所示,左邊之習知半導體裝置60使用第一深N型井區68’與第二深N型井區68”,因此整個佈局高度為30.48 µm,佈局面積為762 µm 2。反觀本案,如圖6所示之右邊,本案之半導體裝置10使用共用的深N型井區38,且深N型井區38同時覆蓋第一N型金屬氧化半導體區域30、第一P型金屬氧化半導體區域34、第二N型金屬氧化半導體區域32、第二P型金屬氧化半導體區域36、電容結構區域44及電阻結構區域46,整個佈局高度為23.655 µm,佈局面積為590 µm 2,相較於習知半導體裝置60,本案之半導體裝置10的高度減少了6.825 µm,且減少了12.9%的面積,故可以有效縮小佈局佔用面積,符合未來積集度愈來愈高的趨勢。
綜上所述,本案提出一種半導體裝置,其係符合標準元件(standard cell)模式配置,以利用共用的深摻雜井區(深N型井區)覆蓋第一金屬氧化半導體(N型金屬氧化半導體)及第二金屬氧化半導體(P型金屬氧化半導體),甚至是涵蓋到電容結構及電阻結構,使深摻雜井區可以全面涵蓋所有元件,不需要額外分開,接線長度較短,也可以減少高度及面積。基此,在晶片(chip)尺寸面積日趨縮小的條件下,本案有助於減少面積的使用,以達到面積利用率的提升。
以上所述的實施例僅係為說明本案的技術思想及特點,其目的在使熟悉此項技術者能夠瞭解本案的內容並據以實施,當不能以之限定本案的專利範圍,即大凡依本案所揭示的精神所作的均等變化或修飾,仍應涵蓋在本案的申請專利範圍內。
10:半導體裝置 12:半導體基板 14:第一金屬氧化半導體 141:第一閘極結構 142:N型源極摻雜區 143:N型汲極摻雜區 144:P型基極摻雜區 16:第二金屬氧化半導體 161:第二閘極結構 162:P型源極摻雜區 163:P型汲極摻雜區 164:N型基極摻雜區 18:第一摻雜井區 20:第二摻雜井區 22:深摻雜井區 30:第一N型金屬氧化半導體區域 32:第二N型金屬氧化半導體區域 34:第一P型金屬氧化半導體區域 36:第二P型金屬氧化半導體區域 38:深N型井區 40:氧化擴散層 42:多晶矽層 44:電容結構區域 46:電阻結構區域 48:電阻保護氧化層 50:金屬層 60:半導體裝置 62:P型基板 64:N型金屬氧化半導體 66:P型金屬氧化半導體 68:深N型井區 68’:第一深N型井區 68”:第二深N型井區 70:P型井 72:第一N型金屬氧化半導體區域 74:第二N型金屬氧化半導體區域 76:第一P型金屬氧化半導體區域 78:第二P型金屬氧化半導體區域
圖1為習知半導體裝置的結構剖視圖。 圖2為習知半導體裝置的佈局結構示意圖。 圖3為根據本案一實施例之半導體裝置的結構剖視圖。 圖4為根據本案一實施例之半導體裝置的佈局結構示意圖。 圖5為根據本案另一實施例之半導體裝置的佈局結構示意圖。 圖6為習知半導體裝置與本案之半導體裝置的佈局結構示意圖。
10:半導體裝置
12:半導體基板
14:第一金屬氧化半導體
141:第一閘極結構
142:N型源極摻雜區
143:N型汲極摻雜區
144:P型基極摻雜區
16:第二金屬氧化半導體
161:第二閘極結構
162:P型源極摻雜區
163:P型汲極摻雜區
164:N型基極摻雜區
18:第一摻雜井區
20:第二摻雜井區
22:深摻雜井區

Claims (8)

  1. 一種半導體裝置,包含:一半導體基板;複數第一金屬氧化半導體,位於該半導體基板上;複數第二金屬氧化半導體,位於該半導體基板上;一第一摻雜井區,位於該半導體基板內,且該第二金屬氧化半導體位於該第一摻雜井區內;一第二摻雜井區,位於該半導體基板內,且該第一金屬氧化半導體及該第一摻雜井區係位於該第二摻雜井區內;一深摻雜井區,位於該第二摻雜井區與該半導體基板之間,使該深摻雜井區同時覆蓋其上方的該些第一金屬氧化半導體與該些第二金屬氧化半導體;以及一電容結構及一電阻結構,位於該半導體基板上且對應於下方之該深摻雜井區,使該深摻雜井區覆蓋該電容結構及該電阻結構。
  2. 如請求項1所述之半導體裝置,其中該半導體基板係為一P型半導體基板。
  3. 如請求項2所述之半導體裝置,其中該第一金屬氧化半導體係為一N型金屬氧化半導體,該第二金屬氧化半導體係為一P型金屬氧化半導體。
  4. 如請求項3所述之半導體裝置,其中該第一摻雜井區係為一N型井,該第二摻雜井區係為一P型井。
  5. 如請求項4所述之半導體裝置,其中該深摻雜井區係為一深N型井區。
  6. 如請求項5所述之半導體裝置,其中該第一金屬氧化半導體包含位於該半導體基板上之一第一閘極結構,以及位於該第二摻雜井區內之一N型源極摻雜區、一N型汲極摻雜區與一P型基極摻雜區。
  7. 如請求項5所述之半導體裝置,其中該第二金屬氧化半導體包含位於該半導體基板上之一第二閘極結構,以及位於該第一摻雜井區內之一P型源極摻雜區、一P型汲極摻雜區與一N型基極摻雜區。
  8. 一種半導體裝置,包含:一半導體基板;複數N型金屬氧化半導體區域,位於該半導體基板上;複數P型金屬氧化半導體區域,位於該半導體基板上,且該些N型金屬氧化半導體區域與該些P型金屬氧化半導體區域係依序為間隔排列者;一深N型井區,形成於該半導體基板內,且位於該半導體基板與該些N型金屬氧化半導體區域及該些P型金屬氧化半導體區域之間,使該深N型井區覆蓋該些N型金屬氧化半導體區域及該些P型金屬氧化半導體區域;以及一電容結構區域及一電阻結構區域,位於該半導體基板上且對應於下方之該深N型井區,使該深N型井區覆蓋該電容結構區域及該電阻結構區域。
TW111111756A 2022-03-28 2022-03-28 半導體裝置 TWI806525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111111756A TWI806525B (zh) 2022-03-28 2022-03-28 半導體裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111111756A TWI806525B (zh) 2022-03-28 2022-03-28 半導體裝置

Publications (2)

Publication Number Publication Date
TWI806525B true TWI806525B (zh) 2023-06-21
TW202339272A TW202339272A (zh) 2023-10-01

Family

ID=87803185

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111756A TWI806525B (zh) 2022-03-28 2022-03-28 半導體裝置

Country Status (1)

Country Link
TW (1) TWI806525B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822296B2 (en) * 2002-10-02 2004-11-23 Topro Technology, Inc. Complementary metal oxide semiconductor structure for battery protection circuit and battery protection circuit having the same
TWI309101B (en) * 2005-08-16 2009-04-21 Realtek Semiconductor Corp Voltage converting circuit, voltage converting apparatus, and related circuit systems
TW201724366A (zh) * 2015-12-03 2017-07-01 台灣積體電路製造股份有限公司 半導體裝置及其製造方法
US20200373293A1 (en) * 2019-05-23 2020-11-26 Magnachip Semiconductor, Ltd. Semiconductor device with electrostatic discharge protection
TW202119633A (zh) * 2019-07-24 2021-05-16 南韓商啟方半導體有限公司 有可控制的通道長度的半導體裝置以及其製造方法
TWI756092B (zh) * 2021-03-09 2022-02-21 力晶積成電子製造股份有限公司 矽控整流器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6822296B2 (en) * 2002-10-02 2004-11-23 Topro Technology, Inc. Complementary metal oxide semiconductor structure for battery protection circuit and battery protection circuit having the same
TWI309101B (en) * 2005-08-16 2009-04-21 Realtek Semiconductor Corp Voltage converting circuit, voltage converting apparatus, and related circuit systems
TW201724366A (zh) * 2015-12-03 2017-07-01 台灣積體電路製造股份有限公司 半導體裝置及其製造方法
US20200373293A1 (en) * 2019-05-23 2020-11-26 Magnachip Semiconductor, Ltd. Semiconductor device with electrostatic discharge protection
TW202119633A (zh) * 2019-07-24 2021-05-16 南韓商啟方半導體有限公司 有可控制的通道長度的半導體裝置以及其製造方法
TWI756092B (zh) * 2021-03-09 2022-02-21 力晶積成電子製造股份有限公司 矽控整流器

Also Published As

Publication number Publication date
TW202339272A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
US6489689B2 (en) Semiconductor device
US5838050A (en) Hexagon CMOS device
US6858885B2 (en) Semiconductor apparatus and protection circuit
US7638821B2 (en) Integrated circuit incorporating decoupling capacitor under power and ground lines
US7508696B2 (en) Decoupling capacitor for semiconductor integrated circuit device
US8203173B2 (en) Semiconductor integrated circuit
US20180040608A1 (en) Semiconductor integrated circuit device
JP2010141187A (ja) 半導体集積回路装置
TW201729392A (zh) 用於靜電放電保護的閘極耦合的n型金屬氧化物半導體裝置
US11063035B2 (en) Semiconductor integrated circuit device
US7456063B2 (en) Layout method of power line for semiconductor integrated circuit and semiconductor integrated circuit manufactured by the layout method
JPH11261011A (ja) 半導体集積回路装置の保護回路
JPH1092950A (ja) 半導体装置及びその製造方法
TWI806525B (zh) 半導體裝置
US7239005B2 (en) Semiconductor device with bypass capacitor
JP5174434B2 (ja) 半導体装置
JP2840239B2 (ja) マスタースライス型半導体装置
US7948032B2 (en) Power MOS transistor device and layout
JP2006245596A (ja) 半導体装置
KR20030093115A (ko) 반도체 집적 회로 장치
JP2780896B2 (ja) 半導体集積回路の製造方法
JP3010911B2 (ja) 半導体装置
JP3464802B2 (ja) セミカスタム集積回路
US6140681A (en) Electrostatic discharge protection circuit
KR100898313B1 (ko) 반도체 소자의 레이아웃