TWI787178B - 耐熱性纖維構造體 - Google Patents

耐熱性纖維構造體 Download PDF

Info

Publication number
TWI787178B
TWI787178B TW106110868A TW106110868A TWI787178B TW I787178 B TWI787178 B TW I787178B TW 106110868 A TW106110868 A TW 106110868A TW 106110868 A TW106110868 A TW 106110868A TW I787178 B TWI787178 B TW I787178B
Authority
TW
Taiwan
Prior art keywords
fiber
fibers
fiber structure
heat
web
Prior art date
Application number
TW106110868A
Other languages
English (en)
Other versions
TW201736659A (zh
Inventor
小泉聡
清岡純人
新井田康朗
Original Assignee
日商可樂麗股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商可樂麗股份有限公司 filed Critical 日商可樂麗股份有限公司
Publication of TW201736659A publication Critical patent/TW201736659A/zh
Application granted granted Critical
Publication of TWI787178B publication Critical patent/TWI787178B/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • D04H1/4342Aromatic polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5412Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/541Composite fibres, e.g. sheath-core, sea-island or side-by-side; Mixed fibres
    • D04H1/5418Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/558Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in combination with mechanical or physical treatments other than embossing
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial

Abstract

耐熱性纖維構造體含有玻璃轉化溫度在100℃以上的耐熱性纖維,係藉由耐熱性纖維彼此黏著在一起而構成。

Description

耐熱性纖維構造體
本發明係關於由耐熱性纖維製成且作為絕熱材或吸音材使用之耐熱性纖維構造體及其製造方法。
迄今為止,用耐熱性纖維製成的纖維材料在車輛或飛機、建築等領域作為絕熱材或吸音材等使用。
從輕量性的觀點出發,對具有上述用途的纖維構造體等中的纖維材料提出了密度低這樣的要求。並且,還要求該纖維材料具有抗彎應力、抗拉強度等強力,特別重要的是在高溫條件下具有強力。例如,當上述纖維材料被作為安裝於飛機壁面之吸音絕熱材使用或者被用來製成安裝於汽車發動機部分的過濾器等時,即在上述用途中十分需要高溫時的強力。
有人提出了採用以下步驟製成的絕熱吸音材,即:先將黏著劑加入兩種以上的棉花中而製成棉,再將該棉材質墊化(matted),即可製造出上述絕熱吸音材。更具體而言,例如已公開的是採用以下步驟製成的絕熱吸音材,即:藉由向棉材質中添加耐熱性樹脂黏著劑並對該棉材質 進行熱處理,將其整體墊化後而得到該絕熱吸音材。其中,該棉材質是藉由將高耐熱性無機纖維與熱熔化溫度或熱分解溫度在350℃以上的阻燃性有機纖維均勻地混合後而得到的。而且還有以下記載:藉由使用這樣的絕熱吸音材,即能夠提供由高絕熱性與高吸音性帶來的高安全性絕熱吸音材。
專利文献1:日本專利4951507號公報
儘管按照上述專利文献1的記載,能夠得到具有高絕熱性與高吸音性且能夠折彎的絕熱吸音材,但此時的絕熱吸音材是用黏著劑將纖維彼此黏著在一起而製成的,故還不能說強力足夠大。特別是黏著劑在高溫條件下會溶解,故存在強力降低的問題。
在纖維構造體係經黏著劑將纖維彼此黏著在一起而製成的情況下,為提高強力則需要增加黏著劑的量。但是,若黏著劑的含量升高,耐熱性纖維的含量就會降低,這樣便得不到耐熱性。結果便是存在難以同時獲得強力與耐熱性這樣的問題。
於是,本發明正是為解決上述問題而完成的。其目的在於:提供一種具有耐熱性且抗彎應力、抗拉強度等強力優良的耐熱性纖維構造體。
為達成上述目的,本發明之耐熱性纖維構造體是含有玻璃轉化溫度在100℃以上的耐熱性纖維的纖維構造體,耐熱性纖維彼此黏著在一起。
根據本發明,能夠提供一種具有耐熱性且抗彎應力、抗拉強度等強力優良的耐熱性纖維構造體。
本發明之耐熱性纖維構造體(以下,簡單稱為「纖維構造體」)由彼此黏著在一起的複數耐熱性纖維製成。本發明之纖維構造體與上述習知技術中之纖維構造體不同。 本發明之纖維構造體不使用低熔點的黏著劑纖維,而是將耐熱性纖維彼此直接黏著在一起,因此而具有以下特性:優良的耐熱性與優良的強力。
需要說明的是,這裡所說的「黏著」係指,纖維由於加熱而軟化,纖維彼此在其交點下藉由重疊力變形而咬合在一起或者纖維熔化而成為一體的狀態。
<耐熱性纖維>
以玻璃轉化溫度Tg在100℃以上的纖維作製成纖維構造體的耐熱性纖維用。
這裡,,耐熱性指標一般使用玻璃轉化溫度(高分子開 始進行微分子運動的溫度)。但是,該玻璃轉化溫度在100℃以上的樹脂被稱作工程塑料,非常適合在要求耐熱性的用途中使用。而且,稱以該樹脂作原料用的纖維為耐熱性纖維。
該耐熱性纖維是由於高溫過熱蒸氣(150℃~600℃)而軟化,從而能夠自我黏著的纖維。該耐熱性纖維例如有:聚醯胺纖維、間位芳綸纖維(meta-aramid fibers)、對位芳綸纖維(para-aramid fibers)、三聚氰胺纖維(melamine fibers)、聚苯並噁唑纖維、聚苯並咪唑纖維、聚苯並塞唑纖維、聚芳香酯纖維、聚醚碸纖維、液晶聚酯纖維、聚亞醯胺纖維、聚醚亞醯胺纖維、聚醚醚酮纖維、聚醚酮纖維、聚醚酮酮纖維、聚醯胺亞醯胺纖維等。上述纖維既可以單獨使用,又可以兩種以上混合使用。
需要說明的是,上述纖維中,從低吸水性與耐藥品性的觀點出發,較佳為使用聚醯胺纖維;從阻燃性以及低發煙性的觀點出發,較佳為使用聚醚亞醯胺纖維。
聚醯胺纖維係為例如由半芳香族聚醯胺形成的纖維,該半芳香族聚醯胺由以脂肪族二胺與芳香族成分為主的二羧酸獲得。脂肪族二胺由以下一般式(1)表示,較佳為n=4~12,更佳為n=6與n=9,特佳為n=9。
〔式1〕N2-(CH2)n-NH2 (1)
以芳香族成分為主的二羧酸說的是芳香族成分至少佔60莫耳%以上的二羧酸。較佳例為對苯二甲酸、間苯二 甲酸、萘二羧酸等。脂肪族二胺與芳香族二羧酸之組合例,較佳為:脂肪族二胺(上述一般式(1)中的n=9)與苯二甲酸之組合。
聚醚醯亞胺纖維使用無熔點的非晶性聚醚醯亞胺纖維,玻璃轉化溫度Tg可以在200℃以上,較佳為:即使是較小的纖度,在200℃等高溫條件下也保持著耐熱性。這樣的耐熱性能夠利用200℃下的乾熱收縮率(dry heat shrinkage rate)進行判斷,作本發明之耐熱性纖維使用的非晶性聚醚醯亞胺系纖維,200℃下的乾熱收縮率可以在5.0%以下。具體而言,較佳為乾熱收縮率為-1.0~5.0%。
非晶性聚醚醯亞胺系纖維來自於聚合物,阻燃性也優良。例如,極限氧指數值(LOI值)可以為25以上,較佳可以為28以上,更佳可以為30以上。
非晶性聚醚醯亞胺系纖維的單纖維纖度可以在15.0dtex以下。從製造成本、易處理性的觀點出發,單纖維纖度較佳為0.1~12.0dtex,更佳為0.5~10.0dtex。
非晶性聚醚醯亞胺系纖維在室溫下的纖維強度,較佳為2.0cN/dtex以上。於纖維強度不滿2.0cN/dtex之情形下,用該非晶性聚醚醯亞胺系纖維製備紙、不織物、所有織物等之際,會存在製程透氣性不良的時候。而且,使用用途會受到限制,故屬於非較佳者。更佳為2.3~4.0cN/dtex,尤佳為2.5~4.0cN/dtex。
耐熱性纖維的橫斷面形狀(與纖維的長度方向垂直的 斷面形狀)並不限於普通的斷面形狀,即圓形斷面或異形斷面(扁平狀、橢圓狀、多邊形狀、三~十四葉狀、T字狀、H字狀、V字狀、狗骨頭狀(I字狀)等),還可以為中空斷面形狀等。
耐熱性纖維的平均纖度,例如能夠根據用途從0.01~100dtex之範圍內進行選擇,較佳為0.1~50dtex,更佳為0.5~30dtex(特別是1~10dtex)。如果平均纖度在該範圍內,則纖維強度與黏著性達到良好的平衡。
耐熱性纖維的平均纖維長度例如能夠從10~100mm之範圍內進行選擇,較佳為20~80mm,更佳為25~75mm(特別是35~55mm)。如果平均纖維長度在該範圍內,則纖維會充分地絡合在一起,故纖維構造體的機械強度提高。
例如,耐熱性纖維的捲縮率為1~50%,較佳為3~40%,更佳為5~30%(特別是10~20%)。單位英吋上的捲縮個數例如為1~100個/英吋,較佳為5~50個/英吋,更佳為10~30個/英吋。
<纖維構造體>
本發明的纖維構造體含有上述耐熱性纖維,具有耐熱性纖維彼此黏著在一起的構造,其形狀能夠根據用途選擇,但通常情況下為片狀或板狀。
本發明的纖維構造體具有不織纖維構造,故需要適當地調節構成不織纖維網(web)之纖維的排列狀態與黏著 狀態。其中,該不織纖維構造具有較高的表面硬度與較高的抗彎硬度,且輕量性與透氣性達到良好的平衡。也就是說,理想情況為:構成纖維網的纖維既大致平行於纖維網(不織纖維)的面排列,又彼此交叉地排列。
本發明的纖維構造體較佳為:各纖維在交叉的交點處黏著在一起。特別是,需要具有高硬度與高強度的纖維構造體(成形體)可以形成束狀黏著纖維,該束狀黏著纖維係指:於交點以外的纖維近似平行排列之狀態下數條~數十條左右的纖維束狀地黏著在一起。藉由局部地形成上述纖維在單纖維彼此的交點、束狀纖維彼此的交點或單纖維與束狀纖維的交點處黏著在一起的構造,而使本發明的纖維構造體呈扭成一團「scrum」之構造(纖維在交點部黏著,像網孔一樣纏繞在一起的構造或纖維在交點處黏著而使相鄰的纖維彼此束縛的構造),而能夠表現出所需要的抗彎強度、表面硬度等。本發明中,理想狀況是上述構造呈沿著纖維網面方向與厚度方向大致均勻分佈之形態。
需要說明的是,這裡所說的「大致平行於纖維網面排列」表示以下狀態:即不會有很多纖維局部地沿厚度方向排列著的部分重複這樣的狀態。更具體而言,指以下狀態:用顯微鏡觀察纖維構造體的纖維網的任意斷面之際,跨越纖維網厚度的30%以上且連續在厚度方向上延伸的纖維的存在率(條數比率)為該斷面上全部纖維的10%以下(特別是5%以下)。
讓纖維平行於纖維網面排列的理由如下:如果存在很 多沿厚度方向(與網面垂直的方向)取向的纖維,那麼,在周邊位置處纖維的排列就會混亂起來,就會在不織纖維內產生較大的非必要空隙,纖維構造體的抗彎強度、表面硬度就會降低。因此,較佳為盡量減小該空隙。也正因為如此,理想情況就是讓纖維儘可能平行於纖維網面排列。
特別是,在本發明的纖維構造體為片狀或板狀成形體的情況下,如果沿著纖維構造體的厚度方向施加載荷,則會存在較大的空隙部,該空隙部就會遭受該載荷的破壞,成形體表面容易變形。如果該載荷加在整個成形體上,則整體厚度容易變小。於是,如果讓纖維構造體本身是無空隙的樹脂填充物,則能夠避免上述問題的發生,但是這樣又會導致透氣度降低,而難以確保彎曲時的難折彎度(耐折性)與輕量性。
另一方面,為了減小載荷引起的纖維構造體在厚度方向上的變形,可以考慮使纖維較細,將纖維填充得更密。但是,若想僅靠細纖維確保輕量性與透氣性,每條纖維的剛性就會降低,抗彎應力反而降低。為確保抗彎應力,就需要某種程度地增大纖維直徑,但如果單純地將較粗的纖維加到細纖維中,較大的空隙就容易出現在較粗纖維彼此的交點附近,纖維構造體就容易沿厚度方向變形。
於是,本發明的纖維構造體,係藉由讓纖維平行於網面方向排列並使其分散(或使纖維方向為任意方向),使纖維彼此交叉且在該交點黏著在一起,從而形成較小的空隙來確保輕量性的。藉由上述纖維構造體連為一體,也確 保了適當的透氣度與表面硬度。特別是,在讓平行於纖維長度方向黏著在一起的束狀纖維形成在不與其它纖維交叉而是大致平行排列著的位置的情況下,與僅由單纖維製成纖維構造體的情況相比,主要能夠確保高抗彎強度。在希望得到硬度與強度較高的纖維構造體的情況下,較佳為:纖維一邊一條一條地在交叉的交點處黏著在一起,一邊在交點與交點之間各條纖維排列成束狀的部位形成數束束狀纖維。根據觀察成形體斷面時單纖維的存在狀態,就能夠將上述構造確認出來。
本發明的纖維構造體中,耐熱性纖維黏著的纖維黏著率較佳為10~85%,更佳為25~75%,尤佳為40~65%。
其原因如下:在纖維黏著率未滿10%的情況下,有時會出現硬度、抗彎應力以及抗拉強度降低的不良現象;在纖維黏著率大於85%的情況下,纖維間的空隙變小,故有時會出現表觀密度過大,輕量性受損的不良現象。也就是說,藉由將纖維黏著率設定為10~85%,在不破壞輕量性的情況下,即能夠進一步提高抗彎應力、抗拉強度等強力。
需要說明的是,該纖維黏著率表示兩條以上黏著在一起的纖維的斷面數與不織纖維斷面中所有纖維的斷面數之比,該纖維黏著率能夠利用後述實施例中所記載的方法進行測量。因此,纖維黏著率低,意味著複數纖維彼此黏著在一起的比率(集中黏著在一起的纖維的比率)小。
構成不織纖維構造的耐熱性纖維分別在纖維的接點處黏著在一起,但為了以儘可能少的接點數表現出較大的抗彎應力,較佳為:該黏著點沿厚度方向從纖維構造體的表面均勻地分佈到內部(中央部位)直到背面。如果黏著點集中在表面或內部等,那麼,不僅難以確保充分的抗彎應力,而且黏著點較少之部分的形態穩定性也會降低。因此,從不降低形態穩定性而讓抗彎應力進一步提高的觀點出發,較佳為:在纖維構造體的厚度方向的斷面且沿厚度方向三等分後而形成的三個區域內,中央部位(中心部分)的纖維黏著率都在上述範圍(10~85%)內。
各區域的纖維黏著率的均勻性(即,纖維黏著率的最大值與最小值之差),較佳為20%以下(例如0.1~20%),更佳為15%以下(例如0.5~15%),尤佳為10%以下(例如1~10%)。
本發明的纖維構造體因為其纖維黏著率在厚度方向上具有上述均勻性,所以該纖維構造體的硬度、抗彎強度、耐折性、韌性都很優良。
需要說明的是,本發明中,「沿厚度方向三等分後形成的區域」意味著:沿與板狀纖維構造體的厚度方向正交的方向進行切割而分成三等分後的各區域。
因此,本發明的纖維構造體,不僅耐熱性纖維的黏著均勻地分散著黏著在一起,而且這些點黏著在較短的黏著點距離(例如,數十~數百μm)內緻密地織成了一個網絡(network)構造。藉由上述構造,能夠對本發明的纖 維構造體做出以下推測:即使有外力作用,該纖維構造體也能夠藉由纖維構造所具有的柔軟性提高對變形的追隨性,並且外力分散著作用在微細地分散的纖維的各黏著點上而變小,故表現出較高的抗彎應力與較高的抗拉強度。相對於此,能夠對習知技術中經黏著劑纖維將耐熱性纖維彼此黏著在一起的纖維構造體做出以下推測:為確保耐熱性,黏著劑纖維的量受到限制,黏著點的數量減少;即使增加黏著劑纖維的量而增加了黏著點,也無法得到耐熱性;難以讓纖維構造體的厚度方向上的黏著點均勻地分散,故容易產生變形,抗彎應力、抗拉強度降低。
本發明的纖維構造體,對單纖維(單纖維端面)存在於厚度方向之斷面中的存在頻度無特別限定。例如,存在於該斷面的任意1mm2的面積中的單纖維的存在頻度可以為100個/mm2以上(例如100~300個)。特別是在與輕量性相比更需要機械特性的情況下,單纖維的存在頻度例如可以為100個/mm2以下,較佳為60個/mm2以下(例如1~60個/mm2),更佳為25個/mm2以下(例如3~25個/mm2)。如果單纖維的存在頻度過高,則纖維的黏著點減少,由纖維構造體形成的成形體的強度就會降低。需要說明的是,如果單纖維的存在頻度超過100個/mm2,纖維的束狀黏著點就會減少。因為束狀黏著纖維的黏著點減少,所以難以確保較高的抗彎強度。在成形體為板狀的情況下,較佳為:黏著成束狀的纖維的形狀為:在成形體的厚度方向上較薄且在面方向(長度方向或寬度 方向)上寬度較寬。
需要說明的是,本發明中,按以下所述對單纖維的存在頻度進行測量。也就是說,對從成形體斷面的掃描型電子顯微鏡(SEM)照片中選出的相當於1mm2的範圍進行觀察,將單纖維斷面的數量數出來。從照片中任意地選出數個地方(例如,隨機地選出了10個地方)並進行了同樣的觀察,將單纖維斷面的每單位面積的平均值定為單纖維的存在頻度。此時,將斷面中處於單纖維狀態的纖維全部數出來。也就是說,除完全處於單纖維狀態的纖維以外,即使是數條纖維黏著在一起而成的纖維,只要在斷面中與黏著部分保持一定距離且呈單纖維狀態,那麼也將這些纖維作為單纖維數出來。
纖維構造體中的耐熱性纖維藉由不束縛厚度方向的兩端(藉由纖維在厚度方向上不貫通纖維構造體),來抑制纖維構造體的合格率因纖維脫落等下降。用於這樣佈置耐熱性纖維的製造方法並沒有特別限定,但將使耐熱性纖維交絡起來而成的纖維成形體層疊起來並使所層疊的層數為複數層,利用過熱蒸氣黏著的手段,則簡單可靠。而且,藉由調節纖維長度與纖維構造體的厚度的關係,則能夠大幅度地減少束縛纖維構造體的厚度方向的兩端的纖維。從上述觀點出發,纖維構造體的厚度相對於纖維長度為10%以上(例如10~1000%),較佳為40%以上(例如40~800%),更佳為60%以上(例如60~700%),尤佳為100%以上(例如100~600%)。如果纖維構造體的厚 度與纖維長度在該範圍內,那麼,在不降低纖維構造體的抗彎應力等機械強度的情況下,便能夠抑制纖維構造體的合格率因纖維脫落等而下降。
就這樣,本發明的纖維構造體的密度、機械特性受到束狀黏著纖維的比率、存在狀態的影響。用SEM拍攝下將纖維構造體的斷面放大後的照片,基於在規定區域中黏著在一起的纖維斷面的個數,很簡單地就能夠將表示黏著程度的纖維黏著率測量出來。但是,在纖維黏著成束狀的情況下,因為各纖維黏著成束狀,或者各纖維在交點處黏著在一起,所以特別是在密度較高的情況下,容易變得很難被作為纖維單體進行觀察。
本發明中,能夠以會形成纖維與束狀纖維束的斷面在纖維構造體的斷面(厚度方向的斷面)中所佔的面積大小,即纖維填充率作反映該纖維黏著程度的指標。厚度方向的斷面上的纖維填充率例如為20~80%,較佳為20~60%,更佳為30~50%。如果纖維填充率過小,則纖維構造體內的空隙過多,而難以確保所需要具有的表面硬度與抗彎應力。相反,如果纖維構造體內的空隙過大,雖然能夠充分地確保表面硬度與抗彎應力,卻具有以下傾向:非常重,透氣度降低。
即使本發明的纖維構造體(特別是纖維黏著成束狀,單纖維的存在頻度為100個/mm2以下的纖維構造體)呈板狀,較佳情形也是該纖維構造體具有難以產生變形的表面硬度,該變形例如為受載荷作用而形成凹形狀等。作為 上述指標,A型橡膠硬度計硬度試驗(按照日本工業標準JIS K6253的「硫化橡膠與熱塑性橡膠的硬度試驗法」進行的試驗)的硬度例如為A50以上,較佳為A60以上,更佳為A70以上。如果該硬度過小,則易於受施加於表面的載荷作用而變形。
為使抗彎強度與表面硬度在一個較高的水平上與輕量性、透氣性實現平衡,含有這樣的束狀黏著纖維的纖維構造體較佳為:束狀黏著纖維的存在頻度低且在各纖維(束狀纖維與/或單纖維)的交點處以較高的頻度黏著在一起。但是,如果纖維黏著率過高,則黏著點彼此間的距離會過短,柔軟性就會降低,而難以消除外部應力導致的變形。因此,如上所述,本發明的纖維構造體的纖維黏著率較佳為85%以下。藉由纖維黏著率不過高,在纖維構造體內就能夠確保由小空隙形成的通路,從而能夠使輕量性與透氣度提高。因此,為儘可能用較少的接點數表現出較大的抗彎應力、表面硬度以及透氣度,較佳為:纖維黏著率沿著厚度方向從纖維構造體的表面均勻地分佈到內部(中央部位)直到背面。
如果黏著點集中在表面或內部等,則不僅難以確保上述抗彎應力、形態穩定性,還難以確保透氣度。於是,就本發明的纖維構造體而言,在厚度方向的斷面上,沿厚度方向三等分後而形成的區域(表面、中央部位、背面)中的中央部位的纖維黏著率較佳為在上述範圍內,更佳為:表面、中央部位以及背面中任一區域的纖維黏著率都在上 述範圍內。各區域內纖維黏著率的最大值與最小值之差可以為20%以下(例如0.1~20%),較佳為15%以下(例如0.5~15%),更佳為10%以下(例如1~10%)。本發明中,如果纖維黏著率在厚度方向上很均勻,則抗彎應力、抗拉強度、耐折性、韌性等都優良。本發明中之纖維黏著率採用記載於後述實施例中之方法進行測量。
本發明的纖維構造體表現出了習知技術中耐熱性纖維經黏著劑纖維黏著在一起而形成的纖維構造體所無法得到的抗彎強度,這也是本發明的纖維構造體所具有的特徵之一。本發明中,為表現出該抗彎強度,按照日本工業標準JIS K7171「塑料彎曲特性的求法」,由讓試樣逐漸地彎曲時所產生的試樣的反作用力與彎曲量測量抗彎應力,並以該抗彎應力作彎曲行為的指標用。也就是說,抗彎應力越大,該纖維構造體就越硬。而且,到被測量對象損壞為止的彎曲量(位移)越大,成型體彎曲得就會越好。
本發明的纖維構造體,在至少一個方向(較佳為:所有方向)上的抗彎應力為0.05MPa以上(例如0.05~100MPa),較佳可以為0.1~30MPa,更佳可以為0.2~10MPa。如果該抗彎應力過小,該纖維構造體作板材用時,自重或較小的載荷便極容易將其折彎。如果抗彎應力過大,纖維構造體就會過硬。如果超過應力峰值後將其折彎的話,纖維構造體就會折彎而易於破損。需要說明的是,為得到超過100MPa的硬度,便需要提高纖維構造體的密度,卻難以確保輕量性。
本發明的纖維構造體,藉由產生於纖維間的空隙能夠確保優良的輕量性。上述空隙與海綿般的樹脂發泡體不同,各個孔隙不是分別獨立而是連成一體,故本發明的纖維構造體具有透氣性。上述構造極難用習知技術中的普通硬質化手法製造。普通硬質化手法例如有:含浸樹脂的方法、讓表面部分很密地黏著在一起而形成膜狀構造的方法等。
也就是說,本發明的纖維構造體密度低。具體而言,表觀密度例如為0.03~0.7g/cm3。特別是在要求輕量性的用途當中,表觀密度例如可以為0.05~0.5g/cm3,較佳可以為0.08~0.4g/cm3,更佳可以為0.1~0.35g/cm3。在與輕量性相比更要求硬度的用途當中,表觀密度例如為0.2~0.7g/cm3,較佳為0.25~0.65g/cm3,更佳為0.3~0.6g/cm3。如果表觀密度過低,儘管會具有輕量性,但卻難以確保具有充分的抗彎硬度與表面硬度。相反,如果表觀密度過高,雖然能確保硬度,但輕量性卻會降低。需要說明的是,如果表觀密度降低,則纖維會交絡,而接近在交點處黏著在一起的普通不織纖維構造。另一方面,如果密度升高,則纖維會黏著成束狀,而成為接近多孔成形體的構造。
需要說明的是,這裡的「表觀密度」,說的是基於厚度與按照日本工業標準JIS L1913(一般不織物試驗方法)的標準測得的單位面積質量計算得出的密度。
本發明的纖維構造體的單位面積質量,例如能夠從 50~10000g/m2左右的範圍內進行選擇,較佳為150~8000g/m2,更佳為300~6000g/m2左右。在與輕量性相比更要求硬度的用途當中,單位面積質量例如為1000~10000g/m2,較佳為1500~8000g/m2,更佳為2000~6000g/m2左右。如果單位面積質量過小,則難以確保硬度。如果單位面積質量過大,則網會過厚,在利用過熱蒸氣進行加工的過程中,過熱蒸氣不會充分地進入網內部,而難以使其成為厚度方向均勻的纖維構造體。
在本發明的纖維構造體呈板狀或片狀的情況下,其厚度並無特別限定,能夠從1~100mm左右的範圍內進行選擇。例如為2~50mm,較佳為3~20mm,更佳為5~150mm。如果厚度過薄,則難以確保硬度。如果厚度過厚,質量會變重,作為片材的易處理性降低。
本發明的纖維構造體的透氣性因其具有不織纖維構造而較高。就本發明的纖維構造體的透氣度而言,按弗雷澤法測得的透氣度為0.1cm3/cm2/sec以上(例如0.1~300cm3/cm2/sec),較佳為0.5~250cm3/cm2/sec(例如1~250cm3/cm2/sec),更佳為5~200cm3/cm2/sec。通常情況下透氣度為1~100cm3/cm2/sec。如果透氣度過小,則需要從外部施加壓力以便空氣穿過纖維構造體,空氣難以自然地進出。另一方面,如果透氣度過大,則透氣性會提高,但如果纖維構造體內的纖維空隙過大,抗彎應力會降低。
本發明的纖維構造體的絕熱性也因其具有不織纖維構 造而較高,導熱率較低,為0.1W/m‧K以下。例如為0.03~0.1W/m‧K,較佳為0.05~0.08W/m‧K。
接著,說明本發明的纖維構造體的製造方法。
在本發明的纖維構造體的製造方法中,首先將上述耐熱性纖維網化。網之形成方法能夠採用慣用方法,該慣用方法有直接法,如紡黏法、熔噴法等;有乾法,如用熔噴纖維、定長纖維等進行的梳理(card)法以及空乾(airlaid)法等。上述方法中,用熔噴纖維、定長纖維進行的梳理法通用,特別是用定長纖維進行的梳理法通用。用定長纖維製得的網例如有:隨機網、半隨機網、平行網、交叉網等。在使束狀黏著纖維所佔的比率較高的情況下,上述網中,較佳為半隨機網、平行網。
在使已製得的纖維網的纖維彼此黏著在一起的製程中,使纖維彼此黏著的手段既可以採用習知技術中的熱風處理、熱壓處理使纖維彼此黏著在一起,還可以藉由過熱蒸氣使纖維彼此黏著在一起。在使用過熱蒸氣的情況下,在上述製程中製得的纖維網,用帶式輸送機送往下一個製程,暴露於過熱蒸氣(高壓蒸氣)流中,由此而製備出本發明的具有不織纖維構造的纖維構造體。也就是說,用帶式輸送機輸送來的纖維網穿過從蒸氣噴射裝置的噴嘴中噴出的過熱蒸氣流,耐熱性纖維彼此間由於該吹來的過熱蒸氣而三維地黏著(熱黏著)在一起。
用上述過熱蒸氣(150℃~600℃)進行加熱處理,耐熱性纖維便會彼此黏著在一起而能夠製成纖維網絡 (network)。因此,直到纖維構造體的厚度方向的內部,都能夠進行均勻且保證體積大的處理。
需要說明的是,噴射到耐熱性纖維上的過熱蒸氣的溫度,較佳為在150~600℃的範圍內。較佳為在150~600℃的範圍內之原因如下:如果溫度低於150℃,那麼有時候,施加給耐熱性纖維的能量就會不足,纖維彼此的黏著就會不充分;如果大於600℃,那麼有時候,傳遞給靠近噴射裝置的纖維的能量就會變得過大,纖維黏著率的均勻性就會降低。
所使用的帶式輸送機,基本上只要能夠一邊將加工時所使用的纖維網壓縮到所需要的密度,一邊利用過熱蒸氣進行處理即可,並無特別限定。環狀帶式輸送機最合適。需要說明的是,既可以使用一般的獨立帶式輸送機,還可以根據需要將兩台帶式輸送機組合起來使用,將纖維網夾在兩帶之間並輸送該纖維網。藉由這樣輸送,在處理纖維網之際就能夠抑制以下不良現象之發生:輸送來的纖維網由於用於處理的過熱蒸氣、輸送機振動等外力而變形。還能夠藉由調節該帶的間隔,控制處理後的不織纖維的密度或厚度。
在將兩台帶式輸送機組合起來使用的情況下,將用於將過熱蒸氣供向纖維網的蒸氣噴射裝置裝在一輸送機內,利用輸送機上的網狀物(net)將過熱蒸氣供向纖維網。還可以將吸引箱安裝在相反一側的輸送機上。穿過纖維網後的過剩之過熱蒸氣能夠藉由吸引箱吸進來、排出去。為 了同時用過熱蒸氣對纖維網的表面一側與背面一側這兩側進行處理,可以進一步將吸引箱安裝在位於已裝上了過熱蒸氣噴射裝置之一側的輸送機的下游部,將過熱蒸氣噴射裝置設置在與已裝上了該吸引箱之一側相反一側的輸送機內。在沒有下游部的過熱蒸氣噴射裝置與吸引箱的情況下,如果用蒸氣對纖維網的表面與背面進行處理,則可以採用以下替代方法:將處理過一次的纖維網的表面與背面翻過來,並讓它再次穿過處理裝置的內部空間。
輸送機所用環狀帶,只要不妨礙纖維網的輸送與過熱蒸氣處理即可,並無特別限定。不過,在用過熱蒸氣進行處理的情況下,有時候在該條件下會將帶的表面形狀轉印到纖維網的表面上,故較佳為根據用途適當地選擇帶。特別是,在纖維構造體的表面較平的情況下,使用網眼較細的網。需要說明的是,90個網眼是上限,網眼個數超過90的細網眼網透氣性低,蒸氣難以穿過。從針對過熱蒸氣處理的耐熱性等的觀點出發,網眼帶(mesh belt)的材質較佳為:金屬、經過了耐熱處理的聚酯系樹脂、聚苯硫醚系樹脂、聚芳酯系樹脂(全芳香族系聚酯系樹脂)、芳香族聚醯胺系樹脂等耐熱性樹脂等。
從蒸氣噴射裝置中噴射出的過熱蒸氣是氣流,故與水流絡合處理、針刺處理不同,不用讓被處理物即纖維網中的纖維進行較遠距離的移動,該過熱蒸氣即會進入纖維網的內部。一般可以這樣理解:過熱蒸氣流藉由其過熱作用與其進入纖維網中的進入作用,就會在過熱狀態下高效地 覆蓋存在於纖維網內的各耐熱性纖維的表面,熱黏著就能夠很均勻。因為該處理在高速氣流下進行且進行時間極短,所以過熱蒸氣能夠充分地朝著纖維表面進行熱傳導。但是,處理會在充分地朝著纖維內部進行熱傳導之前結束,故難以發生以下不良現象:由於過熱蒸氣的壓力、熱量等而導致被處理的纖維網整體遭受破壞;發生會導致其厚度遭到破壞等的變形。其結果是,熱黏著會在纖維網不發生很大變形的情況下結束,表面與厚度方向上的黏著程度大致均勻。
在想得到表面硬度、抗彎強度較高的纖維構造體的情況下,當將過熱蒸氣供向纖維網並對纖維網進行處理之際,重要的是將該要處理的纖維網暴露在過熱蒸氣中。此時,該要處理的纖維網處於已在輸送機所用帶之間或輥之間被壓縮到所需表觀密度(例如0.03~0.7g/cm3)的狀態。特別是,在想得到密度相對較高的纖維構造體的情況下,在用過熱蒸氣進行處理之際,需要用足夠大的壓力對纖維網進行壓縮。藉由確保輥之間或輸送機用帶之間具有適當的間隙,也能夠將纖維網調節到所需要的厚度或密度。在使用輸送機的情況下,難以一下子將纖維網壓縮好,故較佳為:儘可能地將帶的張力設定得較高,然後從蒸氣處理地點的上游逐漸地縮小間隙。而且,係藉由調節蒸氣壓力、處理速度,來加工出具有所需抗彎硬度、表面硬度、輕量性以及透氣度的纖維構造體。
此時,在想提高硬度的情況下,若使夾著纖維網與噴 嘴相反一側之環狀帶的背面一側為不鏽鋼板等,而使該環狀帶成為一種蒸氣無法穿過的構造,穿過被處理物即纖維網的蒸氣就會在這裡發生反射,故利用蒸氣的保溫效果,黏著就會更加牢固。相反,在需要輕度黏著的情況下,則可以設置吸引箱,將多餘蒸氣排出到室外。
按以下做法佈置用於噴射過熱蒸氣的噴嘴即可,使用規定的流孔(orifice)連續排列在寬度方向上的平板或者規定的流孔連續排列在寬度方向上的模具(dice),並讓流孔排列在接收該過熱蒸氣的纖維網的寬度方向上。只要有一排以上的流孔即可,也可以有複數排流孔。可以將複數具有一排流孔排的噴嘴模具排列著佈置好。
在使用平板上開有流孔之噴嘴的情況下,平板的厚度可以為0.5~1mm。流孔的直徑、間距只要滿足能夠對所需纖維進行固定這樣的條件即可,並無特別限定。但是,流孔的直徑通常為0.05~2mm,較佳為0.1~1mm,更佳為0.2~0.5mm。流孔的間距通常為0.5~3mm,較佳為1~2.5mm,更佳為1~1.5mm。若流孔的直徑過小,則容易出現噴嘴的加工精度低,加工困難等設備方面的問題,還容易出現網眼容易堵塞這樣的運轉方面的問題。相反,若流孔的直徑過大,蒸氣噴射力就會降低。另一方面,若間距過小,噴嘴孔就會過密,故噴嘴本身的強度降低。另一方面,若間距過大,則會出現高溫水蒸氣不會充分地接觸纖維網的情況,故纖維網的強度會降低。
過熱蒸氣只要能夠實現對耐熱性纖維的固定即可,並 無特別限定,只要根據所用纖維的材質、形態設定過熱蒸氣的壓力即可。壓力例如為0.1~2MPa,較佳為0.2~1.5MPa,更佳為0.3~1MPa。在蒸氣的壓力過高或過強的情況下,形成纖維網的纖維就會活動,布整體的質量分佈的均勻性就會遭受破壞,或者纖維會過度熔化,而可能導致在某些地方無法保持纖維的形狀。若壓力過弱,則會出現無法將黏著纖維所需要的熱量供給纖維網的情況,還會出現過熱蒸氣無法穿過纖維網而會在厚度方向上產生纖維黏著不均勻的情況。因此壓力過強或過弱,都會出現難以將從噴嘴噴出的蒸氣控制得比較均勻的情況。
按以上所述得到的具有不織纖維構造的纖維構造體,其密度與普通不織布的大致相等且較低,卻具有極高的抗彎應力與表面硬度。而且,該纖維構造體不僅具有透氣性、吸音性、絕熱性,還具有耐熱性。因此,利用上述性能,該纖維構造體便能夠被應用到如汽車的內部材料、飛機的內壁、建材板等要求耐熱性的用途中。
〔實施例〕
以下,根據實施例來說明本發明。需要說明的是,本發明並不限於下述實施例,能夠基於本發明的主旨對實施例做變形或變更,所做的變形或變更不應被排除在本發明的範圍之外。
實施例中各物理性質的值利用以下所示的方法進行測量。需要說明的是,實施例中的「份」意味著質量份, 「%」意味著質量%。
(實施例1) <纖維構造體的製作>
準備了以下耐熱性纖維(纖度:1.7dtex、纖維長度:51mm)作實施例1中的耐熱性纖維用。所準備的該耐熱性纖維係用由碳個數為9的二胺與苯二甲酸形成的半芳香族聚醯胺樹脂(日本可樂麗公司製造,商品名稱:genestar,熔點:265℃,玻璃轉化溫度125℃,熱分解溫度:400℃)製成。接著,用該耐熱性纖維且採用梳理法製作了單位面積質量為50g/m2的梳理網,12張這樣的梳理網摞起來,使其變成合計單位面積質量為600g/m2的梳理網。將該梳理網輸送到安裝有網眼為50個、寬度為500mm的不鏽鋼環形網狀物(endless net)的輸送機那裡。
需要說明的是,帶式輸送機由下側輸送機與上側輸送機這一對輸送機構成,在至少一輸送機的帶背面一側設置有蒸氣噴射噴嘴。能夠藉由帶向穿過的梳理網噴射過熱蒸氣。而且,在該噴嘴的上游側,在各台輸送機上設置有網厚調節用金屬輥(以下,有簡單記為「網厚調節用輥」的時候)。下側輸送機的上表面(也就是說,網穿過的表面)為平面,而上側輸送機的下表面為沿著網厚調節用輥彎曲的曲面,上側輸送機的網厚調整用輥與下側輸送機的網厚調整用輥被佈置成對。
上側輸送機能夠上下移動,藉此而能夠將兩輸送機所用帶之間以及網厚調節用輥之間的間隔調節為規定值。讓上側輸送機的上游側以30度的角度相對於下游部以網厚調節用輥為基點(相對於上側輸送機的下游側的下表面)傾斜,下游部彎曲,以便與下側輸送機平行。需要說明的是,在上側輸送機上下移動的情況下,係邊保持該平行關係邊移動。
上述帶式輸送機分別以相同的速度朝著相同的方向旋轉,且上述帶式輸送機具有以下構造:能夠邊保持該兩台輸送機的帶與帶之間、網厚調整用輥與網厚調整用輥之間具有規定的間隙,邊加壓。這是一種如所謂的壓延製程那樣工作以調節蒸氣處理前的網厚的構造。也就是說,從上游側送來的梳理網在下側輸送機上移動,但是在該梳理網到達網厚調節用輥的那段時間內,該梳理網與上側輸送機之間的間隔逐漸變窄。而且,當該間隔變得比網厚還窄時,網會被夾在上下輸送機的帶之間,且一邊逐漸地受到壓縮一邊移動。該網受到壓縮,直到它達到與為網厚調節用輥設定的間隙大致相等的厚度為止,在該厚度狀態下進行過熱蒸氣處理,之後也是在輸送機的下游部邊維持厚度邊移動。這裡,將網厚調整用輥調節成線性負載(linear load)為50kg/cm。
接著,朝著設置在下側輸送機上的蒸氣噴射裝置引入梳理網,從該裝置朝著梳理網的厚度方向(垂直)噴出300℃的過熱蒸氣並讓該過熱蒸氣穿過厚度方向來進行蒸 氣處理,即得到了具有本實施例的不織纖維構造的纖維構造體。將該蒸氣噴射裝置的噴嘴設置在下側輸送機內,以保證經由輸送機上的網狀物將過熱蒸氣吹向梳理網,在上側輸送機上設置有吸引裝置。在該噴射裝置的網前行方向的下游側,另外設置有一台噴嘴與吸引裝置的佈置位置已調換的噴射裝置,而對梳理網的表面與背面兩面進行過熱蒸氣處理。
需要說明的是,使用了蒸氣噴射噴嘴的孔徑為0.3mm,且噴嘴沿著輸送機的寬度方向以1mm的間距排列成一排的蒸氣噴射裝置。設加工速度為3m/min,且設噴嘴側與吸引側的上下輸送機用帶之間的間隔(距離)為5mm。噴嘴被設置成以下狀態:在輸送機所用帶的背面一側與帶有時接觸,有時不接觸。
<單位面積質量的測量>
按照日本工業標準JIS L1913,測量了已製作出的纖維構造體的單位面積質量(g/m2)。以上結果示於表1。
<表觀密度的測量>
按照日本工業標準JIS L1913,測量了已製作出的纖維構造體的厚度(mm),基於該厚度值與單位面積質量值,計算出了表觀密度(g/cm3)。以上結果示於表1。
<纖維黏著率的測量>
用掃描型電子顯微鏡(SEM)拍攝了將纖維構造體的斷面擴大到100倍後的照片。接著,沿所拍攝的纖維構造體的厚度方向將該厚度方向上的斷面的照片三等分,求出了纖維彼此黏著在一起的切割面的個數相對於在三等分後而形成的各區域(表面側區域、內部(中央部位)區域、背面側區域)中能夠識別的纖維切割面(纖維端面)的個數之比。
更具體而言,基於下式(1),用百分率表示處於2條以上的纖維黏著在一起之狀態的斷面的個數在各區域中能夠認識出的纖維的所有斷面的個數中所佔的比例。
〔數學式1〕纖維黏著率(%)=(2條以上黏著在一起的纖維的斷面的個數)/(纖維的所有斷面的個數)×100 (1)
需要說明的是,纖維彼此接觸的部分分為:不黏著只單純接觸的部分與藉由黏著而黏著在一起的部分。為了用顯微鏡進行攝影而對纖維構造體進行了切割。在纖維構造體的切割面中,簡單接觸的纖維受到各纖維所具有的應力的作用而彼此分開了。因此,在斷面的照片中,假定接觸著的纖維彼此是黏著在一起的。
對各照片中能夠確認出斷面的纖維全部數一下,在纖維斷面的個數為100以下的情況下,追加要觀察的照片使纖維所有的斷面個數超過100。對三等分後而形成的各區域分別求纖維黏著率,並求了最大值與最小值之差(即均 勻性)。以上結果示於表1。
<抗彎應力的測量>
按照日本工業標準JIS K7171(塑料彎曲性的求法)的標準,由已製作出的纖維構造體準備出試驗片(寬度為10mm,長度為100mm),設支點間距離為80mm,設試驗速度為10mm/min,測量了抗彎應力(MPa)。以上結果示於表1。
<抗拉強度的測量>
按照日本工業標準JIS L1913(一般不織布的試驗方法)的標準,由已製作出的纖維構造體準備出試驗片(寬度為30mm,長度為150mm),設夾持間隔為100mm,設試驗速度為10mm/min,測量了抗拉強度(N/30mm)。以上結果示於表1。
(實施例2) <纖維構造體的製作>
準備了非晶性聚醚醯胺纖維(可樂麗公司製造,商品名稱:KURAKISSS,玻璃轉化溫度125℃,熱分解溫度:540℃,纖度:8.9dtex,纖維長度51mm)作實施例2中的纖維構造體用。接著,用該耐熱性纖維和梳理法製作單位面積質量為100g/m2的梳理網,用水流絡合法將該梳理網片材化。
接著,將10張該片材層疊起來,將該層疊體輸送到安裝上了網眼為50個、寬度為500mm的不鏽鋼環形網的帶式輸送機上。
接著,按照上述實施例1的做法,朝著設置在下側輸送機上的蒸氣噴射裝置引入梳理網,從該裝置朝著梳理網的厚度方向(垂直)噴出300℃的過熱蒸氣並讓該過熱蒸氣穿過厚度方向來進行蒸氣處理,即得到了具有本實施例的不織纖維構造的纖維構造體。
接著,按照上述實施例1的做法,測量了單位面積質量、表觀密度、纖維黏著率、抗彎應力、抗彎載荷以及抗拉強度。以上結果示於表1。
(實施例3) <纖維構造體的製作>
將9張在實施例1中使用的梳理網層疊起來,在熱壓裝置中在260℃的溫度下對層疊起來的9張梳理網進行了1分鐘的熱壓處理,而得到了纖維構造體。
接著,按照上述實施例1的做法,測量了單位面積質量、表觀密度、纖維黏著率、抗彎應力、抗彎載荷以及抗拉強度。以上結果示於表1。
(比較例1) <纖維構造體的製作>
準備了在實施例1中準備好的半芳香族聚醯胺纖維和 作黏著纖維用的聚丙烯/聚乙烯芯鞘型複合纖維(UBE EXSYMO Co.,LTD.製造,HR-NTW,芯部的玻璃轉化溫度為:-20℃,鞘部的玻璃轉化溫度:-120℃,芯部的熱分解溫度:240℃,鞘部的熱分解溫度:270℃,纖度:1.7dtex,纖維長度:51mm),並以80/20的質量比混合在一起。接著,用該混棉纖維和梳理法製作了單位面積質量50g/m2的梳理網,將6張該梳理網層疊起來,使其為合計單位面積質量為300g/m2的梳理網。用熱風乾燥機在150℃的溫度下對該梳理網進行1分鐘的加熱處理,得到了本比較例的纖維構造體。
接著,按照上述實施例1的做法,測量了單位面積質量、表觀密度、纖維黏著率、抗彎應力、抗彎載荷以及抗拉強度。以上結果示於表1。
Figure 106110868-A0202-12-0031-1
如表1所示,與比較例1中的耐熱性纖維彼此經黏著劑黏著在一起的纖維構造體相比,實施例1~3中的將具有100℃以上的玻璃轉化溫度的耐熱性纖維彼此熱黏著在 一起的纖維構造體,其抗彎應力與抗拉強度優良。特別是可以這樣說:與比較例1相比,實施例1~2中的纖維黏著率的均勻性較高的纖維構造體,其抗彎應力與抗拉強度的值顯著升高,強力非常優良。
可以這樣說:與比較例1相比,實施例1~2中的纖維構造體,其抗拉強度維持率(180℃下的抗拉強度/常溫下的抗拉強度)非常大,耐熱性非常優良。
如表1所示,比較例1中的纖維構造體的抗彎應力為0,這樣的纖維構造體軟到在自重的作用下都會彎曲,抗彎應力在測量極限以下。例如,在用這樣的纖維構造體作絕熱材料用而進行施工的情況下,其不會貼在壁面、天花板面上等,而會垂下來,故易處理性不良。另一方面,實施例3中的抗彎應力為0.4MPa,優於比較例1。如果具有0.4MPa左右的抗彎應力,施工時它就不會從壁面上垂下來。故可以這樣說:從易處理性的觀點等出發,實施例3的易處理性大幅度提高。
可以這樣說:與比較例1相比,實施例3中的纖維構造體,其抗拉強度維持率(180℃下的抗拉強度/常溫下的抗拉強度)非常大,耐熱性非常優良。
另一方面,比較例1中是用黏著劑將纖維彼此黏著在一起的構造,故如表1所示,纖維黏著率明顯降低。結果是,可以這樣說:與實施例1~2相比,抗彎應力、抗拉強度明顯降低。
-產業上的可利用性-
綜上所述,本發明對於由耐熱性纖維製成且作絕熱材或吸音材用的耐熱性纖維構造體適用。

Claims (4)

  1. 一種耐熱性纖維構造體,其係為含有玻璃轉化溫度在100℃以上的耐熱性纖維的纖維構造體,該耐熱性纖維是藉由150℃~600℃之過熱蒸氣軟化而能夠自我黏著的纖維,該耐熱性纖維彼此黏著在一起,所述耐熱性纖維的纖維黏著率為40~65%,所述纖維黏著率的均勻性在20%以下。
  2. 如請求項1所述的纖維構造體,其中:在所述纖維構造體的厚度方向的斷面上沿厚度方向三等分後而得到的三個區域中,中央部位的纖維黏著率為40~65%。
  3. 如請求項1或2所述的纖維構造體,其中:表觀密度為0.03~0.7g/cm3
  4. 如請求項3所述的纖維構造體,其中:所述表觀密度為0.03~0.5g/cm3
TW106110868A 2016-03-30 2017-03-30 耐熱性纖維構造體 TWI787178B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-069518 2016-03-30
JP2016069518 2016-03-30

Publications (2)

Publication Number Publication Date
TW201736659A TW201736659A (zh) 2017-10-16
TWI787178B true TWI787178B (zh) 2022-12-21

Family

ID=59965687

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110868A TWI787178B (zh) 2016-03-30 2017-03-30 耐熱性纖維構造體

Country Status (7)

Country Link
US (1) US20190055684A1 (zh)
EP (1) EP3438338A4 (zh)
JP (1) JP7141334B2 (zh)
KR (2) KR102592387B1 (zh)
CN (1) CN108884616A (zh)
TW (1) TWI787178B (zh)
WO (1) WO2017170791A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3896205B1 (en) * 2018-12-13 2023-03-01 Asahi Kasei Kabushiki Kaisha Non-woven cloth, layered non-woven cloth comprising said non-woven cloth, and composite sound-absorbing material in which layered non-woven cloth is used as skin material
CN109610092B (zh) * 2018-12-26 2021-04-13 四川金象赛瑞化工股份有限公司 一种抛光用无纺布

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200744811A (en) * 2006-03-31 2007-12-16 Kuraray Co Compact having nonwoven fiber structure
CN105339541A (zh) * 2013-06-28 2016-02-17 可乐丽股份有限公司 阻燃性无纺布、成型体及复合叠层体

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2458038A1 (de) * 1974-12-07 1976-08-26 Freudenberg Carl Fa Hochtemperaturbestaendiger vliesstoff und verfahren zu seiner herstellung
US4113537A (en) * 1974-12-07 1978-09-12 Firma Carl Freudenberg Heat resistant nonwoven fabric and method of manufacturing same
JPS6039463A (ja) * 1983-08-09 1985-03-01 帝人株式会社 芳香族ポリアミド繊維不織シ−ト
AT391710B (de) * 1988-02-26 1990-11-26 Chemiefaser Lenzing Ag Schwer entflammbare hochtemperaturbestaendige polyimidfasern und formkoerper daraus
JPH03180588A (ja) * 1989-12-06 1991-08-06 Nitto Boseki Co Ltd ポリエーテルイミド不織布,ポリエーテルイミド―無機繊維混合不織布及びこれらの製造方法
JPH0461217A (ja) * 1990-06-29 1992-02-27 Nippon Chemicon Corp 電解コンデンサ
JPH0461216A (ja) * 1990-06-29 1992-02-27 Nippon Chemicon Corp 電解コンデンサ
EP0729289B1 (en) * 1995-02-23 1998-07-22 Teijin Limited Speaker damper and production method thereof
US20080081528A1 (en) * 2006-09-29 2008-04-03 Carter H Landis High impact strength, fire resistant woven article
JP5368709B2 (ja) * 2008-01-18 2013-12-18 株式会社カネカ ポリイミド繊維集合体及びその利用、並びに当該ポリイミド繊維集合体の製造方法
US8424636B2 (en) * 2011-04-29 2013-04-23 E.I. Du Pont De Nemours And Company Muffler assembly and process of manufacture
US20140187115A1 (en) * 2011-06-02 2014-07-03 Toray Industries, Inc. Polyphenylene sulfide fiber and nonwoven fabric
JP6420663B2 (ja) * 2012-07-30 2018-11-07 株式会社クラレ 耐熱性樹脂複合体およびその製造方法、ならびに耐熱性樹脂複合体用不織布
CN103343423B (zh) * 2013-06-27 2016-04-13 北京化工大学常州先进材料研究院 一种可用作锂电隔膜的交联聚醚酰亚胺纤维膜及其制备
TWI675947B (zh) * 2015-06-30 2019-11-01 日商可樂麗股份有限公司 不織布及其之製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200744811A (en) * 2006-03-31 2007-12-16 Kuraray Co Compact having nonwoven fiber structure
CN105339541A (zh) * 2013-06-28 2016-02-17 可乐丽股份有限公司 阻燃性无纺布、成型体及复合叠层体

Also Published As

Publication number Publication date
KR102592387B1 (ko) 2023-10-20
EP3438338A1 (en) 2019-02-06
JPWO2017170791A1 (ja) 2019-02-14
KR20180123087A (ko) 2018-11-14
JP7141334B2 (ja) 2022-09-22
CN108884616A (zh) 2018-11-23
TW201736659A (zh) 2017-10-16
EP3438338A4 (en) 2019-05-01
US20190055684A1 (en) 2019-02-21
WO2017170791A1 (ja) 2017-10-05
KR20210034122A (ko) 2021-03-29

Similar Documents

Publication Publication Date Title
TWI586863B (zh) 不織纖維片及其製造方法與過濾器
CN107429456B (zh) 层叠无纺布
CN111876898B (zh) 吸水性叠层体及其制造方法
JP4951618B2 (ja) 不織繊維構造を有する成形体
TWI640666B (zh) 重複耐久性優異之伸縮性不織布
CN110709552A (zh) 纤维结构体、成型体及吸音材料
TWI787178B (zh) 耐熱性纖維構造體
JP2012211400A (ja) 熱膨張性不織布及びこれを用いた嵩高不織布の製造方法
CN113260750B (zh) 纤维结构体及其用途
US9689097B2 (en) Nonwoven composite fabric and panel made therefrom
WO2015056618A1 (ja) 複合不織布
JP2015196933A (ja) 吸音材構造物
JP2010243831A (ja) 吸音性シート材料及び吸音性内装材料
JP3464544B2 (ja) 薄手軽量強化水流絡合不織布の製造方法
KR101505632B1 (ko) 인공피혁용 기포 및 그 제조방법
JP7333189B2 (ja) 吸音材
JP2003041472A (ja) 薄手軽量強化水流絡合不織布
JP2009085251A (ja) 板ばね及びその製造方法
JPH09123317A (ja) 断熱性複合体及びこの製造方法