TWI801399B - 在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統 - Google Patents

在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統 Download PDF

Info

Publication number
TWI801399B
TWI801399B TW107124410A TW107124410A TWI801399B TW I801399 B TWI801399 B TW I801399B TW 107124410 A TW107124410 A TW 107124410A TW 107124410 A TW107124410 A TW 107124410A TW I801399 B TWI801399 B TW I801399B
Authority
TW
Taiwan
Prior art keywords
generator
value
mhz
power
frequency
Prior art date
Application number
TW107124410A
Other languages
English (en)
Other versions
TW201921415A (zh
Inventor
亞瑟 M 豪瓦德
約翰 C 小微寇爾
布萊佛 J 琳戴克
Original Assignee
美商蘭姆研究公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商蘭姆研究公司 filed Critical 美商蘭姆研究公司
Publication of TW201921415A publication Critical patent/TW201921415A/zh
Application granted granted Critical
Publication of TWI801399B publication Critical patent/TWI801399B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/3299Feedback systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

描述用於調諧射頻(RF)產生器的系統和方法。該等方法其中一者包 含藉由高頻RF產生器將一高頻RF訊號供給至IMN。該方法包含存取在高頻RF產生器的輸出處所量測的一變量的多個量測值以產生一參數。該變量係在一低頻RF產生器的操作的多個循環期間加以量測。該多個量測值係關聯於由該高頻RF產生器所供給的功率的多個值。該方法包含針對該多個循環其中一者決定該高頻RF產生器的頻率的數值及與IMN的一並聯電路相關聯的一因子的數值,俾使在由該高頻RF產生器所輸送功率上的效率增加。

Description

在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生 器之輸出功率的效率之系統
本發明關於在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統及方法。
電漿機台係用以處理晶圓。舉例來說,介電蝕刻機台係用於在晶圓上沉積材料或用於蝕刻晶圓。電漿機台包含多個射頻(RF)產生器。該等RF產生器連接至一匹配件,其進一步連接至一電漿腔室。
該等RF產生器產生RF訊號,其經由該匹配件提供至該電漿腔室以用於處理晶圓。然而,在晶圓的處理期間,大量功率朝向RF產生器其中一者受到反射。
在此背景下,產生本揭露內容中所述實施例。
此揭露內容的實施例提供系統和方法,用於在千赫(kHz)射頻(RF)產生器存在的情況下增加百萬赫(MHz)射頻(RF)產生器之輸送功 率的效率。應了解的是,本案實施例可以多種方式實施,例如製程、設備、系統、裝置、在電腦可讀媒體上的方法。一些實施例係說明如下。
在一個實施例中,由該MHz RF產生器所供給的功率係在該kHz RF產生器的一循環內加以改變,以增加由該MHz RF產生器所輸送功率的效率。此功率控制為主動式,其中高速功率控制器在z MHz RF產生器內加以使用,以快速地增加或減少由MHz RF產生器所供給的功率。功率控制器取決於一功率反射係數係低或高而增加或減少所供給的功率。在一個實施例中,功率控制為被動式。MHz RF產生器自然存在特性其中一者為,它所供給的功率為電漿腔室內電漿阻抗的函數。
在一實施例中,除了MHz RF產生器的被動或主動控制之外,z MHz RF產生器的功率控制器的頻率係加以控制,一阻抗匹配網路的一電容器係加以控制,且/或與MHz RF產生器連接的一RF電纜係加以修改,使得當在MHz RF產生器的輸出處的一功率反射係數為低之時,MHz RF產生器的供給功率是高的,以及當該功率反射係數為高之時MHz RF產生器的供給功率是低的。
一些介電質電漿蝕刻系統使用例如60MHz或27MHz的z MHz、及例如400kHz的x kHz作為射頻。例如x kHz之低頻的存在,造成在例如z MHz之高頻中的調變。當由z MHz RF產生器所供給的功率於互調變頻率(例如,z MHz±n*x kHz,其中n為正實數)時,此調變為明顯的。一些RF系統於基頻(例如z MHz)量測朝向z MHz RF產生器的功率,但多達50%的z MHz RF功率係於互調變頻率反射回z MHz RF產生器且浪費掉為熱量。浪費掉如此多的功率是很花成本的,無論是由z MHz RF產生器所供給功率的成本或需要較大RF產生器來輸送特定量功率的成本。
一些方法包含降低z MHz反射功率的量,及增加z MH輸送功率的效率,其為電漿腔室所接受功率對電漿腔室所接收功率與朝z MHz RF產生器反射之功率的和之比率。舉例來說,輸出自z MHz RF產生器的功率的一部分係由電漿腔室接收和使用以進行處理,且輸出自z MHz RF產生器的功率的另一部分自電漿腔室朝z MHz RF產生器反射回去。z MHz輸送功率的效率係電漿腔室所接收功率對電漿腔室所接收功率與朝z MHz RF產生器反射之功率的總和之比率。該功率係自電漿腔室經由一RF傳輸線、一阻抗匹配網路、及一RF電纜朝z MHz RF產生器而加以反射。該阻抗匹配網路係經由該RF傳輸線連接至電漿腔室,且經由該RF電纜連接至z MHz RF產生器。由電漿腔室所接收的功率係經由該RF傳輸線而於電漿腔室的一電極(例如一下電極)處接收的功率。該等方法其中一者包含在x kHz的一循環內調變z MHz RF頻率(此處有時稱為頻率調變(FM)),且該等方法另一者包含在x kHz的一循環內調變z MHz RF供給功率(此處有時稱為振福調變)。在一實施例中,描述一方法,其利用由z MHz RF產生器所供給的z MHz功率的自然存在被動調變而實施AM過程。
在具有z MHz及x kHz RF產生器的蝕刻機台上,z MHz電壓反射係數Γ係藉由x kHz加以調變。z MHz電壓反射係數Γ為具有幅值及相位的一複數。舉例來說,在x kHz的一循環期間z MHz電壓反射係數的平均為
Figure 107124410-A0305-02-0005-23
0,但在x kHz的一循環期間z MHz功率反射係數|Γ|2的平均為
Figure 107124410-A0305-02-0005-24
0.5或50%。因此,由z MHz RF產生器所供給功率的50%浪費掉。較大的z MHz RF產生器可用以增加所供給的功率量,但成本過高。
如以上所提及,改善z MHz RF輸送功率效率的一方法為在一x kHz循環內調變來自z MHz產生器的z MHz供給功率。舉例來說,將z MHz供給功率在當功率反射係數|Γ|2較低時的x kHz循環的一部分期間增加,且將z MHz輸出功率在當功率反射係數|Γ|2較高時的x kHz循環的一部分期間減少。這將提供 整體較低的功率加權反射係數。在z MHz供給功率上的增加及減少係藉由以次微秒時間尺度主動控制z MHz供給功率而達成。應注意的是,x kHz的一個週期為2.5微秒或介於2微秒與3微秒之間的範圍。此外,在一實施例中,在z MHz供給功率上的增加及減少係不需要使用主動控制而是藉由在z MHz輸出功率上的自然存在被動變化而加以達成。
在一實施例中,描述一種方法,其變化與一阻抗匹配網路相關聯的調諧鈕,該阻抗匹配網路係連接至x kHz RF產生器及z MHz RF產生器。調諧鈕的例子包含一個可變電容器及一個可變RF頻率,或二個可變電容器。該等調諧鈕係加以變化,以將z MHz電壓反射係數的一軌跡(例如一圖)的中心平移成與史密斯圖的中心更加吻合。在史密斯圖的中心處,z MHz功率反射係數|Γ|2=0。
在一實施例中,描述一種方法,其變化一RF電纜的長度,該RF電纜介於z MHz RF產生器與阻抗匹配網路之間。在長度上的此變化促成z MHz電壓反射係數軌跡的極端區域(例如邊緣區域)的旋轉,以與由z MHz RF產生器所供給功率量較低的區域對齊。此外,在長度上的變化促成具有由z MHz RF產生器所供給高功率量的z MHz電壓反射係數軌跡的中心區域靠近|Γ|2較小之史密斯圖的中心區域。
在一實施例中,描述一種方法,用於藉由降低功率加權平均值|Γ|2而增加z MHz輸送功率效率。較高的z MHz輸送功率效率降低由z MHz RF產生器所供給功率的操作成本,且亦降低z MHz RF產生器的資金成本,這是因為相同量的z MHz輸送功率係利用較小的z MHz RF產生器加以達成。
在一實施例中,描述用於RF產生器被動控制的第一方法。該第一方法包含,藉由一低頻RF產生器,將低頻RF訊號供給至與電漿腔室連接的阻抗匹配網路。該第一方法更包含,藉由一高頻RF產生器,將高頻RF訊號供 給至該阻抗匹配網路。該阻抗匹配網路包含一串聯電路及一並聯電路。該第一方法包含存取在高頻RF產生器的輸出處所量測的一變量的多個量測值以產生一參數。該變量係在該低頻RF產生器的操作的多個循環期間加以量測。該多個量測值係關聯於由該高頻RF產生器所供給的功率的多個值。該第一方法包含:針對該等循環其中一者決定該高頻RF產生器的頻率的數值及與該並聯電路相關聯的一因子的數值,俾使在由該高頻RF產生器所輸送功率的效率增加。
在一實施例中,在未進行處理基板的一訓練程序期間,執行在該第一方法中的以下操作:供給該低頻RF訊號、供給該高頻RF訊號、存取該多個量測值、及決定該高頻RF產生器的頻率的數值和該因子的數值。
在一實施例中,基於從該變量的該等量測值的一子集合及由高頻RF產生器所供給之功率的該多個值的一子集合所計算的一平均值,執行在該第一方法中決定該頻率的數值和該因子的數值之操作。
在一實施例中,此處所述第一方法包含:針對該多個循環的其中一者,計算以下者的平均值:該變量的該多個量測值的第一者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第一者之乘積、及該變量的該多個量測值的第二者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第二者之乘積。
在一實施例中,此處所述第一方法包含,針對該多個循環的另一者,計算以下者的另一平均值:該變量的該多個量測值的第三者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第三者之乘積、及該變量的該多個量測值的第四者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第四者之乘積。
在一實施例中,此處所述第一方法包含:判定針對該多個循環的其中一者的平均值係小於針對該多個循環的其他者的其他平均值。
在一實施例中,基於與針對該多個循環的其他者之其他平均值相比平均值較小的該多個循環的其中一者,執行在該第一方法中決定該頻率的該數值及該因子的該數值之操作。
在一實施例中,在該第一方法中決定該頻率的該數值及該因子的該數值之操作包含決定與串聯電路相關聯的因子的數值,俾以達成在該效率上的增加。
在該第一方法的一實施例中,該高頻RF產生器係經由一RF電纜連接至該阻抗匹配網路。在此實施例中,該第一方法包含:在一訓練程序期間,存取在該高頻RF產生器的輸出處所量測的該變量的另外多個量測值。該變量的該另外多個量測值係在該低頻RF產生器的操作的另外多個循環期間加以量測。該變量的該另外多個量測值係在將該RF電纜改變之後加以量測。並且,該變量的該另外多個量測值係關聯於由該高頻RF產生器所供給的功率的另外多個值。此外,在這些實施例中,該第一方法包含:在訓練程序期間,針對該另外多個循環其中一者,決定該高頻RF產生器的該頻率的另一數值及與該並聯電路相關聯的該因子的另一數值,俾使在由該高頻RF產生器所輸送功率上的效率增加。
在一實施例中,此處所述第一方法包含:在電漿腔室內的一基板的處理期間,應用該高頻RF產生器的該頻率的該數值及與該並聯電路相關聯的該因子的該數值。
在第一方法的一實施例中,該變量係一電壓反射係數,該參數係一功率反射係數,且該因子係電容。
在一實施例中,描述用於RF產生器的主動控制的一第二方法。該第二方法包含:藉由一低頻RF產生器,將低頻RF訊號供給至與電漿腔室連接的阻抗匹配網路。該第二方法更包含,藉由一高頻RF產生器,將高頻RF訊 號供給至該阻抗匹配網路。該阻抗匹配網路包含一串聯電路及一並聯電路。該第二方法更包含存取在高頻RF產生器的輸出處所量測的一變量的多個量測值以產生一參數。該變量係在該低頻RF產生器的操作的多個循環期間加以量測。該多個量測值係關聯於由該高頻RF產生器所供給的功率的多個值。該第二方法包含:針對該等循環其中一者決定該高頻RF產生器的頻率的數值、由該高頻RF產生器所供給的一功率量、及與該並聯電路相關聯的一因子的數值,俾使在由該高頻RF產生器所輸送功率上的效率增加。
在一實施例中,在一基板的處理期間,執行在該第二方法中的以下操作:供給該低頻RF訊號、供給該高頻RF訊號、存取該多個量測值、及決定該高頻RF產生器的頻率的數值、由該高頻RF產生器所供給的該功率量、和該因子的數值。
在一實施例中,基於從該變量的該等量測值的一子集合及由高頻RF產生器所供給之功率的該多個值的一子集合所計算的一平均值,執行在該第二方法中決定該頻率的數值、由該高頻RF產生器所供給的該功率量、和該因子的數值之操作。
在一實施例中,此處所述第二方法包含:針對該多個循環的其中一者,計算以下者的平均值:該變量的該多個量測值的第一者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第一者之乘積、及該變量的該多個量測值的第二者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第二者之乘積。
在一實施例中,此處所述第二方法包含,針對該多個循環的另一者,計算以下者的另一平均值:該變量的該多個量測值的第三者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第三者之乘積、及該變量的 該多個量測值的第四者的幅值的平方與由該高頻RF產生器所供給之功率的該多個值的第四者之乘積。
在一實施例中,此處所述第二方法包含:判定針對該多個循環的其中一者的平均值係小於針對該多個循環的其他者的其他平均值。
在一實施例中,基於與針對該多個循環的其他者之其他平均值相比平均值較小的該多個循環的其中一者,執行在該第二方法中決定該頻率的該數值、由該高頻RF產生器所供給的該功率量、及該因子的該數值之操作。
在一實施例中,在該第二方法中決定該因子的該數值之操作包含決定與串聯電路相關聯的因子的數值,俾以達成在該效率上的增加。
在該第二方法的一實施例中,該高頻RF產生器係經由一RF電纜連接至該阻抗匹配網路。該第二方法更包含:在一基板的處理期間,存取在該高頻RF產生器的輸出處所量測的該變量的另外多個量測值。該另外多個量測值係在該低頻RF產生器的操作的另外多個循環期間加以量測。該另外多個量測值係在將該RF電纜改變之後加以量測。該另外多個量測值係關聯於由該高頻RF產生器所供給的功率的另外多個值。此外,該第二方法包含:在該基板的處理期間,針對該另外多個循環其中一者,決定該高頻RF產生器的該頻率的另一數值、由該高頻RF產生器所供給的另一功率量、及與該並聯電路相關聯的該因子的另一數值,俾使在由該高頻RF產生器所輸送功率上的效率增加。
在一實施例中,此處所述第二方法包含:在電漿腔室內的一基板的處理期間,應用該高頻RF產生器的該頻率的該數值、該功率量、及與該並聯電路相關聯的該因子的該數值。
在第二方法的一實施例中,該變量係一電壓反射係數,該參數係一功率反射係數,且該因子係電容。
在一實施例中,描述一系統。該系統包含一阻抗匹配網路。該阻抗匹配網路包含一串聯電路及一並聯電路。該系統更包含:一電漿腔室,連接至該阻抗匹配網路;及一低頻RF產生器,連接至該阻抗匹配網路且建構以將一低頻RF訊號供給至該阻抗匹配網路。該系統亦包含:一高頻RF產生器,連接至該阻抗匹配網路且建構以將一高頻RF訊號供給至該阻抗匹配網路。該系統包含一主電腦系統,連接至該高頻RF產生器。該主電腦系統包含一處理器,其建構以存取在高頻RF產生器的輸出處所量測的一變量的多個量測值以產生一參數。該變量係在該低頻RF產生器的操作的多個循環期間加以量測。該多個量測值係關聯於由該高頻RF產生器所供給的功率的多個值。該處理器更建構以:針對該等循環其中一者決定該高頻RF產生器的頻率的數值及與該並聯電路相關聯的一因子的數值,俾使在由該高頻RF產生器所輸送功率上的效率增加。
在該系統的一實施例中,該變量係一電壓反射係數,該參數係一功率反射係數,且該因子係電容。
在該系統的一實施例中,該處理器係建構成,基於從該變量的該等量測值的一子集合及由高頻RF產生器所供給之功率的該多個值的一子集合所計算的一平均值,決定該頻率的數值和該因子的數值之操作。
此處所述系統和方法的一些優點包含:調諧z MHz RF產生器以增加由z MHz RF產生器所輸送功率的效率。在一實施例中,藉由在一訓練程序期間決定z MHz RF產生器操作的頻率、阻抗匹配網路的並聯電容器的電容、及阻抗匹配網路的串聯電容器的電容,增加該效率。z MHz RF產生器操作的頻率、阻抗匹配網路的並聯電容器的電容、及阻抗匹配網路的串聯電容器的電容,係針對x kHz RF產生器操作的多個循環其中一者而加以決定。當決定z MHz RF產生器操作的頻率、阻抗匹配網路的並聯電容器的電容、及阻抗匹配網路的串聯電容器的電容之時x kHz RF產生器操作的一循環之內,未控制由z MHz RF產生器所供給的功率。舉例來說,從x kHz RF產生器操作的一第一循環的一個次循環到x kHz RF產生器操作的該循環的第二個次循環,由z MHz RF產生器所供給的功率係未受控制而改變。x kHz RF產生器操作的各循環係分割成多個次循環。第二個次循環係接續於第一個次循環。在x kHz RF產生器操作的該循環之內對z MHz RF產生器所供給功率的此種不予控制,此處有時稱為被動控制。此外,在晶圓處理期間,在x kHz RF產生器操作的循環期間亦不控制由z MHz RF產生器所供給的功率。在晶圓處理期間,應用於訓練程序期間所決定的z MHz RF產生器操作的頻率、阻抗匹配網路的並聯電容器的電容、阻抗匹配網路的串聯電容器的電容。
應注意的是,由z MHz RF產生器所供給的功率在被動控制期間加以控制,例如控制成在x kHz RF產生器操作的多個循環期間變化,但是不控制成在x kHz RF產生器操作的一個循環之內或期間變化。由z MHz RF產生器所供給的功率受到控制,但不是以x kHz RF產生器的一週期(例如,一循環)的快的時間尺度受到控制。此外,在被動控制期間,於x kHz RF產生器的各循環期間,在x kHz RF產生器所供給的RF訊號的電壓上有變化。在電壓上的變化,修改電漿腔室內電漿的z MHz負載阻抗。電漿的z MHz負載阻抗上的修改,改變由z MHz RF產生器所供給的功率量。
在一實施例中,藉由決定由z MHz RF產生器所供給的功率量、z MHz RF產生器操作的頻率、阻抗匹配網路的並聯電容器的電容、及阻抗匹配網路的串聯電容器的電容,增加輸送功率上的效率。在晶圓處理期間,針對x kHz RF產生器操作的多個循環的其中一者,決定z MHz RF產生器操作的頻率、由z MHz RF產生器所供給的功率量、阻抗匹配網路的並聯電容器的電容、及阻抗匹配網路的串聯電容器的電容。當決定z MHz RF產生器操作的頻率、由z MHz RF產生器所供給的功率量、阻抗匹配網路的並聯電容器的電容、及阻抗 匹配網路的串聯電容器的電容之時x kHz RF產生器操作的一循環之內,對z MHz RF產生器的功率予以控制。在x kHz RF產生器操作的該循環內對z MHz RF產生器所供給功率的此種控制,此處有時稱為主動控制。
藉由使用主動控制或被動控制,達成在輸送功率上效率的增加。在輸送功率效率上的增加,改善電漿腔室內晶圓的處理效率。
其他實施態樣,從以下實施方式章節,結合隨附圖式,將更為明白。
100:系統
102:阻抗匹配網路(IMN)
106a:串聯電路
106b:並聯電路
108a:串聯電路
108b:並聯電路
110:電源供應器
112:電源供應器
300:表
400:史密斯圖
402:圖
406:史密斯圖
408:圖
420:功率等位線圖
500:系統
600:表
702:史密斯圖
704:圖
720:功率等位線圖
800:系統
802:晶圓
810:表
900:系統
910:表
1000:系統
1100:表
1200:系統
1300:表
1400:表
1500:表
1602、1604:時脈訊號
D1、D2:驅動器
M1、M2:馬達
R1,R2,R3:區域
RFC1:RF電纜
RFC2:RF電纜
RFC21:RF電纜
RFT:RF傳輸線
該等實施例結合隨附圖式參照以下說明可最佳地理解。
圖1為一系統的一實施例的圖示,用於描繪在x千赫(kHz)射頻(RF)產生器的操作的一循環期間,用於z百萬赫(MHz)RF產生器的被動控制的訓練程序。
圖2為一圖表之實施例的圖示,描繪具有由z MHz RF產生器所供給的功率的被動變化。
圖3為一表的實施例,描繪在訓練程序期間圖1的系統的操作。
圖4A為史密斯圖的一實施例,描繪當未應用此處所述方法時功率反射係數是高的。
圖4B為史密斯圖的一實施例,描繪功率反射係數是低的而在由z MHz RF產生器所輸送之功率上增加效率。
圖4C為功率等位線圖(power contour)的一實施例,描繪於z MHz RF產生器的輸出處由z MHz RF產生器所供給的功率在功率等位線圖左下角係低的,而在功率等位線圖右上角係高的。
圖5為一系統的一實施例的圖示,用於描繪在將z MHz RF產生器的輸出耦合至阻抗匹配網路的輸入的一RF電纜受到改變之後的另一訓練程序。
圖6為一表的實施例,描繪在訓練程序期間圖5的系統的操作。
圖7A為圖4B的史密斯圖。
圖7B為史密斯圖的一實施例,描繪功率反射係數是低的而在由z MHz RF產生器所輸送之功率上增加效率。
圖7C為功率等位線圖(power contour)的一實施例,描繪於z MHz RF產生器的輸出處由z MHz RF產生器所供給的功率,與圖1的系統的另一RF電纜相比,對於經改變的RF電纜係較高的。
圖8A為一系統的實施例的圖示,用於描繪一處理程序,其中當使用經改變的RF電纜時,使用z MHz RF產生器的頻率、阻抗匹配網路的一串聯電路的電容、及阻抗匹配網路的並聯電路的另一電容。
圖8B為一表的實施例,描繪圖8A的系統的處理程序。
圖9A為一系統的實施例的圖示,用於描繪一處理程序,其中當使用圖1的系統的RF電纜時,使用z MHz RF產生器的頻率、阻抗匹配網路的一串聯電路的電容、及阻抗匹配網路的並聯電路的另一電容。
圖9B為一表的實施例,描繪圖9A的系統的處理程序。
圖10為一系統的實施例的圖示,描繪在x kHz RF產生器的操作的多個循環期間,z MHz RF產生器的主動控制。
圖11為一表的實施例,描繪圖10的系統的操作。
圖12為一系統的實施例的圖示,其中經改變的RF電纜係用於主動控制。
圖13為一表的實施例,描繪圖12的系統的操作。
圖14為一表的實施例,用以描繪一旦針對主動控制確定由z MHz RF產生器輸出的功率值、z MHz RF產生器的操作頻率、阻抗匹配網路的並聯電路的電容、及阻抗匹配網路的串聯電路的另一電容,用於使用經改變電纜的圖12的系統的一處理程序。
圖15為一表的實施例,用以描繪一旦確定由z MHz RF產生器輸出的功率值、z MHz RF產生器的操作頻率、阻抗匹配網路的並聯電路的電容、及阻抗匹配網路的串聯電路的另一電容,用於圖10的系統的一處理程序。
圖16描繪多個時脈訊號,用以描繪一循環及該循環的一個次循環。
以下實施例描述系統和方法,用於在千赫射頻產生器存在的情況下增加百萬赫射頻產生器之輸出功率的效率。將明白的是,本發明實施例可在沒有一些或所有這些特定細節的情況下實施。另一方面,眾所周知的製程操作未詳細描述,以免不必要地模糊本發明實施例。
圖1為系統100的實施例的圖示,用以描繪針對z百萬赫(MHz)射頻(RF)產生器之被動控制的一訓練程序。系統100包含一x千赫(kHz)RF產生器、該z MHz RF產生器、一主電腦系統、一阻抗匹配網路(IMN)102、一電漿腔室、多個馬達M1和M2、及多個驅動器D1和D2。驅動器的例子包含一或多個電晶體。一馬達包含一定子及一轉子。
x kHz RF產生器的一個例子包含400kHz RF產生器。x kHz RF產生器的另一例子包含一產生器,其具有在300kHz與500kHz之間的操作頻率。z MHz RF產生器的一個例子包含具有60MHz操作頻率的一產生器。z MHz RF產生器的另一例子包含具有27MHz操作頻率的一RF產生器。
IMN 102包含一串聯電路106a、一並聯電路106b、另一串聯電路108a、及另一並聯電路108b。串聯電路的例子包含一或多個電阻器、一或多個電感器、一或多個電容器、或其組合。舉例來說,該串聯電路包含一電感器與一電容器的一串聯組合。另一個例子是,該串聯電路包含一電感器、一電容器、及一電阻器的一串聯組合。類似地,並聯電路的例子包含一電阻器、一電感器、一電容器、或其組合。舉例來說,該並聯電路包含一電感器與一電容器的一串聯組合。另一個例子是,該並聯電路包含一電感器、一電容器、及一電阻器的一串聯組合。該並聯電路的一端係連接至一接地線。
串聯電路108a的一個以上電容器的一電容器C1具有串聯電路108a的一個以上電容器的組合電容。舉例來說,當二個電容器彼此並聯連接,組合電容為該二個電容器的電容的和。作為另一個例子,當二個電容器彼此串聯連接,組合電容為該等電容的積除以該等電容的和。類似地,並聯電路108b的一電容器C2具有並聯電路180b的一個以上電容器的組合電容。
串聯電路106a的一端連接至並聯電路106b的一端。串聯電路106a與並聯電路106b的該等端皆連接至IMN 102的一輸入i1。類似地,串聯電路108a的一端連接至並聯電路108b的一端。串聯電路108a與並聯電路108b的該等端皆連接至IMN 102的一輸入i2。此外,串聯電路106a的另一端連接至IMN 102的一輸出o1。類似地,串聯電路108a的另一端連接至該輸出o1。輸入i1經由RF電纜RFC1連接至x kHz RF產生器的一輸出。類似地,輸入i2經由RF電纜RFC2連接至z MHz RF產生器的一輸出。
電漿腔室包含一下電極及一上電極。該上電極連接至一地電位。該下電極和該上電極每一者由金屬製成,例如經陽極處理的鋁、鋁合金等。該上電極面向該下電極,且一間隙形成於該上電極與該下電極之間以供電漿形成於該間隙之內。在一些實施例中,電漿腔室包含額外的部件,例如,圍繞上電極的 一上電極延伸件、介於上電極與上電極延伸件之間的一介電環、設置在上電極邊緣旁邊的侷限環、圍繞下電極的一下電極延伸件、及介於下電極與下電極延伸件之間的一介電環等等。
該輸出o1經由RF傳輸線RFT連接至該下電極。RF傳輸線RFT包含一RF桿及圍繞該RF桿的一絕緣套筒。
主電腦系統包含一處理器及一記憶裝置。該記憶裝置連接至該處理器。該處理器的例子包含中央處理器(CPU)、控制器、特定應用積體電路(ASIC)、或可程式邏輯元件(PLD),且這些術語此處可互換使用。記憶裝置的例子包含唯讀記憶體(ROM)、隨機存取記憶體(RAM)、硬碟、揮發性記憶體、非揮發性記憶體、儲存磁碟冗餘陣列、快閃記憶體等等。
系統100更包含一感測器,例如定向耦合器及示波器、或網路分析儀,該感測器連接至z MHz RF產生器的一輸出。該感測器量測一變量,例如電壓反射係數Γ或供給的功率。該變量係在系統100中在無基板處理的訓練程序期間加以量測。舉例來說,當該變量藉由該感測器量測時,電漿腔室沒有進行處理的基板。作為另一例子,虛置晶圓(dummy wafer)係在該電漿腔室中使用。電壓反射係數Γ為一複數,例如具有幅值和相位。此外,電壓反射係數Γ隨時間變化。電壓反射係數Γ的幅值為在z MHz RF產生器的輸出處朝z MHz RF產生器反射的電壓與在該輸出處由z MHz RF產生器所供給之電壓的比率。電壓從電漿腔室經由RF傳輸線RFT、IMN 102、及RF電纜RFC2朝z MHz RF產生器反射。功率反射係數|Γ|2,其為參數的一個例子,係電壓反射係數Γ之幅值的平方。
該處理器接收該變量的量測值,且計算該等量測值各者之幅值的平方,以產生該參數的對應值。該處理器連接至驅動器D1,驅動器D1又連接至馬達M1。馬達M1經由一連接機構而連接至電容器C1。連接機構的一個例子包含一或多條桿、或一或多條桿與一或多個齒輪的組合。類似地,該處理器連接至驅 動器D2,驅動器D2又連接至馬達M2。馬達M2經由另一連接機構而連接至電容器C2。
x kHz RF產生器包含一頻率控制器(FC)及一電源供應器110。電源供應器110連接至x kHz RF產生器的FC及x kHz RF產生器的輸出。FC的例子包含控制器。此外,z MHz RF產生器包含一FC及一電源供應器112。電源供應器112連接至z MHz RF產生器的FC及z MHz RF產生器的輸出。
在一個實施例中,取代連接至下電極,RF傳輸線RFT係連接至上電極,且下電極連接至接地線。在一實施例中,上電極經由另一RF傳輸線及另一阻抗匹配網路而連接至另一RF產生器,且下電極連接至IMN 102。
圖2為圖表200實施例的圖示,其中有由z MHz RF產生器所供給的功率的被動(例如,在x kHz RF產生器的操作的一循環期間沒有受處理器控制的情況下)、或正常、或操作性變化。由z MHz RF產生器所供給的功率此處有時稱為供給的功率。圖表200相對於時間標繪由z MHz RF產生器所供給的功率。如在圖表200中所描繪,供給的功率在2000瓦與5500瓦之間變化。在x kHz RF產生器的操作的一循環之內,不藉由處理器控制z MHz RF產生器來改變在z MHz RF產生器的輸出處所供給的功率。在x kHz RF產生器的操作的一循環期間,在z MHz RF產生器的輸出處所供給的功率在不受控制的情況下變化。
圖3為表300的實施例,用以描繪在該訓練程序期間圖1的系統100的操作。如在表300中所顯示,x kHz RF產生器具有一循環,其具有頻率f11。x kHz RF產生器的操作的各循環具有頻率f11。舉例來說,x kHz RF產生器之操作的第一個五分之一循環具有頻率f11,x kHz RF產生器之操作的第二個五分之一循環具有頻率f11,x kHz RF產生器之操作的第三個五分之一循環具有頻率f11,x kHz RF產生器之操作的第四個五分之一循環具有頻率f11,且x kHz RF產生器之操作的第五個五分之一循環具有頻率f11。該第二個五分之一次循環係連續於 該第一個五分之一次循環。該第三個五分之一次循環係連續於該第二個五分之一次循環。該第四個五分之一次循環係連續於該第三個五分之一次循環。該第五個五分之一次循環係連續於該第四個五分之一次循環。主電腦系統的處理器將x kHz RF產生器的操作的頻率f11提供至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的該循環期間產生具有頻率f11的一RF訊號。一個循環為一時脈訊號的一循環。該時脈訊號具有多個循環。各循環具有同一時間週期。類似地,各個次循環具有同一時間週期。
當x kHz RF產生器在訓練程序期間操作於頻率f11時,z MHz RF產生器的電源供應器112供給Ps1到Ps5範圍的功率值。在x kHz RF產生器的操作的一循環期間,沒有控制z MHz RF產生器來提供功率值Ps1到Ps5。舉例來說,沒有對於主電腦系統的處理器之回授迴路來在x kHz RF產生器的操作的一循環期間控制功率值Ps1到Ps5。為了進一步說明,在x kHz RF產生器的操作的一循環之內,處理器不基於從連接至z MHz RF產生器之輸出的感測器所接收的變量的量測值而改變功率值Ps1到Ps5。作為另一例示,在z MHz RF產生器的輸出處由z MHz RF產生器所供給的功率在x kHz RF產生器的一開迴路操作期間(例如,在微秒量級操作的一循環之內)自行變化。舉例來說,發生x kHz RF產生器之該循環的時間週期介於2與5微秒之間範圍,例如2.5微秒。
z MHz RF產生器在x kHz RF產生器的該循環期間操作於頻率f21。舉例來說,主電腦系統的處理器將z MHz RF產生器之操作的頻率f21提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f21提供至電源供應器112,以操作電源供應器112在x kHz RF產生器的操作的該循環期間產生具有頻率f21的一RF訊號。
在x kHz RF產生器的操作的該循環期間電源供應器110產生具有頻率f11的一RF訊號且電源供應器112產生具有頻率f21的另一RF訊號。由電源供應 器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21且具有功率量Ps1到Ps5的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的一負載(例如,RF傳輸線RFT及電漿腔室)的阻抗與連接至輸入i1及i2的一來源(例如,RF電纜RFC1和RFC2以及x kHz和z MHz RF產生器)的阻抗相匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
此外,串聯電路108a的電容器C1在x kHz RF產生器的操作的該循環期間受控制成具有電容值C11。舉例來說,主電腦系統的處理器發送一命令訊號至驅動器D1,以在電容器C1的板之間達成一面積值。驅動器D1基於該命令訊號產生一驅動訊號,且將該驅動訊號發送至馬達M1。馬達M1的轉子基於該驅動訊號而旋轉,以移動與馬達M1連接的連接機構以進一步達成介於電容器C1的板之間的面積。當達成介於電容器C1的板之間的面積,電容器C1具有電容C11。當使用於此處,電容為一因子的例子。
類似地,並聯電路108b的電容器C2在x kHz RF產生器的操作的該循環期間受控制成具有電容值C21。舉例來說,主電腦系統的處理器發送一命令訊號至驅動器D2,以在電容器C2的板之間達成一面積值。驅動器D2基於該命令訊號產生一驅動訊號,且將該驅動訊號發送至馬達M2。馬達M2的轉子基於該驅動訊號而旋轉,以移動與馬達M2連接的連接機構以進一步達成介於電容器C2的板之間的面積。當達成介於電容器C2的板之間的面積,電容器C2具有電容C21。
當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps1,電容器C1的電容值為C11,且電容器C2的電容值為C21之時,感測器在z MHz RF產生器的輸出處量測電壓 反射係數為Γ1。類似地,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps2,電容器C1的電容值為C11,且電容器C2的電容值為C21之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ2。此外,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps3,電容器C1的電容值為C11,且電容器C2的電容值為C21之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ3。並且,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps4,電容器C1的電容值為C11,且電容器C2的電容值為C21之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ4。當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps5,電容器C1的電容值為C11,且電容器C2的電容值為C21之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ5。
該感測器也在z MHz RF產生器的輸出處量測功率值Ps1到Ps5。該感測器將值Γ1到Γ5以及值Ps1到Ps5經由傳輸電纜(例如,串列資料傳輸電纜、平行資料傳輸電纜、及通用串列匯流排(USB)電纜)提供至處理器。處理器將值f11、值Ps1到Ps5、值f21、值C11、值C21、及值Γ1到Γ5儲存在表300中,表300係儲存在記憶裝置中。在一個實施例中,處理器將值f11、值Ps1到Ps5、值f21、值C11、值C21、及值Γ1到Γ5儲存在圖9B的表910中,且將表910係儲存在記憶裝置中。
處理器針對x kHz RF產生器的該循環計算功率加權平均功率反射係數(PWAPRC,power-weighted average power reflection coefficient)。舉例來說,處理器對於x kHz RF產生器的該循環將PWARPC1計算為[{(Ps1)X(|Γ1|)2}+{(Ps2)X(|Γ2|)2}+{(Ps3)X(|Γ3|)2}+{(Ps4)X(|Γ4|)2}+{(Ps5)X(|Γ5|)2}]/5。功率 加權平均功率反射係數的值PWARPC1所針對計算之操作的循環,此處稱為操作的第一循環。
類似地,處理器針對x kHz RF產生器的操作的一第二循環計算另一功率加權平均功率反射係數PWARPCa。舉例來說,處理器將PWARPCa計算為[{(Ps1a)X(|Γ1a|)2}+{(Ps2a)X(|Γ2a|)2}+{(Ps3a)X(|Γ3a|)2}+{(Ps4a)X(|Γ4a|)2}+{(Ps5a)X(|Γ5a|)2}]/5。應注意的是,x kHz RF產生器的操作的該第二循環發生在x kHz RF產生器的操作的該第一循環發生之後。舉例來說,操作的第二循環發生在x kHz RF產生器的操作的一或多個循環之後,且該一或多個循環係在x kHz RF產生器的操作的第一循環之後。此外,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21a,由z MHz RF產生器所供給的功率為Ps1a,電容器C1的電容值為C11a,且電容器C2的電容值為C21a之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ1a。類似地,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21a,由z MHz RF產生器所供給的功率為Ps2a,電容器C1的電容值為C11a,且電容器C2的電容值為C21a之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ2a。此外,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21a,由z MHz RF產生器所供給的功率為Ps3a,電容器C1的電容值為C11a,且電容器C2的電容值為C21a之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ3a。並且,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21a,由z MHz RF產生器所供給的功率為Ps4a,電容器C1的電容值為C11a,且電容器C2的電容值為C21a之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ4a。當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f21a,由z MHz RF產生器所供給的功率為Ps5a,電容器C1的電容值為 C11a,且電容器C2的電容值為C21a之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ5a。
在x kHz RF產生器操作的第二循環期間,電源供應器110產生具有頻率f11的一RF訊號且電源供應器112產生具有頻率f21a的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21a且具有功率量Ps1a到Ps5a的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的該負載的阻抗與連接至輸入i1及i2的一來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
在x kHz RF產生器的操作的多個循環期間,處理器判定使由z MHz RF產生器所輸送功率的效率增加的z MHz RF產生器操作的頻率值、電容器C1的電容、及電容器C2的電容。舉例來說,處理器判定值PWARPC1與PWARPCa其中何者係低的。處理器比較值PWARPC1與值PWARPCa,以判定值PWARPC1低於值PWARPCa。在值PWARPC1所針對計算的第一循環期間,由z MHz RF產生器所輸送功率的效率增加。處理器從表300識別出,輸送功率效率增加之在第一循環期間z MHz RF產生器操作的頻率值f21、電容器C1的電容C11、及電容器C2的電容C21。應注意的是,當RF電纜RFC2係用以將z MHz RF產生器的輸出連接至IMN 102的輸入i2之時,在輸送功率上的效率增加。
在一實施例中,取代控制電容器C1及C2二者以決定使由z MHz RF產生器所輸送功率上的效率增加之電容器C1和C2的電容,電容器C1或電容器C2任一者係加以控制,以決定使由z MHz RF產生器所輸送功率上的效率增加之該電容器的電容。舉例來說,值PWARPCa係在未控制電容器C1具有值C11a的情況 下達成。電容器C1的電容係加以維持而具有值C11且值PWARPCa係基於電容C11而非電容C11a而加以達成。從x kHz RF產生器操作的第一循環至第二循環,電容器C1的電容沒有改變。作為另一範例,值PWARPCa係在未控制電容器C2具有值C21a的情況下達成。電容器C2的電容係加以維持而具有值C21且值PWARPCa係基於電容C21而非電容C21a而加以達成。從x kHz RF產生器操作的第一循環至第二循環,電容器C2的電容沒有改變。作為又另一範例,值PWARPC1係在未控制電容器C1具有值C11的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C1的電容上沒有改變。作為另一範例,值PWARPC1係在未控制電容器C2具有值C21的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C2的電容上沒有改變。
在一個實施例中,x kHz RF產生器操作的該循環係分成不同於五個的數個次循環。舉例來說,x kHz RF產生器操作的該循環係分成四個循環或六個循環。電容器C1和C2的電容值在x kHz RF產生器操作的該循環期間針對其他數量的次循環加以達成。此外,z MHz RF產生器在該其他數量的次循環期間具有一操作頻率,且感測器在該其他數量的次循環期間量測該變量的值,例如四或六個值。
圖4A為史密斯圖400的實施例,描繪當未應用此處所述方法增加z MHz RF產生器的輸送功率的效率時在x kHz RF產生器操作的循環期間有高的功率反射係數。史密斯圖400具有在z MHz RF產生器的輸出處的電壓反射係數的虛部相對於電壓反射係數的實部的圖402。圖402涵蓋x kHz RF產生器操作的一個循環。舉例來說,圖402的點涵蓋x kHz RF產生器操作的一個循環。史密斯圖400係針對x kHz RF產生器的該循環加以標繪。在史密斯圖400的區域R1中,圖402的點皆不具有在自零預定限值之內的功率反射係數,例如從零25-30%之內。功率反射係數在史密斯圖的中心處為零,且在史密斯圖的周界處為一。此外,圖402 的一些點位在史密斯圖400的區域R2和R3之中。在x kHz RF產生器的一個循環期間在z MHz RF產生器的輸出處的功率反射係數是高的而非低的,例如位在區域R2和R3之內。舉例來說,圖402的多個點皆不具有在從零預定限值之內的功率反射係數。
圖402使用連接至z MHz產生器的輸出的定向耦合器加以產生。舉例來說,在400kHz的一循環期間,60MHz複數電壓反射係數的平均大約為0,例如零,但是,在400kHz的一循環期間,60MHz功率反射係數|Γ|^2的平均大約是0.5,例如50%。因此,當未應用此處所述方法時,大約50%的由z MHz RF產生器所供給的功率浪費掉。
圖4B為史密斯圖406的一實施例,描繪功率反射係數是低的而在由z MHz RF產生器所輸送功率上增加效率。史密斯圖406具有在z MHz RF產生器的輸出處的電壓反射係數的虛部相對於電壓反射係數的實部的圖408。圖408涵蓋x kHz RF產生器操作的一個循環。史密斯圖406係針對x kHz RF產生器的一循環加以標繪。圖402右移而產生圖408。在圖408中,與圖402中的區域R1相比,區域R1右移。舉例來說,在區域R1內的點在從零預定限值之內。舉例來說,對於區域R1內的點,在z MHz RF產生器的輸出處的功率反射係數在從零的預定限值之內。
在一個實施例中,對於圖408在區域R2和R3內的點,於z MHz RF產生器的輸出處的功率反射係數增加,以增加在z MHz RF產生器所輸送功率上的效率。與對於圖402的區域R2和R3的功率反射係數相比,在z MHz RF產生器的輸出處的功率反射係數增加。
圖4C為功率等位線圖420的實施例,描繪於z MHz RF產生器的輸出處由z MHz RF產生器所供給的功率在功率等位線圖420左下角處係低的,而在功率等位線圖420右上角處係高的。圖408在功率等位線圖420內加以標繪。除了 對於圖408的點的其中一些在功率反射係數上減少之外,於輸出處由z MHz RF產生器所供給的功率增加,例如在區域R1到R3之內的點,因而在由z MHz RF產生器所輸送的功率上增加效率。如此,有從左到右的平移而在功率等位線圖420中產生圖408,且由z MHz RF產生器所供給的功率增加。在於z MHz RF產生器的輸出處功率反射係數減少以及於z MHz RF產生器的輸出處供給的功率增加的情況下,由z MHz RF產生器所輸送之功率的效率增加。由z MHz RF產生器所輸送功率之效率上的增加,使晶圓處理上的效率增加。
圖5為系統500實施例的圖示,描述在一訓練程序期間在RF電纜RFC2上變化的效應,其中RF電纜RFC2將z MHz RF產生器的輸出連接至IMN 102的輸入i2。除了RF電纜RFC2以另一RF電纜RFC21取代之外,系統500與圖1的系統100相同。舉例來說,將RF電纜RFC2的長度增加或減少。作為另一例子,將RF電纜RFC2的截面積增加或減少。作為又另一例子,將RF電纜RFC2的長度增加或減少,且將RF電纜RFC2的截面積增加或減少。RF電纜RFC21連接於z MHz RF產生器與輸入i2之間。感測器在z MHz RF產生器的輸出處量測該變量。該變量係在沒有基板處理的一訓練程序期間於系統500加以量測。舉例來說,當該變量藉由該感測器量測時,電漿腔室沒有進行處理的基板。
圖6為表600的實施例,用以描繪在該訓練程序期間圖5的系統500的操作。如在表600中所顯示,x kHz RF產生器以具有頻率f11的第一循環操作。當x kHz RF產生器操作於頻率f11時,z MHz RF產生器的電源供應器112供給從Ps6到Ps10範圍的功率值。在x kHz RF產生器操作的一循環期間,沒有對z MHz RF產生器的控制來提供功率值Ps6到Ps10。舉例來說,沒有對於主電腦系統的處理器之回授迴路來在x kHz RF產生器的操作的一循環之內控制功率值Ps6到Ps10。為了進一步說明,在x kHz RF產生器的操作的一循環之內,處理器不基於 從連接至z MHz RF產生器之輸出的感測器所接收的變量的量測值而改變功率值Ps6到Ps10。
z MHz RF產生器在x kHz RF產生器的第一循環期間操作於頻率f211。舉例來說,主電腦系統的處理器將z MHz RF產生器之操作的頻率f211提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f211提供至電源供應器112,以操作電源供應器112在x kHz RF產生器的操作的第一循環期間產生具有頻率f211的一RF訊號。
在x kHz RF產生器的操作的第一循環期間電源供應器110產生具有頻率f11的一RF訊號且電源供應器112產生具有頻率f211的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211且具有功率量Ps6到Ps10的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
此外,串聯電路108a的電容器C1在x kHz RF產生器的操作的第一循環期間受控制成具有電容值C111。舉例來說,主電腦系統的處理器發送一命令訊號至驅動器D1,以在電容器C1的板之間達成一面積值。驅動器D1基於該命令訊號產生一驅動訊號,且將該驅動訊號發送至馬達M1。馬達M1的轉子基於該驅動訊號而旋轉,以移動與馬達M1連接的連接機構以進一步達成介於電容器C1的板之間的面積。當達成介於電容器C1的板之間的面積,電容器C1具有電容C111。
類似地,並聯電路108b的電容器C2在x kHz RF產生器的操作的第一循環期間受控制成具有電容值C211。舉例來說,主電腦系統的處理器發送一命令訊號至驅動器D2,以在電容器C2的板之間達成一面積值。驅動器D2基於該命令訊號產生一驅動訊號,且將該驅動訊號發送至馬達M2。馬達M2的轉子基於該驅動訊號而旋轉,以移動與馬達M2連接的連接機構以進一步達成介於電容器C2的板之間的面積。當達成介於電容器C2的板之間的面積,電容器C2具有電容C211。
當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211,由z MHz RF產生器所供給的功率為Ps6,電容器C1的電容值為C111,且電容器C2的電容值為C211之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ6。類似地,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211,由z MHz RF產生器所供給的功率為Ps7,電容器C1的電容值為C111,且電容器C2的電容值為C211之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ7。此外,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211,由z MHz RF產生器所供給的功率為Ps8,電容器C1的電容值為C111,且電容器C2的電容值為C211之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ8。並且,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211,由z MHz RF產生器所供給的功率為Ps9,電容器C1的電容值為C111,且電容器C2的電容值為C211之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ9。當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211,由z MHz RF產生器所供給的功率為Ps10,電容器C1的電容值為C111,且電容器C2的電容值為C211之時,感測器在z MHz RF產生器的輸出處量測的電壓反射係數為Γ10。
該感測器也在z MHz RF產生器的輸出處量測功率值Ps6到Ps10。該感測器將值Γ6到Γ10以及值Ps6到Ps10經由傳輸電纜提供至處理器。處理器將值f11、值Ps6到Ps10、值f211、值C111、值C211、及值Γ6到Γ10儲存在表600中,表600係儲存在記憶裝置中。在一個實施例中,處理器將值f11、值Ps6到Ps10、值f211、值C111、值C211、及值Γ6到Γ10儲存在圖8B的表810中,且將表810係儲存在記憶裝置中。
處理器針對x kHz RF產生器的第一循環計算功率加權平均功率反射係數值PWAPRC2。舉例來說,處理器對於x kHz RF產生器的該循環將PWARPC2計算為[{(Ps6)X(|Γ6|)2}+{(Ps7)X(|Γ7|)2}+{(Ps8)X(|Γ8|)2}+{(Ps9)X(|Γ9|)2}+{(Ps10)X(|Γ10|)2}]/5。
類似地,處理器針對x kHz RF產生器的操作的第二循環計算另一功率加權平均功率反射係數PWARPCA。舉例來說,處理器將PWARPCA計算為[{(Ps6A)X(|Γ6A|)2}+{(Ps7A)X(|Γ7A|)2}+{(Ps8A)X(|Γ8A|)2}+{(Ps9A)X(|Γ9A|)2}+{(Ps10A)X(|Γ10A|)2}]/5。應注意的是,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211A,由z MHz RF產生器所供給的功率為Ps6A,電容器C1的電容值為C111A,且電容器C2的電容值為C211A之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ6A。類似地,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211A,由z MHz RF產生器所供給的功率為Ps7A,電容器C1的電容值為C111A,且電容器C2的電容值為C211A之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ7A。此外,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211A,由z MHz RF產生器所供給的功率為Ps8A,電容器C1的電容值為C111A,且電容器C2的電容值為C211A之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ8A。並且,當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211A,由z MHz RF產生器所供給的功率為Ps9A,電容器C1的電容值為C111A,且電容器C2的電容值為C211A之時,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ9A。當x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率為f211A,由z MHz RF產生器所供給的功率為Ps10A,電容器C1的電容值為C111A,且電容器C2的電容值為C211A之時,感測器在z MHz RF產生器的輸出處量測的電壓反射係數為Γ10A。
在x kHz RF產生器操作的第二循環期間,電源供應器110產生具有頻率f11的一RF訊號且電源供應器112產生具有頻率f211A且具有功率量Ps6A到Ps10A的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211A且具有功率量Ps6A到Ps10A的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的該負載的阻抗與連接至輸入i1及i2的一來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
對於RF電纜RFC21,在x kHz RF產生器的操作的多個循環期間,處理器判定z MHz RF產生器操作的頻率值、電容器C1的電容、及電容器C2的電容,以在由z MHz RF產生器所輸送功率上增加效率。舉例來說,處理器判定值PWARPC2與PWARPCA其中何者係低的。處理器比較值PWARPC2與值PWARPCA,以判定值PWARPC2低於值PWARPCA。在值PWARPC2所針對計算的第一循環期間,由z MHz RF產生器所輸送功率的效率增加。處理器從表600識別出,由z MHz RF產生器所輸送功率的效率增加之在第一循環期間z MHz RF產生器操作的頻率值f211、電容器C1的電容C111、及電容器C2的電容C211。應注 意的是,當RF電纜RFC21係用以將z MHz RF產生器的輸出連接至IMN 102的輸入i2之時,由z MHz RF產生器所輸送功率的效率增加。
在一實施例中,取代控制電容器C1及C2二者以決定使由z MHz RF產生器所輸送功率上的效率增加之電容器C1和C2的電容,電容器C1或電容器C2任一者係加以控制,以決定使效率增加之該電容器的電容。舉例來說,值PWARPCA係在未控制電容器C1具有值C111A的情況下達成。電容器C1的電容係加以維持而具有值C111且值PWARPCA係基於電容C111而非電容C111A而加以達成。從x kHz RF產生器操作的第一循環至第二循環,電容器C1的電容沒有改變。作為另一範例,值PWARPCA係在未控制電容器C2具有值C211A的情況下達成。電容器C2的電容係加以維持而具有值C211且值PWARPCA係基於電容C211而非電容C211A而加以達成。從x kHz RF產生器操作的第一循環至第二循環,電容器C2的電容沒有改變。作為又另一範例,值PWARPC2係在未控制電容器C1具有值C111的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C1的電容上沒有改變。作為另一範例,值PWARPC2係在未控制電容器C2具有值C211的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C2的電容上沒有改變。
圖7A為史密斯圖406的實施例。史密斯圖406包含圖408。圖7B為史密斯圖702的實施例,描述當由z MHz RF產生器所輸送功率的效率增加時,功率反射係數在區域R1內是低的。史密斯圖702具有在z MHz RF產生器的輸出處的電壓反射係數的虛部相對於電壓反射係數的實部的圖704。圖704涵蓋x kHz RF產生器操作的一個循環。圖704係針對x kHz RF產生器的一循環加以標繪。圖408以順時針方向旋轉並改變形狀而產生圖704以在由z MHz RF產生器所輸送的功率上增加效率。在圖704中,與圖408中的區域R1相比,將區域R1順時針方向旋轉。 在向右旋轉之後,與圖406相比,圖704具有相同數量的點或增加數量的點落在區域R1之中。
圖7C為功率等位線圖720的實施例,描繪針對x kHz RF產生器的第一循環的一部分,對於圖5的RF電纜RFC21,與圖1的RF電纜RFC2相比,於z MHz RF產生器的輸出處由z MHz RF產生器所供給的功率係較高的。如在功率等位線圖720內標繪的圖704中所描繪,與圖7A的圖408相比,較大數量的點落在區域R1之內。因此,對於圖704的區域R1中的點,於z MHz RF產生器的輸出處所供給的功率量係大於落在圖408的區域R1中的點的量。對於圖704的一些點,除了功率反射係數減少之外,於輸出處由z MHz RF產生器所供給的功率增加。與使用RF電纜RFC2時於輸出處的功率量相比,於z MHz RF產生器的輸出處的功率量增加。當在圖704中有在順時針方向的旋轉時,對於區域R1由z MHz RF產生器所供給的功率增加。
如圖7C中所顯示,靠近史密斯圖702中心的區域R1(於該處功率反射係數|Γ|2較小),藉由最靠近功率等位線圖720的右上角,具有最高的輸出功率。此外,如圖7C中所顯示,區域R2和R3藉由最靠近史密斯圖702的周界而具有最高的功率反射係數|Γ|2,且藉由朝功率等位線圖720左下角配置而具有由z MHz RF產生器所供給的最低功率。
在一個實施例中,如圖704中顯示,對於RF電纜RFC21,與RF電纜RFC2相比,於z MHz RF產生器的輸出處所供給的功率在區域R2中減少。與圖408的區域R2中所顯示的功率量相比,於z MHz RF產生器的輸出處所供給的功率減少。在一實施例中,如圖704中顯示,對於RF電纜RFC21,於z MHz RF產生器的輸出處所供給的功率,與RF電纜RFC2相比,在區域R3中實質相同。與圖408的區域R3中所顯示的功率量相比,於z MHz RF產生器的輸出處所供給的功率實質相同。
圖8A為系統800實施例的圖示,描述一處理程序,其中使用頻率f211、電容C111、及電容C211。當使用頻率f211、電容C111、及電容C211之時,在由z MHz RF產生器所輸送的功率上的效率增加。除了在系統800之中例如晶圓802之基板正受到處理之外,系統800與圖5的系統500相同。舉例來說,對該基板進行材料沉積,或進行清潔,或進行蝕刻,或進行濺鍍。該基板係藉由置放在下電極的一表面上而加以處理。此外,系統800不包含感測器。參照圖5及6所述的訓練程序係在圖8A的系統800中所述處理程序執行之前加以執行。
圖8B為表810的實施例,用以描繪圖8A的系統800的處理程序。如在表810中所顯示,x kHz RF產生器以具有頻率f11的一循環重複地操作。x kHz RF產生器操作的各循環具有頻率f11。在處理程序期間,主電腦系統的處理器將x kHz RF產生器的操作的頻率f11提供至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的該循環期間產生具有頻率f11的一RF訊號。
當x kHz RF產生器操作於頻率f11時,z MHz RF產生器的電源供應器112供給功率值,例如從Ps6到Ps10範圍的功率值。在x kHz RF產生器操作的一循環期間,沒有對z MHz RF產生器的控制來提供功率值Ps6到Ps10。舉例來說,感測器未連接至z MHz RF產生器的輸出以建立回授迴路來在x kHz RF產生器的操作的一循環期間控制功率值Ps6到Ps10。
處理器從表810中識別出在由z MHz RF產生器所輸送功率上增加效率的z MHz RF產生器操作的頻率f211、電容器C1的電容C111、及電容器C2的電容C211。z MHz RF產生器由處理器加以控制以在x kHz RF產生器的操作的多個循環期間在頻率f211加以操作。舉例來說,主電腦系統的處理器將z MHz RF產生器之操作的頻率f211提供至z MHz RF產生器的FC。z MHz RF產生器的FC將 頻率f211提供至電源供應器112,以操作電源供應器112在x kHz RF產生器的操作的該等循環期間產生具有頻率f211的一RF訊號。
此外,串聯電路108a的電容器C1,以與參照圖6以上所述相同方式,在x kHz RF產生器操作的該等循環期間,藉由處理器控制成具有電容值C111。類似地,並聯電路108b的電容器C2,以與參照圖6以上所述相同方式,在x kHz RF產生器操作的該等循環期間,藉由處理器控制成具有電容值C211。
在處理程序及x kHz RF產生器操作的該等循環期間,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率f211和功率值Ps6到Ps10的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211且具有功率量Ps6到Ps10的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
在該處理程序期間,除了供給經修改的RF訊號至下電極之外,一或多種製程氣體,例如含氧氣體、含氟氣體等等,經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。當在x kHz RF產生器操作的多個循環期間維持頻率f211、電容C111、及電容C211時,於處理程序期間在z MHz RF產生器所輸送的功率上的效率增加。藉由縮減朝z MHz RF產生器反射的功率,該平衡狀態改善由z MHz RF產生器所輸送功率的效率。在z MHz RF產生器所輸送功率上效率的增加,使處理晶圓802之效率增加。
在一實施例中,在具有x kHz RF產生器操作的多個循環的處理程序期間,取代控制電容器C1及C2二者以達成使由z MHz RF產生器所輸送功率上的效率增加之電容C111和電容C211,電容器C1或電容器C2任一者係加以控制,以增加該效率。舉例來說,處理器不經由馬達M1控制電容器C1使電容器C1具有電容C111;而是,處理器經由馬達M2控制電容器C2使得C2具有電容C211。作為另一範例,處理器不經由馬達M2控制電容器C2使電容器C2具有電容C211;而是,處理器經由馬達M1控制電容器C1使得C1具有電容C111。
在一個實施例中,在處理程序期間,x kHz RF產生器操作的各循環係分成不同於五個的數個次循環。
圖9A為系統900實施例的圖示,描述一處理程序,其中使用頻率f21、電容C11、及電容C21。當使用頻率f21、電容C11、及電容C21之時,在由z MHz RF產生器所輸送的功率上的效率增加。除了在系統900之中晶圓802正受到處理之外,系統900與圖1的系統100相同。此外,系統900不包含感測器。參照圖1及3所述的訓練程序係在圖9A的系統900中所述處理程序之前加以執行。
圖9B為表910的實施例,用以針對RF電纜RFC2描繪圖9A的系統900的處理程序。如在表910中所顯示,x kHz RF產生器以具有頻率f11的一循環重複地操作。x kHz RF產生器操作的各循環具有頻率f11。在處理程序期間,主電腦系統的處理器將x kHz RF產生器的操作的頻率f11提供至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的該等循環期間產生具有頻率f11的一RF訊號。
在處理程序期間,當x kHz RF產生器操作於頻率f11時,z MHz RF產生器的電源供應器112供給功率值,例如從Ps1到Ps5範圍的功率值。在x kHz RF產生器操作的一循環期間,沒有對z MHz RF產生器的控制來提供功率值Ps1到 Ps5。舉例來說,感測器未連接至z MHz RF產生器的輸出以建立回授迴路來在x kHz RF產生器的操作的一循環期間控制功率值Ps1到Ps5。
處理器從表910中識別出在由z MHz RF產生器所輸送功率上增加效率的z MHz RF產生器操作的頻率f21、電容器C1的電容C11、及電容器C2的電容C21。z MHz RF產生器由處理器加以控制以在x kHz RF產生器的操作的多個循環期間在頻率f21加以操作。舉例來說,主電腦系統的處理器將z MHz RF產生器之操作的頻率f21提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f21提供至電源供應器112,以操作電源供應器112在x kHz RF產生器的操作的該等循環期間產生具有頻率f21的一RF訊號。
此外,如參照圖3以上所述,串聯電路108a的電容器C1,在x kHz RF產生器操作的該等循環期間,藉由處理器控制成具有電容值C11。類似地,如參照圖3以上所述,並聯電路108b的電容器C2,在x kHz RF產生器操作的該等循環期間,藉由處理器控制成具有電容值C21。
在x kHz RF產生器的處理程序的操作的該等循環期間,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率f21和功率值Ps1到Ps5的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21且具有功率量Ps1到Ps5的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF 訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。當在x kHz RF產生器操作的多個循環期間維持頻率f21、電容C11、及電容C21時,於處理程序期間在z MHz RF產生器所輸送的功率上的效率增加。
在一實施例中,在具有x kHz RF產生器操作的多個循環的處理程序期間,取代控制電容器C1及C2二者以達成使由z MHz RF產生器所輸送功率上的效率增加之電容C11和電容C21,電容器C1或電容器C2任一者係以參照圖8B如上所述方式加以控制,以增加該效率。
在一個實施例中,在處理程序期間,x kHz RF產生器操作的各循環係以參照圖8B如上所述方式分成不同於五個的數個次循環。
在一個實施例中,參照圖3和6以上所述方法在基板802的處理期間而非訓練程序期間加以執行。舉例來說,在參照圖1、2、5、及6上述方法執行的同時,對基板802進行處理。
圖10為系統1000實施例的圖示,描述在x kHz RF產生器操作的多個循環期間z MHz RF產生器的主動控制。除了在系統1000之中z MHz RF產生器的一功率控制器(PWR CTRL)在x kHz RF產生器操作的一循環期間主動控制電源供應器112所供應的功率量之外,系統1000與圖1的系統100相同。舉例來說,從x kHz RF產生器操作的第一循環到x kHz RF產生器操作的第二循環,z MHz RF產生器的功率控制器改變(例如增加或減少)由電源供應器112所供給的功率量。z MHz RF產生器的功率控制器係連接至電源供應器112。此外,除了在系統1000之中對基板802進行處理同時將表1100(圖11)加以產生之外,系統1000與圖1的系統100相同。
圖11為表1100的實施例,描繪圖10的系統1000的操作。如在表1100中所顯示,x kHz RF產生器具有操作頻率f11的第一循環。
x kHz RF產生器操作的各循環具有頻率f11。舉例來說,x kHz RF產生器之操作的第一個五分之一第一循環具有頻率f11,x kHz RF產生器之操作的第二個五分之一第一循環具有頻率f11,x kHz RF產生器之操作的第三個五分之一第一循環具有頻率f11,x kHz RF產生器之操作的第四個五分之一第一循環具有頻率f11,且x kHz RF產生器之操作的第五個五分之一第一循環具有頻率f11。該第二個五分之一第一循環係連續於該第一個五分之一第一循環。該第三個五分之一第一循環係連續於該第二個五分之一第一循環。該第四個五分之一第一循環係連續於該第三個五分之一第一循環。該第五個五分之一第一循環係連續於該第四個五分之一第一循環。主電腦系統的處理器將x kHz RF產生器的操作的頻率f11提供至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的第一循環期間產生具有頻率f11的一RF訊號。
當x kHz RF產生器在x kHz RF產生器操作的第一循環的第一個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps11。舉例來說,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps11提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率值Ps11提供至電源供應器112以操作電源供應器112在x kHz RF產生器操作的第一循環的第一個五分之一次循環期間產生具有功率值Ps11的一RF訊號。類似地,當x kHz RF產生器在x kHz RF產生器操作的第一循環的第二個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps12。此外,當x kHz RF產生器在x kHz RF產生器操作的第一循環的第三個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps13。當x kHz RF產生器在x kHz RF產生器操作的第一循環的第四個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供 應器112受控制而供給功率值Ps14。並且,當x kHz RF產生器在x kHz RF產生器操作的第一循環的第五個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps15。
在x kHz RF產生器操作的第一循環期間用以維持功率值Ps11到Ps15之藉由處理器的z MHz RF產生器的功率控制器的控制,為z MHz RF產生器的一主動控制。舉例來說,有從感測器至主電腦系統的處理器之回授迴路,以控制z MHz RF產生器的功率值。為進一步說明,在x kHz RF產生器操作的第一循環的第一個五分之一次循環期間,處理器改變z MHz RF產生器的功率值,以基於自與z MHz RF產生器的輸出連接的感測器所接收之變量的量測值而達成功率值Ps11。
z MHz RF產生器在x kHz RF產生器操作的第一循環期間操作於頻率f21。舉例來說,在x kHz RF產生器操作的第一循環的第一至第五個次循環期間,主電腦系統的處理器將z MHz RF產生器之操作的頻率f21提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f21提供至電源供應器112,以操作電源供應器112在x kHz RF產生器操作的第一循環的第一至第五次循環期間產生具有頻率f21的一RF訊號。
在x kHz RF產生器操作的第一循環期間,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率f21和功率值Ps11到Ps15的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21且具有功率量Ps11到Ps15的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。該RF訊號在x kHz RF產生器的第一循環的第一個五分之一次循環期間具有功率量Ps11,在x kHz RF產生器的第一循環的第二個五分之一次循環期間具有功率量Ps12,在x kHz RF產生 器的第一循環的第三個五分之一次循環期間具有功率量Ps13,在x kHz RF產生器的第一循環的第四個五分之一次循環期間具有功率量Ps14,且在x kHz RF產生器的第一循環的第五個五分之一次循環期間具有功率量Ps15。
IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。
此外,串聯電路108a的電容器C1,以與串聯電路108a的電容器C1在x kHz RF產生器操作的該循環期間控制成具有電容C11的以上所述相同的方式,在x kHz RF產生器操作的第一循環期間,控制成具有電容值C11。類似地,並聯電路108b的電容器C2,以與並聯電路108b的電容器C2在x kHz RF產生器的第一循環期間控制成具有電容C21的以上所述相同的方式,在x kHz RF產生器操作的第一循環期間,控制成具有電容值C21。
在該第一循環的第一個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps11,電容器C1的電容值為C11,且電容器C2的電容值為C21,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ1。類似地,在該第一循環的第二個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps12,電容器C1的電容值為C11,且電容器C2的電容值為C21,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ2。此外,在該第一循環的第三個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f21,由z MHz RF產 生器所供給的功率為Ps13,電容器C1的電容值為C11,且電容器C2的電容值為C21,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ3。並且,在該第一循環的第四個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps14,電容器C1的電容值為C11,且電容器C2的電容值為C21,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ4。在該第一循環的第五個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f21,由z MHz RF產生器所供給的功率為Ps15,電容器C1的電容值為C11,且電容器C2的電容值為C21,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ5。
該感測器也在z MHz RF產生器的輸出處量測功率值Ps11到Ps15。該感測器將值Γ1到Γ5以及值Ps11到Ps15經由傳輸電纜提供至處理器。處理器將值f11、值Ps11到Ps15、頻率值f21、值C11、值C21、及值Γ1到Γ5儲存在表1100中,表1100係儲存在記憶裝置中。在一個實施例中,處理器將值f11、功率值Ps11到Ps15、頻率值f21、值C11、值C21、及值Γ1到Γ5儲存在表1500(圖15)中。表1500係儲存在記憶裝置中。
處理器針對x kHz RF產生器的第一循環計算PWAPRC。舉例來說,處理器對於x kHz RF產生器的第一循環將PWARPC3計算為[{(Ps11)X(|Γ1|)2}+{(Ps12)X(|Γ2|)2}+{(Ps13)X(|Γ3|)2}+{(Ps14)X(|Γ4|)2}+{(Ps15)X(|Γ5|)2}]/5。
類似地,處理器針對x kHz RF產生器的操作的第二循環計算另一功率加權平均功率反射係數PWARPCb。舉例來說,處理器將PWARPCb計算為[{(Ps11b)X(|Γ1b|)2}+{(Ps12b)X(|Γ2b|)2}+{(Ps13b)X(|Γ3b|)2}+{(Ps14b)X(|Γ4b|)2}+{(Ps15b)X(|Γ5b|)2}]/5。此外,在x kHz RF產生器操作的第二循環的第一個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f21b,由z MHz RF產生器所供給的功率控制為Ps11b, 電容器C1的電容值為C11b,且電容器C2的電容值為C21b,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ1b。類似地,在x kHz RF產生器操作的第二循環的第二個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f21b,由z MHz RF產生器所供給的功率控制為Ps12b,電容器C1的電容值為C11b,且電容器C2的電容值為C21b,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ2b。此外,在x kHz RF產生器操作的第二循環的第三個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f21b,由z MHz RF產生器所供給的功率控制為Ps13b,電容器C1的電容值為C11b,且電容器C2的電容值為C21b,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ3b。並且,在x kHz RF產生器操作的第二循環的第四個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f21b,由z MHz RF產生器所供給的功率控制為Ps14b,電容器C1的電容值為C11b,且電容器C2的電容值為C21b,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ4b。在x kHz RF產生器操作的第二循環的第五個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f21b,由z MHz RF產生器所供給的功率控制為Ps15b,電容器C1的電容值為C11b,且電容器C2的電容值為C21b,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ5b。
應注意的是,對於主動控制,z MHz RF產生器的頻率使用z MHz RF產生器的FC加以控制。舉例來說,主電腦系統的處理器將z MHz RF產生器操作的頻率f21b提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f21b提供至電源供應器112以操作電源供應器112產生具有頻率f21b的一RF訊號。類似地,應注意的是,對於主動控制,z MHz RF產生器供應的功率量係使用z MHz RF產生器的功率控制器加以控制。舉例來說,在x kHz RF產生器操作的第二循 環的第一個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps11b提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps11b提供至電源供應器112以操作電源供應器112產生具有功率量Ps11b的一RF訊號。
在x kHz RF產生器操作的第二循環期間,電源供應器110產生具有頻率f11的一RF訊號且電源供應器112產生具有頻率f21b及功率量Ps11b到Ps15b的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21b且具有功率量Ps11b到Ps15b的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。該RF訊號在x kHz RF產生器的第二循環的第一個五分之一次循環期間具有功率量Ps11b,在x kHz RF產生器的第二循環的第二個五分之一次循環期間具有功率量Ps12b,在x kHz RF產生器的第二循環的第三個五分之一次循環期間具有功率量Ps13b,在x kHz RF產生器的第二循環的第四個五分之一次循環期間具有功率量Ps14b,且在x kHz RF產生器的第二循環的第五個五分之一次循環期間具有功率量Ps15b。
IMN 102將連接至輸出o1的該負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。
在x kHz RF產生器的操作的多個循環期間,針對主動控制及RF電纜RFC2,處理器判定使由z MHz RF產生器所輸送功率的效率增加的由z MHz RF 產生器的電源供應器112所供給的功率值、z MHz RF產生器操作的頻率值、電容器C1的電容、及電容器C2的電容。舉例來說,處理器判定值PWARPC3與PWARPCb其中何者係低的。處理器比較值PWARPC3與值PWARPCb,以判定值PWARPC3低於值PWARPCb。在值PWARPC3所針對計算的第一循環期間,由z MHz RF產生器所輸送功率的效率增加。處理器從表1100識別出,使由z MHz RF產生器所輸送功率效率增加之在第一循環期間z MHz RF產生器操作的頻率值f21、由z MHz RF產生器所供給功率的功率值Ps11到Ps15、電容器C1的電容C11、及電容器C2的電容C21。應注意的是,當RF電纜RFC2係用以將z MHz RF產生器的輸出連接至IMN 102的輸入i2之時,在由z MHz RF產生器所輸送功率上的效率增加。
在一實施例中,取代控制電容器C1及C2二者以決定使由z MHz RF產生器所輸送功率上的效率增加之電容器C1和C2的電容,電容器C1或電容器C2任一者係加以控制以增加該效率。舉例來說,值PWARPCb係在未控制電容器C1具有值C11b的情況下達成。電容器C1的電容係加以維持而具有值C11,且值PWARPC3係基於電容C11而非電容C11b而加以決定。從x kHz RF產生器操作的第一循環至第二循環,電容器C1的電容沒有改變。作為另一範例,值PWARPCb係在未控制電容器C2具有值C21b的情況下達成。電容器C2的電容係加以維持而具有值C21且值PWARPCb係基於電容C21而非電容C21b而加以決定。從x kHz RF產生器操作的第一循環至第二循環,電容器C2的電容沒有改變。作為又另一範例,值PWARPC3係在未控制電容器C1具有值C11的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C1的電容上沒有改變。作為另一範例,值PWARPC3係在未控制電容器C2具有值C21的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C2的電容上沒有改變。
在一個實施例中,在主動控制期間x kHz RF產生器操作的循環係針對RF電纜RFC2在主動控制期間分成不同於五個的數個次循環。舉例來說,x kHz RF產生器操作的第一循環係分成四個次循環或六個次循環。電容器C1和C2的電容值在x kHz RF產生器操作的該循環期間針對其他數量的次循環加以達成。此外,z MHz RF產生器在該其他數量的次循環期間具有一操作頻率,且感測器在該其他數量的次循環期間量測該變量的值,例如四或六個值。
應注意的是,z MHz RF產生器的供給功率的功率值係取決於在z MHz RF產生器的輸出處的電壓反射係數之幅值的數值。舉例來說,當Γ1量測為高的,例如大於一預定閾值,功率值Ps11係控制為低的,例如低於一預定限值。作為另一例子,當Γ1量測為高的,例如低於該預定閾值,功率值Ps11係控制為高的,例如高於該預定限值。
圖12為系統1200實施例的圖示,描述將z MHz RF產生器的輸出連接至IMN 102的輸入i2之RF電纜RFC21的效應。在z MHz RF產生器所供給功率的主動控制期間,RF電纜RFC21係取代RF電纜RFC2加以使用。晶圓802在電漿腔室內受到處理。除了RF電纜RFC2以RF電纜RFC21取代之外,系統1200與圖10的系統1000相同。RF電纜RFC21係連接於z MHz RF產生器的輸出與輸入i2之間。感測器在z MHz RF產生器的輸出處量測該變量。該變量係在晶圓802進行處理的處理程序期間於系統1200加以量測。舉例來說,當該變量藉由該感測器量測時,電漿腔室具有置放在下電極上以進行處理的晶圓802。
圖13為表1300的實施例,用以針對RF電纜RFC21描繪圖12的系統1200的主動控制的操作。如在表1300中所顯示,x kHz RF產生器在第一循環期間於頻率f11操作。當x kHz RF產生器操作於頻率f11時,z MHz RF產生器的電源供應器112受到主動控制以供給功率值Ps16到Ps20。舉例來說,在x kHz RF產生器操作的第一循環的第一個五分之一次循環期間,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps16提供至z MHz RF產生器的功率控制器。在x kHz RF產生器操作的第一循環的第二個五分之一次循環期間,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps17提供至z MHz RF產生器的功率控制器。此外,在x kHz RF產生器操作的第一循環的第三個五分之一次循環期間,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps18提供至z MHz RF產生器的功率控制器。在x kHz RF產生器操作的第一循環的第四個五分之一次循環期間,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps19提供至z MHz RF產生器的功率控制器。在x kHz RF產生器操作的第一循環的第五個五分之一次循環期間,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps20提供至z MHz RF產生器的功率控制器。
z MHz RF產生器的功率控制器將功率值Ps16到Ps20提供至電源供應器112以操作電源供應器112在x kHz RF產生器操作的第一循環期間產生具有功率值Ps16到Ps20的一RF訊號。用以在x kHz RF產生器操作的各循環期間改變功率值之藉由處理器對z MHz RF產生器的功率控制器的控制係z MHz RF產生器的主動控制。舉例來說,有從感測器至主電腦系統的處理器之回授迴路,以控制功率值Ps16到Ps20。為進一步說明,在x kHz RF產生器操作的第一循環的第一個五分之一次循環期間,處理器改變功率值,以基於自與z MHz RF產生器的輸出連接的感測器所接收之變量的量測值而達成功率值Ps16。
在x kHz RF產生器操作的第一循環期間,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率f211和功率值Ps16到Ps20的另一RF訊號。由電源供應器112所產生的RF訊號在x kHz RF產生器的第一循環的第一個五分之一次循環期間具有功率量Ps16,在x kHz RF產生器的第一循環的第二個五分之一次循環期間具有功率量Ps17,在x kHz RF產生器的第一循環的第三個五分之一次循環期間具有功率量Ps18,在x kHz RF產生器的第一循環的 第四個五分之一次循環期間具有功率量Ps19,在x kHz RF產生器的第一循環的第五個五分之一次循環期間具有功率量Ps20。
由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211且具有功率量Ps16到Ps20的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。
此外,串聯電路108a的電容器C1,以與參照圖6以上所述相同的方式,在x kHz RF產生器操作的第一循環期間,控制成具有電容值C111。類似地,並聯電路108b的電容器C2,以與參照圖6以上所述相同的方式,在x kHz RF產生器操作的第一循環期間,控制成具有電容值C211。
在x kHz RF產生器操作的該第一循環的第一個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f211,由z MHz RF產生器所供給的功率具有功率量Ps16,電容器C1的電容值為C111,且電容器C2的電容值為C211,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ6。類似地,在x kHz RF產生器操作的該第一循環的第二個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f211,由z MHz RF產生器所供給的功率具有功率量Ps17,電容器C1的電容值為C111,且電容器C2的電容值為C211,感測器在z MHz RF產生器的輸出處量測電壓反射 係數為Γ7。此外,在x kHz RF產生器操作的該第一循環的第三個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f211,由z MHz RF產生器所供給的功率具有功率量Ps18,電容器C1的電容值為C111,且電容器C2的電容值為C211,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ8。並且,在x kHz RF產生器操作的該第一循環的第四個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f211,由z MHz RF產生器所供給的功率具有功率量Ps19,電容器C1的電容值為C111,且電容器C2的電容值為C211,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ9。在x kHz RF產生器操作的該第一循環的第五個五分之一次循環期間,x kHz RF產生器操作的頻率為f11,z MHz RF產生器操作的頻率為f211,由z MHz RF產生器所供給的功率具有功率量Ps20,電容器C1的電容值為C111,且電容器C2的電容值為C211,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ10。
該感測器也在z MHz RF產生器的輸出處量測功率值Ps16到Ps20。該感測器將值Γ6到Γ10以及功率值Ps16到Ps20經由與該感測器連接的傳輸電纜提供至處理器。處理器將值f11、功率值Ps16到Ps20、頻率值f211、值C111、值C211、及值Γ6到Γ10儲存在表1300中,表1300係儲存在記憶裝置中。處理器針對x kHz RF產生器的第一循環計算一功率加權平均功率反射係數值PWAPRC4。舉例來說,處理器對於x kHz RF產生器操作的第一循環將值PWARPC4計算為[{(Ps16)X(|Γ6|)2}+{(Ps17)X(|Γ7|)2}+{(Ps18)X(|Γ8|)2}+{(Ps19)X(|Γ9|)2}+{(Ps20)X(|Γ10|)2}]/5。
類似地,在主動控制期間,處理器針對x kHz RF產生器的操作的第二循環計算另一功率加權平均功率反射係數值PWARPCB。舉例來說,處理器將值PWARPCB計算為[{(Ps16B)X(|Γ6B|)2}+{(Ps17B)X(|Γ7B|)2}+{(Ps18B)X (|Γ8B|)2}+{(Ps19B)X(|Γ9B|)2}+{(Ps20B)X(|Γ10B|)2}]/5。應注意的是,在x kHz RF產生器操作的第二循環的第一個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f211B,由z MHz RF產生器所供給的功率控制為Ps16B,電容器C1的電容值為C111B,且電容器C2的電容值為C211B,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ6B。類似地,在x kHz RF產生器操作的第二循環的第二個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f211B,由z MHz RF產生器所供給的功率控制為Ps17B,電容器C1的電容值為C111B,且電容器C2的電容值為C211B,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ7B。此外,在x kHz RF產生器操作的第二循環的第三個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f211B,由z MHz RF產生器所供給的功率控制為Ps18B,電容器C1的電容值為C111B,且電容器C2的電容值為C211B,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ8B。並且,在x kHz RF產生器操作的第二循環的第四個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f211B,由z MHz RF產生器所供給的功率控制為Ps19B,電容器C1的電容值為C111B,且電容器C2的電容值為C211B,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ9B。在x kHz RF產生器操作的第二循環的第五個五分之一次循環期間,x kHz RF產生器的操作的頻率為f11,z MHz RF產生器的操作的頻率係控制為f211B,由z MHz RF產生器所供給的功率控制為Ps20B,電容器C1的電容值為C111B,且電容器C2的電容值為C211B,感測器在z MHz RF產生器的輸出處量測電壓反射係數為Γ10B。
應注意的是,對於主動控制,z MHz RF產生器的頻率使用z MHz RF產生器的FC加以控制。舉例來說,主電腦系統的處理器將z MHz RF產生器操 作的頻率f211B提供至z MHz RF產生器的FC。z MHz RF產生器的FC將頻率f211B提供至電源供應器112以操作電源供應器112產生具有頻率f211B的一RF訊號。類似地,應注意的是,對於主動控制,z MHz RF產生器供應的功率量係使用z MHz RF產生器的功率控制器加以控制。舉例來說,在x kHz RF產生器操作的一循環的第一個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps16B提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps16B提供至電源供應器112以操作電源供應器112產生具有功率量Ps16B的一RF訊號。作為另一例子,在x kHz RF產生器操作的該循環的第二個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps17B提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps17B提供至電源供應器112以操作電源供應器112產生具有功率量Ps17B的一RF訊號。作為又另一例子,在x kHz RF產生器操作的該循環的第三個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps18B提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps18B提供至電源供應器112以操作電源供應器112產生具有功率量Ps18B的一RF訊號。作為另一例子,在x kHz RF產生器操作的該循環的第四個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps19B提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps19B提供至電源供應器112以操作電源供應器112產生具有功率量Ps19B的一RF訊號。作為又另一例子,在x kHz RF產生器操作的該循環的第五個五分之一次循環期間,主電腦系統的處理器將針對z MHz RF產生器操作的功率量Ps20B提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率量Ps20B提供至電源供應器112以操作電源供應器112產生具有功率量Ps20B的一RF訊號。
在x kHz RF產生器操作的第二循環期間,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率值f211B且功率值Ps16B到Ps20B的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211B且具有功率值Ps16B到Ps20B的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。該RF訊號在x kHz RF產生器的第二循環的第一個五分之一次循環期間具有功率量Ps16B,在x kHz RF產生器的第二循環的第二個五分之一次循環期間具有功率量Ps17B,在x kHz RF產生器的第二循環的第三個五分之一次循環期間具有功率量Ps18B,在x kHz RF產生器的第二循環的第四個五分之一次循環期間具有功率量Ps19B,且在x kHz RF產生器的第二循環的第五個五分之一次循環期間具有功率量Ps20B。
IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的一來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。
對於RF電纜RFC21,在x kHz RF產生器的操作的多個循環期間,處理器判定使由z MHz RF產生器所輸送功率的效率增加的z MHz RF產生器操作的頻率值、由z MHz RF產生器所供給的功率值、電容器C1的電容、及電容器C2的電容。舉例來說,處理器判定值PWARPC4與PWARPCB其中何者係低的。處理器比較值PWARPC4與值PWARPCB,以判定值PWARPC4低於值PWARPCB。 在值PWARPC4所針對計算的第一循環期間,由z MHz RF產生器所輸送功率的效率增加。當RF電纜RFC21係用以將z MHz RF產生器的輸出連接至IMN 102的輸入i2之時,處理器從表1300識別出,由z MHz RF產生器所輸送功率效率增加之在第一循環期間z MHz RF產生器操作的頻率值f21、由z MHz RF產生器所供給功率的功率值Ps16到Ps20、電容器C1的電容C111、及電容器C2的電容C211。
在一實施例中,取代控制電容器C1及C2二者以決定在第一循環期間使由z MHz RF產生器所輸送功率上的效率增加之電容器C1和C2的電容,電容器C1或電容器C2任一者係加以控制以決定增加效率的電容器的電容。舉例來說,值PWARPCB係在未控制電容器C1具有值C111B的情況下達成。電容器C1的電容係加以維持而具有值C111,且值PWARPCB係基於電容C111而非電容C111B而加以決定。從x kHz RF產生器操作的第一循環至第二循環,電容器C1的電容沒有改變。作為另一範例,值PWARPCB係在未控制電容器C2具有值C211B的情況下達成。電容器C2的電容係加以控制而具有值C211且值PWARPCB係基於電容C211而加以決定。從x kHz RF產生器操作的第一循環至第二循環,電容器C2的電容沒有改變。作為又另一範例,值PWARPC4係在未控制電容器C1具有值C111的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C1的電容上沒有改變。作為另一範例,值PWARPC4係在未控制電容器C2具有值C211的情況下達成。在導向x kHz RF產生器操作的第一循環之電容器C2的電容上沒有改變。
應注意的是,z MHz RF產生器的供給功率的功率值係取決於在z MHz RF產生器的輸出處的電壓反射係數之幅值的數值。舉例來說,當Γ6量測為高的,例如大於預定閾值,功率值Ps16係控制為低的,例如低於預定限值。作為另一例子,當Γ6量測為高的,例如低於該預定閾值,功率值Ps16係控制為高的,例如高於該預定限值。
圖14為表1400的實施例,描述一旦針對z MHz RF產生器的主動控制識別出功率值Ps16到Ps20、頻率值f211、電容C111、及電容C211,圖12的系統1200的處理程序。取代RF電纜RFC2,RF電纜RFC21在系統1200中加以使用。如在表1400中顯示,x kHz RF產生器以具有頻率11的一循環重複操作。x kHz RF產生器操作的各循環具有頻率f11。在處理程序期間,主電腦系統的處理器提供x kHz RF產生器操作的頻率f11至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的該循環期間產生具有頻率f11的一RF訊號。
當x kHz RF產生器在x kHz RF產生器操作的一循環的第一個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112藉由主控制系統的處理器加以主動控制而產生具有功率值Ps16的一RF訊號。類似地,當x kHz RF產生器在x kHz RF產生器操作的該循環的第二個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps17。此外,當x kHz RF產生器在x kHz RF產生器操作的該循環的第三個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps18。當x kHz RF產生器在x kHz RF產生器操作的該循環的第四個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps19。並且,當x kHz RF產生器在x kHz RF產生器操作的該循環的第五個五分之一次循環期間操作於頻率f11時,z MHz RF產生器的電源供應器112受控制而供給功率值Ps20。
處理器從表1400識別出,由z MHz RF產生器所輸送功率的效率增加之z MHz RF產生器操作的頻率值f211、由z MHz RF產生器所供給的功率值Ps16到Ps20、電容器C1的電容C111、及電容器C2的電容C211。在x kHz RF產生器的多個循環期間,z MHz RF產生器由處理器控制成各循環操作於頻率f211及 功率值Ps16到Ps20。舉例來說,主電腦系統的處理器提供z MHz RF產生器操作的頻率f211至z kHz RF產生器的FC。z MHz RF產生器的FC提供頻率f211至電源供應器112,以操作電源供應器112來在x kHz RF產生器操作的循環期間產生具有頻率f211的一RF訊號。作為另一例子,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps16到Ps20提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率值Ps16到Ps20提供至電源供應器112以操作電源供應器112在x kHz RF產生器操作的循環期間針對各循環產生具有功率值Ps16到Ps20的一RF訊號。
此外,在x kHz RF產生器操作的循環期間,串聯電路108a的電容器C1以與參照圖13上述相同方式藉由處理器控制成具有電容值C111。類似地,在x kHz RF產生器操作的循環期間,並聯電路108b的電容器C2以與參照圖13上述相同方式藉由處理器控制成具有電容值C211。
針對在x kHz RF產生器的處理程序操作的循環期間的各循環,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率值f211且功率值Ps16到Ps20的另一RF訊號。由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f211且具有功率量Ps16到Ps20的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC21發送至IMN 102的輸入i2。舉例來說,該RF訊號在x kHz RF產生器各循環的第一個五分之一次循環期間具有功率量Ps16,在x kHz RF產生器的各循環的第二個五分之一次循環期間具有功率量Ps17,在x kHz RF產生器的各循環的第三個五分之一次循環期間具有功率量Ps18,在x kHz RF產生器的各循環的第四個五分之一次循環期間具有功率量Ps19,且在x kHz RF產生器的各循環的第五個五分之一次循環期間具有功率量Ps20。
IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。當在x kHz RF產生器操作的多個循環期間維持頻率f211、功率值Ps16到Ps20、電容C111、及電容C211時,在處理程序期間由z MHz RF產生器所輸送的功率上的效率增加。
在一實施例中,在具有x kHz RF產生器操作的多個循環的處理程序期間,取代控制電容器C1及C2二者以達成使由z MHz RF產生器所輸送功率上的效率增加之電容器C1的電容C111及電容器C2的電容C211,電容器C1或電容器C2任一者係加以控制以增加該效率。舉例來說,處理器不藉由馬達M1控制電容器C1以使電容器C1具有電容C111;而是,處理器藉由馬達M2控制電容器C2以使電容器C2具有電容C211。作為另一例子,處理器不藉由馬達M2控制電容器C2以使電容器C2具有電容C211;而是,處理器藉由馬達M1控制電容器C1以使電容器C1具有電容C111。
在一實施例中,在使用RF電纜RFC21針對主動控制的處理程序期間,x kHz RF產生器操作的各循環係分成不同於五個的數個次循環。
圖15為表1500的實施例,描述一旦識別出功率值Ps11到Ps15、頻率值f21、電容C11、及電容C21,圖10的系統1000的處理程序。RF電纜RFC2在系統1000中加以使用。如在表1500中顯示,x kHz RF產生器以具有頻率11的一循環重複操作。x kHz RF產生器操作的各循環具有頻率f11。在處理程序期間,主 電腦系統的處理器提供x kHz RF產生器操作的頻率f11至x kHz RF產生器的FC。該FC提供頻率f11至電源供應器110,且電源供應器110在x kHz RF產生器的操作的該循環期間產生具有頻率f11的一RF訊號。
當x kHz RF產生器操作於頻率f11時,處理器從表1500識別出,使由z MHz RF產生器所輸送功率的效率增加之z MHz RF產生器操作的頻率值f21、由z MHz RF產生器所供給的功率值Ps11到Ps15、電容器C1的電容C11、及電容器C2的電容C21。在x kHz RF產生器的多個循環之各循環期間,z MHz RF產生器由處理器控制成操作於頻率f21及功率值Ps11到Ps15。舉例來說,主電腦系統的處理器提供z MHz RF產生器操作的頻率f21至z kHz RF產生器的FC。z MHz RF產生器的FC提供頻率f21至電源供應器112,以操作電源供應器112來在x kHz RF產生器操作的循環期間產生具有頻率f21的一RF訊號。作為另一例子,主電腦系統的處理器將z MHz RF產生器操作的功率值Ps11到Ps15提供至z MHz RF產生器的功率控制器。z MHz RF產生器的功率控制器將功率值Ps11到Ps15提供至電源供應器112以在x kHz RF產生器操作的循環期間針對各循環產生具有功率值Ps11到Ps15的一RF訊號。為了說明,z MHz RF產生器的功率控制器,在x kHz RF產生器各循環的第一個五分之一次循環期間將功率量Ps11提供至電源供應器112,在x kHz RF產生器各循環的第二個五分之一次循環期間將功率量Ps12提供至電源供應器112,在x kHz RF產生器各循環的第三個五分之一次循環期間將功率量Ps13提供至電源供應器112,在x kHz RF產生器各循環的第四個五分之一次循環期間將功率量Ps14提供至電源供應器112,在x kHz RF產生器各循環的第五個五分之一次循環期間將功率量Ps15提供至電源供應器112。
此外,在x kHz RF產生器操作的循環期間,串聯電路108a的電容器C1以與參照圖11上述相同方式藉由處理器控制成具有電容值C11。類似地,在 x kHz RF產生器操作的循環期間,並聯電路108b的電容器C2以與參照圖11上述相同方式藉由處理器控制成具有電容值C21。
針對在x kHz RF產生器的處理程序操作的循環期間的各循環,電源供應器110產生具有頻率f11的一RF訊號,且電源供應器112產生具有頻率值f21且功率值Ps11到Ps15的另一RF訊號。舉例來說,該RF訊號在x kHz RF產生器各循環的第一個五分之一次循環期間具有功率量Ps11,在x kHz RF產生器的各循環的第二個五分之一次循環期間具有功率量Ps12,在x kHz RF產生器的各循環的第三個五分之一次循環期間具有功率量Ps13,在x kHz RF產生器的各循環的第四個五分之一次循環期間具有功率量Ps14,且在x kHz RF產生器的各循環的第五個五分之一次循環期間具有功率量Ps15。
由電源供應器110產生且具有頻率f11的RF訊號係自x kHz RF產生器的輸出,經由RF電纜RFC1,發送至IMN 102的輸入i1。類似地,由電源供應器112所產生、具有頻率f21且具有功率量Ps11到Ps15的RF訊號,從z MHz RF產生器的輸出經由RF電纜RFC2發送至IMN 102的輸入i2。IMN 102將連接至輸出o1的負載的阻抗與連接至輸入i1及i2的來源的阻抗匹配,並在接收自x kHz RF產生器與z MHz RF產生器的RF訊號的輸出o1處組合而產生一修改的RF訊號。修改的RF訊號從輸出o1經由RF傳輸線RFT發送至下電極。
除了供給經修改的RF訊號至下電極之外,一或多種製程氣體經由上電極供給至介於電漿腔室的下電極與上電極之間的間隙。在接收經修改的RF訊號及該一或多種製程氣體時,電漿係產生或維持於該間隙之內以處理晶圓802。當在x kHz RF產生器操作的多個循環期間維持頻率f21、功率值Ps11到Ps15、電容C11、及電容C21時,在處理程序期間由z MHz RF產生器所輸送的功率上的效率增加。
在一實施例中,在使用RF電纜RFC2之具有x kHz RF產生器操作的多個循環的處理程序期間,取代控制電容器C1及C2二者以達成使由z MHz RF產生器所輸送功率上的效率增加之電容C11及電容C21,電容器C1或電容器C2任一者係以與以上參照圖11所述相似的方式加以控制以增加該效率。
在一實施例中,在處理程序期間,x kHz RF產生器操作的各循環係以與以上參照圖11所述相似的方式分成不同於五個的數個次循環。
圖16描述多個時脈訊號1602及1604,以描述一循環及一個次循環。時脈訊號1602重複多個循環,例如循環CY1及循環CY2。各循環CY1及CY2涵蓋相同量的時間週期。循環CY2係接續循環CY1。舉例來說,在循環CY2與CY1之間沒有其他循環。具有循環CY1及CY2的時脈訊號1602藉由主電腦系統的一時脈源(例如處理器、時脈振盪器、或與鎖相迴路連接的時脈振盪器)加以產生,且從主電腦系統的時脈源提供至z MHz RF產生器的一或多個控制器,例如FC及/或功率控制器,以產生與時脈訊號1602同步的一RF訊號。此外,時脈訊號1602係從主電腦系統的時脈源提供至x kHz RF產生器的一或多個控制器,例如FC及/或功率控制器,以產生與時脈訊號1602同步的一RF訊號。
此外,在一個實施例中,具有多個次循環(例如次循環SCY1及SCY2)的時脈訊號1604係由主電腦系統的時脈源產生,且提供至x kHz RF產生器的一或多個控制器以產生與時脈訊號1604同步的一RF訊號。此外,時脈訊號1604係從時脈源提供至z MHz RF產生器的一或多個控制器以產生與時脈訊號1604同步的一RF訊號。次循環SCY2係接續於次循環SCY1。舉例來說,在次循環SCY2與SCY1之間沒有其他次循環。各次循環SCY1及SCY2涵蓋相同量的時間週期。
在一個實施例中,x kHz RF產生器或z MHz RF產生器係作為主機且另一者係作為從機。舉例來說,時脈訊號1602係由主電腦系統的時脈源產生, 且從主電腦系統的該時脈源提供至z MHz RF產生器的一或多個控制器。z MHz RF產生器的該一或多個控制器從時脈訊號1602產生時脈訊號1604,並將時脈訊號1604發送至x kHz RF產生器的一或多個控制器以產生與時脈訊號1604同步的一RF訊號。作為另一例子,時脈訊號1602係由主電腦系統的時脈源產生,且從主電腦系統的該時脈源提供至x kHz RF產生器的一或多個控制器。x kHz RF產生器的該一或多個控制器從時脈訊號1602產生時脈訊號1604,並將時脈訊號1604發送至z MHz RF產生器的一或多個控制器以產生與時脈訊號1604同步的一RF訊號。
此處描述的實施例可利用各種電腦系統構造實施,包含手持式硬體單元、微處理器系統、基於微處理器或可編程消費性電子產品、小型電腦、主機電腦等。此等實施例亦可在分散式計算環境中實施,其中任務藉由透過網路連結的遠端處理硬體執行。
在一些實施例中,控制器為一系統的部分,該系統可為上述例子的部分。如此之系統可包含半導體處理設備,該等半導體處理設備包含(多數)處理機台、(多數)腔室、(多數)處理平台、及/或特定的處理元件(晶圓基座、氣體流動系統等)。該等系統可整合有電子裝置,從而在半導體晶圓或基板的處理之前、期間、及之後控制該等系統的操作。電子裝置可稱為「控制器」,其可控制(多數)系統的各種元件或子部件。取決於處理要求及/或系統類型,控制器可編程為控制本文所揭露之製程的任何者,包含處理氣體的傳送、溫度設定(例如,加熱及/或冷卻)、壓力設定、真空設定、功率設定、射頻(RF)產生器設定、RF匹配電路設定、頻率設定、流率設定、流體傳送設定、位置及操作設定、(進出機台及其他轉移機台、及/或連接至特定系統或與特定系統相接合之裝載鎖室的)晶圓轉移。
廣泛地講,在各種實施例中,控制器定義為電子裝置,具有各種積體電路、邏輯、記憶體、及/或軟體,其接收指令、發佈指令、控制操作、啟動清洗操作、啟動終點量測以及類似者之。積體電路可包含:儲存程式指令之韌體形式的晶片、數位訊號處理器、定義為ASIC的晶片、PLD、及/或一或更多微處理器、或執行程式指令(例如,軟體)的微控制器。程式指令為以各種單獨設定(或程式檔案)之形式而傳達至控制器的指令,該單獨設定(或程式檔案)針對系統為執行(在半導體晶圓上的,或針對半導體晶圓的)特定製程而定義操作限制。在一些實施例中,操作限制是由製程工程師為了在一或更多以下者的製造期間完成一或更多處理步驟而定義之配方的一部分:一或多層、材料、金屬、氧化物、矽、二氧化矽、表面、電路、及/或晶圓的晶粒。
在一些實施例中,控制器為電腦的一部分,或耦接至電腦,該電腦係與系統整合、耦接至系統、以其他網路的方式接至系統、或以上組合。舉例而言,控制器在能容許遠端存取晶圓處理之「雲端」或廠房主機電腦系統的全部、或部分中。電腦使系統能夠遠端存取,以監控製造操作的目前進度、檢查過去製造操作的歷史、自多數的製造操作而檢查趨勢或效能度量,以改變目前處理的限制、設定目前處理之後的處理步驟、或開始新的製程。
在一些範例中,遠端電腦(例如,伺服器)通過網路提供製程配方至系統,該網路包含區域網路或網際網路。遠端電腦包含允許對限制及/或設定進行輸入或編程的使用者介面,該限制及/或設定接著自遠端電腦傳達至系統。在一些範例中,控制器以資料的形式接收指令,該指令為即將於一或更多操作期間執行之處理步驟的每一者指定限制。吾人應理解,限制為特定地針對待執行之製程的類型、以及控制器與之介接或加以控制之機台的類型。因此如上所述,控制器可為分散式,例如藉由包含以網路的方式接在一起、且朝向共同之目的(例如,本文中所述之製程及控制)而運作的一或更多分離式控制器。用於如此目的 之分散式控制器的一範例包含腔室上與位於遠端的一或更多積體電路(例如,在平臺層級、或作為遠端電腦的一部分)進行通訊的一或更多積體電路,兩者相結合以控制腔室上的製程。
在無限定的情況下,在各種實施例中,例示性系統可包含以下者:電漿蝕刻腔室或模組、沉積腔室或模組、旋轉淋洗腔室或模組、金屬鍍覆腔室或模組、清潔腔室或模組、斜角緣部蝕刻腔室或模組、物理氣相沉積(PVD)腔室或模組、化學氣相沉積(CVD)腔室或模組、原子層沉積(ALD)腔室或模組、原子層蝕刻(ALE)腔室或模組、離子植入腔室或模組、軌道腔室或模組、以及可在半導體晶圓的加工及/或製造中相關聯或使用的任何其他半導體處理系統。
更要注意的是,在一些實施例中,上述操作適用於其他類型的電漿腔室,例如:包含電感耦合電漿(ICP)反應器、變壓器耦合電漿腔室、電容耦合電漿反應器、導體機台、介電質機台的電漿腔室,包含電子迴旋共振(ECR)反應器的電漿腔室等等。舉例來說,一或多個RF產生器係連接至ICP反應器之內的一電感器。該電感器形狀的例子包含螺線管、圓頂形線圈、平坦狀線圈等。
如以上所提及,取決於即將藉由機台執行之(多數)製程步驟,控制器係與半導體製造工廠中之一或更多的以下者進行通訊:其他機台電路或模組、其他機台元件、叢集機台、其他機台介面、相鄰的機台、附近的機台、遍及工廠而分布的機台、主電腦、另一控制器、或材料運輸中使用之機台,該材料運輸中使用之機台攜帶晶圓容器往返機台位置及/或裝載埠。
考慮到上述實施例,應理解的是該等實施例其中一些使用各種電腦實現操作,該等電腦實現操作涉及在電腦系統中所儲存資料。這些操作係對物理量進行物理性操作者。形成部分之實施例的此處所述的任何操作係有用的機械操作。
該等實施例其中一些亦關於執行這些操作的硬體單元或設備。該設備特別建構用於特殊用途電腦。當定義為特殊用途電腦時,該電腦執行非該特殊用途一部分的其他處理、程式執行或程序,而仍能夠操作用於該特殊用途。
在若干實施例中,可藉由利用儲存於電腦記憶體、快取記憶體、或由網路取得的一個以上電腦程式選擇性啟動或設定的電腦,處理該等操作。當資料係通過電腦網路取得,該資料可藉由電腦網路上的其他電腦(例如雲端計算資源)加以處理。
一個以上實施例亦可製作為非暫時性電腦可讀媒體上的電腦可讀碼。該非暫時性電腦可讀媒體係儲存資料的任何資料儲存硬體單元,例如記憶裝置,該資料之後由電腦系統讀出。非暫時性電腦可讀媒體的範例包含硬碟、網路附接儲存器(NAS)、ROM、RAM、光碟唯讀記憶體(CD-ROM)、可錄CD(CD-R)、可重寫CD(CD-RW)、磁帶、及其他光學和非光學資料儲存硬體單元。在一些實施例中,非暫時性電腦可讀媒體包含分布於網路連接電腦系統上的電腦可讀有形媒體,使得電腦可讀碼被分散式地儲存和執行。
雖然上述方法操作係以特定的順序描述,應理解的是,在各種實施例中,其他內務處理操作在該等操作之間加以執行,或者該等方法操作係加以調整,使得該等操作在些許不同的時間發生,或者可分布於一系統之中,該系統允許該等方法操作以各種時間間隔發生,或以與上述不同的順序執行。
進一步應注意的是,在一實施例中,來自上述任何實施例的一個以上特徵,在不偏離本揭露內容中所述各種實施例所述之範疇的情況下,與任何其他實施例的一個以上特徵結合。
雖然前述實施例以清楚理解為目的而相當程度詳細地加以描述,顯而易見的是,在隨附申請專利範圍的範疇之內可實施某些變化和修改。因此, 本實施例係視為例示性而非限制性,且該等實施例係不限定於此處所提供的細節,而是可在隨附申請專利範圍的範疇和均等者之內加以修改。
100:系統
102:阻抗匹配網路(IMN)
106a:串聯電路
106b:並聯電路
108a:串聯電路
108b:並聯電路
110:電源供應器
112:電源供應器
D1、D2:驅動器
M1、M2:馬達
RFC1:RF電纜
RFC2:RF電纜
RFT:RF傳輸線

Claims (28)

  1. 一種控制器系統,用於射頻(RF)產生器的控制,該控制器系統包含:一處理器,建構以存取在一高射頻(RF)產生器的輸出處所量測的一變量的多個量測值以產生一參數的多個值,其中該變量係在一低射頻(RF)產生器的操作的多個循環期間加以量測,其中該多個量測值係關聯於由該高RF產生器所供給的功率的多個值,其中該處理器係建構以基於該參數決定該高RF產生器的頻率的數值及與一阻抗匹配網路的一電路相關聯的一因子的數值,俾使在由該高RF產生器所輸送功率上的效率增加,其中該效率的增加係基於在該低RF產生器的操作的該多個循環其中一者期間由該高RF產生器所供給之功率的該多個值的一子集合而加以決定;及一記憶裝置,連接至該處理器,其中該記憶裝置建構以儲存該頻率的該數值及該因子的該數值。
  2. 如申請專利範圍第1項之控制器系統,其中該高RF產生器係經由一RF電纜連接至該阻抗匹配網路,其中該處理器係建構以:在一訓練程序期間,存取在該高RF產生器的輸出處所量測的該變量的另外多個量測值,其中該變量的該另外多個量測值係在該低RF產生器的操作的另外多個循環期間加以量測,其中該變量的該另外多個量測值係在將該RF電纜改變之後加以量測,其中該變量的該另外多個量測值係關聯於由該高RF產生器所供給的功率的另外多個值;及 針對該低RF產生器的操作的該另外多個循環其中另一者,決定該高RF產生器的該頻率的另一數值及與該電路相關聯的該因子的另一數值,俾使在由該高RF產生器所輸送功率上的效率增加。
  3. 如申請專利範圍第1項之控制器系統,其中該處理器係建構以針對該多個循環該其中一者決定由該高RF產生器所供給的一功率量,俾使在由該高RF產生器所輸送功率上的效率增加,其中該記憶裝置建構以儲存由該高RF產生器所供給的該功率量。
  4. 如申請專利範圍第3項之控制器系統,其中該處理器係建構以在一基板的處理期間存取該多個量測值及決定該高RF產生器的該頻率的該數值、由該高RF產生器所供給的該功率量及該因子的該數值。
  5. 如申請專利範圍第3項之控制器系統,其中該處理器係建構成,基於從該變量的該多個量測值的一子集合及由該高RF產生器所供給之功率的該多個值的該子集合所計算的一平均值,決定該頻率的該數值、由該高RF產生器所供給的該功率量及該因子的該數值。
  6. 如申請專利範圍第5項之控制器系統,其中該處理器係建構成,針對該多個循環的該其中一者,計算以下者的平均值:該變量的該多個量測值的第一者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第一者之乘積及該變量的該多個量測值的第二者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第二者之乘積。
  7. 如申請專利範圍第6項之控制器系統,其中該處理器係建構成,針對該多個循環的另一者,計算以下者的另一平均值:該變量的該多個量測值的第三者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第三者之乘積及該變量的該多個量測值的第四者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第四者之乘積。
  8. 如申請專利範圍第7項之控制器系統,其中該處理器係建構以判定針對該多個循環的該其中一者的平均值係小於針對該多個循環的其他者的其他平均值。
  9. 如申請專利範圍第8項之控制器系統,其中該處理器係建構成,基於與針對該多個循環的其他者之其他平均值相比平均值較小的該多個循環的該其中一者,決定該頻率的該數值、由該高RF產生器所供給的該功率量及該因子的該數值。
  10. 如申請專利範圍第1項之控制器系統,其中該電路為該阻抗匹配網路的一串聯電路。
  11. 如申請專利範圍第3項之控制器系統,其中該高RF產生器係經由一RF電纜連接至該阻抗匹配網路,其中該處理器係建構以:在一基板的處理期間,存取在該高RF產生器的輸出處所量測的該變量的另外多個量測值,其中該變量的該另外多個量測值係在該低RF產生器的操作的另外多個循環期間加以量測,其中該變量的該另外多個量測值係在將該RF電纜改變之後加以量測,其中該變量的該另外多個量測值係關聯於由該高RF產生器所供給的功率的另外多個值;及針對該另外多個循環其中一者,決定該高RF產生器的該頻率的另一數值、由該高RF產生器所供給的另一功率量及與該電路相關聯的該因子的另一數值,俾使在由該高RF產生器所輸送功率上的效率增加。
  12. 如申請專利範圍第3項之控制器系統,其中該處理器係建構成,在一電漿腔室內的一基板的處理期間,應用該高RF產生器的該頻率的該數值、該功率量及與該電路相關聯的該因子的該數值。
  13. 如申請專利範圍第1項之控制器系統,其中該變量係一電壓反射係數,該參數係一功率反射係數,且該因子係電容。
  14. 如申請專利範圍第1項之控制器系統,其中該電路為一串聯電路,其中該低RF產生器係建構以產生一個千赫訊號,且該高RF產生器係建構以產生一個百萬赫訊號,其中該變量為一電壓反射係數且該參數為一功率反射係數,且其中該因子為該電路的一電容器的電容。
  15. 如申請專利範圍第1項之控制器系統,其中該處理器係建構以在未進行處理基板的一訓練程序期間存取該多個量測值及決定該高RF產生器的該頻率的該數值及該因子的該數值,其中該處理器係建構以在處理基板的一處理操作期間控制該高RF產生器達成該頻率的該數值及控制該電路達成該因子。
  16. 如申請專利範圍第1項之控制器系統,其中該處理器係建構以基於該參數,決定由該高RF產生器所供給的多個功率量,俾使在由該高RF產生器所輸送功率上的效率增加。
  17. 如申請專利範圍第16項之控制器系統,其中該處理器係建構成基於多個平均值決定該高RF產生器的該頻率的該數值、由該高RF產生器所供給的該多個功率量及與該電路相關聯的該因子的該數值,其中該處理器係建構成,將該多個平均值各者從在該多個循環其中一對應者期間所接收的該變量的該多個量測值的一對應子集合及在該多個循環其中該對應者期間由該高RF產生器所供給之功率的該多個值的一對應子集合加以計算。
  18. 如申請專利範圍第17項之控制器系統,其中該處理器係建構成,針對該多個循環的該其中一者,計算以下者的平均值:該變量的該多個量測值的第一者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第一者之乘積及該變量的該多個量測值的第二者的幅值的平方與由該高RF產生器所 供給之功率的該多個值的第二者之乘積,其中,在該多個循環的該其中一者期間,該高RF產生器操作於該頻率的該數值且該電路操作於該因子。
  19. 如申請專利範圍第18項之控制器系統,其中該處理器係建構成,針對該多個循環的另一者,計算以下者的另一平均值:該變量的該多個量測值的第三者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第三者之乘積及該變量的該多個量測值的第四者的幅值的平方與由該高RF產生器所供給之功率的該多個值的第四者之乘積,其中,在該多個循環的該另一者期間,該高RF產生器操作於該頻率的另一數值且該電路操作於另一因子。
  20. 如申請專利範圍第19項之控制器系統,其中該處理器係建構以判定針對該多個循環的該其中一者的平均值係小於針對該多個循環的其他者的其他平均值,其中,為了決定該高RF產生器的該頻率的該數值、由該高RF產生器所供給的該多個功率量及與該電路相關聯的該因子的該數值,該處理器係建構以針對與針對該多個循環的其他者之其他平均值相比平均值較小的該多個循環的該其中一者,識別該頻率的該數值、該多個功率量及該因子的該數值。
  21. 如申請專利範圍第1項之控制器系統,其中針對該多個循環該其中一者決定該高RF產生器的該頻率的該數值及與該阻抗匹配網路的該電路相關聯的該因子的該數值。
  22. 如申請專利範圍第1項之控制器系統,其中該電路為一並聯電路。
  23. 一種用於射頻(RF)產生器的控制之系統,包含:一阻抗匹配網路,其中該阻抗匹配網路包含一電路;一電漿腔室,連接至該阻抗匹配網路;一低RF產生器,連接至該阻抗匹配網路,且建構以將一低RF訊號供給至該阻抗匹配網路; 一高RF產生器,連接至該阻抗匹配網路,且建構以將一高RF訊號供給至該阻抗匹配網路;及一控制器系統,連接至該高RF產生器,其中該控制器系統包含一處理器,該處理器係建構以:存取在該高RF產生器的輸出處所量測的一變量的多個量測值以產生一參數的多個值,其中該變量係在該低RF產生器的操作的多個循環期間加以量測,其中該多個量測值係關聯於由該高RF產生器所供給的功率的多個值;及基於該參數決定該高RF產生器的頻率的數值及與該電路相關聯的一因子的數值,俾使在由該高RF產生器所輸送功率上的效率增加,其中該效率的增加係基於在該低RF產生器的操作的該多個循環其中一者期間由該高RF產生器所供給之功率的該多個值的一子集合而加以決定。
  24. 如申請專利範圍第23項之用於射頻(RF)產生器的控制之系統,其中該電路為一串聯電路,其中該低RF訊號為一個千赫訊號,且該高RF訊號為一個百萬赫訊號,其中該變量為一電壓反射係數且該參數為一功率反射係數,且其中該因子為該電路的一電容器的電容。
  25. 如申請專利範圍第23項之用於射頻(RF)產生器的控制之系統,其中該處理器係建構以在未進行處理基板的一訓練程序期間存取該多個量測值及決定該高RF產生器的該頻率的該數值及該因子的該數值,其中該處理器更建構以在處理基板的一處理操作期間控制該高RF產生器達成該頻率的該數值及控制該電路達成該因子。
  26. 如申請專利範圍第23項之用於射頻(RF)產生器的控制之系統,其中該處理器係建構以基於該參數決定由該高RF產生器所供給的多個功率量,俾使在由該高RF產生器所輸送功率上的效率增加。
  27. 如申請專利範圍第26項之用於射頻(RF)產生器的控制之系統,其中該處理器係建構以在一基板的處理期間存取該多個量測值及決定該高RF產生器的該頻率的該數值、由該高RF產生器所供給的該多個功率量及該因子的該數值。
  28. 如申請專利範圍第26項之用於射頻(RF)產生器的控制之系統,其中該處理器係建構成基於多個平均值決定該高RF產生器的該頻率的該數值、由該高RF產生器所供給的該多個功率量及與該電路相關聯的該因子的該數值,其中該處理器係建構成,將該多個平均值各者從在該多個循環其中一對應者期間所接收的該變量的該多個量測值的一對應子集合及在該多個循環其中該對應者期間由該高RF產生器所供給之功率的該多個值的一對應子集合加以計算。
TW107124410A 2017-07-20 2018-07-16 在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統 TWI801399B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/655,808 2017-07-20
US15/655,808 US10020168B1 (en) 2017-07-20 2017-07-20 Systems and methods for increasing efficiency of delivered power of a megahertz radio frequency generator in the presence of a kilohertz radio frequency generator

Publications (2)

Publication Number Publication Date
TW201921415A TW201921415A (zh) 2019-06-01
TWI801399B true TWI801399B (zh) 2023-05-11

Family

ID=62749611

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107124410A TWI801399B (zh) 2017-07-20 2018-07-16 在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統

Country Status (7)

Country Link
US (2) US10020168B1 (zh)
JP (1) JP7356409B2 (zh)
KR (1) KR102615894B1 (zh)
CN (1) CN110892500B (zh)
SG (1) SG11202000376PA (zh)
TW (1) TWI801399B (zh)
WO (1) WO2019018078A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10991550B2 (en) * 2018-09-04 2021-04-27 Lam Research Corporation Modular recipe controlled calibration (MRCC) apparatus used to balance plasma in multiple station system
CN109348484B (zh) * 2018-11-28 2022-02-18 中国人民解放军陆军工程大学 一种多用户短波通信网络模型及信道探测方法
CN114207768A (zh) * 2019-06-07 2022-03-18 朗姆研究公司 用于在kHz RF发生器的操作循环内调谐MHz RF发生器的系统和方法
US10741363B1 (en) * 2019-10-08 2020-08-11 Mks Instruments, Inc. Extremum seeking control apparatus and method for automatic frequency tuning for RF impedance matching
JP7474591B2 (ja) 2019-12-27 2024-04-25 株式会社ダイヘン 高周波電源システム
US20230253185A1 (en) * 2020-11-13 2023-08-10 Lam Research Corporation Systems and Methods for Radiofrequency Signal Generator-Based Control of Impedance Matching System

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101160A2 (en) * 2002-05-20 2003-12-04 Eni Technology, Inc. Method and apparatus for vhf plasma processing
US20130119017A1 (en) * 2011-11-16 2013-05-16 James Yang Method and system for autotuning of rf match
US20140231389A1 (en) * 2013-02-20 2014-08-21 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
TW201621974A (zh) * 2014-09-17 2016-06-16 東京威力科創股份有限公司 電漿處理裝置
US20160308560A1 (en) * 2013-05-09 2016-10-20 Lam Research Corporation Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power
US20170178864A1 (en) * 2012-02-22 2017-06-22 Lam Research Corporation Impedance-based adjustment of power and frequency
US9740008B2 (en) * 2012-09-12 2017-08-22 Sony Corporation Image display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7459899B2 (en) * 2005-11-21 2008-12-02 Thermo Fisher Scientific Inc. Inductively-coupled RF power source
US8674606B2 (en) 2009-04-27 2014-03-18 Advanced Energy Industries, Inc. Detecting and preventing instabilities in plasma processes
US9502216B2 (en) * 2013-01-31 2016-11-22 Lam Research Corporation Using modeling to determine wafer bias associated with a plasma system
US9401264B2 (en) * 2013-10-01 2016-07-26 Lam Research Corporation Control of impedance of RF delivery path
US9119283B2 (en) * 2013-03-14 2015-08-25 Lam Research Corporation Chamber matching for power control mode
JP6162016B2 (ja) * 2013-10-09 2017-07-12 東京エレクトロン株式会社 プラズマ処理装置
US9508529B2 (en) * 2014-10-23 2016-11-29 Lam Research Corporation System, method and apparatus for RF power compensation in a plasma processing system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101160A2 (en) * 2002-05-20 2003-12-04 Eni Technology, Inc. Method and apparatus for vhf plasma processing
US20130119017A1 (en) * 2011-11-16 2013-05-16 James Yang Method and system for autotuning of rf match
US20170178864A1 (en) * 2012-02-22 2017-06-22 Lam Research Corporation Impedance-based adjustment of power and frequency
US9740008B2 (en) * 2012-09-12 2017-08-22 Sony Corporation Image display device
US20140231389A1 (en) * 2013-02-20 2014-08-21 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US20160308560A1 (en) * 2013-05-09 2016-10-20 Lam Research Corporation Systems and methods for reducing power reflected towards a higher frequency rf generator during a period of a lower rf generator and for using a relationship to reduce reflected power
TW201621974A (zh) * 2014-09-17 2016-06-16 東京威力科創股份有限公司 電漿處理裝置

Also Published As

Publication number Publication date
WO2019018078A1 (en) 2019-01-24
JP2020527897A (ja) 2020-09-10
US20190027342A1 (en) 2019-01-24
CN110892500B (zh) 2024-04-05
KR20200022047A (ko) 2020-03-02
US10020168B1 (en) 2018-07-10
CN110892500A (zh) 2020-03-17
SG11202000376PA (en) 2020-02-27
WO2019018078A8 (en) 2020-01-23
KR102615894B1 (ko) 2023-12-19
TW201921415A (zh) 2019-06-01
US10256078B2 (en) 2019-04-09
JP7356409B2 (ja) 2023-10-04

Similar Documents

Publication Publication Date Title
TWI801399B (zh) 在千赫射頻產生器存在的情況下用以增加百萬赫射頻產生器之輸出功率的效率之系統
CN110246744B (zh) 通过奇次谐波混合调整离子能量分布函数的系统和方法
TWI727005B (zh) 在較低頻射頻產生器期間減少反射到較高頻射頻產生器之功率及使用一關係以減少反射功率之系統及方法
TWI757423B (zh) 調節以減少多狀態中之反射功率的系統及方法
KR102663153B1 (ko) 일 상태에서의 주파수 및 매칭 튜닝과 다른 상태에서의 주파수 튜닝
JP2021530099A (ja) 径方向エッチング均一性の能動制御
JP2020527897A5 (zh)
TWI750154B (zh) 以步進方式調節阻抗匹配網路之系統及方法
US20160307736A1 (en) Systems and methods for reducing reflected power during state transitions by using radio frequency values
CN114207768A (zh) 用于在kHz RF发生器的操作循环内调谐MHz RF发生器的系统和方法
US11908660B2 (en) Systems and methods for optimizing power delivery to an electrode of a plasma chamber
TWI742049B (zh) 用於射頻產生器之多狀態的以步進方式調節射頻產生器及阻抗匹配網路之系統
TWI751138B (zh) 使用射頻值降低狀態變遷期間之反射功率的系統及方法