TWI798160B - 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用 - Google Patents

磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用 Download PDF

Info

Publication number
TWI798160B
TWI798160B TW105120766A TW105120766A TWI798160B TW I798160 B TWI798160 B TW I798160B TW 105120766 A TW105120766 A TW 105120766A TW 105120766 A TW105120766 A TW 105120766A TW I798160 B TWI798160 B TW I798160B
Authority
TW
Taiwan
Prior art keywords
polyvinylidene fluoride
anion
film
sulfonated polyvinylidene
composite film
Prior art date
Application number
TW105120766A
Other languages
English (en)
Other versions
TW201800452A (zh
Inventor
施奕兆
克勞斯 謬倫
Original Assignee
施奕兆
克勞斯 謬倫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施奕兆, 克勞斯 謬倫 filed Critical 施奕兆
Priority to TW105120766A priority Critical patent/TWI798160B/zh
Publication of TW201800452A publication Critical patent/TW201800452A/zh
Application granted granted Critical
Publication of TWI798160B publication Critical patent/TWI798160B/zh

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Conductive Materials (AREA)
  • Fuel Cell (AREA)

Abstract

本發明係提供一種磺酸化聚偏氟乙烯及磺酸化聚偏氟乙烯-六氟丙烯共聚物之含質子性離子液體之複合薄膜、製備方法及其應用,尤其是一種製備質子交換薄膜、鐵電薄膜及壓電薄膜之方法。

Description

磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用
本發明係提供一種磺酸化聚偏氟乙烯及磺酸化聚偏氟乙烯-六氟丙烯共聚物之含質子性離子液體之複合薄膜、製備方法及其應用,尤其是一種製備質子交換薄膜、鐵電薄膜及壓電薄膜之方法。
近年來由於地球暖化嚴重,發展綠色能源逐漸備受重視,目前以太陽能電池、風力發電、核能發電為提供能源方式,目前仍以核能發電為主要來源。但由於福島核災恐怖事件,讓世人警惕其核能發電所帶來的潛在的威脅性。燃料電池最早由英國物理學家威廉葛洛夫製備其早期應用於人造衛星及太空艙的電源供應器,至此之後廣泛被應用於工業及民生產業。
質子交換薄膜燃料電池為燃料電池的一種,其優點相較於一般燃料電池使用上相對低溫及常壓的特性,對人體及環境無害,非常適合於日常生活。質子交換薄膜為質子交換薄膜燃料電池的核心的材料之一,目前商業以杜邦所發明Nafion薄膜為主。殷鑑於此材料昂貴,目前 科學家也積極開發其替代薄膜材料。質子交換薄膜燃料池的效能表現與溫度息息相關,溫度越高其效能愈佳,但其質子傳遞主要依賴水,當溫度高於80℃時水分會過量的流失而導致其導電度下降。再加上低溫環境下,催化層的鉑容易受一氧化碳汙染,其取代的水的液體也相對重要。
離子液體在運用材料非常廣泛,由於具有低揮發性、高極性、不可燃性、耐強酸及高熱穩定性可取代一般所用之揮發性有機溶劑。一般離子液體由陽離子及陰離子所組成,其熔點低於100℃。由於其具有高導電度的性質,目前學術上離子液體在電解質材料也逐漸廣泛的被應用如燃料電池質子交換薄膜。
質子性離子液體為離子液體領域中的另一個分支,具有獨特的化學及物理性質,引起科學家及研究員熱切的關注。Watanabe等人開發了一系列的質子性離子液體摻雜於磺酸化共聚醯亞胺固態電解質的應用,其導電度達14.6ms/cm在160℃無水環境下(J.Power Sources.2010,195,5905.)。Martinelli等人摻雜1-乙基咪唑雙(三氟甲磺醯)亞胺於聚偏氟乙烯具有高導電度,但摻雜過量的離子液體量過高會導致其機械強度下降(J.Phys.Chem.B 2007,111,12462)。
壓電效應,是電介質材料中一種機械能與電能互換的現象,壓電複合材料是有兩種或多種材料複合而成的壓電材料。常見的壓電複合材料為壓電陶瓷和聚合物(例如聚偏氟乙烯活環氧樹脂)的兩相複合材料。這種複合材 料兼具壓電陶瓷和聚合物的優點,具有很好的柔韌性和加工性,並具有較低的密度、容易和周遭環境實現聲阻抗匹配。此外,還具有壓電常數高的特點。壓電複合材料在傳感、醫療、測量等領域廣泛被應用。摻雜離子液體於聚偏氟乙烯具有良好的壓電性質。
鐵電效應是某些材料中具有自發極化的性質,施加電場可有反轉的性質。最常見的鐵電聚合物為聚氟偏乙烯及其之共聚物,其具有柔韌性的優點被廣泛運用於生物醫學傳導器、光學器建及機電換能器。
緣是,本發明為了改善上述質子交換薄膜的缺點,進而提高質子交換薄膜的效果實為相關業者所殷切企盼且須努力研發突破之目標及方向。
本發明主要目的係提供一種磺酸化聚偏氟乙烯之複合薄膜及磺酸化聚偏氟乙烯-六氟丙烯共聚物之複合薄膜、製備方法及其應用,以解決電池質子交換薄膜之問題,以達到提高磺酸化效果之實用進步性。形成新型的薄膜材料藉由添加質子性離子液體改變磺酸化磺酸化聚偏氟乙烯及磺酸化聚偏氟乙烯-六氟丙烯共聚物之分子型態之結構,進而提高其複合材壓電性質。
本發明解決問題之技術特點,主要係藉由一種磺酸化聚偏氟乙烯之複合薄膜及磺酸化聚偏氟乙烯-六氟丙烯共聚物之複合薄膜、製備方法及其應用,其係包含:使磺酸化聚偏氟乙烯或磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解 於適量溶劑中,加入質子性離子液體攪拌或超音波震盪直至均勻溶液,將該溶液倒在基板表面上,將該基板置在烘箱烘烤一天,而形成磺酸化聚偏氟乙烯複合薄膜或磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
藉此創新獨特創作,使本發明對照先前技術而言,可達到如下功效:
一、由於本發明藉由質子性離子液體之低揮發性、高極性、不可燃性、耐強酸及高熱穩定性,提高具磺酸化聚偏氟乙烯複合薄膜之熱穩定性。。
二、由於本發明藉由質子性離子液體攜帶氫質子能力,進而提高複合薄膜之氫質子交換燃料電池使用溫度範圍以利於提高其導電度。
三、由於本發明藉由添加質子性離子液體以改變其磺酸化聚氟偏乙烯或磺酸化聚偏氟乙烯-六氟丙烯共聚物之結晶狀態,進而提高其複合薄膜之壓電性質及鐵電性質。
S-PVdF:磺酸化聚偏氟乙烯
[BImH][CH3SO3]:1-丁基咪唑甲烷磺酸鹽
[BImH][CF3SO3]:1-丁基咪唑三氟甲烷磺酸鹽
[BImH][PF6]:1-丁基咪唑六氟磷酸鹽
[BImH][NTf2]:1-丁基咪唑雙(三氟甲烷磺醯)亞胺鹽
[BImH][BF4]:1-丁基咪唑四氟硼酸鹽
[PImH][CF3SO3]:1-戊基咪唑三氟甲烷磺酸鹽
[MImH][CF3SO3]:1-甲基咪唑三氟甲烷磺酸鹽
[HImH][CF3SO3]:1-庚基咪唑三氟甲烷磺酸鹽
第1圖:本創作磺酸化聚偏氟乙烯及磺酸化聚偏氟乙烯複合物的熱裂解圖。
第2圖:本創作磺酸化聚偏氟乙烯複合薄膜之導電圖。
第3圖:本創作磺酸化聚偏氟乙烯複合薄膜之DSC圖。
第4圖:本創作磺酸化聚偏氟乙烯複合薄膜之紅外線光譜圖。
第5圖:本創作磺酸化聚偏氟乙烯複合薄膜之電子顯微鏡下之表面形貌圖。
本發明一種磺酸化聚偏氟乙烯及其之薄膜、製備方法及其應用,實施例一其係包含:使磺酸化聚偏氟乙烯
Figure 105120766-A0305-02-0007-2
溶解於適當溶劑中;加入質子性離子液體
Figure 105120766-A0305-02-0007-3
R:CH3,C2H5,C3H7,C4H9,C5H11,C6H13,C7H15 R為直鏈型X-:CH3SO3,CF3SO3,BF4,PF6,N(CF3SO3)2攪拌至均勻溶液;將該溶液於烤箱中烘烤至形成磺酸化聚偏氟乙烯複合薄膜。
本發明實施例二係使磺酸化聚偏氟乙烯溶解於適當溶劑中;加入質子性離子液體超音波震盪或磁 石攪拌直至均勻溶液;將該溶液烘箱中烘烤至形成磺酸化聚偏氟乙烯複合薄膜。
本發明實施例三係使磺酸化聚偏氟乙烯-六氟丙烯共聚物
Figure 105120766-A0305-02-0008-4
溶解於適當溶劑中;加入質子性離子液體攪拌至均勻溶液;將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
本發明實施例四係使磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解於適當溶劑中;加入質子性離子液體超音波震盪或磁石攪拌直至均勻溶液;將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
本發明實施例五係使磺酸化聚偏氟乙烯溶解於適當溶劑中形成溶液;將該溶液倒在基板表面上於烘箱中烘烤形成磺酸化聚偏氟乙烯薄膜;使該薄膜浸入質子性離子液體內形成磺酸化聚偏氟乙烯複合薄膜。
本發明實施例六係使使磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解於適當溶劑中形成溶液;將該溶液倒在基板表面上於烘箱中烘烤形成磺酸化聚偏氟乙烯- 六氟丙烯共聚物薄膜;使該薄膜浸入質子性離子液體內形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
本發明實施例一、二、三、四、五及六所述之方法所製備之薄膜應用於氫質子燃料電池據有良好的導電度。
本發明實施例一、二、三、四、五及六所述之方法所製備之薄膜應用於壓電複合材料,具有較強的壓電性特性。
本發明實施例一、二、三、四、五及六所述之方法所製備之薄膜應用於壓電複合材料,具有良好的鐵電性特性。
本發明實施例一、二、三、四、五及六所述之方法,其中該質子性離子液體為
Figure 105120766-A0305-02-0009-5
R:CH3,C2H5,C3H7,C4H9,C5H11,C6H13,C7H15 R為直鏈型x-:CH3SO3,CF3SO3,BF4,PF6,N(SO2CF3)2
請參閱第1~5圖,藉由磺酸化聚偏氟乙烯及磺酸化聚偏氟乙烯複合物的熱裂解、磺酸化聚偏氟乙烯複合薄膜之導電度、磺酸化聚偏氟乙烯DSC圖、磺酸化 聚偏氟乙烯複合薄膜紅外線光譜圖本創作磺酸化聚偏氟乙烯複合薄膜之電子顯微鏡下之表面形貌、清楚揭示本創作之效果。
上述實施例所揭示者係藉以具體說明本發明,且文中雖透過特定的術語進行說明,當不能以此限定本發明之專利範圍;熟悉此項技術領域之人士當可在瞭解本發明之精神與原則後對其進行變更與修改而達到等效之目的,而此等變更與修改,皆應涵蓋於如后所述之申請專利範圍所界定範疇中。
Figure 105120766-A0305-02-0002-1

Claims (10)

  1. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯複合薄膜之製備方法,其係包含:a.使磺酸化聚偏氟乙烯溶解於溶劑中;b.加入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體,攪拌至均勻溶液;c.將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯複合薄膜。
  2. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯複合薄膜之製備方法,其係包含:a.使磺酸化聚偏氟乙烯溶解於溶劑中;b.加入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體,超音波震盪直至均勻溶液;c.將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯複合薄膜。
  3. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜之製備方法,其係包含: a.使磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解於溶劑中;b.加入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體,攪拌至均勻溶液;c.將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
  4. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜之製備方法,其係包含:a.使磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解於溶劑中;b.加入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體超音波震盪,直至均勻溶液;c.將該溶液於烘箱中烘烤至形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
  5. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯複合薄膜之製備方法,其係包含:a.使磺酸化聚偏氟乙烯溶解於溶劑中形成溶液;b.將該溶液於烘箱中烘烤形成磺酸化聚偏氟乙烯 薄膜;c.使該薄膜浸入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體內形成磺酸化聚偏氟乙烯複合薄膜。
  6. 一種製備質子交換複合薄膜、鐵電薄膜及壓電薄膜應用,磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜之製備方法,其係包含:a.使磺酸化聚偏氟乙烯-六氟丙烯共聚物溶解於溶劑中形成溶液;b.將該溶液於烘箱中烘烤形成磺酸化聚偏氟乙烯-六氟丙烯共聚物薄膜;c.使該薄膜浸入含甲基、乙基、丙基、丁基、戊基、己基或庚基咪唑陽離子及四氟硼酸根陰離子(BF4 -)、甲基磺酸根陰離子(CH3SO3 -)、三氟甲基磺酸根陰離子(CF3SO3 -)、六氟磷酸根陰離子(PF6 -)或雙(三氟甲基磺醯)亞胺根陰離子(NTf-)所組成的質子性離子液體內形成磺酸化聚偏氟乙烯-六氟丙烯共聚物複合薄膜。
  7. 如請求項1、2、3、4、5及6所述之方法,其中該質子性離子液體為
    Figure 105120766-A0305-02-0014-6
    R:CH3,C2H5,C3H7,C4H9,C5H11,C6H13,C7H15 R為直鏈型X-:CH3SO3,CF3SO3,BF4,PF6,N(CF3SO3)2
  8. 一種應用於複合材料之壓電複合薄膜,其係包含如請求項1、2、3、4、5及6所述之方法所製備之複合薄膜者。
  9. 一種應用於質子交換複合薄膜之電解質,其係包含如請求項1、2、3、4、5及6所述之方法所製備之複合薄膜者。
  10. 一種應用於鐵電材質之複合薄膜,其係包含如請求項1、2、3、4、5及6所述之方法所製備之複合薄膜者。
TW105120766A 2016-06-30 2016-06-30 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用 TWI798160B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105120766A TWI798160B (zh) 2016-06-30 2016-06-30 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105120766A TWI798160B (zh) 2016-06-30 2016-06-30 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用

Publications (2)

Publication Number Publication Date
TW201800452A TW201800452A (zh) 2018-01-01
TWI798160B true TWI798160B (zh) 2023-04-11

Family

ID=61725363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105120766A TWI798160B (zh) 2016-06-30 2016-06-30 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用

Country Status (1)

Country Link
TW (1) TWI798160B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113488688B (zh) * 2020-05-09 2022-07-08 深圳盛德新能源科技有限公司 一种用于燃料电池的交联结构侧链磺化聚合物质子交换膜的制备方法
CN114883617B (zh) * 2022-06-29 2023-05-12 山西农业大学 一种新型阳离子交换膜及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652875A (zh) * 2007-01-24 2010-02-17 罗纳德·厄斯特巴卡 有机场效应晶体管
CN101828330A (zh) * 2008-08-15 2010-09-08 松下电器产业株式会社 导电性高分子致动器及其制造方法
US20140072879A1 (en) * 2012-09-10 2014-03-13 Guorong Chen Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
CN104861183A (zh) * 2015-05-13 2015-08-26 杭州师范大学 一种纳米构造的聚偏氟乙烯复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101652875A (zh) * 2007-01-24 2010-02-17 罗纳德·厄斯特巴卡 有机场效应晶体管
CN101828330A (zh) * 2008-08-15 2010-09-08 松下电器产业株式会社 导电性高分子致动器及其制造方法
US20140072879A1 (en) * 2012-09-10 2014-03-13 Guorong Chen Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
CN104861183A (zh) * 2015-05-13 2015-08-26 杭州师范大学 一种纳米构造的聚偏氟乙烯复合材料及其制备方法

Also Published As

Publication number Publication date
TW201800452A (zh) 2018-01-01

Similar Documents

Publication Publication Date Title
Schaefer et al. High lithium transference number electrolytes via creation of 3-dimensional, charged, nanoporous networks from dense functionalized nanoparticle composites
Tang et al. Effect of EMIMBF4 ionic liquid addition on the structure and ionic conductivity of LiBF4-complexed PVdF-HFP polymer electrolyte films
Calderón et al. Lithium metal protection by a cross-linked polymer ionic liquid and its application in lithium battery
JP7450299B2 (ja) 複合ポリマー固体電解質材料とその調製方法および使用
Gao et al. Nanostructured aqueous lithium-ion conductors formed by the self-assembly of imidazolium-type zwitterions
Wang et al. A single ionic conductor based on Nafion and its electrochemical properties used as lithium polymer electrolyte
CN101891899B (zh) 离子液体掺杂杂环聚芳醚或其磺化物用于高温低湿离子膜及其制备法
TW201236240A (en) Methods for preparing solid polymer electrolytes and applications thereof
CN102315463A (zh) 一种柔性无机/有机复合质子交换膜制备方法
Malik et al. Self‐repairable silicon anodes using a multifunctional binder for high‐performance lithium‐ion batteries
Zhang et al. Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium–Sulfur Battery
Wei et al. Communication—polyethylene/PBI pore-filling composite membrane for high performance vanadium redox flow battery
TWI798160B (zh) 磺酸化聚偏氟乙烯(S-PVdF)及磺酸化聚偏氟乙烯-六氟丙烯共聚物含質子性離子液體之複合薄膜、製備方法及其應用
Casado et al. Tuning electronic and ionic conductivities in composite materials for electrochemical devices
Zhong et al. Polyhedral oligomeric silsesquioxane-modified gel polymer electrolyte based on matrix of poly (methyl methacrylate-maleic anhydride)
Guo et al. Poly (ionic liquid)‐based energy and electronic devices
Gao et al. Proton conducting heteropoly acid based electrolyte for high rate solid electrochemical capacitors
Shin et al. Comparison of Solvent-Cast and Hot-Pressed P (EO) 20LiN (SO 2 CF 2 CF 3) 2 Polymer Electrolytes Containing Nanosized SiO2
Kim et al. Cross-Linked Composite Gel Polymer Electrolyte Based on an H-Shaped Poly (ethylene oxide)–Poly (propylene oxide) Tetrablock Copolymer with SiO2 Nanoparticles for Solid-State Supercapacitor Applications
Song et al. Cellulose-assisted vertically heterostructured PEO-based solid electrolytes mitigating Li-succinonitrile corrosion for lithium metal batteries
Liu et al. Rational Design of LLZO/Polymer Solid Electrolytes for Solid‐State Batteries
Tang et al. Flame-retardant gel electrolyte toward high-safety lithium metal batteries with high-mass-loading cathodes
Samuthira Pandian et al. Flexible, Synergistic Ceramic–Polymer Hybrid Solid-State Electrolyte for Secondary Lithium Metal Batteries
Voropaeva et al. Polystyrene-Based Single-Ion Conducting Polymer Electrolyte for Lithium Metal Batteries
Zhang et al. Novel in situ growth of ZIF-8 in porous epoxy matrix for mechanically robust composite electrolyte of high-performance, long-life lithium metal batteries