TWI803791B - 固態電池 - Google Patents

固態電池 Download PDF

Info

Publication number
TWI803791B
TWI803791B TW109141289A TW109141289A TWI803791B TW I803791 B TWI803791 B TW I803791B TW 109141289 A TW109141289 A TW 109141289A TW 109141289 A TW109141289 A TW 109141289A TW I803791 B TWI803791 B TW I803791B
Authority
TW
Taiwan
Prior art keywords
electrode
solid
solid electrolyte
electrolyte
state battery
Prior art date
Application number
TW109141289A
Other languages
English (en)
Other versions
TW202125877A (zh
Inventor
蘇稘翃
廖玟雄
Original Assignee
乾坤科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 乾坤科技股份有限公司 filed Critical 乾坤科技股份有限公司
Publication of TW202125877A publication Critical patent/TW202125877A/zh
Application granted granted Critical
Publication of TWI803791B publication Critical patent/TWI803791B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

本發明係有關於一種高能量密度、長壽命、可快充和高安全性之複合固態電池,其結構包含第一電極與第二電極,第二電極之第一側面對第一電極的第一側並且與第一電極間隔開; 固體電解質至少部分地設置在第一電極和第二電極之間的空間中,用以提供與第一電極及/或第二電極相關的金屬離子移動通過的路徑,其中金屬離子沿路徑保持濃度差異地分佈。本發明之固態電池包含兩種不同形式的固態電解質,可形成相互交錯的非均相複合固態電解質層。其一可選用軟性固態電解質,使固化前的液態電解質在製作過程中,可以較多地保留在固體電解質的空隙中。其二可選用高金屬離子濃度的固態電解質,以增加內部金屬離子濃度而加快擴散速率,進而提升電池元件的快充能力。

Description

固態電池
本案發明係關於一種電池,尤指一種固態電池。
請參考圖1A及圖1B,其分別示意性地示出了習知鋰離子電池的充電和放電階段,其中,鋰離子電池提供有電池電壓Vb和電池電流Ib,並電性連接至電源98用於以電子e-進行充電(圖1A),並且鋰離子電池電性連接到負載99以進行放電(圖1B)而釋放電子e-。習知鋰離子電池的陰極(cathode)91由添加了鋰的多金屬氧化物材料形成,並且習知鋰離子電池的陽極(anode)92由石墨形成。陰極(cathode)91與陽極(anode)92浸在電解質溶液90中,並且隔離膜(Separator)93設置在陰極(cathode)91與陽極(anode)92之間,使兩個電極分開用以防止短路,同時允許離子載子(ionic charge carriers)通過。在充電階段,如箭頭901所示,鋰離子900透過電解質90從隔離膜(Separator)93從陰極(cathode)91向陽極(anode)92移動。另一方面,在放電階段,如箭頭902所示,鋰離子900藉由電解質90從陽極92通過隔離膜(Separator)93反向移動至陰極91。
用於電池單元的電解質溶液的材料通常是具腐蝕性和可燃的,並且由於液體的特徵,可能不幸地發生洩漏。 因此,這樣的電池單元的安全性和可靠性無法令人滿意。
另外,隨著技術的進步和對環境保護的日益關注,便攜式電子產品和電動汽車在我們的日常生活中變得越來越普及。 因此,對於開發外型緊湊且有效率的電池的需求日益增長,意即該電池尺寸小但可以長時間工作。有鑑於全球鋰離子電池市場(例如在2017年)已超過100億美元,這意味著對於鋰離子電池的進一步改善,特別是對於能量密度的提高仍然有很高的需求。 為此,固態鋰電池便被開發出來了。
固態鋰電池通常由陰極(cathode)、陽極(anode)和電解質組成,它們均由基本上是固態的材料所形成。隨電解質的種類而變化,目前商業上可取得的固態電池基本上分為兩種類型,意即,包含有機聚合物電解質(organic polymeric electrolytes)的聚合物固態鋰電池(polymeric solid-state lithium batteries)和包含無機固體電解質(inorganic solid electrolytes)的無機固態鋰電池(inorganic solid-state lithium batteries)。無機固態鋰電池可進一步分類為氧化物固態鋰電池(oxide solid-state lithium batteries)和硫化物固態鋰電池(sulfide solid-state lithium batteries)。
然而,當前的固態鋰電池仍然遇到一些問題。例如,在室溫下,固體電解質的離子導電性(ionic conductivity)無法令人滿意,並且固體電解質與陽極電極和陰極電極間的界面處的電阻抗也過高。當前可用的固體電解質,例如聚合固體電解質、氧化物固體電解質和硫化物固體電解質,其離子導電性約為10-3 ~10-5 S / cm,遠低於傳統液體電解質的離子導電性 (約為10-2 S / cm)。因此,鋰離子的擴散速率對於在室溫下進行的充電/放電運作而言仍不夠高。除了考慮離子導電性(ionic conductivity)和界面阻抗以外,聚合物固體電解質,氧化物固體電解質和硫化物固體電解質還具有各自的缺點。例如,聚合物固體電解質具有相對較窄的電化學窗口和相對較低的穩定性。硫化固體電解質的材料穩定性相對較低。此外,在固態電池中,在電解質與陽極電極和陰極電極之間的界面以及固體電解質的內部原本就存在有空隙。空隙的存在將增加電池單元的電阻和內阻(internal resistance)。電池越大,空隙越大。如此一來,電池單元的尺寸將被冗餘地增加。而且,由於習用固態電池的電阻高達100Ω〜200Ω,所以僅適用於小電流的充電/放電,使得充電/放電率相對較低。
因此,本發明的目的是提供一種固態電池,其可以支援以相對較高的速率進行充電/放電。
根據本發明的固態電池,其具體包含有複合固體電解質,該複合固體電解質提供金屬離子,例如鋰離子或鈉離子,穿過及擴散的路徑,同時保持金屬離子沿該路徑在濃度上差異地分佈。
根據本發明的另一方面,一種固態電池包含有第一電極;第二電極,其第一側係面對第一電極的第一側並且與第一電極間隔開;以及複合固體電解質,其至少部分地設置在第一電極和第二電極之間的空間中,用以提供與第一電極和/或第二電極相關的金屬離子移動通過的路徑,其中,金屬離子沿該路徑在濃度上差異地分佈。
在一個實施例中,固體電解質的第一部分是介穩態(metastable)類固態聚合物電解質,第二部分是人工功能性固體電解質。
在另一實施方式中,固體電解質還包括第三部分,其至少覆蓋第一電極,而第二部分至少覆蓋第二電極,並且第一部分至少部分地設置在第二部分和第三部分之間。第二部分中的金屬離子濃度和第三部分中的金屬離子濃度皆高於第一部分中的金屬離子濃度。
在另一個實施例中,固體電解質的第三部分圍繞第一電極,固體電解質的第二部分圍繞第二電極,並且第一部分圍繞第二部分和第三部分。
根據本發明的另一方面,一種用於製造固態電池的方法,其包含下列步驟:提供一第一電極和一第二電極,該第一電極和該第二電極彼此隔離,同時該第一電極的一第一側和該第二電極的一第一側彼此面對;至少在該第一電極和該第二電極之間的一空間中提供一第二固體電解質;以及提供一第一固體電解質,其至少接觸至位在該第一電極和該第二電極之間的該空間中該第二固體電解質;其中,該第一固體電解質和該第二固體電解質共同為與該第一電極和/或該第二電極相關的金屬離子提供通過的一路徑,並且該第二固體電解質中金屬離子的濃度高於該第一固體電解質中金屬離子的濃度。
現在將以下列實施例來更具體地描述本發明。應當注意的是,以下對於本發明較佳實施例的描述,僅是基於說明和描述的目的。它不是想要詳盡無遺的或是僅限於所公開的精確形式。
圖2A係表示出了根據本發明實施例所發展出的固態電池。固態電池提供有電池電壓Vb,並且包括第一電極11,第二電極12和固體電解質13。第二電極12相對於第一電極11設置並且與第一電極11間隔開。固體電解質至少部分地設置在第一電極11和第二電極12之間的空間10中,以提供用於與第一電極11和/或第二電極12相關聯的金屬離子,例如鋰離子或鈉離子,移動通過的路徑130。較佳但不必要地,如圖2A所示的空間10可設置在第一電極11的內側111與第二電極12的內側121之間。可替代地,空間10可以設置在第一電極11的外側112和第二電極12的外側122之間,或者以另一種構造,只要可以成功地進行第一電極11和第二電極12之間的金屬離子傳輸即可。
根據本發明,金屬離子沿路徑130保持濃度上差異分佈(differential distribution)。例如,固體電解質13被限定為具有至少覆蓋第一電極11的第一部分131和至少覆蓋第二電極12的第二部分132,其中使第二部分132中的金屬離子的濃度高於在第一部分131中金屬離子的濃度。因此,沿著路徑130,在第一部分131和第二部分132的界面處將存在有金屬離子的濃度梯度(concentration gradient)。在圖2A所示的實施例中,第二部分132是金屬離子的高濃度層。通過將第二部分132設置在第一電極11和第二電極12中的一個或多個電極的周圍,金屬離子的擴散可以在相對短的距離內有效地進行,這是因為根據菲克定律(Fick's law)可知,濃度梯度與單位時間內通過每單位面積的質量成比例關係。同時,快速充電及放電將可以被有效地實現。於一些實施例中,固體電解質13的第一部分131比固體電解質13的第二部分132軟,以此增加結構接合性、耐震性、可撓性,在製作過程中,固化前的液態電解質可以較多地保留在固體電解質13的第一部分131或/及第二部分132的空隙中。於一些實施例中,更可以包含一液態電解質(未圖示),且固體電解質13至少部分、第一電極11和第二電極12浸在該液態電解質中,雖然此液態電解質因可流動而不具有金屬離子的濃度梯度,但是本發明之固體電解質13具有金屬離子的濃度梯度,還是所以可以具有本發明之功效。
固態電池還包括隔離膜(Separator)14,隔離膜14由絕緣材料製成並且設置在第一電極11和第二電極12之間,以使兩個電極保持分開從而防止電性短路,同時,隔離膜14具有用於使金屬離子穿過的小孔140。在一些其他實施例中,出於成本和/或尺寸的考慮,可以省略這種隔離膜。
在下文中,將給出一示例以更好地理解以上的實施例。在該示例中,電池是一鋰離子電池,第一電極11是陰極(cathode),第二電極12是陽極(anode)。第一電極11由複合材料(composite material)形成,該複合材料包括可用於普通鋰電池的活性材料(active material) 、導體(conductor) 、粘合劑(binder)和無機固體電解質(inorganic solid electrolyte)的顆粒。陽極活性材料(anode active material)例如可以是金屬鋰(metallic lithium) 、鋰合金,(lithium alloy) 、硬碳(hard carbon),軟碳(soft carbon)、富勒烯(fullerene)、二氧化矽(SiO2 )、矽碳複合材料(Si/C)、二氧化鈦(TiO2 )、 二氧化錫(SnO2 )。而導體則可使用石墨烯(graphene)、碳納米管(carbon nanotubes)、科琴黑(Ketjenblack) 、活性碳(activated carbon)或氣相生長碳纖維(VGCF),當然也可以是混合其中的兩種或更多種以混合導體形式使用。至於粘合劑可包括選自聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、羧甲基纖維素(CMC)、苯乙烯 - 丁二烯橡膠(SBR)和聚酰亞胺(polyimide)中的一種或多種混用。第二電極結構12還可由複合材料(composite material)形成,該複合材料包括用於普通鋰電池的活性材料、導體、粘合劑和無機固體電解質的顆粒。陰極活性材料(cathode active material)例如可以是鋰鈷複合氧化物(lithium cobalt composite oxide)、鋰鎳複合氧化物(lithium nickel composite oxide)、鋰錳複合氧化物(lithium manganese composite oxide)、鋰釩複合氧化物(lithium vanadium composite oxide)或鋰鐵複合氧化物(lithium iron composite oxide)。同樣地,石墨烯(graphene)、碳納米管(carbon nanotubes)、科琴黑(Ketjenblack) 、活性碳(activated carbon)或氣相生長碳纖維(VGCF)可以用作導體,當然也可以是混合其中的兩種或更多種以混合導體形式使用。至於粘合劑可包括選自聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、羧甲基纖維素(CMC)、苯乙烯 - 丁二烯橡膠(SBR)和聚酰亞胺(polyimide)中的一種或多種混用,當然,它們中的兩種或更多種可以以混合導體的形式使用。粘合劑可以包括選自由聚四氟乙烯(PTFE)、聚偏二氟乙烯(PVDF)、羧甲基纖維素(CMC)、丁苯橡膠(SBR)和聚酰亞胺組成的組中的材料,或它們的混合物。要注意的是,以上化合物僅為示例性列出,在其他示例中,第一電極11可以是陽極,第二電極可以是陰極,並且可以使用適合於電池操作的類似或不同的化合物。
如上所述,固體電解質13設置在第一電極結構11和第二電極結構12之間的空間10中,並提供金屬離子(例如鋰離子)的移動路徑130。固體電解質13的第一部分131是介穩態類固態聚合物電解質(Metastable Solid Polymeric Electrolyte,以下簡稱MSPE),第二部分132是人工功能性固體電解質(Artificial Function Solid Electrolyte,以下簡稱AFSE)。為了形成MSPE,使用鋰鹽,例如首先將LiPF6 溶解在有機溶劑中以製備含有1 mol/L 的LiPF6 的非水溶液。除了LiPF6 之外,還可以使用其他鋰鹽,例如LiClO4 , LiBF4 , and LiN(SO2 )以及雙三氟甲基磺酰亞胺鋰(LiTFSI)。而上述之有機溶劑例如可以是碳酸亞乙酯(ethylene carbonate)、碳酸亞丙酯(propylene carbonate)、二甲氧基乙烷(dimethoxyethane)、碳酸二甲酯(dimethyl carbonate)、碳酸乙基甲基酯(ethyl methyl carbonate)、碳酸二乙基酯(diethyl carbonate)或其組合。鋰鹽的非水溶液(例如50-99的重量百分比),與一介穩態聚合物(例如1-50的重量百分比) 在一混合器中進行混合,該介穩態聚合物(metastable polymer)有分子量小的特點且是在低溫(較佳是低於50℃)的第一階段反應(first-stage reaction)中產生的。例如,所得混合物包含1-2M的鋰鹽,並且包含有以90%:10%重量比的鋰鹽的非水溶液和介穩態聚合物,並且該混合物較佳地在低溫下保存以保持在流動狀態。液態對於鋰離子電池的後續製造過程是有利的。另一方面,為了具有反應性官能團(reactive functional groups)而選擇介穩態聚合物,反應性官能團(reactive functional groups)允許在將流體注入到電池的電極之間的空間中之後,然後在適當的溫度(最好在70℃至85℃之間)下,或者施加電壓下進行第二階段反應。本領域技術人員應理解,由於各自反應速率的顯著差異,以兩個反應階段來製備介穩態含氮聚合物(metastable nitrogen-containing polymer)的方式是有利的。較佳的是,介穩態聚合物是超支化(hyperbranched)的,從而使超支化的介穩態聚合物的末端基團(terminal groups)可以在第二階段反應中與離子導電基團(例如在聚醚鏈段中含有孤對的氧原子(an oxygen atom containing a lone pair in a polyether segment))有效地反應,結果造成交聯部分(cross-linking moiety),從而產出網狀/鏈式的固體聚合物電解質(network/chain-configured solid polymeric electrolyte)。例如,介穩態聚合物可以由軟的介穩態聚合物材料製成,該材料選自聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)和介穩態的含氮聚合物(metastable nitrogen-containing polymer)。含氮聚合物是通過化合物A與化合物B反應而形成的,其中化合物A可以是馬來酰亞胺(maleimide),並且化合物B可以是咪唑(imidazole) 、咪唑衍生物(imidazole derivative) 、吡咯(pyrrole) 、吡咯衍生物(pyrrole derivative) 、吡啶(pyridine) 、4-叔丁基吡啶鎓(4-tert-butylpyridinium) 、3-丁基吡啶(3-butylpyridine) 、4-二甲基氨基吡啶(4-dimethylaminopyridine) 、2,4,6-三氨基-1,3,5-三嗪(2,4,6-triamino-1,3,5-triazine) 、2,4-二甲基-2-咪唑啉(2,4-dimethyl-2-imidazoline) 、噠嗪(pyridazine) 、嘧啶(pyrimidine) 、吡嗪(pyrazine)或其組合。舉例來說,聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)或介穩態聚合物的重量比可以為1-50wt%,而如鋰鹽的含鋰組分和如溶劑的其他混合物的重量比可以為50-99wt%。較佳地,聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)或介穩態聚合物的重量比可以為5-10wt%,而如鋰鹽的含鋰組分和如溶劑的其他混合物的重量比可以為90-95wt%。
於本實施例中,固體電解質13的第一部分131可選用軟性固態電解質,使上述製程所得到的結構更穩定,固體電解質13的第一部分131在製作過程中,會產生網狀或鏈狀結構包覆未固化前的液態電解質使洩漏問題最小化的方式,即較多地保留(較強地滯留)固化前的液態電解質在固體電解質13的第一部分131的空隙中。而且,由於最初的流體特徵,介穩態聚合物在被注入後,可以均勻地分佈在異質材料(heterogeneous materials)之間的界面上,例如 電極、隔板、顆粒等,以及空隙處。 因此,界面阻抗(interface impedance)可以被減小。
為了生產AFSE,將無機鋰超導體陶瓷粉末(inorganic lithium superconductor ceramic powders)和半結晶聚合物(semi-crystalline polymer)以80:20的重量比混合。例如,首先將半結晶聚合物溶解在具有低沸點的溶劑(例如乙醇)中,然後調節所得溶液的粘度,然後加入鋰超導體陶瓷粉末並將其均勻分散在所得溶液中。將包含無機鋰超導體陶瓷粉末和半結晶聚合物的混合物的溶液以噴霧(spray)或用膜刮刀(film scraper)施塗來形成濕膜(wet film),然後以烘烤來蒸發溶劑,進而製成AFSE膜(AFSE film)。由於第二部分132包含鋰超導體陶瓷粉末,因此可以理解,第二部分132具有比第一部分131高的鋰離子濃度。例如,其至少高三倍,較佳可以是高三到五倍。因此,如上所述,可以期望在第一部分131和第二部分132的界面上沿著路徑130實現鋰離子的濃度梯度。
隔離膜14由多孔聚合物(porous polymer)製成,該多孔聚合物例如是聚丙烯基底(PP-based)的膜或聚乙烯基底(PE-based)的膜或聚丙烯/聚乙烯基底(PP/PE-based)組合的膜。 隔離膜14具有小於25微米(μm)的厚度,並且較佳但不必具有足夠大的曲率以獲得令人滿意的可壓縮性。 電解質較佳但不一定要表現出潤濕性。
在如圖2A所示的上述實施例中,具有較高金屬離子濃度的電解質13的第二部分132係佈置在陽極12周圍。或者,可以將具有較高金屬離子濃度的電解質13的第二部分132設置在陰極周圍而不是陽極12周圍。
請參考圖2B,其為本發明另一實施例的固態電池示意圖。固態電池與圖2A所示的固態電池相似,不同處在於固體電解質13還包括有覆蓋第一電極11(即陰極)的第三部分133。在此實施例中,第一部分131圍繞陰極11、陽極12以及電解質13的第二部分132和第三部分133。在此實施例中,第二部分132和第三部分133皆具有較第一部分131為高的金屬離子濃度。與應用於圖2A所示的實施例的討論類似,由於第三部分133具有比第一部分131更高的金屬離子濃度,因此沿著金屬離子的移動路徑130,金屬離子的濃度梯度將在它們之間的界面處呈現。第三部分133可以選用AFSE的材質組合,第三部分133與第二部分132兩者金屬離子的濃度可以不同或相同。金屬離子的濃度梯度將促進金屬離子的擴散,從而提高電池的充電性能及放電性能。在多方面的實施例中,第二部分132可以設置在第一電極11和/或第二電極12的一部分或全部上,使金屬離子沿移動路徑130以梯度分佈,用以提高充電/放電性能。在其他實施例中,除了第二部分132和第三部分133之外,第一部分131可以設置在第一電極11和/或第二電極12的一部分或全部上,使金屬離子沿移動路徑130以梯度分佈,用以提高充電/放電性能。在另外的實施例中,存在多於一個的串聯或並聯電性連接的第一電極11和/或第二電極12,用以進一步提高電池電壓Vb和電池電流Ib。第一電極11,第二電極12,固體電解質13和隔離膜14被容納在電池的殼體中,並且第一電極11和第二電極12可以包括延伸到殼體外部的部分。
另一方面,人工功能性固體電解質(AFSE)包含有無機鋰超導體陶瓷粉末和半結晶聚合物,因此鋰離子濃度高。一旦電池短路,AFSE還具有減少在陰極電極處產生放電熱(discharging heat)的功能。AFSE的表面粗糙且多孔,用以捕獲和保留第一部分131的鋰鹽。AFSE的表面粗糙且多孔,以捕獲和保留第一部分131的鋰鹽。因此,上述的軟性介穩態聚合物(soft metastable polymer)可以被均勻地捕獲和吸附在AFSE的表面上,從而降低了界面阻抗。眾所周知,鋰超導體陶瓷粉末可提供相對較高濃度的鋰離子,同時,鋰離子的傳導率將相對較高,例如, 1毫秒/平方厘米(mS/cm2 )。具有低阻抗和高傳導率,擴散將可以有效地進行,從而快速充電能力(高充電電流)可以被提昇。這種AFSE不僅堅固而且具可撓性,例如纖維的網狀結構為固態且具可撓性,因此它可以適應充電和放電過程中陽極體積的變化而不會破裂或失效。 同時,陽極材料例如可以包括二氧化矽和石墨的混合物。
AFSE中使用的鋰超導體陶瓷粉末例如可以選自NaSICON結構、石榴石結構(Garnet structure)或鈣鈦礦結構(Perovskite structure) 中的La0.51 Li0.34 TiO2.94 (LLTO)、Li7 La3 Zr2 O12 (LLZO)、Li1.3 Al0.3 Ti1.7 (PO43 (LATP)、Li2+2x Zn1-x GeO4 (LISICON)、Li2 S、Li2 S-P2 S5 、Li2 S-SiS2 、Li2 S-GeS2 、Li2 S-B2 S5 、Li2 S-Al2 S5 、Li3.25 Ge0.25 P0.75 S4 (Thio-LISCON)與Li3 N和Li3 + y PO4-x Nx (LIPON)其中的一種或多種。本發明的半結晶聚合物(表徵結晶程度在10%到80%之間)可包括選自聚偏二氟乙烯(PVDF)、 聚偏二氟乙烯-六氟丙烯(PVDF-HFP)、聚碳酸亞丙酯(PPC)、聚環氧乙烷(PEO)、聚乙烯(PE)、聚對苯二甲酸乙二酯(PET)、四乙二醇二丙烯酸酯、聚乙二醇二丙烯酸酯(PEGDA)、三羥甲基丙烷三丙烯酸酯、聚四氟乙烯(PTFE)和聚丙烯(PP)等。鋰超導體陶瓷粉末和半結晶聚合物可以在混合器中以重量比約50wt% - 90wt%:約10wt% - 50wt%的比例混合。以這種方式,可以生產出在本發明中使用的高鋰離子濃度的人工功能性固態電解質(AFSE),並且可以適當地在乾燥室環境下進行這樣的製備過程。
請參考圖3A,其係為表示出根據本發明中用於製造圖2A中固態電池的方法的主要步驟流程圖。首先,形成具有依序設置的陽極12,AFSE層(第二部分132),隔離膜14和陰極11的堆疊結構(步驟21)。然後將鋰鹽的非水溶液與介穩態聚合物的液態混合物(即第一階段反應的MSPE產物)注入到堆疊結構中,填入至堆疊結構中的空隙,並浸潤至至少部分或所有界面,用以減小界面阻抗(interface impedance)和內阻(inner resistance)(步驟22)。隨後,在適當條件(例如加熱)下進行第二階段反應(即交聯),用以製得保留有非水溶劑的固體MSPE(步驟23)。在另一個實施例中,在堆疊之前可以先通過濕塗(wet-coating)、噴塗( spraying) 、靜電紡絲(electrospinning)或浸塗(dipping)的方式將厚度為0.2微米-10微米的 AFSE層塗覆到陰極和/或陽極上。AFSE層(第二部分132)可以設置在陰極或陽極上,並且較佳可設置在陽極上。
圖3B示意性地表示出了根據本發明實施例的MSPE的製造過程。如上所述以及如圖3B所示,其中包含有製備分子量較小的軟介穩態聚合物的第一階段反應31,以及在將軟介穩態聚合物與鋰鹽的非水溶液一起施加到堆疊結構上之後,進行用於製備具有網狀/鏈式結構的固體MSPE的第二階段反應32。在MSPE與堆疊結構集成之後,如圖4A和圖4B所示,執行諸如熟成(aging),脫氣(degassing)和充電/放電(charging/discharging)的一般常見步驟來完成固態電池單元。如圖所示,固體電解質13的第一部分131可以覆蓋整個第二部分132、第三部分133和隔離膜14(如果有的話),並且第二部分132可以覆蓋整個第二電極12。或者,第一電極11、第二電極12、固體電解質13、隔離膜14、第一部分131、第二部分132和第三部分133可以彼此交錯,來提供金屬離子沿著電極以梯度分佈,用以改善充電/放電性能。第一電極11和/或第二電極12被固體電解質13的部分132和/或133覆蓋,該部分具有比固體電解質13的部分131高的金屬離子濃度。其中第一電極11和/或第二電極12被固體電解質13的第二部分132和/或第三部分133覆蓋,該部分具有比固體電解質13的第一部分131還高的金屬離子濃度。
然後,對根據本發明生產的固態電池的性能進行測試。首先,將固態電池安裝在電化學設備中。在25℃的溫度下測試具有金屬離子濃度梯度的本案電池和沒有金屬離子濃度梯度的常規電池的內阻抗。 本案電池具有減小的電阻,例如小於38mΩ,而常規電池的電阻為62mΩ。因此可以得出結論,電解質中金屬離子的濃度梯度有助於減少內部空隙並減小電池的內部阻抗。施加電流以進行充電直到電池電壓Vb達到4.2V,然後執行放電直到電池電壓Vb達到3V。在此充電/放電循環測試中,以0.75A / cm2 的低額定電流密度對電池進行240個循環的充電/放電,並評估其循環性能。對於本案電池,第240個循環的放電容量或電能存儲容量仍保持在額定電能存儲容量的約86%(見圖5)。在快速充電測試中,高額定電流密度(high rated current density)設為1.5A / cm2 ,充放電電流密度(charging and discharging current densities)0.1C,0.2C,0.5C、1C,2C和3C分別表示為0.15 A / cm2 、0.3 A / cm2 、0.75 A / cm2 、1.5 A / cm2 、3 A / cm2 和4.5 A / cm2 。這六種電流密度按電流密度遞增的順序執行三個循環的充放電。 如圖6所示的實驗結果表明,相對應的放電容量(discharging electric capacity)或電能存儲容量(electrical energy storage capacity)分別是額定電能儲存容量的100%,96%,88%,86%,85%和83%。顯然,即使在大電流條件下,根據本發明所完成的電池也只有很小的衰減。
如上所述,具有濃度梯度的固態電池具有顯著改善的電池性能和可靠性。 而且,固態電池具有安全性高,能量密度高,長期保存性好和高溫適應性的優點。 固態電池特別適合用於快速充電。
儘管已經根據目前被認為是最實用和優選的實施例描述了本發明,但是應該理解的是,本發明不必限於所公開的實施例。 相反,其意圖是覆蓋包括在所附權利要求的精神和範圍內的各種修改和類似佈置,這些修改和類似佈置與最寬泛的解釋相互一致,從而涵蓋所有這樣的修改和類似結構。
Vb:電池電壓 Ib:電池電流 e-:電子 90:電解質 900:鋰離子 901:箭頭 902:箭頭 91:陰極(cathode) 92:陽極(anode) 93:隔離膜(Separator) 98:電源 99:負載 11:第一電極 12:第二電極 13:固體電解質 10:空間 130:路徑 111:第一電極的內側 121:第二電極的內側 112:第一電極的外側 122:第二電極的外側 131:第一部分 132:第二部分 14:隔離膜 140:小孔 133:第三部分 31:第一階段反應 32:第二階段反應
在閱讀以下詳細描述和附圖之後,本發明的以上內容對於本領域普通技術人員將變得更加顯而易見,其中:
圖1A是習用鋰離子電池於充電階段的示意圖。
圖1B是習用鋰離子電池的放電階段的示意圖。
圖2A是根據本發明實施例所表示出的固態電池示意圖。
圖2B是根據本發明另一實施例所表示出的固態電池示意圖。
圖3A是根據本發明實施例所表示出的固態電池製造方法流程示意圖。
圖3B是根據本發明實施例所表示出的介穩態類固態聚合物電解質 (MSPE)的製造過程示意圖。
圖4A是根據本案方法的實施方式來生產的固態電池的示意圖。
圖4B是根據本案方法的另一實施方式所生產的固態電池的示意圖。
圖5是表示出在一特定測試中的放電容量隨循環的變化的示意圖。
圖6是表示出在另一測試中放電容量隨循環的變化的示意圖。
Vb:電池電壓
11:第一電極
12:第二電極
13:固體電解質
10:空間
130:路徑
111:第一電極的內側
121:第二電極的內側
112:第一電極的外側
122:第二電極的外側
131:第一部分
132:第二部分
14:隔離膜

Claims (25)

  1. 一種固態電池,包含:一第一電極;一第二電極,其一第一側面對該第一電極的一第一側並且與該第一電極間隔開;以及一固體電解質,其至少部分地設置在該第一電極和該第二電極間的一空間中,用以提供與該第一電極及/或該第二電極相關的金屬離子移動通過的一路徑,其中金屬離子沿該路徑保持差異地分佈,該固體電解質被定義為具有至少與該第一電極接觸的一第一部分和至少與該第二電極接觸的一第二部分,其中使該第二部分中的金屬離子的濃度高於該第一部分中的金屬離子的濃度。
  2. 如請求項1所述的固態電池,其還包含有一隔離膜,該隔離膜設置在該第一電極的該第一側與該第二電極的該第一側之間的該空間中,用以將該第一電極與該第二電極隔離;以及該隔離膜還具有用於使金屬離子在路徑中移動的複數個小孔。
  3. 如請求項1所述的固態電池,其中該第一電極是陰極,該第二電極是陽極。
  4. 如請求項1所述的固態電池,其中該固體電解質的該第二部分圍繞該第二電極,並且該固體電解質的該第一部分圍繞該第一電極和該固體電解質的該第二部分。
  5. 如請求項1所述的固態電池,其中該固體電解質的該第一部分是介穩態類固態聚合物電解質,並且該第二部分是人工功能性固體電解質。
  6. 如請求項3所述的固態電池,其中該固體電解質除該第一部分與該第二部分外更包含一第三部分,其中該第三部分至少與該第一電極接觸,該第二部分至少與該第二電極接觸,並且該第一部分少部分地設置在該第二部分和該第三部分之間,並且使該第二部分中金屬離子濃度和該第三部分中金屬離子濃度皆高於該第一部分中的金屬離子濃度。
  7. 如請求項6所述的固態電池,其中該固體電解質的該第三部分圍繞該第一電極,該固體電解質的該第二部分圍繞該第二電極,並且該第一部分圍繞該第二部分和該第三部分。
  8. 如請求項7所述的固態電池,其中該固體電解質的該第一部分是介穩態類固態聚合物電解質,並且該第二部分和該第三部分中的每一個都是人工功能性固體電解質。
  9. 如請求項1所述的固態電池,其中該固體電解質包括重量比為90%至10%的由鋰鹽的非水溶液和介穩態聚合物製成的介穩態類固態聚合物電解質,以及由無機鋰超導體陶瓷粉末和半結晶聚合物的重量比為80%至20%的混合物製成的人工功能性固體電解質。
  10. 如請求項9所述的固態電池,其中該介穩態類固態聚合物電解質介穩態聚合物是介穩態含氮聚合物。
  11. 如請求項1所述的固態電池,其中該固體電解質的該第一部分和該第二部分均包含鋰鹽,並且該第二部分中鋰離子的濃度至少是該第一部分中鋰離子濃度的三倍。
  12. 如請求項11所述的固態電池,其中該固體電解質的該第二部分的表面是多孔的,用於保持鋰鹽。
  13. 如請求項1所述的固態電池,其中該固體電解質的該第一部分比該固體電解質的該第二部分軟。
  14. 如請求項1所述的固態電池,其中該固體電解質的該第一部分通過在較低溫度下的一第一階段反應和在較高溫度下的一第二階段反應來產出。
  15. 一種用於製造固態電池的方法,其包含下列步驟:提供一第一電極和一第二電極,該第一電極和該第二電極彼此隔離,同時該第一電極的一第一側和該第二電極的一第一側彼此面對;至少在該第一電極和該第二電極之間的一空間中提供一第二固體電解質;以及提供一第一固體電解質,其至少與位在該第一電極和該第二電極之間的該空間中該第二固體電解質接觸,該第一固體電解質的至少一部份與該第二固體電解質的至少一部份形成層與層的夾置結構;其中,該第一固體電解質和該第二固體電解質共同為與該第一電極和/或該第二電極相關的金屬離子提供通過的一路徑,並且該第二固體電解質中金屬離子的濃度高於該第一固體電解質中金屬離子的濃度。
  16. 如請求項15所述的用於製造固態電池的方法,還包含下列步驟:在該第一電極的該第一側和該第二電極的該第一側之間的該空間中提供一隔離膜,以將該第一電極與該第二電極隔離,其中,該隔離膜具有複數個小孔,用於構成讓金屬離子移動通過的該路徑。
  17. 如請求項16所述的用於製造固態電池的方法,其中該第二固體電解質設置在該第二電極的周圍,並且該第一固體電解質設置在該第一電極和該第二固體電解質的周圍。
  18. 如請求項17所述的用於製造固態電池的方法,其中該第一固體電解質和該第二固體電解質通過以下方式提供:將無機鋰超導體陶瓷粉末和半結晶聚合物的混合物施加到該第二電極上,用以產生人工功能性固體電解質作 為該第二固體電解質;以及在相對較低的溫度下,將鋰鹽的非水溶液和介穩態聚合物與該第二固體電解質一起施加到該第一電極和該第二電極上,然後加熱所得結構以在非水溶液中進行交聯反應,從而產生介穩態類固態聚合物電解質作為該第一固體電解質。
  19. 如請求項18所述的用於製造固態電池的方法,其中該介穩態固體聚合物電解質中的鋰鹽和介穩態聚合物的重量比為90%至10%,並且該人工功能性固體電解質中的無機鋰超導陶瓷粉末和半結晶聚合物的重量比為80%~20%。
  20. 如請求項18所述的用於製造固態電池的方法,其中該無機鋰超導體陶瓷粉末和該半結晶聚合物的混合物通過濕塗(wet-coating)、噴塗(spraying)、靜電紡絲(electrospinning)或浸塗(dipping)的方式被施加到該第二電極上,其厚度範圍在0.2到10微米之間。
  21. 如請求項18所述的用於製造固態電池的方法,其中通過以下步驟將該無機鋰超導體陶瓷粉末和該半結晶聚合物的混合物施加至該第二電極:將該半結晶聚合物溶解在一溶劑中以形成一中間溶液;調節該中間溶液的粘度;將該無機鋰超導體陶瓷粉末分散在該中間溶液中,以在該溶劑中形成該無機鋰超導體陶瓷粉末和該半結晶聚合物的混合物;將該溶劑中的該混合物施加到該第二電極上;以及加熱所得結構以蒸發該溶劑。
  22. 如請求項15所述的用於製造固態電池的方法,其中還包含下列步驟:至少在該第一電極和該第一固體電解質之間的該空間中提供一第三固體電解質,其中,該第一固體電解質、該第二固體電解質以及該第三固體電解質共同為與該第一電極和/或該第二電極相關的金屬離子提供移動路徑,並且使該第 三固體電解質中的金屬離子的濃度高於該第一固體電解質中的金屬離子的濃度。
  23. 如請求項22所述的用於製造固態電池的方法,其中該第三固體電解質設置在該第一電極的周圍,該第二固體電解質設置在該第二電極的周圍,並且該第一固體電解質設置在該第二固體電解質和該第三固體電解質的周圍。
  24. 如請求項23所述的用於製造固態電池的方法,其中該第一固體電解質、該第二固體電解質和該第三固體電解質通過以下方式提供:將無機鋰超導體陶瓷粉末和半結晶聚合物的混合物施加到該第一電極上,以產生人工功能性固體電解質作為該第三固體電解質;將無機鋰超導體陶瓷粉末和半結晶聚合物的混合物施加到該第二電極上,以產生人工功能性固體電解質作為該第二固體電解質;以及將鋰鹽的非水溶液和介穩態聚合物施加到該第一電極上。
  25. 如請求項22所述的用於製造固態電池的方法,其中該介穩態類固態聚合物電解質中的鋰鹽和介穩態聚合物的重量比為90%至10%,並且該人工功能性固體電解質中的無機鋰超導陶瓷粉末和半結晶聚合物的重量比為80%~20%。
TW109141289A 2019-11-27 2020-11-25 固態電池 TWI803791B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/698,131 US11929460B2 (en) 2019-11-27 2019-11-27 Solid-state battery
US16/698131 2019-11-27

Publications (2)

Publication Number Publication Date
TW202125877A TW202125877A (zh) 2021-07-01
TWI803791B true TWI803791B (zh) 2023-06-01

Family

ID=75974603

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109141289A TWI803791B (zh) 2019-11-27 2020-11-25 固態電池

Country Status (3)

Country Link
US (1) US11929460B2 (zh)
CN (1) CN112864455B (zh)
TW (1) TWI803791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2022332786A1 (en) * 2021-08-25 2024-02-08 Young-Wan KWON Room temperature and ambient pressure superconducting ceramic and methods for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015060A1 (en) * 2005-07-15 2007-01-18 Cymbet Corporation Thin-film batteries with soft and hard electrolyte layers and method
CN108475815A (zh) * 2015-12-28 2018-08-31 西奥公司 用于锂聚合物电池的陶瓷-聚合物复合电解质
US20190123384A1 (en) * 2017-09-05 2019-04-25 Seeo, Inc. Surface coatings for ceramic electrolyte particles

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI532232B (zh) * 2013-12-18 2016-05-01 國立臺灣科技大學 鋰電池以及鋰電池用的電解液添加劑
JP6442610B2 (ja) 2015-07-30 2018-12-26 富士フイルム株式会社 固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池ならびに全固体二次電池用電極シートおよび全固体二次電池の製造方法
EP3479430B1 (en) * 2016-06-30 2021-01-27 Robert Bosch GmbH Electrolyte
DE112018005923T5 (de) 2017-12-22 2020-07-30 Robert Bosch Gesellschaft mit beschränkter Haftung Lenken des wachstums von festelektrolyt-phasengrenzen über gefälle aufweisende zusammensetzung
CN112166520A (zh) * 2018-06-15 2021-01-01 株式会社Lg化学 固体电解质膜和包含该固体电解质膜的固态电池
JP7010866B2 (ja) * 2019-03-14 2022-01-26 株式会社東芝 二次電池、電池パック、車両、及び定置用電源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070015060A1 (en) * 2005-07-15 2007-01-18 Cymbet Corporation Thin-film batteries with soft and hard electrolyte layers and method
CN108475815A (zh) * 2015-12-28 2018-08-31 西奥公司 用于锂聚合物电池的陶瓷-聚合物复合电解质
US20190123384A1 (en) * 2017-09-05 2019-04-25 Seeo, Inc. Surface coatings for ceramic electrolyte particles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
期刊 Dan Li, Long Chen, Tianshi Wang, and Li-Zhen Fan 3D Fiber-Network-Reinforced Bicontinuous Composite Solid Electrolyte for Dendrite-free Lithium Metal Batteries ACS Appl. Mater. Interfaces 10(8) ACS Feb 7, 2018 7069-7078;期刊 Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, and Guru Subramanyam A high performance ceramic-polymer separator for lithium batteries Electrical and Computer Engineering Faculty Publications 301 Elsevier 1-2016 194-198 *
期刊 Jitendra Kumar, Padmakar Kichambare, Amarendra K. Rai, Rabi Bhattacharya, Stanley J. Rodrigues, and Guru Subramanyam A high performance ceramic-polymer separator for lithium batteries Electrical and Computer Engineering Faculty Publications 301 Elsevier 1-2016 194-198

Also Published As

Publication number Publication date
US11929460B2 (en) 2024-03-12
CN112864455A (zh) 2021-05-28
US20210159537A1 (en) 2021-05-27
TW202125877A (zh) 2021-07-01
CN112864455B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN109526240B (zh) 可再充电电池
CN108713267B (zh) 包含多重保护层的负极和包括该负极的锂二次电池
US10497968B2 (en) Solid state electrolyte for lithium secondary battery
US9742028B2 (en) Flexible membranes and coated electrodes for lithium based batteries
US7588862B2 (en) Composite polymer electrolytes for a rechargeable lithium battery
KR102247370B1 (ko) 리튬-이온 전기화학 전지, 그의 구성요소, 및 그의 제조 및 사용 방법
CN103493253B (zh) 隔膜、其制造方法和具有该隔膜的电化学器件
US9287540B2 (en) Separators for a lithium ion battery
US9923234B2 (en) Long cycle life lithium sulfur electrochemical cells
KR20180036600A (ko) 이중 보호층이 형성된 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
US20120231321A1 (en) Integral bi-layer separator-electrode construction for lithium-ion batteries
CN108123095A (zh) 涂覆金属锂的负电极
US11764358B2 (en) Method for manufacturing all solid-state battery comprising polymeric solid electrolyte and all solid-state battery obtained thereby
EP1687861A1 (en) Separator coated with electrolyte-miscible polymer and electrochemical device using the same
US20210125791A1 (en) Incorporation of lithium-ion source material into an activated carbon electrode for a capacitor-assisted battery
CN111656563A (zh) 用于陶瓷电解质颗粒的表面涂层
TWI803791B (zh) 固態電池
CN113678295A (zh) 锂二次电池及其制造方法
KR20220091505A (ko) 리튬 금속 애노드 및 그 제조 방법
KR20150048499A (ko) 비수 전해액 및 그를 갖는 리튬 이차전지
US20230013068A1 (en) High Voltage Electrolyte for 5V Solid State Lithium-ion Battery Cell
KR100385701B1 (ko) 리튬 전지 및 그의 제조방법
US11217794B2 (en) Cathode of accumulator, associated accumulator and battery