TWI785199B - 光催化結構及其製備方法 - Google Patents

光催化結構及其製備方法 Download PDF

Info

Publication number
TWI785199B
TWI785199B TW108103649A TW108103649A TWI785199B TW I785199 B TWI785199 B TW I785199B TW 108103649 A TW108103649 A TW 108103649A TW 108103649 A TW108103649 A TW 108103649A TW I785199 B TWI785199 B TW I785199B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
photocatalytic
active layer
carbon nanotubes
substrate
Prior art date
Application number
TW108103649A
Other languages
English (en)
Other versions
TW202033274A (zh
Inventor
王營城
金元浩
肖小陽
張天夫
李群慶
范守善
Original Assignee
鴻海精密工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司 filed Critical 鴻海精密工業股份有限公司
Publication of TW202033274A publication Critical patent/TW202033274A/zh
Application granted granted Critical
Publication of TWI785199B publication Critical patent/TWI785199B/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/347Ionic or cathodic spraying; Electric discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2045Light-sensitive devices comprising a semiconductor electrode comprising elements of the fourth group of the Periodic System (C, Si, Ge, Sn, Pb) with or without impurities, e.g. doping materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Thermal Sciences (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本發明涉及一種光催化結構,該光催化結構包括一奈米碳管結構和一設置於所述奈米碳管結構表面的光催化活性層和金屬層;所述奈米碳管結構包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔;所述光催化活性層包覆於該複數個奈米碳管的表面,所述金屬層包覆於該光催化活性層的表面;所述金屬層包括複數個奈米顆粒,所述奈米顆粒分散於所述光催化活性層的表面。

Description

光催化結構及其製備方法
本發明涉及光催化及光電催化技術領域。
光催化技術是指光催化劑在能量大於其禁帶寬度的入射光照射下,產生具有很強還原性和氧化性的光生電子-空穴對,該等電子-空穴對可以與光催化結構表面吸附的物質發生氧化還原反應。光催化的潛在應用主要分佈在以下幾個領域:光分解水產生氫氣、人工光合作用、光氧化或分解有害物質、光電化學轉化和光致超親水性等。二氧化鈦作為一種光催化結構具有耐酸性好,對生物無毒且具有較大的資源儲量等優點,因此成為研究最為廣泛的光催化結構。但是由於二氧化鈦的禁帶寬度較大,基本上只能吸收紫外光,而紫外光只占太陽光中的4%左右,太陽光中占較大比例的可見光不能夠利用。而且現有技術中,二氧化鈦對紫外光的吸收能力也有限的,對紫外光的利用也不能達到100%。因此人們致力於對二氧化鈦進行改性,以期提高二氧化鈦對太陽光的利用率。
光電催化是指將光催化結構固定在導電的金屬上,同時,將固定後的光催化結構作為工作電極,採用外加恒電流或恒電位的方法迫使光致電子向對電極方向移動,因而與光致空穴發生分離。
有鑒於此,確有必要提供一種能夠提高太陽光利用率的光催化結構。
一種光催化結構,該光催化結構包括一奈米碳管結構和一設置於所述奈米碳管結構表面的光催化活性層和金屬層;所述奈米碳管結構包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔;所述光催化活性層包 覆於該複數個奈米碳管的表面,所述金屬層包覆於該光催化活性層的表面;所述金屬層包括複數個奈米顆粒,所述奈米顆粒分散於所述光催化活性層的表面。
一種光催化結構的製備方法,包括以下步驟,提供一奈米碳管結構,所述奈米碳管結構包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔;于該奈米碳管結構的表面形成一光催化活性層;於該光催化活性層的表面形成金屬預製層;對上述金屬預製層進行退火處理。
相較于現有技術,本發明提供的光催化結構及其製備方法具有以下優點:第一,所述光催化活性層設置於奈米碳管結構的兩個表面,是以該光催化結構的兩個表面均可以進行光催化反應,進一步提高比表面積,提高該光催化結構的利用率和催化效果;第二,藉由調節奈米碳管結構中交叉的奈米碳管膜的層數和交叉方式可以調節該光催化結構的奈米微結構,調節金屬層對太陽光的共振吸收波長和吸收強度,藉由選擇特定結構和金屬可以實現在紫外波段的寬頻強吸收或者在某一特定波段的共振吸收,可以極大提高對紫外光的吸收率和二氧化鈦在紫外波段的催化效果。
10,10B,10C:光催化結構
12:基板
120:基底
121:表面
122:圖案化的凸起
124:孔洞
126:第一凸條
128:第二凸條
13:光催化活性層
14:金屬層
15:金屬預製層
110:奈米碳管複合結構
112:奈米碳管結構
114:保護層
116:微孔
S10-S80:一種製備光催化結構10的方法序號
S10B-S50B:一種製備光催化結構10B的方法序號
S10C-S40C:一種製備光催化結構10C的方法序號
圖1為本發明第一實施例提供的光催化結構的結構示意圖。
圖2為本發明第一實施例提供的光催化結構沿II-II方向的剖視圖。
圖3為本發明第一實施例提供的光催化結構的製備方法流程圖。
圖4圖3的奈米碳管複合結構的沿線IV-IV的截面圖。
圖5為本發明第一實施例採用的奈米碳管拉膜的掃描電鏡照片。
圖6為本發明第一實施例採用的非扭轉的奈米碳管線的掃描電鏡照片。
圖7為本發明第一實施例採用的扭轉的奈米碳管線的掃描電鏡照片。
圖8為本發明第一實施例提供的奈米碳管複合結構的掃描電鏡照片。
圖9為本發明第一實施例提供的奈米碳管複合結構的包覆三氧化二鋁層的單根奈米碳管的掃描電鏡照片。
圖10為本發明第一實施例採用不同層數奈米碳管拉膜蝕刻得到的基板的掃描電鏡照片。
圖11為本發明實施例1B製備的光催化結構的原子力顯微鏡照片。
圖12為本發明實施例1D製備的光催化結構的原子力顯微鏡照片。
圖13為本發明實施例1F製備的光催化結構的原子力顯微鏡照片。
圖14為本發明實施例1G、1B和對比例1-3分別製備的光催化結構的在可見光區的透射譜圖。
圖15為本發明實施例1A-1F分別製備的光催化結構在可見光區的透射譜圖。
圖16為MB在光催化結構的作用下的光吸收譜圖,其中(a)對應本發明實施例1B製備的光催化結構,(b)對應本發明實施例1D製備的光催化結構,(c)對應本發明實施例1F製備的光催化結構。
圖17為MB在光催化結構的作用下,用633奈米的鐳射照射MB所測得的拉曼光譜圖。
圖18為本發明第二實施例提供的光催化結構的結構示意圖。
圖19為本發明第二實施例提供的光催化結構的製備方法流程圖。
圖20為本發明第三實施例提供的光催化結構的結構示意圖。
圖21為本發明第三實施例提供的光催化結構沿XXI-XXI方向的剖視 圖。
圖22為本發明第三實施例提供的光催化結構的製備方法流程圖。
圖23為4層交叉的奈米碳管拉膜的掃描電鏡照片。
圖24為本發明實施例3D製備的光催化結構的掃描電鏡照片。
圖25為本發明實施例3A-3D以及對比例4-7製備的光催化結構在紫外-可見光區的吸收譜圖。
下面將結合具體實施例及附圖對本發明作進一步的詳細說明。
請參閱圖1至圖2,本發明第一實施例提供一種光催化結構10,所述光催化結構10包括一基板12、一光催化活性層13、以及一金屬層14。所述基板12、所述光催化活性層13和所述金屬層14依次層疊設置。所述基板12包括一基底120以及複數個設置於該基底120上的圖案化的凸起122。所述圖案化的凸起122包括複數個凸條交叉設置形成網狀結構,從而定義複數個孔洞124。 所述複數個凸條的交叉處為一體結構。所述光催化活性層13設置於圖案化的凸起122的表面。所述金屬層14包括複數個奈米顆粒,所述奈米顆粒設置於光催化活性層13遠離所述基板12的表面。
所述基板12可以為柔性基板或硬質基板。所述硬質基板可以為絕緣基板、半導體基板或金屬基板。具體地,所述硬質基板的材料可以為矽、二氧化矽、氮化矽、石英、玻璃、氮化鎵、砷化鎵、藍寶石、氧化鋁、氧化鎂、鐵、銅、鈦、鉻、鋁或鋅等。當所述基板12為的材料為金屬時,所述光催化結構10為光電催化結構,該光電催化結構可用作工作電極,再結合對電極以及參比電極等可以製備光電催化反應器。採用外加恒電流或恒電位的方法迫使光致電子向對電極方向移動,因而與光致空穴發生分離,降低光致電子-空穴的複合幾率。所述柔性基板12可以賦予所述光催化結構10一定的柔韌性,進而可以將所述光催化結構10貼合於曲面上。所述柔性基板的材料可以為聚對苯二甲酸乙二醇酯(PET)、聚醯亞胺(PI)、聚甲基丙烯酸甲酯(PMMA)、聚二甲基矽氧烷(PDMS)、聚萘二甲酸乙二醇酯(PEN)等。所述基底120的形狀、大小、厚度不限,可以根據實際需要進行選擇。本實施例中,所述基板12為石英片。
所述基底120和凸條可以為相同材料的一體結構,也可以為不同材料多層結構。所述基底120的形狀不限,只需具有兩個相對設置的表面即可。本實施例中,所述基底120的形狀為一平板狀。所述基底120的大小、厚度不限,可以根據實際需要進行選擇。所述凸條可以設置於所述基底120的一個表面或分別設置於所述基底120相對的兩個表面。本發明定義一部分沿著第一方向a延伸的凸條為第一凸條126,另一部分沿著第二方向b延伸的凸條為第二凸條128。所述第一方向a和第二方向b的夾角大於0度小於等於90度,優選地,大於等於30度。所述複數個第一凸條126基本平行,且所述複數個第二凸條128基本平行。本發明的凸條基本平行的特徵是由於其製備方法中採用的奈米碳管結構光罩中奈米碳管的延伸方向基本平行的特徵決定的。每個凸條的長度不限,寬度為20奈米~150奈米,高度為50奈米~2000奈米,平行且相鄰的凸條之間的間距為50奈米~500奈米。因此,所述孔洞124的開口尺寸為10奈米~300奈米,深度為50奈米~1000奈米。優選地,每個凸條的寬度為50奈米~100奈米,高度為300奈米~1000奈米,間距為50奈米~100奈米。本實施例中,所述複數個第 一凸條126垂直於複數個第二凸條128。所述凸條從所述基底120的一邊延伸至另一邊。
所述光催化活性層13設置於所述複數個凸條表面以及凸條之間的孔洞124內。所述光催化活性層13的材料可以為二氧化鈦(TiO2),氧化鋅(ZnO),氧化錫(SnO2),二氧化鋯(ZrO2),硫化鎘(CdS)等多種氧化物或硫化物半導體。所述光催化活性層13的材料包括至少一種前述材料。其中所述二氧化鈦包括銳鈦礦結構、金紅石結構和板鈦礦結構,只有銳鈦礦結構和金紅石結構的二氧化鈦具有光催化性能。本發明第一實施例中,所述光催化活性層13的材料為銳鈦礦結構的二氧化鈦。
所述金屬層14設置於所述光催化活性層13遠離所述基板12的表面。所述金屬層14可以為連續的層狀結構,也可以為不連續的層狀結構。所述金屬層14可以為單層層狀結構或多層層狀結構。所述孔洞124處形成一間隙(Gap),此處金屬層14的表面存在表面電漿體共振,增強對可見光的吸收。這是由於金屬費米能級附近導帶上的自由電子會在金屬表面受到電磁場的驅動而發生集體震盪,在這種情況下,電場能量將被有效地轉變為金屬表面自由電子的集體振動能,使得金屬表面區域電場有明顯的增強,提高光催化效率。所述金屬層14產生的局域表面電漿源共振效應能夠使激發態的熱電子越到光催化活性層13導帶上,也能夠抑制光催化活性層13中光生電子-空穴對的複合幾率,提高光催化層導帶上的自由電子數量。所述金屬層14的厚度為2奈米~200奈米,優選的,所述金屬層14的厚度均一。所述金屬層14的材料為具有表面電漿源效應的金屬材料,可為銅、鋁、金、銀、鉑等貴金屬。本發明第一實施例中,所述金屬層14為8奈米厚的金材料層。
請參閱圖3以及圖4,本發明第一實施例提供一種製備前述光催化結構10的方法,其包括以下步驟:步驟S10,提供一基板12;步驟S20,提供一具有複數個微孔116的奈米碳管複合結構110,該奈米碳管複合結構110包括一奈米碳管結構112以及一包覆於該奈米碳管結構112表面的保護層114,且該奈米碳管結構112包括複數個交叉設置的奈米碳管;步驟S30,將所述奈米碳管複合結構110設置於所述基板12的一表面121,從而使得所述基板12的表面121部分暴露; 步驟S40,以該奈米碳管複合結構110為光罩乾式蝕刻所述基板12,從而得到一具有圖案化的凸起122的基板12,且該圖案化的凸起122包括複數個交叉設置的凸條;步驟S50,去除所述奈米碳管複合結構110;步驟S60,在所述圖案化的凸起122的表面沉積一光催化活性層13;步驟S70,在所述光催化活性層13遠離所述基板12的表面沉積一金屬預製層15;步驟S80,對前述金屬預製層15進行退火處理。
在所述步驟S10中,所述基板12的材料不限,可為二氧化矽、氮化矽等材料形成的絕緣基板、金、鋁、鎳、鉻、銅等材料形成的金屬基板或者矽、氮化鎵、砷化鎵等材料形成的半導體基板,只要所述基板12在後續的蝕刻過程中,可被蝕刻即可。所述基板12的尺寸和厚度可以根據需要選擇。本實施例中,所述基板12為一厚度為500微米的石英片。
在所述步驟S20中,所述奈米碳管結構112包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔,所述保護層114包覆於該複數個奈米碳管的表面。優選地,所述保護層114包覆於每個奈米碳管的整個表面。所述複數個奈米碳管通過凡得瓦力緊密連接從而使該奈米碳管結構112及奈米碳管複合結構110形成一自支撐結構。所謂自支撐結構是指該結構可以無需一支撐體而保持一特定的膜狀結構。因而,所述奈米碳管複合結構110具有自支撐性而可部分懸空設置。所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或多種。所述奈米碳管平行於所述奈米碳管結構112的表面。所述單壁奈米碳管的直徑為0.5奈米~10奈米,雙壁奈米碳管的直徑為1.0奈米~15奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度大於50微米。優選地,該奈米碳管的長度為200微米~900微米。
所述奈米碳管結構112包括至少一奈米碳管膜、至少一奈米碳管線或其組合。所述奈米碳管膜包括複數個均勻分佈的奈米碳管。該奈米碳管膜中的複數個奈米碳管沿一個方向延伸,該複數個奈米碳管組成複數個奈米碳管束,所述奈米碳管的延伸方向平行於所述奈米碳管膜的表面。具體地,該奈米碳管膜可包括一奈米碳管拉膜。該奈米碳管線可以為一非扭轉的奈米碳管線或扭轉的奈米碳管線。當所述奈米碳管結構112包括複數個奈米碳管線時,該複 數個奈米碳管線相互平行間隔且呈一定角度交叉排列而形成一層狀的奈米碳管結構。該層狀的奈米碳管結構包括複數個微孔,該微孔為一貫穿該層狀的奈米碳管結構的厚度方向的通孔。該微孔的尺寸為1奈米~0.5微米。
請參閱圖5,具體地,該奈米碳管拉膜包括複數個連續且定向排列的奈米碳管束。該複數個奈米碳管束通過凡得瓦力首尾相連。每一奈米碳管束包括複數個相互平行的奈米碳管,該複數個相互平行的奈米碳管通過凡得瓦力緊密結合。該奈米碳管束的直徑為10奈米~200奈米,優選的,10奈米~100奈米。該奈米碳管拉膜中的奈米碳管沿同一方向擇優取向排列。所述奈米碳管拉膜包括複數個微孔。該微孔為一貫穿該層狀的奈米碳管結構的厚度方向的通孔。該微孔可為孔隙和/或間隙。當所述奈米碳管結構112僅包括單層奈米碳管拉膜時,該奈米碳管拉膜中相鄰的奈米碳管片段之間具有間隙,其中,該間隙的尺寸為1奈米~0.5微米。可以理解,在由多層奈米碳管拉膜組成的奈米碳管結構112中,相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有一夾角α,且0°<α
Figure 108103649-A0305-02-0009-31
90°,從而使相鄰兩層奈米碳管拉膜中的奈米碳管相互交叉組成一網狀結構,該網狀結構包括複數個孔隙,該複數個孔隙均勻且規則分佈于奈米碳管結構112中,其中,該孔隙直徑為1奈米~0.5微米。所述奈米碳管拉膜的厚度為0.01微米~100微米。所述奈米碳管拉膜可以通過拉取一奈米碳管陣列直接獲得。所述奈米碳管拉膜的結構及其製備方法請參見范守善等人於2007年2月12日申請的,於2010年7月11日公告的第I327177號台灣公告專利“奈米碳管薄膜結構及其製備方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但前述申請所有技術揭露也應視為本發明申請技術揭露的一部份。
請參閱圖6,該非扭轉的奈米碳管線包括複數個沿該非扭轉的奈米碳管線長度方向排列的奈米碳管。具體地,該非扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該非扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。非扭轉的奈米碳管線為將奈米碳管拉膜通過有機溶劑處理得到。具體地,將有機溶劑浸潤所述奈米碳管拉膜的整個表面,在揮發性有機溶劑揮發時產生的表面張力的作用下,奈米碳管拉膜中的相互平行的複數個奈米碳管通過凡得瓦力緊密結合,從而使奈米碳管拉膜收縮為一非扭轉的 奈米碳管線。該有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷或氯仿,本實施例中採用乙醇。通過有機溶劑處理的非扭轉的奈米碳管線與未經有機溶劑處理的奈米碳管膜相比,比表面積減小,粘性降低。
所述扭轉的奈米碳管線為採用一機械力將所述奈米碳管拉膜兩端沿相反方向扭轉獲得。請參閱圖7,該扭轉的奈米碳管線包括複數個繞該扭轉的奈米碳管線軸向螺旋排列的奈米碳管。具體地,該扭轉的奈米碳管線包括複數個奈米碳管片段,該複數個奈米碳管片段通過凡得瓦力首尾相連,每一奈米碳管片段包括複數個相互平行並通過凡得瓦力緊密結合的奈米碳管。該奈米碳管片段具有任意的長度、厚度、均勻性及形狀。該扭轉的奈米碳管線長度不限,直徑為0.5奈米~100微米。進一步地,可採用一揮發性有機溶劑處理該扭轉的奈米碳管線。在揮發性有機溶劑揮發時產生的表面張力的作用下,處理後的扭轉的奈米碳管線中相鄰的奈米碳管通過凡得瓦力緊密結合,使扭轉的奈米碳管線的比表面積減小,密度及強度增大。
所述奈米碳管線狀結構及其製備方法請參見范守善等人於2002年11月5日申請的,於2008年11月21日公告的第I303239號台灣公告專利“一種奈米碳管繩及其製造方法”,申請人:鴻海精密工業股份有限公司,以及於2005年12月16日申請的,於2009年7月21日公告的第I312337號台灣公告專利申請“奈米碳管絲及其製作方法”,申請人:鴻海精密工業股份有限公司。為節省篇幅,僅引用於此,但前述申請所有技術揭露也應視為本發明申請技術揭露的一部份。
本實施例中,所述奈米碳管結構112包括至少一層奈米碳管拉膜,如2層、3層、4層等。所述奈米碳管拉膜直接從生長好的奈米碳管陣列拉取得到,該奈米碳管拉膜中的複數個奈米碳管通過凡得瓦力首尾相連且沿同一方向排列。
所述保護層114的材料可為金、鎳、鈦、鐵、鋁、鉻等金屬、氧化鋁、氧化鎂、氧化鋅、氧化鉿等金屬氧化物、或者金屬硫化物等中的至少一種。可以理解,所述保護層114的材料不限於前述列舉材料,還可以為二氧化矽等非金屬氧化物、碳化矽等非金屬碳化物或氮化矽等非金屬氮化物等,只要可以物理性的沉積於所述奈米碳管結構112的表面,且在後續的蝕刻基板12過程中不被蝕刻即可。所述物理性的沉積是指所述保護層114不與所述奈米碳管 結構112發生化學反應,而是通過凡得瓦力與所述奈米碳管結構112緊密結合,並附於所述奈米碳管結構112中奈米碳管的表面。所述保護層114的厚度不限,可為3奈米~50奈米。為了得到奈米級尺寸的奈米線陣列105,以及避免所述奈米碳管結構112中的微孔過多的被所述保護層114覆蓋,所述保護層114的厚度優選為3奈米~20奈米。所述奈米碳管複合結構110的微孔116孔徑小於所述所述奈米碳管結構112中的微孔孔徑。
所述奈米碳管複合結構110可以通過以下方法製備:首先,將所述奈米碳管結構112至少部分懸空設置;然後,在所述奈米碳管結構112表面沉積保護層114。
所述奈米碳管結構112具有相對的兩個表面,所述奈米碳管結構112可通過一框架固定,位於框架內部的部分懸空設置,從而使得奈米碳管結構112充分暴露,以利於後續的在奈米碳管結構112相對的兩個表面同時形成所述保護層114。所述框架為一中空的結構,具有一通孔。所述奈米碳管結構112的邊緣可固定於所述框架中,位元於中間的部分通過所述通孔暴露出來且懸空設置。通過所述框架,使得所述奈米碳管結構112的邊緣能夠牢固的固定,並保持位於通孔位置處的奈米碳管結構112充分暴露。本實施例中,所述框架為一“口”字形的邊框,所述奈米碳管結構112的邊緣通過所述邊框固定。可以理解,所述奈米碳管結構112懸空設置的方式也可以為其他手段,比如金屬網柵、具有中空結構的環狀體等,只要實現使該奈米碳管結構112懸空即可。可通過電子束蒸鍍法將所述保護層114沉積於所述奈米碳管結構112的表面。可以理解,所述沉積的方法不限於前述列舉的方法,還可以為磁控濺射法、原子層沉積法等氣相沉積法,只要保證所述保護層114在沉積的過程中不破壞所述奈米碳管結構112的形態和結構即可。
由於所述奈米碳管結構112懸空設置,因而所述奈米碳管結構112的兩個表面均被所述保護層114覆蓋。具體的,該保護層114包覆所述奈米碳管結構112中複數個奈米碳管的至少部分表面。所述奈米碳管結構112包括複數個微孔結構,可以理解,所述微孔結構中也可分佈有所述保護層114。所述奈米碳管結構112中的奈米碳管與所述保護層114緊密結合,形成一整體的奈米碳管複合結構110。其中,所述奈米碳管結構112對所述保護層114起到支撐作用。所 述奈米碳管複合結構110包括複數個微孔116。所述微孔116為貫穿所述奈米碳管複合結構110的厚度方向的凹陷空間,該凹陷空間可為間隙或者微孔。
本實施例中,通過電子束蒸鍍法在所述奈米碳管結構112的表面設置保護層114得到所述奈米碳管複合結構110,所述保護層114的材料為氧化鋁,所述保護層114的厚度為20奈米。所述奈米碳管結構112中的每個奈米碳管被所述保護層114完全包覆。參見圖8,為本實施例採用的奈米碳管複合結構110的掃描電鏡照片。請參閱圖9,為本實施例採用的奈米碳管複合結構110中包覆氧化鋁層的單根奈米碳管的掃描電鏡照片。
在所述步驟S30中,所述奈米碳管複合結構110可以直接設置於所述基板12的表面121。具體的,可先將所述框架和所述奈米碳管複合結構110一起轉移至所述基板12的表面121,再移除所述框架。由於所述奈米碳管複合結構110具有複數個微孔116,因而所述基板12的表面121部分通過該複數個微孔116暴露出來。所述奈米碳管複合結構110與所述基板12的表面121之間並非完全緊密接觸,部分的奈米碳管複合結構110與所述基板12的表面121之間可能存在空氣。
將所述奈米碳管複合結構110設置於所述基板12的表面121之後,進一步還可以包括一通過溶劑對所述奈米碳管複合結構110進行處理,使所述奈米碳管複合結構110貼附在所述基板12的表面121的表面的步驟。當向所述奈米碳管複合結構110的表面滴加溶劑,所述溶劑會浸潤所述奈米碳管複合結構110,軟化所述奈米碳管複合結構110,並將所述奈米碳管複合結構110與所述基板12的表面121之間的空氣排出。當所述溶劑被去除後,所述奈米碳管複合結構110與所述基板12的表面121的表面形成緊密的接觸。所述溶劑可為水、有機溶劑等。所述有機溶劑為揮發性有機溶劑,如乙醇、甲醇、丙酮、二氯乙烷及氯仿。本實施例中,所述溶劑為乙醇,通過將所述乙醇滴加於所述奈米碳管複合結構110的表面,然後自然風乾,使得所述奈米碳管複合結構110緊密貼附於所述基板12的表面121。
在所述步驟S40中,所述乾式蝕刻是指通入一氣體在電場作用下得到一電漿體,該電漿體可與被蝕刻物質發生反應而得到揮發性物質,比如:電感耦合電漿體蝕刻(ICPE)、反應性離子蝕刻(RIE)。本實施例中,通過反應電漿體蝕刻法蝕刻所述被暴露的基板12的表面121。具體的,通過向一電漿體系 統通入一氣體,所述氣體可以為氧氣、氯氣、氫氣、氯氣、氬氣、四氟化碳等。所述氣體不限於前述列舉氣體,只要該氣體可與基板12發生反應即可。優選的,採用四氟化碳的反應性離子蝕刻法蝕刻所述基板12,其中,所述電漿體系統的功率是20瓦~70瓦,四氟化碳電漿體的通入速率為40標況毫升每分鐘(standard-state cubic centimeter per minute,sccm),形成的氣壓為2帕,蝕刻時間為20秒~300秒。通過反應性離子蝕刻法蝕刻被暴露的基板12的部分表面,由於電漿體充分與基板12反應,故,該過程反應時間短,效率較高。
在蝕刻所述基板12的過程中,所述蝕刻氣體與被暴露的基板12的部分發生化學反應,而並不與所述奈米碳管複合結構110的保護層114發生化學反應或者與保護層114發生化學反應的速度和程度遠遠小於蝕刻氣體與基板12發生的化學反應。即,所述奈米碳管複合結構110起到光罩的作用。所述蝕刻氣體與基板12的材料以及保護層114的材料可參見下表1。
Figure 108103649-A0305-02-0013-1
在蝕刻的過程中,由於選擇的蝕刻氣體與保護層114不發生化學反應,而是與基板12發生化學反應,因而被暴露的基板12的表面會逐漸被蝕刻,而該基板12被所述奈米碳管複合結構110覆蓋的表面不會有變化。並且,由於所述奈米碳管複合結構110與所述基板12的表面緊密結合,因而該基板12被所述奈米碳管複合結構110覆蓋的表面所形成的圖形,與所述奈米碳管複合結構110懸空時向所述基板12的正向投影所形成的圖形一致。即最後得到的圖案化的凸起122的整體圖案與所述奈米碳管複合結構110的整體圖案基本相一致。
本實施例中,所述奈米碳管結構112採用多層交叉的奈米碳管拉膜時,通過改變相鄰的奈米碳管拉膜的交叉角度可以得到具有不同圖案的圖案化的凸起122。所述交叉奈米碳管拉膜的角度大於0度小於等於90度,優選地, 任意相鄰奈米碳管拉膜中奈米碳管的延伸方向均不相同。當採用2層奈米碳管拉膜時,優選地,2層奈米碳管拉膜的交叉角度為90度,即2層奈米碳管拉膜中奈米碳管的延伸方向垂直。當採用4層奈米碳管拉膜時,優選地,任意相鄰兩層奈米碳管拉膜的交叉角度為45度,且任意兩層奈米碳管拉膜的中奈米碳管的延伸方向不同。當採用正向交叉的奈米碳管拉膜作為奈米碳管結構時,得到的所述圖案化的凸起122包括複數個沿兩個垂直方向交叉排列的凸條。
本申請的發明人研究發現,所述奈米碳管結構112中交叉奈米碳管拉膜的層數不同會影響製備的光催化結構對可見光的吸收。這是因為交叉奈米碳管拉膜的層數不同,在相同條件下通過乾式蝕刻得到的基板12表面的奈米微結構不同。請參見圖10,其中圖(a)為奈米碳管複合結構112中含有2層交叉的奈米碳管拉膜時蝕刻得到的基板的掃描電鏡圖,圖(b)為奈米碳管複合結構112中含有4層交叉的奈米碳管拉膜時蝕刻得到的基板的掃描電鏡圖,圖(c)為奈米碳管複合結構112中含有2層奈米碳管拉膜,蝕刻兩次得到的基板的掃描電鏡圖,兩次蝕刻時所述奈米碳管拉膜的延伸方向不同。通過比較發現,不同奈米碳管拉膜的層數及交叉方式會使得蝕刻得到的基板12表面的奈米微結構不同,即使奈米碳管拉膜的層數相同,蝕刻方式不同也會使得蝕刻得到的基板12表面的奈米微結構不同。交叉奈米碳管拉膜的層數越多,所得到的奈米微結構的尺寸越小。且採用2層交叉奈米碳管拉膜蝕刻兩次時,由於第二次蝕刻時奈米碳管拉膜的延伸方向改變,使得第一次蝕刻得到的凸條結構在第二次蝕刻時斷開,使得所述基板12的表面形成更小更多的奈米微結構。
所述圖案化的凸起122的凸條為類條狀或條狀結構。所述凸條的寬度為20奈米~150奈米。在垂直于奈米碳管的延伸方向上相鄰的兩個寬度之間的間距為50奈米~500奈米。所述圖案化的凸起122的凸條在垂直於所述基板12的表面的方向上的尺寸定義為凸條的高度。所述凸條的高度不限,可根據具體蝕刻的時間而定,可為50奈米~1000奈米。所述複數個凸條相互垂直交叉分佈呈一網狀結構。本實施例中,所述凸條的寬度為50奈米~100奈米,間距為50奈米~100奈米,高度為300奈米~1000奈米。
可以理解,由於所述奈米碳管複合結構110中的奈米碳管包覆保護層114之後複合結構的直徑為幾十奈米,間距為幾十奈米,因此,製備得到的圖案化的凸起122的凸條寬度和間距也均為幾十奈米。因此,所述基板12表 面的圖案化的凸起122和複數個孔洞124均為奈米結構。而且,相鄰凸條的間距和相鄰孔洞124的間距均為幾十奈米,因此,大大提高了所述基板12表面的奈米結構的密度。例如,當相鄰凸條的間距和相鄰孔洞124的間距均為50奈米,在1微米的寬度範圍內,所述凸條和孔洞124的數量均為20。而現有技術中,微結構的製備通常採用光刻技術,由於受到解析度限制,凸起和凹陷的奈米結構尺度難以全部控制在幾十奈米範圍內。本發明中通過該奈米結構能夠增大製備的光催化結構10的比表面積,一方面可以提高該光催化結構10與太陽光的接觸面積,另一方面能夠使得吸附的污染物增加,此外,太陽光入射到奈米結構後會經過多次吸收和反射,從而可以進一步提高該光催化結構10對太陽光的利用率。
在所述步驟S50中,所述去除奈米碳管複合結構110的方法不限,可為超聲法、撕除法、氧化法等。本實施例中,採用超聲法去除所述奈米碳管複合結構110。具體的,將帶有所述奈米碳管複合結構110的基板12置於一N-甲基吡咯烷酮的溶液中超聲數分鐘,由於N-甲基吡咯烷酮的極性較大,因而可容易的將所述奈米碳管複合結構110與基板12分離。
在所述步驟S60中,所述光催化活性層13沉積在每個凸條的表面以及相鄰凸條之間的基板12的表面。沉積所述光催化活性層13的方式可以為直接沉積二氧化鈦,也可以通過調節氧氣流中濺射或者沉積金屬鈦(Ti)生長二氧化鈦。本實施例中,在所述圖案化的凸起122的表面沉積光催化活性層13的方法為原子層沉積。本申請的發明人通過實驗發現通過原子層沉積的方式才能夠使得製備的光催化結構具有更高的光催化效率。該種沉積方法使得沉積的二氧化鈦層厚度均勻,包覆性好,且由於在高溫條件下沉積,沉積的二氧化鈦為銳鈦礦結構。通過其他方式也能夠獲得二氧化鈦層,如蒸發、濺射的方法等,但還需要在空氣中退火處理,使其成為銳鈦礦結構。該二氧化鈦層為奈米級的厚度,如2奈米~600奈米,優選地為15奈米~300奈米,更優選地為20奈米~80奈米。
在步驟S70中,在所述光催化活性層13的表面沉積金屬預製層15的方法不限,可採用電子束蒸發、離子束濺射、原子層沉積、磁控濺射、蒸鍍、化學氣相沉積等方式。所述金屬預製層15的厚度為2奈米~100奈米,優選的,所述金屬預製層15的厚度為5奈米~20奈米,更優選的,所述金屬預製層15 的厚度為幾個奈米,本發明實施例中所述金屬預製層15的厚度為8奈米,所述金屬預製層15的材料為具有表面電漿源效應的金屬,可為金、銀、銅或鋁等金屬。本實施例中,在所述基板12表面垂直蒸鍍8奈米厚度的金金屬薄膜,從而將該光催化活性層13遠離所述基板12的表面全部覆蓋。
在步驟S80中,退火的氣氛為惰性氣體,如氮氣、氬氣等,退火溫度為200℃~1000℃,優選地,500℃~800℃,退火時間為10分鐘~6小時,優選地,20分鐘~3小時,更優選地,30分鐘~50分鐘。通過退火處理使得附著在光催化活性層13表面的金屬預製層15形成奈米級顆粒,金屬奈米顆粒覆蓋所述光催化活性層13的部分表面。
為了研究交叉奈米碳管拉膜的層數、沉積的金屬以及退火處理對製備的光催化結構性能的影響,在其它條件相同的情況下,本發明進行了以下實驗,並引入了對比例1-3。
Figure 108103649-A0305-02-0016-2
參見圖11-圖13,為實施例1B、實施例1D和實施例1F製備的光催化結構10的原子力顯微鏡照片。本發明還對實施例1A-1G製備的光催化結構以及對比例1-3製備的光催化結構對可見光的透射光譜進行了分析。參見圖14,具有圖案化凸起的光催化結構對可見光的透射率普遍低於沒有圖案化凸起的光 催化結構對可見光的透射率,也就是說具有圖案化凸起的光催化結構對可見光的吸收率高於沒有圖案化凸起的光催化結構對可見光的吸收率。這是因為圖案化的凸起包括複數個凸條交叉設置形成網狀結構,相鄰凸條之間的間距可調,進而可以調節共振波長,提高對可見光的吸收。參見圖15,進行退火處理的光催化結構對可見光的吸收率也普遍高於沒有進行退火處理的光催化結構對可見光的吸收率。這是因為經過退火處理後的金屬層在光催化活性層的表面形成奈米顆粒,該等奈米顆粒由於局域表面電漿源的共振作用,使得金屬奈米顆粒表面區域電場有明顯的增強,在某些特定波長下形成局域表面電漿源共振,因此在可見光區表現出很強的寬頻吸收。此外,本申請發明人還發現通過控制奈米碳管結構112中交叉奈米碳管拉膜的層數可以調節對可見光的吸收。採用2層奈米碳管拉膜蝕刻1次製備的光催化結構以及採用2層奈米碳管拉膜蝕刻2次製備的光催化結構對可見光的吸收差別不大,均在波長為633奈米處的可見光達到最大吸收,採用4層交叉的奈米碳管拉膜製備的光催化結構在波長為660奈米處的可見光吸收達到最大,吸光率為67%。這是因為通過調節奈米碳管結構112中交叉奈米碳管拉膜的層數可以控制基板12的表面圖案化凸起的結構,進而可以控制TiO2與金屬的複合,從而控制所述光催化結構10對特定波段的可見光達到最大吸收。交叉的奈米碳管拉膜的層數並不是越多越好,當層數大於4層時,由於層數較多使得奈米碳管結構中的微孔很小,在後續蝕刻基板過程中不容易蝕刻。因此當層數高於4層時所製備的光催化結構的光催化效果並不是很好。
用亞甲基藍(methylene blue,簡稱“MB”)對實施例1B、1D和1F製備的光催化結構的性能進行了測試,具體地,將10mM的MB旋塗到光催化結構的金屬層14的表面,旋塗轉速為2000轉,時間為60秒,用模擬太陽光進行照射。觀察MB的吸收光譜,參見圖16,經過45分鐘的模擬太陽光照射,發現MB的特徵峰均下降,說明實施例1B、1D和1F製備的光催化結構在類比太陽光下都具有較高的催化效應,均提高了對可見光的利用。同時參見圖17,用633奈米的鐳射對旋塗在光催化結構表面的MB進行拉曼檢測,發現隨著時間的延長,MB的特徵峰衰減,即MB的分子量隨著可見鐳射的照射發生分解而減少,其中圖17(b)為MB的特徵峰1628cm-1隨著時間的衰減圖,說明本發明製備的光催化結構在可見光633奈米條件下具有很好的光催化效果,從而能夠提高基於二氧化鈦的光催化結構在可見光的催化回應和利用率。
本發明第一實施例提供的光催化結構10及其製備方法具有以下優點:第一,光催化活性層13設置於圖案化的凸起122的表面,而圖案化的凸起122包括複數個凸條交叉設置形成網狀結構,因此,圖案化的凸起122可以增加比表面積,提高對反應物的吸附能力。第二,在光催化活性層13的表面設置金屬層14,在外界入射光電磁場的激發下,金屬表面電漿體發生共振吸收,一方面通過局域表面電漿源共振效應產生的熱電子能弛豫到催化層導帶上;另一方面通過能量或者電荷載流子的轉移,表面電漿源共振還能抑制電子空穴對的負荷率,提升活性電子的數量,從而進一步提高對光的吸收和利用率。第三,通過調節交叉的奈米碳管膜的間距、層數和交叉方式可以控制基板的圖案化結構,進而可以控制二氧化鈦與金屬的複合結構,調節共振波長和吸收頻寬,控制對特定波段可見光達到最大吸收,提高對可見光的吸收和利用率。
請參閱圖18,本發明第二實施例提供一種光催化結構10B,所述光催化結構10B包括一基板12、一奈米碳管複合結構110、一光催化活性層13、以及一金屬層14。所述基板12、奈米碳管複合結構110、光催化活性層13和金屬層14依次層疊設置。所述基板12包括一基底120以及複數個設置於該基底120上的圖案化的凸起122。所述圖案化的凸起122包括複數個凸條交叉設置形成網狀結構,從而定義複數個孔洞124。所述複數個凸條的交叉處為一體結構。所述奈米碳管複合結構110設置於所述複數個凸條的頂面。
本發明第二實施例提供的光催化結構10B與第一實施例提供的光催化結構10的結構基本相同,其區別在於,進一步包括一奈米碳管複合結構110設置於所述圖案化的凸起122的頂面和該光催化活性層13之間。所述光催化活性層13將該圖案化的凸起122和奈米碳管複合結構110全部覆蓋。
請參閱圖19,本發明第二實施例提供一種製備前述光催化結構10B的方法,其包括以下步驟:步驟S10B,將所述奈米碳管複合結構110設置於所述基板12的一表面121,從而使得所述基板12的表面121部分暴露;步驟S20B,以該奈米碳管複合結構110為光罩乾式蝕刻所述基板12,從而得到一具有圖案化的凸起122的基板12,且該圖案化的凸起122包括複數個交叉設置的凸條; 步驟S30B,在所述圖案化的凸起122的表面沉積一光催化活性層13,且該光催化活性層13將所述圖案化的凸起122和奈米碳管複合結構110全部覆蓋;步驟S40B,在所述光催化活性層13遠離所述基板12的表面沉積一層金屬預製層15;步驟S50B,對前述金屬預製層15進行退火處理。
本發明第二實施例進一步提供一種製備前述光催化結構10B的方法。該方法與製備前述光催化結構10的方法基本相同,其區別在於,無需去除奈米碳管複合結構110的步驟。
本發明第二實施例中的光催化結構10B及其製備方法具有以下有益效果:首先,由於所述奈米碳管複合結構110設置於所述圖案化的凸起122的頂面,因此,該奈米碳管複合結構110與所述圖案化的凸起122分別形成兩層圖案相同的奈米結構。而且,所述奈米碳管複合結構110中的奈米碳管可以增加所述圖案化的凸起122的頂面的不平整度,從而進一步提高對光的吸收,提高光催化效率。其次,由於所述奈米碳管複合結構110保留在所述圖案化的凸起122的頂面,因此,減少了製備工藝中去除所述奈米碳管複合結構110的步驟,既簡化工藝,降低成本,又減少了去除所述奈米碳管複合結構110對基板12帶來的污染。
參見圖20和圖21,本發明第三實施例提供一種光催化結構10C,所述光催化結構10C包括一奈米碳管結構112和一設置於所述奈米碳管結構112表面的光催化活性層13和金屬層14。所述奈米碳管結構112包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔。所述光催化活性層13包覆於該複數個奈米碳管的表面,所述金屬層14包覆於該光催化活性層13的表面。
具體地,所述金屬層14包括複數個金屬奈米顆粒,該金屬奈米顆粒分散於光催化活性層13的表面。所述光催化結構10C的厚度為微奈米級別,且交叉形成的網狀結構中的微孔也為微奈米級別。本發明第三實施例中,所述光催化結構10C的厚度為50奈米~300微米。該微孔的尺寸為1奈米~0.5微米。
參見圖22,本發明第三實施例提供一種製備前述光催化結構10C的方法,包括以下步驟: S10C:提供一奈米碳管結構112,所述奈米碳管結構112包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔116;S20C:于該奈米碳管結構112的表面形成一光催化活性層13;S30C:於該光催化活性層13的表面形成金屬預製層15;S40C:對前述得到的結構退火處理。
本發明實施例,在步驟S10C中,所述奈米碳管結構112包括至少2層層疊設置的奈米碳管拉膜。相鄰兩個奈米碳管拉膜中的奈米碳管的排列方向有一夾角α,且0°<α
Figure 108103649-A0305-02-0020-32
90°,從而使相鄰兩層奈米碳管拉膜中的奈米碳管相互交叉組成一網狀結構,該網狀結構包括複數個孔隙,該複數個孔隙均勻且規則分佈于奈米碳管結構112中,其中,該孔隙直徑為1奈米~0.5微米。
在步驟S20C中,所述光催化活性層13的厚度為2~600奈米,優選地,該光催化活性層13的厚度為25~100奈米。形成該光催化活性層13的方式有以下兩種:
第一種:在該奈米碳管結構112的表面直接利用原子層沉積法沉積一層二氧化鈦。
第二種:在該奈米碳管結構112的表面濺射或者沉積一金屬鈦層,在濺射過程通入氧氣流,氧化該鈦層,得到二氧化鈦。
本發明第三實施例提供的製備光催化結構10C的方法直接以具有網狀結構的奈米碳管結構112作載體,通過沉積的方式制得光催化結構10C,製備方法簡單,通過該方法製備得到的200nm至400nm的波段有較大吸收,最高可達大約為93%。
本申請發明人經實驗發現,包括不同層數奈米碳管拉膜的奈米碳管結構作載體製備的光催化結構的對可見光的吸收率不同。
Figure 108103649-A0305-02-0020-3
Figure 108103649-A0305-02-0021-4
本實施例中,所述交叉奈米碳管拉膜的角度大於0度小於等於90度,優選地,任意相鄰奈米碳管拉膜中奈米碳管的延伸方向均不相同。當採用2層奈米碳管拉膜時,優選地,2層奈米碳管拉膜的交叉角度為90度,即2層奈米碳管拉膜中奈米碳管的延伸方向垂直。當採用4層奈米碳管拉膜時,優選地,任意相鄰兩層奈米碳管拉膜的交叉角度為45度,且任意兩層奈米碳管拉膜的中奈米碳管的延伸方向不同。具體地,參見圖23和圖24分別為4層交叉奈米碳管拉膜和實施例3D製備的光催化結構的掃描電鏡照片,其中圖24(b)為圖24(a)掃描電鏡照片的局部放大圖。本發明還對實施例3A-3D以及對比例4-7製備的光催化結構對可見光的透射光譜進行了分析。參見圖25可知,無論奈米碳管結構112中交叉的奈米碳管拉膜的層數為幾層,沒有沉積金屬的光催化結構相對於對應的沉積金屬的光催化結構對可見光的吸收均較低,只是在280nm附近的紫外光達到最大吸收。沉積金屬後的光催化結構在寬波段範圍都有更強的吸收,且在360nm附近的紫外光還有個較大的共振吸收,並且隨著交叉奈米碳管拉膜層數的增多,對該處附近的光的吸收能力增強,採用4層交叉的奈米碳管拉膜時,最大吸收率可以達到93%,提高了對紫外光的利用率,增強二氧化鈦的催化效果。
本發明第三實施例用奈米碳管結構112作為光催化活性層13的載體具有以下優點,第一,奈米碳管結構112作載體支撐所述光催化活性層13和金屬層14,方便該光催化結構10C的回收利用,減少二次污染;第二,光催化活性層13設置於奈米碳管結構112的兩個表面,因此該光催化結構10C的兩個表面均可以進行光催化反應,進一步提高比表面積,提高該光催化結構10C的利用率和催化效果;第三,通過調節奈米碳管結構112中交叉的奈米碳管膜的層數和交叉方式可以調節該光催化結構10C的奈米微結構,調節金屬層14對太陽光的共振吸收波長和吸收強度,通過選擇特定結構和金屬可以實現在紫外波段的寬頻強吸收或者在某一特定波段的共振吸收,極大提高對紫外光的吸收率 和二氧化鈦在紫外波段的催化效果;第四,該光催化結構10C具有很高的靈活性和很好的應用場景,通過將其設置於不同基板上可以製備不同特點的光催化結構,如設置到金屬基板上可以製備光電催化結構,該光催化結構作工作電極,再結合對電極和參比電極等可以製備光電催化反應器;該光催化結構設置到柔性基底上可以使該光催化結構具有一定的柔韌性,可以設置於曲面上。
綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。
10C:光催化結構
13:光催化活性層
14:金屬層
112:奈米碳管結構
114:保護層

Claims (9)

  1. 一種光催化結構,其改良在於,該光催化結構包括一奈米碳管結構和一設置於所述奈米碳管結構表面的光催化活性層和金屬層;所述奈米碳管結構包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔;所述光催化活性層為包覆於該複數個奈米碳管的表面的連續層狀結構,所述金屬層包覆於該光催化活性層遠離所述奈米碳管的表面;所述金屬層由複數個奈米顆粒構成,所述奈米顆粒分散在該光催化活性層表面。
  2. 如請求項1所述的光催化結構,其中,所述奈米碳管結構包括至少兩層交叉的奈米碳管膜。
  3. 如請求項2所述的光催化結構,其中,所述奈米碳管膜包括複數個沿同一方向延伸的奈米碳管。
  4. 如請求項3所述的光催化結構,其中,所述奈米碳管結構中,任意兩層奈米碳管膜的交叉角度大於0度小於等於90度。
  5. 如請求項4所述的光催化結構,其中,所述奈米碳管結構中,任意相鄰奈米碳管膜中奈米碳管的延伸方向均不相同。
  6. 如請求項1所述的光催化結構,其中,所述光催化活性層的材料為二氧化鈦,氧化鋅,氧化錫,二氧化鋯以及硫化鎘中一種或多種。
  7. 一種光催化結構的製備方法,包括以下步驟,提供一奈米碳管結構,所述奈米碳管結構包括複數個有序排列且交叉設置的奈米碳管從而形成複數個微孔;於該奈米碳管結構的表面形成一光催化活性層,且該光催化活性層將所述奈米碳管結構全部覆蓋;於該光催化活性層的表面形成金屬預製層;對上述金屬預製層進行退火處理,得到光催化結構。
  8. 如請求項7所述的光催化結構的製備方法,其中,進一步包括將所述光催化結構設置於一基板上的步驟。
  9. 如請求項8所述的光催化結構的製備方法,其中,所述基板的材料為矽、二氧化矽、氮化矽、石英、玻璃、氮化鎵、砷化鎵、藍寶石、氧化鋁、氧化鎂、鐵、銅、鈦、鋁、鋅、聚對苯二甲酸乙二醇酯、聚醯亞胺、聚甲基丙烯酸甲酯、聚二甲基矽氧烷以及聚萘二甲酸乙二醇酯中的一種或多種。
TW108103649A 2019-01-25 2019-01-30 光催化結構及其製備方法 TWI785199B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910075877.X 2019-01-25
CN201910075877.XA CN111489897B (zh) 2019-01-25 2019-01-25 光催化结构及其制备方法

Publications (2)

Publication Number Publication Date
TW202033274A TW202033274A (zh) 2020-09-16
TWI785199B true TWI785199B (zh) 2022-12-01

Family

ID=71733675

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108103649A TWI785199B (zh) 2019-01-25 2019-01-30 光催化結構及其製備方法

Country Status (3)

Country Link
US (2) US11173478B2 (zh)
CN (1) CN111489897B (zh)
TW (1) TWI785199B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113908857B (zh) * 2021-12-13 2022-08-09 中央民族大学 一种硫化镉/铝纳米光催化剂的制备方法
CN116851007A (zh) * 2023-07-11 2023-10-10 山东交通学院 基于碳纳米管-硫化铟锌纳米片复合材料的制备与磁场辅助光催化应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201619044A (zh) * 2014-11-19 2016-06-01 鴻海精密工業股份有限公司 一種奈米線陣列的製備方法
CN106390998A (zh) * 2016-08-30 2017-02-15 陈劲夫 一种纳米二氧化钛基复合催化剂及其制备方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0923988B1 (en) 1995-06-19 2008-04-09 Nippon Soda Co., Ltd. Photocatalyst-carrying structure and photocatalyst coating material
JP2004087213A (ja) * 2002-08-26 2004-03-18 Hitachi Ltd 電極,電極の製造方法,蓄電器及び発光素子
US20060286022A1 (en) * 2003-05-23 2006-12-21 Yoshiyuki Miyamoto Nanosized carbonaceous material three-dimensional structure and process for producing the same
EP1964809A4 (en) * 2005-11-25 2009-04-08 Nat Inst For Materials Science CARBON NANOTUBE, SUBSTRATE, AND ELECTRON EMITTING ELEMENT EQUIPPED WITH SUCH SUBSTRATE, SUBSTRATE FOR CARBON NANOTUBE SYNTHESIS, METHOD FOR MANUFACTURING SAME, AND DEVICE FOR MANUFACTURING SAME
US8173519B2 (en) * 2006-03-03 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101384070B1 (ko) * 2006-03-13 2014-04-09 가부시키가이샤 니콘 카본 나노 튜브 집합체의 제조 방법, 카본 나노 튜브집합체, 촉매 입자 분산막, 전자 방출 소자 및 전계 방출형디스플레이
CN101255544B (zh) * 2008-03-21 2012-06-27 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法
US8222127B2 (en) * 2008-07-18 2012-07-17 Micron Technology, Inc. Methods of forming structures having nanotubes extending between opposing electrodes and structures including same
KR101614318B1 (ko) * 2009-08-11 2016-04-22 한국세라믹기술원 탄소나노판 복합체 제조방법
TW201116480A (en) * 2009-11-12 2011-05-16 Nat Univ Tsing Hua Multilayer film structure, method and apparatus for transferring nano-carbon material
WO2013022051A1 (ja) * 2011-08-08 2013-02-14 味の素株式会社 多孔質構造体及びその製造方法
US20140084253A1 (en) * 2012-09-25 2014-03-27 International Business Machines Corporation Transparent conductive electrode stack containing carbon-containing material
CN103149193B (zh) * 2013-02-25 2015-05-20 重庆大学 基于金纳米粒子修饰碳纳米管阵列表面增强拉曼散射的光流控系统
CN104334773A (zh) 2013-04-26 2015-02-04 松下电器产业株式会社 光半导体电极以及使用具备光半导体电极的光电化学单元对水进行光分解的方法
CN104515764A (zh) * 2013-10-08 2015-04-15 天津富伟科技有限公司 一种利用光催化原理的拉曼表面增强传感器
JP2017101289A (ja) 2015-12-02 2017-06-08 日本電信電話株式会社 半導体光電極
TWI633935B (zh) * 2015-12-24 2018-09-01 國立高雄大學 掺雜導電材料及奈米碳管之混晶相二氧化鈦固定化光觸媒及其製造方法
CN107561051A (zh) 2016-07-01 2018-01-09 清华大学 一种用于单分子检测的分子载体
CN207571034U (zh) * 2017-09-08 2018-07-03 清华大学 用于分子检测的分子载体
CN207153717U (zh) 2017-09-12 2018-03-30 四川理工学院 一种光催化复合材料结构
CN108855061B (zh) * 2018-05-22 2021-02-19 大连理工大学 光催化净化气体用层叠薄膜光催化剂、制备方法及应用
CN111482149A (zh) * 2019-01-25 2020-08-04 清华大学 光催化结构及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201619044A (zh) * 2014-11-19 2016-06-01 鴻海精密工業股份有限公司 一種奈米線陣列的製備方法
CN106390998A (zh) * 2016-08-30 2017-02-15 陈劲夫 一种纳米二氧化钛基复合催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 Tatsuya Hatanaka, Haruyuki Nakanishi, Shin-Ichi Matsumoto and Yu Morimoto PEFC Electrodes Based on Vertically Oriented Carbon Nanotubes The Electrochemical Society 3(1) ECS Transaction 2006 277-284 *

Also Published As

Publication number Publication date
US20210370282A1 (en) 2021-12-02
CN111489897A (zh) 2020-08-04
US11173478B2 (en) 2021-11-16
US11602741B2 (en) 2023-03-14
US20200238266A1 (en) 2020-07-30
TW202033274A (zh) 2020-09-16
CN111489897B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
Li et al. Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices
TWI593549B (zh) 一種金屬奈米線膜的製備方法以及導電元件
Liang et al. Self‐assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications
US9731971B2 (en) Methods for the production of aligned carbon nanotubes and nanostructured material containing the same
Pak et al. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons
Xu et al. Electrochemical preparation of CdSe nanowire arrays
Ma et al. Layer-by-layer assembled multilayer films of titanate nanotubes, Ag-or Au-loaded nanotubes, and nanotubes/nanosheets with polycations
Robatjazi et al. Ultrathin AAO membrane as a generic template for sub-100 nm nanostructure fabrication
Kathiravan et al. Self-assembled hierarchical interfaces of ZnO nanotubes/graphene heterostructures for efficient room temperature hydrogen sensors
Lei et al. Surface patterning using templates: concept, properties and device applications
Wang et al. Enhancing the sensing properties of TiO2 nanosheets with exposed {001} facets by a hydrogenation and sensing mechanism
TWI418516B (zh) 奈米粒子膜與其形成方法與應用
JP2013542546A (ja) グラフェン/格子混成構造に基づいた透明電極
Van et al. Tuning hydrophobicity of TiO2 layers with silanization and self-assembled nanopatterning
US20100183844A1 (en) Highly organized single-walled carbon nanotube networks and method of making using template guided fluidic assembly
TWI785199B (zh) 光催化結構及其製備方法
Tarish et al. Synchronous formation of ZnO/ZnS core/shell nanotube arrays with removal of template for meliorating photoelectronic performance
TW201802456A (zh) 一種用於單分子檢測的分子載體
Lai et al. Controllable construction of ZnO/TiO 2 patterning nanostructures by superhydrophilic/superhydrophobic templates
Nayeri et al. Surface structure and field emission properties of cost effectively synthesized zinc oxide nanowire/multiwalled carbon nanotube heterojunction arrays
TWI780298B (zh) 光催化結構及其製備方法
Ahsanulhaq et al. Etch-free selective area growth of well-aligned ZnO nanorod arrays by economical polymer mask for large-area solar cell applications
Jun et al. A large-area fabrication of moth-eye patterned Au/TiO2 gap-plasmon structure and its application to plasmonic solar water splitting
Ayyub Aligned nanorod arrays: additive and emergent properties
Chi et al. Photoirradiation Caused Controllable Wettability Switching of Sputtered Highly Aligned c‐Axis‐Oriented Zinc Oxide Columnar Films