TWI785083B - 使用光譜度量之圖案化膜堆疊之帶隙量測 - Google Patents

使用光譜度量之圖案化膜堆疊之帶隙量測 Download PDF

Info

Publication number
TWI785083B
TWI785083B TW107127004A TW107127004A TWI785083B TW I785083 B TWI785083 B TW I785083B TW 107127004 A TW107127004 A TW 107127004A TW 107127004 A TW107127004 A TW 107127004A TW I785083 B TWI785083 B TW I785083B
Authority
TW
Taiwan
Prior art keywords
parameters
spectral
metrology
model
multilayer
Prior art date
Application number
TW107127004A
Other languages
English (en)
Other versions
TW201920911A (zh
Inventor
王天含
安隆 羅斯伯格
胡大為
亞歷山大 庫茲尼斯夫
曼賀 丹 阮
史帝藍 潘戴夫
約翰 雷索尼
寬 趙
萊寬 李
浩山姆 舟艾柏
明 狄
托斯頓 R 凱克
安德烈 V 舒傑葛洛夫
正泉 譚
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201920911A publication Critical patent/TW201920911A/zh
Application granted granted Critical
Publication of TWI785083B publication Critical patent/TWI785083B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0229Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using masks, aperture plates, spatial light modulators or spatial filters, e.g. reflective filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0237Adjustable, e.g. focussing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1204Grating and filter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/283Investigating the spectrum computer-interfaced
    • G01J2003/2836Programming unit, i.e. source and date processing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8883Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges involving the calculation of gauges, generating models

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

本發明揭示一種光譜度量系統,其包含一光譜度量工具及一控制器。該控制器產生包含兩個或兩個以上層之一多層光柵之一模型,該模型包含指示該多層光柵之一測試層之一幾何結構的幾何參數,及指示該測試層之一色散的色散參數。該控制器進一步從該光譜度量工具接收對應於該模型化多層光柵之一經製造多層光柵之一光譜信號。該控制器進一步判定該模型化多層光柵之該一或多個參數之值,從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號;該控制器進一步基於該經製造結構之該測試層之該一或多個參數之該等經判定值來預測該經製造多層光柵之該測試層之一帶隙。

Description

使用光譜度量之圖案化膜堆疊之帶隙量測
本發明大體上係關於光譜度量,且更特定言之係關於使用光譜度量之圖案化膜堆疊之帶隙量測。
對具有愈來愈小之佔用面積之電子裝置之需求提出超越所需規模製造之廣泛製造挑戰。例如,隨著電子組件(諸如電晶體)之實體大小縮小,組成膜層之電及光學性質變得愈加取決於實體幾何結構。特定言之,通過薄絕緣層之洩露電流對使用併入小於65 nm之波長之微影工具製造之裝置提出一顯著挑戰。此洩露電流負面影響裝置效能且可導致操作溫度增大以及功率消耗增大。因此,期望在製造期間密切監測且控制絕緣層之性質以確保一經製造裝置在設計規範內操作。
度量目標通常用於監測一半導體裝置之製造層之各種態樣。度量目標通常由製造在與裝置特徵相同之層上之一系列目標特徵構成且經設計以對一或多個所關注製造參數敏感,諸如但不限於,一層厚度、層光學性質(例如,色散、帶隙及類似物)、一臨界尺寸、一側壁角度、兩個或兩個以上層之相對對準(例如,疊對)、一目標之焦點位置或一微影步驟期間之曝光劑量。在此方面,一度量目標之量測可提供表示經製造裝置特徵之敏感資料。
在許多應用中,度量目標經設計以促進一所要製造參數之一量測且因此可具有不同於一對應裝置特徵之一實體組態。然而,實體幾何結構上之經製造層之電及光學性質之一增大相依性可降低度量目標及具有不同幾何結構之裝置特徵之量測之間的相關性。此可尤其適用於(但不限於)包含由經製造具有愈加小之尺寸之多個薄膜層形成之週期性特徵之多層光柵結構。因此,可期望提供一種用於解決諸如上文所識別之缺陷之系統及方法。
根據本發明之一或多個闡釋性實施例揭示一種光譜度量系統。在一項闡釋性實施例中,該系統包含一光譜度量工具,其提供指示回應於入射照明自包含兩個或兩個以上層之一多層光柵發出之輻射之一光譜信號。在另一闡釋性實施例中,該系統包含通信地耦合至該光譜度量工具之一控制器。在另一闡釋性實施例中,該控制器產生包含兩個或兩個以上層之一多層光柵之一模型,該模型包含與多層光柵相關聯之一或多個參數,其中該一或多個參數包含指示該多層光柵之一測試層之一幾何結構之幾何參數及指示該測試層之一色散之一或多個色散參數。在另一闡釋性實施例中,該控制器從該光譜度量工具接收對應於該模型化多層光柵之一經製造多層光柵之一光譜信號。在另一闡釋性實施例中,該控制器判定該模型化多層光柵之該一或多個參數之值,從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號。在另一闡釋性實施例中,該控制器基於該經製造結構之該測試層之該一或多個參數之該等經判定值預測該經製造多層光柵之該測試層之一帶隙。
根據本發明之一或多個闡釋性實施例揭示一種帶隙量化方法。在一項闡釋性實施例中,該方法包含產生一度量目標之一模型,該度量目標包含由兩個或兩個以上層製成之一多層光柵,使用與該多層光柵相關聯之一或多個參數參數化該模型,其中該一或多個參數包含與該多層光柵相關聯之幾何參數及指示該兩個或兩個以上層之一測試層之一色散之一或多個色散參數。在另一闡釋性實施例中,該方法包含量測對應於該模型化多層光柵之一經製造多層光柵之一光譜信號。在另一闡釋性實施例中,該方法包含判定該模型化多層光柵之該一或多個參數之值,從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號。在另一闡釋性實施例中,該方法包含基於該一或多個參數之該等判定值計算指示該經製造多層光柵之該測試層之一帶隙之該度量目標之一度量計量。
根據本發明之一或多項闡釋性實施例揭示一種製造系統。在一項闡釋性實施例中,該系統包含基於一程序配方製造包含兩個或兩個以上層之多層光柵之一或多個程序工具。在另一闡釋性實施例中,該系統包含一光譜度量工具,其提供指示回應於入射照明自一多層光柵發出之輻射之一光譜信號,該多層光柵由該一或多個程序工具製造。在另一闡釋性實施例中,該系統包含通信地耦合至該光譜度量工具及該一或多個程序工具之一控制器。在另一繪示實施例中,該控制器產生包含兩個或兩個以上層之一多層光柵之一模型,該模型包含與多層光柵相關聯之一或多個參數,其中該一或多個參數包含指示該多層光柵之一測試層之一幾何結構之幾何參數且一或多個參數包含指示該測試層之一色散之色散參數。在另一闡釋性實施例中,該控制器從該光譜度量工具接收對應於該模型化多層光柵之一經製造多層光柵之一光譜信號,該經製造多層光柵由該一或多個程序工具基於一選定程序配方而製造。在另一闡釋性實施例中,該控制器判定該模型化多層光柵之該一或多個參數之值,從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號。在另一闡釋性實施例中,該控制器基於該經製造結構之該測試層之該一或多個參數之該等經判定值計算該經製造多層光柵之該測試層之一帶隙。在另一闡釋性實施例中,該控制器基於該測試層之預測帶隙調整用於製造多層光柵之該一或多個程序工具之該程序配方。
應理解,前述一般描述及下列詳細描述僅係例示性及說明性且未必限制本發明。併入本說明書中且構成本說明書之一部分之附圖繪示本發明之實施例且與一般描述一起用於解釋本發明之原理。
相關申請案之交叉參考
本申請案根據35 U.S.C. § 119(e)之規定主張以Tianhan Wang、Aaron Rosenberg、Dawei Hu、Alexander Kuznetsov、Manh Dang Nguyen、Stilian Pandev、John Lesoine、Qiang Zhao、Liequan Lee、Houssam Chouaib、Ming Di、Torsten Kaack、Andrei Shchegrov,及Zhengquan Tan為發明者之2017年8月7日申請之標題為BANDGAP MEASUREMENTS OF PATTERNED FILM STACKS USING SPECTROSCOPIC METROLOGY之美國臨時申請案第62/542,260號的優先權,該案之全部內容係以引用的方式併入本文中。
現在將詳細參考隨附圖式中繪示之所揭示標的物。已關於特定實施例及其特定特徵特別展示且描述本發明。本文闡述之實施例視為闡釋性而非限制性。一般技術者應易於明白,在不背離本發明之精神及範疇之情況下可進行形式及細節之改變及修改。
本發明之實施例係關於提供似裝置度量目標之度量計量。例如,一似裝置度量目標可包含(但無需包含)包含由一樣本之多個材料層形成之週期性分佈特徵之一多層光柵。此等度量目標可實體靠近且因此可表示電晶體結構,諸如但不限於3D場效電晶體(FinFET)結構或記憶體結構。本發明之額外實施例係關於提供與一或多個測試層(例如,一多層光柵之一絕緣材料,及類似物)之一光學帶隙成比例之一度量計量。例如,一絕緣材料之帶隙可指示材料之電性質且可進一步指示在用於一電晶體中時絕緣材料之洩露電流。在此方面,與一測試層之帶隙成比例之一度量計量可提供指示類似製造之電晶體之最終裝置效能之資料。在一些實施例中,一度量目標之一測試層可由(但無需由)具有一相對高之相對介電常數之一絕緣材料(例如,一「高k」材料) (諸如但不限於二氧化鉿、矽酸鉿、氮化鉿矽酸鹽或矽酸鋯)形成。
如貫穿本發明使用,術語「樣本」通常係指由包含一或多個「層」或「膜」之一半導體或非半導體材料形成之一基板及通常針對光學度量選為週期性之圖案化結構。舉例而言,半導體或非半導體材料包含(但不限於)單晶矽、砷化鎵及磷化銦。形成於基板上之層可包含(但不限於)一光阻劑、一介電材料、一導電材料或一半導電材料。在此項技術中已知諸多不同類型之樣本層,且如在本文中使用之術語樣本旨在涵蓋一基板及形成於其上之任何類型之層。此外,出於本發明之目的,術語樣本及晶圓應解釋為可互換的。另外,出於本發明之目的,術語圖案化裝置、遮罩及倍縮光罩應解釋為可互換的。
本發明之額外實施例係關於模型化包含多層光柵結構之度量目標之幾何及光學性質兩者。一多層光柵結構之一參數化模型可包含可基於製造程序之變動而改變且可進一步影響一測試層(例如,一「高k」絕緣層)之帶隙之至少一個幾何參數及至少一個色散參數。在此方面,參數化模型不僅可考慮幾何或光學性質之修改,而且可考慮實體幾何結構對測試結構之帶隙之尺寸相依影響。
進一步實施例係關於度量目標,其等具有實質上類似於度量目標期望表示之裝置特徵(例如,電晶體、記憶體結構及類似物等)之幾何參數之幾何參數(例如,膜厚度、特徵高度、特徵寬度、側壁角度及類似物)。因此,幾何及/或色散參數之程序引發變動可實質上以相同方式影響度量目標及裝置特徵,使得與自度量目標提取之帶隙成比例之度量計量可提供裝置特徵之電及光學性質之一精確指示符。
本發明之額外實施例係關於判定度量目標之光譜信號與測試層之帶隙之間的一統計關係。在此方面,不需要開發考慮測試層之光學性質與度量目標之幾何結構之間的複雜關係之一分析模型。實情係,可在光譜信號及模型化色散參數之特定態樣之間判定統計關係,使得可基於一經量測光譜信號預測一經製造度量結構之一測試層之一帶隙。本文中應認知,此一方法可為廣泛範圍之複雜結構提供一測試層之帶隙之高度精確預測,且可在一分析模型可為非所要或無法獲得(例如,極難建構、計算太繁重、難以解決膜層中之缺陷狀態及類似物)時尤其有益。然而,本文中進一步認知,具有多個整合特徵幾何結構之特定裝置特徵可需要對應於不同特徵幾何結構之多個模型化度量目標來提供經測量帶隙與預期裝置效能之間的相關性。
例如,可透過包含具有不同參數(例如,不同幾何及色散參數)之多層光柵之許多模型化度量目標之光譜信號之模擬、計算各模擬之模型化色散參數且使用一統計模型來判定可使用光譜度量工具量測之光譜信號之特定特徵與測試層之模型化色散參數之間的統計關係而判定度量目標之光譜信號與測試層之模型化色散參數之值之間的一統計關係。
藉由另一實例,可藉由製造包含具有不同參數(例如,不同幾何及色散參數)之多層光柵之許多度量目標、量測各經製造目標之模型化色散參數且類似地使用一統計模型來判定可使用光譜度量工具量測之光譜信號之特定特徵與測試層之模型化色散參數之間的統計關係而判定度量目標之光譜信號與測試層之模型化色散參數之值之間的一統計關係。
藉由一進一步實例,可藉由提供測試層之色散以及多層光柵之幾何結構之一完全參數化模型且使用一迴歸分析來判定相關模型參數而判定度量目標之光譜信號與測試層之模型化色散參數之值之間的一統計關係。
本發明之額外實施例係關於基於使用統計模型判定之色散參數之值判定與測試層之帶隙成比例之一度量計量。在其中統計模型提供與帶隙相關的色散參數之值的情況中,必須自色散參數之值提取帶隙或與帶隙成比例之一計量。在一些實施例中,與帶隙成比例之一度量計量包含與一吸收邊緣(例如,一過渡光學吸收)相關聯之一指數變化之光譜區中之色散曲線之一積分。在此方面,過渡光學吸收可提供抗可不影響所關注電性質之缺陷(例如,洩漏電流)之帶隙之一量測。在一些實施例中,使用一耳巴赫尾部(Urbach tail)區之一指數形式重建包含耳巴赫尾部之一色散曲線以促進過渡光學吸收積分之判定。
本發明之額外實施例係關於適用於提供與一多層光柵度量目標之測試層之帶隙成比例之一度量計量之一光譜度量工具。適用於提供適用於與測試層之帶隙之統計相關性之光譜信號之一光譜度量工具可包含(但不限於)一光譜儀、一反射計、一橢偏儀及類似物。因此,一光譜信號可包含(但不限於)光譜功率、偏光及入射在度量目標上之光之相移。
本發明之額外實施例係關於基於度量計量來估計一經製造裝置之效能。例如,與帶隙成比例之度量計量可被用於預測與一經製造裝置(例如,一電晶體、一記憶體裝置或類似物)相關聯之一洩露電流。
本發明之進一步實施例係針對基於與帶隙成比例之度量計量來控制與製造裝置特徵相關聯的一或多個程序工具。例如,度量計量可提供適合作為一程序工具之一控制參數的診斷資訊。在此方面,一晶圓之一或多個度量目標上之度量計量的變動可用於修改相同晶圓上之後續層的一或多個態樣(例如,補償測試層之變動),或可用以修改一後續生產運行中一經製造裝置之一或多個態樣的沈積。在一個例項中,度量計量之變動可用以改變用於控制一或多個程序工具之一程序配方的一或多個參數。
圖1A係繪示根據本發明之一或多項實施例之一半導體裝置製造系統100之一概念圖。在一項實施例中,系統100包含用於在樣本上製造一或多個圖案化層(例如,度量目標圖案、裝置特徵及類似物)之一程序工具102。在另一實施例中,系統100包含經組態以特性化樣本上之一或多個經製造度量目標之一度量工具104。在另一實施例中,系統100包含一控制器106。在另一實施例中,控制器106包含經組態以執行經維持於一記憶體媒體110上之程式指令的一或多個處理器108。在此方面,控制器106之一或多個處理器108可執行貫穿本發明描述之各種程序步驟之任一者。
程序工具102可包含適用於製造一電子裝置之一或多個圖案化層之此項技術中已知之任何類型的製造工具。可透過一系列加成或減成程序步驟(諸如但不限於,一或多個材料沈積步驟、一或多個微影步驟、一或多個蝕刻步驟或一或多個剝離步驟)來製造與一樣本層相關聯之樣本上的印刷特徵。因此,程序工具102可包含(但不限於)一材料沈積系統、一微影系統、一蝕刻系統或一剝離系統。
度量工具104可提供與半導體製造相關之各種類型之量測。例如,度量工具104可提供一或多個度量目標之一或多個度量計量,諸如但不限於與帶隙成比例之一度量計量、臨界尺寸(在一選定高度之經製造特徵之寬度)、兩個或兩個以上層之疊對、側壁角度、膜厚度或程序相關參數(例如,在一微影步驟期間之一樣本之焦點位置、在一微影步驟期間之照明之一曝光劑量或類似物)。
在本文中認知,藉由一半導體程序工具執行之半導體程序(例如,一膜之沈積、一微影步驟、一蝕刻步驟及類似物)可隨著時間漂移。漂移可為大量因素之一結果,包含(但不限於)與程序相關聯之一控制演算法中之工具磨損或漂移。此外,漂移可影響一樣本之一或多個特性,其繼而可影響一或多個度量量測(例如,與帶隙成比例之度量計量、一臨界尺寸量測及類似物)。在此方面,度量量測可提供與一製造程序中之一或多個步驟相關聯之診斷資訊。
度量工具104可包含適用於提供與一樣本上之度量目標相關聯之度量信號之此項技術中已知之任何類型之度量系統。在一項實施例中,度量工具104經組態以提供指示在一或多個波長之一度量目標之一或多個光學性質(例如,一或多個色散參數及類似物)之光譜信號。例如,度量工具104可包含(但不限於)一光譜儀、具有一或多個照明角度之一光譜橢偏儀、用於量測穆勒矩陣(Mueller matrix)元素之一光譜橢偏儀(例如,使用旋轉補償器)、一單波長橢偏儀、一角度解析橢偏儀(例如,一光束分佈橢偏儀)、一光譜反射計、一單波長反射計、一角度解析反射計(例如,一光束分佈反射計)、一成像系統、一光瞳成像系統、一光譜成像系統或一散射計。在一項實施例中,度量工具104包含基於一樣本之一或多個影像之產生而量測度量資料之一基於影像之度量工具。在另一實施例中,度量工具104包含基於來自樣本之光之散射(反射、繞射、漫散射及類似物)量測度量資料之一基於散射量測之度量系統。
此外,度量系統可包含一單一度量工具或多個度量工具。在2011年4月26日發佈之標題為「High resolution monitoring of CD variations」之美國專利案第7,933,026號及2009年1月13日發佈之標題為「Multiple tool and structure analysis」之美國專利案第7,478,019號中大體描述併入多個度量工具之一度量系統,該等案之兩者之全部內容以引用之方式併入本文中。在1997年3月4日發佈之標題為「Focused beam spectroscopic ellipsometry method and system」之美國專利案第5,608,526號中大體描述基於主反射光學器件之聚焦光束橢圓偏振術,該案之全部內容以引用之方式併入本文中。在1999年1月12日發佈之標題為「Apodizing filter system useful for reducing spot size in optical measurements and other applications」之美國專利案第5,859,424號中大體描述使用變跡器減輕引起照明點擴散超過藉由幾何光學器件界定之大小之光學繞射效應,該案之全部內容以引用之方式併入本文中。藉由2002年8月6日發佈之標題為「Critical dimension analysis with simultaneous multiple angle of incidence measurements」之美國專利案第6,429,943號大體描述具有同時多個入射角照明之高數值孔徑工具之使用,該案之全部內容以引用之方式併入本文中。
由度量工具104詢問之度量目標可包含多個層(例如,膜),其等之厚度可藉由度量工具104量測。此外,度量工具104可(但無需)量測一多層堆疊(例如,一平坦多層堆疊、一多層光柵及類似物)之一或多個層之組合物或一樣本上或內之一或多個缺陷。在2016年3月22日發佈之標題為「Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection」之美國專利案第9,291,554號中大體描述使用一度量工具來特性化非週期性目標,該案之全部內容以引用的方式併入本文中。
此外,目標可定位於半導體晶圓上之各個位點處。例如,目標可定位於(例如,晶粒之間的)切割線內及/或定位於晶粒自身中。可藉由如在2009年1月13日發佈之標題為「Multiple tool and structure analysis」之美國專利案第7,478,019號中描述之相同或多個度量工具同時或連續地量測多個目標,該案之全部內容以引用之方式併入本文中。舉例而言,可在半導體製造程序中利用來自度量工具之度量資料以向前饋送、向後饋送及/或側向饋送對程序(例如,一微影步驟、一蝕刻步驟及類似物)之校正以提供一完整程序控制解決方案。
圖1B係繪示根據本發明之一或多項實施例之經組態為一微影工具之程序工具102之一概念圖。例如,經組態為一微影工具之一程序工具102可製造包含電晶體之裝置結構及包含如本文先前描述之多層光柵之對應度量目標。在一項實施例中,程序工具102包含經組態以產生一或多個照明光束114之一微影照明源112。一或多個照明光束114可包含一或多個選定波長之光,包含(但不限於)紫外線(UV)輻射、可見光輻射或紅外線(IR)輻射。
來自微影照明源112之照明可具有任何空間分佈(例如,照明圖案)。例如,微影照明源112可包含(但不限於)一單極照明源、一雙極照明源、一C-Quad照明源、一類星體照明源或一自由形式照明源。在此方面,微影照明源112可產生軸上照明光束114 (其中照明沿著(平行於)一光軸116傳播)及/或任何數目個離軸照明光束114 (其中照明按相對於光軸116之一角度傳播)。
此外,微影照明源112可藉由此項技術中已知之任何方法產生照明光束114。例如,一照明光束114可經形成為來自微影照明源112之一照明極之照明(例如,微影照明源112之一照明輪廓之一部分,及類似物)。藉由另一實例,微影照明源112可包含用於產生照明光束114之多個照明源。
在另一實施例中,程序工具102包含一遮罩支撐裝置118。遮罩支撐裝置118經組態以固定一圖案遮罩120。在另一實施例中,程序工具102包含一組投影光學器件122,其等經組態以將藉由一或多個照明光束114照明之圖案遮罩120之一影像投影至安置於一樣本載物台126上之一樣本124上,以便產生對應於圖案遮罩120之影像之印刷圖案元件。在另一實施例中,遮罩支撐裝置118可經組態以致動或定位圖案遮罩120。例如,遮罩支撐裝置118可將圖案遮罩120致動至相對於系統100之投影光學器件122之一選定位置。
樣本124可包含適用於接收圖案遮罩120之影像之任何數目個光敏材料及/或材料層。例如,樣本124可包含一光阻層128。在此方面,該組投影光學器件122可將圖案遮罩120之一影像投影至光阻層128上以曝露光阻層128且一後續蝕刻步驟可移除曝露之材料(例如,正蝕刻)或未曝露之材料(例如,負蝕刻)以便在樣本124上提供印刷特徵。此外,圖案遮罩120可用於此項技術中已知之任何成像組態中。例如,圖案遮罩120可為一正遮罩(例如,一明場遮罩),其中圖案元件經正成像為印刷圖案元件。藉由另一實例,圖案遮罩120可為一負遮罩(例如,一暗場遮罩),其中圖案遮罩120之圖案元件形成負印刷圖案元件(例如,間隙、空間及類似物)。
控制器106可經通信耦合至遮罩支撐裝置118及/或樣本載物台126以引導將一圖案遮罩120上之圖案元件轉印至一樣本124 (例如,樣本上之一光阻層128,及類似物)。例如,一程序工具102可經組態以基於包含用於控制製造程序之各種態樣之選定參數之一程序配方執行一製造步驟。在一個例項中,將一微影工具視為一實例,一程序配方可包含照明光束114之一狀態、一曝光時間、樣本124之一位置或類似物。因此,一控制器106可藉由修改程序配方之一或多個參數而引導及/或修改一製造程序之一或多個態樣。
圖1C係繪示根據本發明之一或多項實施例之度量工具104之一概念圖。在一項實施例中,度量工具104包含產生一度量照明光束132之一度量照明源130。在另一實施例中,度量照明源130與微影照明源112相同。在一進一步實施例中,度量照明源130係經組態以產生一單獨度量照明光束132之一單獨照明源。度量照明光束132可包含一或多個選定波長之光,包含(但不限於)紫外線(UV)輻射、可見光輻射或紅外線(IR)輻射。
例如,度量照明源130可包含(但不限於)一或多個窄頻雷射源、一或多個寬頻雷射源、一或多個中超雷射源、一或多個白光雷射源及類似物。在此方面,度量照明源130可提供具有高相干性(例如,高空間相干性及/或時間相干性)之一度量照明光束132。在另一實施例中,度量照明源130包含一雷射驅動光源(LDLS),諸如但不限於一雷射持續電漿(LSP)源。例如,度量照明源130可包含(但不限於)一LSP燈、一LSP燈泡或適用於裝納一或多個元件之一LSP腔室,該一或多個元件在由一雷射源激發為一電漿狀態時可發射寬頻照明。在另一實施例中,度量照明源130包含一燈源。藉由另一實例,度量照明源130可包含(但不限於)一弧光燈、一放電燈、一無電極燈及類似物。在此方面,度量照明源130可提供具有低相干性(例如,低空間相干性及/或時間相干性)之一度量照明光束132。
在另一實施例中,度量照明源130經組態以提供具有圍繞一測試層之一預期帶隙之波長之照明,諸如但不限於具有UV光譜區中之帶隙之「高k」絕緣層或具有一多層光柵結構之IR光譜區中之帶隙之一記憶體結構之層。例如,度量照明源130可包含(但無需包含)提供約120奈米與3微米之間的一光譜範圍中之波長之一LDLS。藉由另一實例,度量照明源130可提供適用於判定絕緣層之帶隙之大於約150奈米之波長。藉由一進一步實例,度量照明源130可提供適用於判定一記憶體結構之層之帶隙之大於約700奈米之波長。
在另一實施例中,度量照明源130提供一可調諧度量照明光束132。例如,度量照明源130可包含一可調諧照明源(例如,一或多個可調諧雷射及類似物)。藉由另一實例,度量照明源130可包含經耦合至一可調諧濾波器之一寬頻照明源。
度量照明源130可進一步提供具有任何時間輪廓之一度量照明光束132。例如,度量照明光束132可具有一連續時間輪廓、一經調變時間輪廓、一脈衝時間輪廓及類似物。
在另一實施例中,度量照明源130經由一照明路徑134將度量照明光束132引導至樣本124且經由一收集路徑136收集自樣本發出之輻射。照明路徑134可包含適用於修改及/或調節度量照明光束132之一或多個光束調節組件138。例如,一或多個光束調節組件138可包含(但不限於)一或多個偏光器、一或多個濾波器、一或多個光束分離器、一或多個漫射器、一或多個均質器、一或多個變跡器或一或多個光束整形器或一或多個透鏡。
在另一實施例中,照明路徑134可利用一第一聚焦元件140將度量照明光束132聚焦至樣本124上。在另一實施例中,收集路徑136可包含從樣本124收集輻射之一第二聚焦元件142。
在另一實施例中,度量工具104包含經組態以透過收集路徑136捕捉自樣本124發出之輻射之一偵測器144。例如,一偵測器144可接收自樣本124反射或散射之輻射(例如,經由鏡面反射、漫反射及類似物)。藉由另一實例,一偵測器144可接收由樣本124產生之輻射(例如,與度量照明光束132之吸收相關聯之發光或類似者)。藉由另一實例,一偵測器144可接收來自樣本124之一或多個繞射階之輻射(例如,0階繞射、±1階繞射、±2階繞射及類似者)。
偵測器144可包含此項技術中已知之適用於量測自樣本124接收之照明之任何類型的光學偵測器。例如,一偵測器144可包含(但不限於)一CCD偵測器、一CMOS偵測器、一TDI偵測器、一光電倍增管(PMT)、一突崩光二極體(APD)及類似者。在另一實施例中,一偵測器144可包含適於識別自樣本124發出之輻射之波長之一光譜偵測器。。
收集路徑136可包含任何數目個收集光束調節元件146來引導及/或修改藉由第二聚焦元件142 (包含(但不限於)一或多個透鏡、一或多個濾波器、一或多個偏光器或一或多個相位板)收集之照明。在此方面,度量工具104可經組態為任何類型之度量工具,諸如(但不限於)具有一或多個照明角度之一光譜橢偏儀、用於量測穆勒矩陣(Mueller matrix)元素之一光譜橢偏儀(例如,使用旋轉補償器)、一單波長橢偏儀、一角度解析橢偏儀(例如,一光束分佈橢偏儀)、一光譜反射計、一單波長反射計、一角度解析反射計(例如,一光束分佈反射計)、一成像系統、一光瞳成像系統、一光譜成像系統或一散射計。
此外,本文中應注意,在圖1C中描繪之度量工具104可促進樣本124及/或一個以上計量照明源130 (例如,耦合至一或多個額外偵測器144)之多角度照明。在此方面,在圖1D中描繪之度量工具104可執行多個度量量測。在另一實施例中,一或多個光學組件可經安裝至圍繞樣本124樞轉之一可旋轉臂(未展示)使得可藉由可旋轉臂之位置控制樣本124上之計量照明光束132之入射角。在另一實施例中,度量工具104可包含多個偵測器144 (例如,與藉由一或多個光束分離器產生之多個光束路徑相關聯)以促進藉由度量工具104之多個度量量測(例如,多個度量工具)。
圖1D係繪示根據本發明之一或多項實施例之使用一單一照明及集光光學元件組態之一度量工具104之一概念圖。在一項實施例中,度量工具104包含一光束分離器148,其經定向使得一物鏡150可同時引導度量照明光束132至樣本124且收集自樣本124發出之輻射。在此方面,度量工具104可在一落射照明(epi-illumination)模式中組態。
在另一實施例中,雖然未展示,但度量工具104包含適用於調節圍繞樣本124之氣氛之組合物及/或壓力之一腔室。例如,度量工具104可包含一或多個氣罐、一或多個閥、一或多個軟管、一或多個泵、一或多個壓力調節器及類似物來控制圍繞樣本124之氣氛之組合物及/或壓力。在另一實施例中,度量工具104經組態以提供一惰性氣體或實質上對由度量照明源130提供之波長透明之一氣體作為圍繞樣本124之一氣氛。例如,在經組態以提供圍繞一「高k」絕緣層之一預期帶隙之照明之一度量照明源130之情況中,度量工具104可經組態以提供對對應波長透明之一氣體,諸如(但不限於)氬氣或氮氣。在一個例項中,圍繞樣本之氣氛經組態以在120奈米至2500奈米之範圍(對應於一LDLS照明源之一輸出光譜,或類似物)中係透明的。在另一例項中,圍繞樣本之氣氛經組態以在120奈米至300奈米之範圍中係透明的。在另一例項中,圍繞樣本之氣氛經組態以在150奈米至193奈米之範圍中係透明的。
在另一實施例中,度量工具104經通信耦合至系統100之控制器106。在此方面,控制器106可經組態以接收資料,包含(但不限於)度量資料(例如,光譜信號、目標之影像、光瞳影像及類似物)或度量計量(例如,與一多層光柵之一帶隙成比例之一度量計量、臨界尺寸、疊對精度、工具引發之移位、靈敏度、繞射效率、離焦斜率、側壁角度及類似物)。
圖2係繪示根據本發明之一或多項實施例之用於判定一度量目標之帶隙之一方法200中執行之步驟之一流程圖。申請人注意,在系統100之內容脈絡中,先前在本文中描述之實施例及實現技術應解釋為延伸至方法200。然而,進一步注意,方法200不限於系統100之架構。
可如本文中進一步描述般執行方法200之步驟之各者。可由可根據本文中描述之實施例之任一者組態之一或多個控制器(例如,控制器106及類似物)執行步驟。另外,可藉由本文中描述之系統實施例之任一者執行上文描述之方法。方法200亦可包含可藉由本文描述之控制器或任何系統實施例執行之一或多個額外步驟。
本文中認知,用於一電子裝置(諸如但不限於一電晶體或一記憶體結構)中之一所關注層(例如,一測試層)之一光學帶隙可指示完全製造裝置之裝置效能。例如,一絕緣層之帶隙可與通過電晶體中之絕緣層之一洩露電流成反比。此外,電子裝置(諸如電晶體或記憶體結構)可通常包含提供一所要功能之多個材料層。因此,可期望在一製造程序期間監測帶隙或與一多層堆疊內之一絕緣層之帶隙成比例之一度量計量作為一非侵入式及非破壞性診斷法。
本文中進一步認知,電子裝置之層之電及/或光學性質可展現尺寸相依實體效應,使得可期望提供具有類似幾何結構之度量目標以用於診斷測試。
在一項實施例中,方法200包含產生一度量目標之一參數化模型之一步驟202,該度量目標包含由兩個或兩個以上層形成之一多層光柵,其中使用與多層光柵相關聯之幾何參數及指示兩個或兩個以上層之一測試層之一色散的色散參數來參數化該模型。因此,步驟202之一模型可包含度量目標之實體及光學性質之一表示。在此方面,多層光柵可為一「似裝置」度量目標,使得多層光柵之模型化幾何結構及色散參數可與對應裝置特徵之幾何及色散參數相關。此外,使用至少一個幾何參數及至少一個色散參數之參數化可回應於(例如,一程序工具102及類似物之)製造程序之變動而提供多層光柵之至少一個層之幾何及/或色散性質之一變動。此外,包含幾何參數及色散參數兩者可促進在存在尺寸相依實體效應之情況下之色散參數的判定。
在一項實施例中,多層光柵包含一鰭片光柵。因此,多層光柵可(但不限於)表示一FinFET電晶體、一記憶體結構,或類似物。圖3A係根據本發明之一或多項實施例之適用於一多層光柵配置中之材料之一多層堆疊302之一剖面圖300。在一項實施例中,多層堆疊302包含一基板層304,諸如(但不限於)矽(Si)。在另一實施例中,多層堆疊302包含一絕緣層306,諸如(但不限於)一「高k」(HK)材料層(例如,二氧化鉿(HfO2 )、矽酸鉿(HfSiO4 )、氮化鉿矽酸鹽(HfSiON)、矽酸鋯(ZrSiO4 )及類似物)。在另一實施例中,多層堆疊302包含一界面層308 (IL),以提供絕緣層306之黏著。例如,界面層308可(但無需)係一額外絕緣材料,諸如二氧化矽(SiO2 )及類似物。在一些實施例中,多層堆疊302包含一或多個額外膜層。例如,多層堆疊302可包含填充一或多個圖案化特徵之一填充層310。在存在時,一填充層310可係由與界面層308相同或類似之材料形成(例如,由二氧化矽及類似物形成)。在此方面,一填充層310及一界面層308可為一共同結構,使得對應名稱之間不存在實體差異。在另一實施例中,多層堆疊302包含一或多個金屬閘極層312 (MG) (例如,金屬閘極層312a、…、312n)。例如,任何數目個金屬閘極層312可經沈積於絕緣層306之頂部上。此外,金屬閘極層312可係由任何金屬或複合材料(諸如但不限於氮化鈦(TiN)或氮化鉭(TaN))形成。
多層堆疊302可經圖案化成包含在沿著多層堆疊302之表面之一或多個方向上之特徵(例如,週期性或非週期特徵)之一2D或3D結構。圖3B係根據本發明之一或多項實施例之由一2D鰭片配置中圖案化之一多層堆疊302形成之一多層光柵316之一剖面圖314。在一項實施例中,多層光柵316包含在X方向上按一第一週期320分佈之圖案化特徵318。此外,圖案化特徵318可藉由沿著Z方向之一高度322及在選定高度界定之一或多個臨界尺寸(例如,經定義為圖案化特徵318之一頂部處之一寬度之一頂部臨界尺寸324、經定義為圖案化特徵318之一中間高度處之一寬度之一中間臨界尺寸326及經定義為多層光柵316之一表面處之圖案化特徵318之一寬度之一底部臨界尺寸328)特性化。圖3C係根據本發明之一或多項實施例之由一3D鰭片配置中圖案化之一多層堆疊302形成之一多層光柵316之一剖面圖330。在一項實施例中,圖案化特徵318可沿著Y方向按一第二週期332分佈且可藉由沿著Y方向之臨界尺寸(例如,一側向臨界尺寸334)進一步特性化。大體參考圖3B及圖3C,多層光柵316之幾何特性(諸如但不限於圖案化特徵318之大小(例如,高度322、中間臨界尺寸326、頂部臨界尺寸324、側向臨界尺寸334及類似物)或圖案化特徵318之形狀(例如,頂部臨界尺寸324與底部臨界尺寸328之一差異及類似物))可影響任一層(包含但不限於絕緣層306 (例如,帶隙可與裝置效能成比例之一測試層))之光學特性(例如,色散特性)。
應理解,圖3A至圖3D中描述之度量目標之特定實施例及以上提供之相關聯描述可僅出於闡釋性目的提供且不應解釋為限制性。一度量目標可具有適用於表示經製造裝置特徵之任何幾何結構,使得度量目標之量測可表示對應裝置特徵。此外,度量目標可表示任何類型之裝置特徵或電子組件且不限於如本文中透過闡釋性實例描述之FinFET電晶體。一度量目標可進一步包含任何組態中之任何數目個材料層。
步驟202之模型之一或多個幾何參數可包含與多層光柵之幾何結構相關聯之任何參數,諸如但不限於第一週期320、第二週期332、高度322、頂部臨界尺寸324、中間臨界尺寸326、底部臨界尺寸328、一側壁角度或任何組成層(例如,絕緣層306、界面層308、基板層304或填充層310)之厚度。另外,可(但無需)在藉由KLA-TENCOR提供之ACUSHAPE軟體產品中實施使用用於程序模型化之一幾何引擎。
步驟202之模型之一或多個介電參數可包含與多層光柵之一層之光學性質相關聯之任何參數。此外,一或多個介電參數可包含與多層光柵之至少一個層(例如,一測試層)之帶隙相關之至少一個參數(
Figure 02_image001
)。例如,介電參數可包含(但不限於)折射率之一實部(n)、折射率之一虛部(k)、介電常數之一實部(
Figure 02_image003
)、介電常數之一虛部(
Figure 02_image005
)或帶隙之一量測(
Figure 02_image001
)之波長相依值。
在一項實施例中,步驟202之模型之一或多個介電參數可包含與適用於使來自一光譜度量工具104之光譜信號與多層光柵之一或多個層之色散相關之一色散模型相關聯之一或多個參數。此等參數可(但無需)與實體參數(例如
Figure 02_image007
Figure 02_image009
Figure 02_image001
及類似物)直接相關。此外,此等參數可(但無需)提供一Kramers-Kronig一致介電函數之一表示。在2017年3月14日發佈之標題為「Dispersion model for band gap tracking」之美國專利案第9,595,481號、2016年8月2日發佈之標題為「Model for optical dispersion of high-k dielectrics including defects」美國專利案第9,405,290號、2017年5月30日發佈之標題為「Multi-oscillator, continuous Cody-Lorentz model of optical dispersion」之美國專利案第9,664,734號中大體描述用於使用光譜度量技術來判定一或多個層之色散參數之色散模型,該等案之全部內容以引用之方式併入本文中。本文認知,色散模型可(但無需)考慮膜層中之缺陷狀態,其等可影響膜層之光學性質及/或電性質且因此可影響一經製造裝置之效能。
例如,一色散模型可包含用於使用實驗常數表示一或多個層之波長相依色散之一Cauchy模型或一Sellmeier模型。
藉由另一實例,一色散模型可包含一布魯格曼(Bruggeman)有效模型近似法(BEMA),其可將一層之介電函數表示為層之成分之Kramers-Kronig一致介電函數之一有效組合物。使用此模型,層之帶隙可自經計算之色散曲線間接導出且可需要一參考。
藉由另一實例,一色散模型可包含一Tauc-Lorentz (TL)模型,其可使用Kramers-Kronig一致性來參數化介電函數之實部及虛部。TL模型並不約束介電函數之導數且因此可適用於包含潛在缺陷之層。使用此模型,可藉由擬合來自一度量工具之光譜信號來尋找色散參數且層之帶隙依據經擬合色散參數而變化。
藉由另一實例,一色散模型可包含一Cody Lorenz連續(CLC)模型,其類似於具有對色散函數之導數之連續性之額外限制之TL模型。
藉由另一實例,一色散模型可包含諧波振盪器(HO)模型,其可將吸收區表示為Kramers-Kronig一致諧波振盪器使得一層之介電函數係振盪器之一總和。類似於TL模型,HO模型可考量製造層中之缺陷狀態。
藉由另一實例,一點對點(P2P)模型可藉由將入射光譜之各波長擬合至一高斯(Gaussian)或Lorentzian函數而併入一色散模型中以描述子頻帶結構。一P2P模型可提供包含缺陷狀態之膜之精確模型化。例如,一P2P模型可提供與缺陷相關聯之一色散曲線中之小峰值之精確模型化。此外,其可為一P2P模型可考量在其他模型中未直接考量之各種缺陷狀態之情況。
應理解,無需將所有可能之性質定義為步驟202之模型中之開放參數。例如,經高度控制之幾何參數或色散參數可在模型中提供為在基於製造程序之可預見變動之一選定容限內不改變之固定值。
在另一實施例中,方法200包含量測對應於模型化多層光柵之度量目標之一光譜信號之一步驟204。在此方面,未使用多層光束之一測試層之幾何參數、色散參數及/或帶隙之未知值來特性化包含多層光柵之度量目標。
光譜信號可為由適用於提供與步驟202之模型之幾何及色散參數相關之資料之一光譜度量工具提供之任何度量信號。例如,光譜信號可包含(但不限於)光譜功率、偏光及依據波長而變化之入射在度量目標上之光之相移。一般意義上,光譜信號可包含由一光譜度量工具(諸如但不限於一光譜儀、具有一或多個照明角度之一光譜橢偏儀、用於量測穆勒矩陣(Mueller matrix)元素之一光譜橢偏儀(例如,使用旋轉補償器)、一單波長橢偏儀、一角度解析橢偏儀(例如,一光束分佈橢偏儀)、一光譜反射計、一單波長反射計、一角度解析反射計(例如,一光束分佈反射計)、一成像系統、一光瞳成像系統、一光譜成像系統或一散射計)提供之信號之任何組合。
在另一實施例中,方法200包含判定提供在一選定容限內對應於經量測光譜信號之一模擬光譜信號之模型化多層光柵之一或多個參數之值之一步驟206。在步驟206中,分析步驟204中產生之一未特性化度量目標之光譜信號以判定與步驟202之模型相關聯之幾何及色散參數之值。
可藉由資料擬合及最佳化技術分析光譜信號,包含(但不限於):程式庫、快速降階模型、迴歸、機器學習演算法(諸如神經網路或支援向量機(SVM))、降維演算法(例如,主成分分析(PCA)、獨立成分分析(ICA)、局部線性嵌入(LLE)及類似物)、資料之稀疏表示(例如,Fourier或小波變換、Kalman濾波器及類似物)或促進相同或不同工具類型之匹配之演算法。可(但無需)藉由由KLA-TENCOR提供之信號回應度量(SRM)軟體產品執行資料分析。在2016年8月9日發佈之標題為「Multi-model metrology」之美國專利案第9,412,673號、2014年10月2日出版之標題為「Statistical model-based metrology」之美國專利公開案第2014/0297211號、2015年2月12日出版之標題為「Differential methods and apparatus for metrology of semiconductor targets」之美國專利公開案第2015/004611號、2016年4月21日出版之標題為「Measurement of Small Box Size Targets」之美國專利公開案第2016/0109375號、2016年9月29日出版之標題為「Model-Based Single Parameter Measurement」之美國專利公開案第2016/0282105號及2014年10月23日出版之標題為「On-device metrology」之美國專利申請案第2014/0316730號中大體描述來自度量信號之模型化特徵參數之判定,該等案之全部內容以引用之方式併入本文中。在2014年6月19日出版之標題為「Integrated use of model-based metrology and a process model」之美國專利公開案第2014/0172394號中大體描述程序模型化之使用,該案之全部內容以引用的方式併入本文中。在2016年5月19日出版之標題為「System, method and computer program product for combining raw data from multiple metrology tools」之美國專利公開案第2016/0141193號中大體描述來自多個度量工具之度量資料之使用,該案之全部內容以引用的方式併入本文中。
在另一實施例中,藉由不包含模型化、最佳化及/或擬合(例如,相位特性化或類似物)之演算法分析藉由一度量工具(例如,度量工具104)產生之原始資料。在本文中應注意,計算演算法可(但無需) (例如,藉由控制器106)透過使用平行化、分佈式計算、負載平衡、多服務支援、計算硬體之設計及實施或動態負載最佳化針對度量應用定製。此外,演算法之各種實施方案可(但無需)藉由控制器106 (例如,透過韌體、軟體或場可程式化閘陣列(FPGA)及類似物)或與系統100相關聯之一或多個可程式化光學元件執行。
在一項實施例中,步驟206包含訓練一統計模型以判定一或多個參數(例如,幾何及色散參數)之特定值與模型化多層光柵之光譜信號之特定態樣之間的關係。例如,一統計模型包含適用於產生一經量測光譜信號之態樣與幾何及色散參數之特定值之間的統計關係之任何模型,使得可使用統計關係來預測一未特性化度量目標之幾何及色散參數之值。例如,統計模型可包含(但不限於)一線性模型、一非線性模型、一SVM或一神經網路。此外,可使用PCA、核新PCA、ICA、自動編碼器、信號選擇及類似物預處理且減少輸入資料。
本文中認知,一統計模型可提供來自一光譜度量工具(例如,度量工具104)之經量測光譜信號與幾乎任何類型之度量目標(包含但不限於,藉由尺寸相依實體效應連結實體及光學性質之目標及經製造層中之缺陷狀態可影響對應光學或電性質之目標)之經模型化幾何及色散參數之間的精確關係。此外,一統計模型可提供經量測光譜信號之態樣與相關聯於一色散模型(例如,BEMA、TL、CLC、HO及類似物)之實體有意義色散參數(例如,
Figure 02_image007
Figure 02_image009
Figure 02_image001
及類似物)或抽象色散參數。
步驟206之統計模型可藉由產生一實驗設計(DOE)訓練,其中針對在經定義範圍內(例如,與預期程序變動相關聯)具有幾何及色散參數之變化值之大量度量目標產生光譜信號。此外,可分析與DOE中之各度量目標相關聯之所產生光譜信號以判定光譜信號之態樣與幾何及色散參數之特定值之間的關係。在此方面,可判定幾何及色散參數之變動(單獨及組合)對可由一度量工具(例如,度量工具104)量測之所得光譜信號之影響。
例如,可至少部分藉由使用與步驟202之度量目標模型相關聯之幾何及色散參數之變化值模擬與包含多層光柵之度量目標相關聯之光譜信號而產生DOE。一照明光束(例如,度量工具104之度量照明光束132)之光學互動可(但不限於)使用一電磁(EM)解算器模型化。此外,EM解算器可利用此項技術中已知之任何方法,包含(但不限於)嚴格耦合波分析(RCWA)、有限元素法分析、矩量分析法、一表面積分技術、一體積分技術或一有限差分時域分析。
藉由另一實例,可至少部分藉由製造包含具有變化程序參數之多層光柵之度量目標以產生與步驟202之度量目標模型相關聯之幾何及色散參數之變化值而產生DOE。接著可使用參考度量工具來判定DOE之各度量目標之幾何及色散參數之特定值。此外,一光譜度量工具(例如,度量工具104)可產生DOE之各度量目標之相關光譜信號。本文中認知,使用經製造結構來產生DOE可促進色散參數(例如,包含一絕緣層306之帶隙或與該帶隙成比例之色散參數)之判定。
在另一實施例中,步驟206包含一迴歸分析以基於步驟204中提供之一經量測光譜信號判定幾何及色散參數之值。例如,步驟206可包含模擬光譜信號(例如,使用一EM解算器及類似物,如本文先前描述),其中幾何及色散參數在迴歸中浮動。在此方面,可藉由在一選定迴歸容限內最小化經量測及經模擬光譜之間的光譜差而判定幾何及色散參數之值。
在另一實施例中,方法200包含基於一或多個參數之判定值計算指示經製造多層光柵之測試層(例如,一絕緣層306)之一帶隙之度量目標之一度量計量之一步驟208。如本文先前描述,指示絕緣層之帶隙之一度量計量可提供與相關聯裝置特徵之預期效能相關聯之診斷資訊。在一些實施例中,步驟206提供可量測光譜信號之態樣與一絕緣層之帶隙之間的一直接統計關係。在此等情況中,步驟208之度量計量可包含帶隙之經判定值。在一些實施例中,步驟206提供可量測光譜信號之態樣與與帶隙相關之其他色散參數(例如,一色散曲線及類似物)之間的統計關係。因此,步驟208可包含基於步驟206中產生之色散參數之值計算測試層之帶隙。
本文中認知,許多薄介電膜之色散函數可包含接近可大幅影響帶隙之判定之一吸收峰值之尾區。例如,在APL 87, 192903 (2005)之N.V. Nguyen等人之「Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon」中大體描述薄膜中之子帶隙缺陷狀態,該案之全部內容以引用之方式併入本文中。
在一項實施例中,與一測試層之帶隙成比例之一度量計量可藉由評估測試層之一色散曲線在圍繞其中色散在一選定過渡容限內以指數方式變化之一吸收邊緣之一過渡能量區內之一積分而判定。例如,可(但無需)基於在步驟206中判定之色散參數之值判定色散曲線。此外,選定過渡容限可界定一或多個擬合參數容限,使得過渡能量區中之色散可藉由具有選定過渡容限之一指數函數近似計算。
評估一色散曲線在一過渡能量區內之一積分可提供指示帶隙之一度量計量,其對過渡能量區(例如,與層缺陷及類似物相關聯)外部之非零色散值不敏感且在存在雜訊的情況下係穩健的。
圖4係根據本發明之一或多項實施例之接近一多層光柵中之一層之帶隙之相對介電常數(
Figure 02_image005
)之虛部之一色散曲線之一曲線圖402。在一項實施例中,藉由定界光子能量Es 及Ee (或等效地,波長)界定過渡能量區,使得
Figure 02_image005
在過渡能量區中以指數方式改變。
可使用此項技術中已知之任何方法來判定過渡能量區之界限(圖4之Es 及Ee )。例如,可藉由識別使接近一吸收邊緣之色散函數能夠在選定過渡容限內藉由一指數函數擬合之定界光子能量而判定過渡能量區之界限。藉由另一實例,可藉由計算接近一吸收邊緣之色散函數之對數且識別實現選定過渡容限內之一線性擬合之定界光子能量而判定過渡能量區之界限。
在另一實施例中,可至少部分藉由使用一或多個函數形式(諸如但不限於線、多項式、分段多項式或指數函數)重建色散曲線(例如,在步驟206中產生)判定與一測試層之帶隙成比例之一度量計量。例如,至少部分藉由使用耳巴赫尾部之一般形式重建色散曲線作為過渡能量區中之光子能量之一指數函數而判定與一測試層之帶隙成比例之一度量計量。因此,可使用任何方法(諸如但不限於評估測試層之一色散曲線在過渡能量區內之一積分)自重建色散曲線提取帶隙。
在另一實施例中,可至少部分透過一深度學習模型(例如,如本文先前描述之一統計模型)判定與一測試層之帶隙成比例之一度量計量。
方法200可進一步包含基於步驟208中判定之度量計量預測一經製造裝置特徵之效能。例如,可基於與包含多層光柵之度量目標之測試層之帶隙成比例之度量計量預測通過一電晶體之「高k」絕緣層之一洩露電流。此外,方法200可包含基於步驟206中判定之一或多個經判定參數(例如,幾何及/或色散參數)之任一者預測一經製造裝置特徵之效能。例如,可結合步驟208中判定之度量計量利用幾何參數(諸如但不限於臨界尺寸、側壁角度、側向及水平尺寸)以進一步預測一經製造裝置特徵之最終效能。
方法200可進一步包含基於步驟208中判定之度量計量控制與製造裝置特徵相關聯之一或多個程序工具(例如,一或多個沈積工具、一或多個微影工具、一或多個蝕刻工具及類似物)。例如,方法200可包含回應於度量計量調整與至少一個程序工具(例如,一程序工具102)相關聯之一程序配方。因此,一晶圓之一或多個度量目標上之度量計量(及因此測試層之帶隙)之變動可用於修改相同晶圓上之後續層之一或多個態樣(例如,補償測試層之變動)或可用於修改一後續生產運行中一經製造裝置之一或多個態樣之沈積。
此外,方法200可包含回應於步驟206中判定之一或多個經判定參數(例如,幾何及/或色散參數)之任一者調整與至少一個程序工具(例如,一程序工具102)相關聯之一程序配方。例如,可結合步驟208中判定之度量計量基於幾何參數(諸如但不限於臨界尺寸、側壁角度、側向及水平尺寸)調整一程序配方以進一步達成選定製造及效能容限。
在本文中描述之標的物有時繪示包含於其他組件內或與其他組件連接之不同組件。應理解,此等所描繪之架構僅為例示性的,且事實上可實施達成相同功能性之諸多其他架構。在一概念意義上,達成相同功能性之組件之任何配置有效地「相關聯」,使得達成所要功能性。因此,在不考慮架構或中間組件之情況下,經組合以達成一特定功能性之本文中之任何兩個組件可被視為彼此「相關聯」,使得達成所要功能性。同樣地,如此相關聯之任何兩個組件亦可被視為彼此「連接」或「耦合」以達成所要功能性,且能夠如此相關聯之任何兩個組件亦可被視為「可耦合」至彼此以達成所要功能性。可耦合之特定實例包含但不限於可實體互動及/或實體互動之組件及/或可無線互動及/或無線互動之組件及/或可邏輯互動及/或邏輯互動之組件。
據信,將藉由前述描述理解本發明及諸多其伴隨優勢,且將明白,可在不脫離所揭示之標的物或不犧牲所有其材料優勢之情況下對組件之形式、構造及配置做出各種改變。描述之形式僅為解釋性,且下列發明申請專利範圍之意圖係涵蓋及包含此等改變。此外,應理解,本發明藉由隨附發明申請專利範圍定義。
100‧‧‧半導體裝置製造系統102‧‧‧程序工具104‧‧‧度量工具106‧‧‧控制器108‧‧‧處理器110‧‧‧記憶體媒體112‧‧‧微影照明源114‧‧‧照明光束116‧‧‧光軸118‧‧‧遮罩支撐裝置120‧‧‧圖案遮罩122‧‧‧投影光學器件124‧‧‧樣本126‧‧‧樣本載物台128‧‧‧光阻層130‧‧‧度量照明源132‧‧‧度量照明光束134‧‧‧照明路徑136‧‧‧收集路徑138‧‧‧光束調節組件140‧‧‧第一聚焦元件142‧‧‧第二聚焦元件144‧‧‧偵測器146‧‧‧收集光束調節元件148‧‧‧光束分離器150‧‧‧物鏡200‧‧‧方法202‧‧‧步驟204‧‧‧步驟206‧‧‧步驟208‧‧‧步驟300‧‧‧剖面圖302‧‧‧多層堆疊304‧‧‧基板層306‧‧‧絕緣層308‧‧‧界面層310‧‧‧填充層312‧‧‧金屬閘極層312a‧‧‧金屬閘極層312n‧‧‧金屬閘極層314‧‧‧剖面圖316‧‧‧多層光柵318‧‧‧圖案化特徵320‧‧‧第一週期322‧‧‧高度324‧‧‧頂部臨界尺寸326‧‧‧中間臨界尺寸328‧‧‧底部臨界尺寸330‧‧‧剖面圖332‧‧‧第二週期334‧‧‧側向臨界尺寸402‧‧‧曲線圖
藉由參考附圖可使熟習此項技術者更好理解本發明之數種優勢,其中: 圖1A係繪示根據本發明之一或多項實施例之一半導體裝置製造系統之一概念圖。 圖1B係繪示根據本發明之一或多項實施例之經組態為一微影工具之程序工具之一概念圖。 圖1C係繪示根據本發明之一或多項實施例之度量工具之一概念圖。 圖1D係繪示根據本發明之一或多項實施例之使用一單一照明及集光光學元件組態之度量工具之一概念圖。 圖2係繪示根據本發明之一或多項實施例之用於判定一度量目標之帶隙之一方法中執行之步驟之一流程圖。 圖3A係根據本發明之一或多項實施例之適用於一FinFET電晶體配置中之材料之一多層堆疊之一剖面圖。 圖3B係根據本發明之一或多項實施例之由一2D鰭片配置中圖案化之一多層堆疊形成之一多層光柵之一剖面圖。 圖3C係根據本發明之一或多項實施例之由一3D鰭片配置中圖案化之一多層堆疊形成之一多層光柵之一剖面圖。 圖4係根據本發明之一或多項實施例之一多層光柵中之一層之帶隙附近之相對介電常數之虛部之一色散曲線之一曲線圖。
200‧‧‧方法
202‧‧‧步驟
204‧‧‧步驟
206‧‧‧步驟
208‧‧‧步驟

Claims (58)

  1. 一種光譜度量系統,其包括:一光譜度量工具;及一控制器,其經通信地耦合至該光譜度量工具,該控制器包含經組態以執行程式指令之一或更多個處理器,該等程式指令經組態以引起該一或更多個處理器:產生包含一多層光柵的一度量目標之一模型,其中該多層光柵是自一圖案化的基板層及在該圖案化的基板層上的二或更多個額外層形成,從而形成一多層圖案,該二或更多個額外層形成一多層堆疊,該多層堆疊經塑形以與該圖案化的基板層的至少一部分保持一致(conform),該二或更多個額外層包括一待模型化的測試層,其中該多層圖案的多個元件的一大小(size)及一間距(spacing)的至少一者代表待製造於具有該度量目標的一共同樣品上的多個裝置特徵,其中該模型是使用與該多層光柵相關聯之二或更多個參數而被參數化,其中該二或更多個參數包括一或更多個幾何參數,該一或更多個幾何參數指示在該多層圖案的該等元件內的該測試層的至少一大小,形狀,或週期性,其中該二或更多個參數包含一或更多個色散參數,該一或更多個色散參數指示該測試層的至少一帶隙包含與該一或更多個幾何參數相關聯的多個尺寸相依實體效應;從該光譜度量工具接收一經量測光譜信號,其指示回應於入射照明自一經製造的多層光柵發出之輻射,其中該經製造的多層光 柵是根據該度量目標的該模型形成的;判定該模型之該二或更多個參數之值從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號;及基於該二或更多個參數之該等經判定值來計算指示該經製造多層光柵之該測試層之該帶隙的一度量計量。
  2. 如請求項1之光譜度量系統,其中該度量計量包括:該測試層之一色散曲線在一過渡光譜區內之一積分,其中該積分係與該測試層之該帶隙成比例,其中藉由該一或更多個色散參數之該等經判定值來定義該色散曲線,其中該過渡區包括:該色散曲線在一選定過渡容限內以指數方式變化之一範圍。
  3. 如請求項2之光譜度量系統,其中重建藉由該一或更多個色散參數之該等經判定值所定義之該測試層之該色散曲線,以包含在該過渡光譜區內以指數方式變化之一耳巴赫尾部。
  4. 如請求項1之光譜度量系統,其中該一或更多個色散參數包括:該測試層之一消光係數、該測試層之一介電函數之一虛部,或該測試層之該帶隙之至少一者。
  5. 如請求項4之光譜度量系統,其中該一或更多個色散參數之至少一者對應於一色散模型之多個模型化參數。
  6. 如請求項5之光譜度量系統,其中該色散模型包括:一Bruggeman有效模型近似模型、一Cody Lorenz連續模型、一Tauc-Lorentz模型、一諧波振盪器模型,或一點對點模型之至少一者。
  7. 如請求項5之光譜度量系統,其中該色散模型之該一或更多個色散參數之該至少一者對該測試層中之多個缺陷狀態敏感。
  8. 如請求項1之光譜度量系統,其中該一或更多個幾何參數包括:該多層光柵之至少一個層之一厚度。
  9. 如請求項1之光譜度量系統,其中該多層圖案包括:一光柵結構,其包含由該測試層及該多層光柵之該至少一個額外層形成之多個週期性分佈元件。
  10. 如請求項9之光譜度量系統,其中該一或更多個幾何參數進一步包括:該等週期性分佈元件之一高度、在一選定量測高度之該等週期性分佈元件之一寬度,或該等週期性分佈元件之一側壁角度之至少一者。
  11. 如請求項9之光譜度量系統,其中該等週期性分佈元件沿著該多層光柵之一表面分佈在一或更多個方向上。
  12. 如請求項11之光譜度量系統,其中該多層光柵包括:一鰭片光柵。
  13. 如請求項1之光譜度量系統,其中該度量計量指示使用一共同製造程序製造之一電晶體裝置之一洩露電流。
  14. 如請求項13之光譜度量系統,進一步包括:基於該度量計量來預測該電晶體裝置之一效能。
  15. 如請求項14之光譜度量系統,進一步包括:基於該度量計量且進一步基於該等二或更多個經判定參數之至少一者來預測該電晶體裝置之一效能。
  16. 如請求項1之光譜度量系統,進一步包括:基於該度量計量來控制用於製造該多層光柵之一或更多個程序工具。
  17. 如請求項1之光譜度量系統,其中該測試層包括:二氧化鉿、矽酸鉿、氮化鉿矽酸鹽,或矽酸鋯之至少一者。
  18. 如請求項1之光譜度量系統,其中該光譜度量工具包括:一照明源; 一或更多個照明元件,其等經組態以將來自該照明源之一照明光束引導至包含兩個或更多層之該多層光柵;一或更多個集光元件,其等經組態以收集回應於該照明光束自該多層光柵發出之輻射;及一偵測器,其經組態以接收該經收集輻射,且提供指示該經收集輻射之該經量測光譜信號。
  19. 如請求項18之光譜度量系統,進一步包括:一氣氛調節腔室,其圍封該光譜工具以使用一選定氣體來調節圍繞該光譜工具之多個組件之一氣氛。
  20. 如請求項19之光譜度量系統,其中該選定氣體包括:對在120奈米至2500奈米之一範圍中之波長透明之一氣體。
  21. 如請求項19之光譜度量系統,其中該選定氣體包括:對在120奈米至300奈米之一範圍中之波長透明之一氣體。
  22. 如請求項19之光譜度量系統,其中該選定氣體包括:對在150奈米至193奈米之一範圍中之波長透明之一氣體。
  23. 如請求項19之光譜度量系統,其中該選定氣體包括:一惰性氣體。
  24. 如請求項19之光譜度量系統,其中該選定氣體包括:氮氣或氬氣之至少一者。
  25. 如請求項18之光譜度量系統,其中該照明源包括:一雷射源或一雷射驅動光源之至少一者。
  26. 如請求項1之光譜度量系統,其中該光譜度量工具包括:一橢偏儀、一反射計、一成像系統,或一Raman光譜儀之至少一者。
  27. 如請求項18之光譜度量系統,其中該光譜度量工具包括:一光譜橢偏儀、一光譜反射計、一單波長橢偏儀、一單波長反射計、一角度解析橢偏儀,或一角度解析反射計之至少一者。
  28. 如請求項1之光譜度量系統,其中產生該該度量目標之該模型包括:判定該模型之該二或更多個參數之多個特定值與該經製造多層光柵之一可量測光譜信號之多個特定態樣之間的多個統計關係,其中判定該模型之該二或更多個參數之多個值,從而在一選定容限內,提供對應於該經量測光譜信號之一模擬光譜信號包括:基於該等經判定統計關係在一選定容限內來判定該二或更多個參數之多個值。
  29. 如請求項28之光譜度量系統,其中判定該模型之該二或更多個參數 之多個特定值與該經製造多層光柵之該可量測光譜信號之多個特定態樣之間的多個統計關係包括:使用一組模擬來模擬與該二或更多個參數之複數個值相關聯的該多層光柵之多個可量測光譜信號;及基於該等組模擬來判定該模型之該二或更多個參數之多個特定值與該經製造多層光柵之該等可量測光譜信號之多個特定態樣之間的該等統計關係。
  30. 如請求項28之光譜度量系統,其中判定該模型之該二或更多個參數之多個特定值與該經製造多層光柵之該可量測光譜信號之多個特定態樣之間的多個統計關係包括:產生包含所製造之該多層光柵之複數個例項之一參考樣本以對應於該模型之該二或更多個參數之複數個值;量測該參考樣本上之該多層光柵之該複數個例項的多個光譜信號;使用一度量工具來判定該參考樣本上之該多層光柵之該複數個例項之該模型之該二或更多個參數之多個值;及判定該模型之該二或更多個參數之多個特定值與該參考樣本上之該多層光柵之該複數個例項之該等經量測光譜信號之多個特定態樣之間的該等統計關係。
  31. 如請求項28之光譜度量系統,其中藉由以下之至少一者來判定該模型之該二一或更多個參數之多個特定值與該經製造多層光柵之該可量測光 譜信號之多個特定態樣之間的該等統計關係:一線性模型、一神經網路、一深度學習模型,或一支援向量機程序。
  32. 如請求項1之光譜度量系統,其中判定該模型之該二或更多個參數之多個值從而在一選定容限內提供對應於該可量測光譜信號之一模擬光譜信號包括:計算該模型之該二或更多個參數之多個值作為多個迴歸參數,以在該選定容限內最小化該多層光柵之一經模擬光譜信號與該經製造多層光柵之該經量測光譜信號之間的多個差。
  33. 如請求項18之光譜度量系統,其中該照明源經組態以產生具有在120奈米至3000奈米之一範圍中之波長之該照明光束。
  34. 如請求項33之光譜度量系統,其中該照明源經組態以產生具有紫外線波長之該照明光束。
  35. 如請求項33之光譜度量系統,其中該照明源包括:一雷射驅動光源。
  36. 如請求項33之光譜度量系統,其中該照明源包括:一雷射源。
  37. 如請求項22之光譜度量系統,其中該照明源經組態以產生具有在150奈米至193奈米之該範圍中之波長之該照明光束。
  38. 如請求項37之光譜度量系統,其中該照明源包括:一雷射驅動光源。
  39. 一種帶隙量化方法,其包括:產生包含一多層光柵的一度量目標之一模型,其中該多層光柵是自一圖案化的基板層及在該圖案化的基板層上的二或更多個額外層形成,從而形成一多層圖案,該二或更多個額外層形成一多層堆疊,該多層堆疊經塑形以與該圖案化的基板層的至少一部分保持一致(conform),該二或更多個額外層包括一待模型化的測試層,其中該多層圖案的多個元件的一大小及一間距(spacing)的至少一者代表待製造於具有該度量目標的一共同樣品上的多個裝置特徵,其中該模型是使用與該多層光柵相關聯之二或更多個參數而被參數化,其中該二或更多個參數包括一或更多個幾何參數,該一或更多個幾何參數指示在該多層圖案的該等元件內的該測試層的至少一大小,形狀,或週期性,其中該二或更多個參數包含一或更多個色散參數,該一或更多個色散參數指示該測試層的至少一帶隙包含與該一或更多個幾何參數相關聯的多個尺寸相依實體效應;量測對應於該度量目標之該模型之一經製造多層光柵之一光譜信號以產生一經量測光譜信號;判定該模型之該二或更多個參數之多個值從而在一選定容限內提 供對應於該經量測光譜信號之一模擬光譜信號;及基於該二或更多個參數之該等經判定值來計算指示該經製造多層光柵之該測試層之該帶隙之該度量目標之一度量計量。
  40. 如請求項39之帶隙量化方法,其中該度量計量包括:該測試層之一色散曲線在一過渡光譜區內之一積分,其中該積分係與該測試層之該帶隙成比例,其中藉由該一或更多個色散參數之該等經判定值來定義該色散曲線,其中該過渡區包括:該色散曲線在一選定過渡容限內以指數方式變化之一範圍。
  41. 如請求項40之帶隙量化系統,其中重建藉由該一或更多個色散參數之該等經判定值所定義之該測試層之該色散曲線以包含在該過渡光譜區內以指數方式變化之一耳巴赫尾部。
  42. 如請求項39之帶隙量化方法,其中該一或更多個色散參數包括:該測試層之一消光係數、一介電函數之一虛部,或該帶隙之至少一者。
  43. 如請求項39之帶隙量化方法,其中該等幾何參數包括:該多層光柵之至少一個層之一厚度。
  44. 如請求項39之帶隙量化方法,其中該多層光柵包括:一光柵結構,其包含由該兩個或更多個層形成之週期性分佈元 件。
  45. 如請求項44之帶隙量化方法,其中該一或更多個幾何參數包括:該等週期性分佈元件之一高度,或在一選定高度之該等週期性分佈元件之一寬度之至少一者。
  46. 如請求項39之帶隙量化方法,其中該度量計量指示使用一共同製造程序製造之一電晶體裝置之一洩露電流。
  47. 如請求項46之帶隙量化方法,進一步包括:基於該度量計量來預測該電晶體裝置之一效能。
  48. 如請求項39之帶隙量化方法,進一步包括:基於該度量計量來控制用於製造該電晶體裝置之一程序工具。
  49. 如請求項39之帶隙量化方法,其中產生該多層光柵之模型包括:判定該二或更多個參數之多個特定值與該經製造多層光柵之一可量測光譜信號之多個特定態樣之間的多個統計關係,其中判定該模型之該二或更多個參數從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號包括:基於該等經判定統計關係來判定在一選定容限內的該二或更多個參數之多個值。
  50. 如請求項49之帶隙量化方法,其中判定該模型之該二或多個參數之 多個特定值與該經製造多層光柵之該可量測光譜信號之多個特定態樣之間的多個統計關係包括:使用一組模擬來模擬與該模型之該二或更多個參數之複數個值相關聯的該多層光柵之多個可量測光譜信號;及基於該等模擬來判定該二或多個參數之多個特定值與該經製造多層光柵之該可量測光譜信多個號之特定態樣之間的多個統計關係。
  51. 如請求項49之帶隙量化方法,其中判定該模型之該二或更多個參數之多個特定值與該經製造的多層光柵之該可量測光譜信號之多個特定態樣之間的多個統計關係包括:產生包含對應於該模型之該二或更多個參數之複數個值所製造之該多層光柵之複數個例項之一參考樣本;量測該參考樣本上之該多層光柵之該複數個例項之多個光譜信號;使用一度量工具來判定該參考樣本上之該多層光柵之該複數個例項之該二或多個參數之該等值;及判定該模型之該二或多個參數之多個特定值與參考樣本上之該多層光柵之該複數個例項之該經量測光譜信號之多個特定態樣之間的多個統計關係。
  52. 如請求項39之帶隙量化方法,其中判定該模型之該二或更多個參數之多個值從而在一選定容限內提供對應於該可量測光譜信號之一模擬光譜信號包括: 計算該模型之該二或多個參數之多個值作為迴歸參數,以在該選定容限內最小化該多層光柵之一經模擬光譜信號與該經製造多層光柵之該經量測光譜信號之間的多個差。
  53. 一種製造系統,其包括:一或更多個程序工具,其等基於一程序配方來製造多個多層光柵;一光譜度量工具;及一控制器,其經通信地耦合至該光譜度量工具及該一或更多個程序工具,該控制器包含經組態以執行程式指令之一或更多個處理器,該等程式指令經組態以引起該一或更多個處理器:產生包含一多層光柵的一度量目標之一模型,其中該多層光柵是自一圖案化的基板層及在該圖案化的基板層上的二或更多個額外層形成,從而形成一多層圖案,該二或更多個額外層形成一多層堆疊,該多層堆疊經塑形以與該圖案化的基板層的至少一部分保持一致(conform),該二或更多個額外層包括一待模型化的測試層,其中該多層圖案的多個元件的一大小及一間距(spacing)的至少一者代表待製造於具有該度量目標的一共同樣品上的多個裝置特徵,其中該模型是使用與該多層光柵相關聯之二或更多個參數而被參數化,其中該二或更多個參數包括一或更多個幾何參數,該一或更多個幾何參數指示在該多層圖案的該等元件內的該測試層的至少一大小,形狀,或週期性,其中該二或更多個參數包含一或更多個色散參數,該一或更多個色散參數指示該測試層 的至少一帶隙包含與該一或更多個幾何參數相關聯的多個尺寸相依實體效應;從該光譜度量工具接收一經製造多層光柵之一經量測光譜信號,其中該經製造的多層光柵是根據該度量目標的該模型而且基於該程序配方而由該一或更多個程序工具形成的;判定該模型之該二或更多個參數之多個值從而在一選定容限內提供對應於該經量測光譜信號之一模擬光譜信號;基於該二或更多個參數之該等經判定值來計算指示該經製造多層光柵之該測試層之該帶隙的一度量計量;及基於該測試層之該預測帶隙來調整用於製造多個多層光柵之該一或更多個程序工具之該程序配方。
  54. 如請求項53之製造系統,其中該一或更多個處理器經進一步組態以執行程式指令,該等程式指令經組態以引起該一或更多個處理器:基於該一或更多個參數之該等經判定值之至少一者來調整用於製造多個多層光柵之該一或更多個程序工具之該程序配方。
  55. 如請求項54之製造系統,其中該二或更多個參數之該等經判定值之該至少一者包括:一臨界尺寸、一側壁角度,或一膜厚度之至少一者。
  56. 如請求項53之製造系統,其中該一或更多個程序工具包括:一材料沈積工具、一微影工具,或一蝕刻工具之至少一者。
  57. 如請求項53之製造系統,其中基於該測試層之該預測帶隙來調整用於製造多個多層光柵之該一或更多個程序工具之該配方包括:在該一或更多個程序工具之一當前生產運行中,調整該程序配方以補償該測試層之該帶隙的多個偏差。
  58. 如請求項53之製造系統,其中基於該測試層之該預測帶隙來調整用於製造多個多層光柵之該一或更多個程序工具之該配方包括:在該一或更多個程序工具之一後續生產運行中,調整該程序配方以補償該測試層之該帶隙的多個偏差。
TW107127004A 2017-08-07 2018-08-03 使用光譜度量之圖案化膜堆疊之帶隙量測 TWI785083B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762542260P 2017-08-07 2017-08-07
US62/542,260 2017-08-07
US15/672,120 US11378451B2 (en) 2017-08-07 2017-08-08 Bandgap measurements of patterned film stacks using spectroscopic metrology
US15/672,120 2017-08-08

Publications (2)

Publication Number Publication Date
TW201920911A TW201920911A (zh) 2019-06-01
TWI785083B true TWI785083B (zh) 2022-12-01

Family

ID=65231535

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107127004A TWI785083B (zh) 2017-08-07 2018-08-03 使用光譜度量之圖案化膜堆疊之帶隙量測

Country Status (6)

Country Link
US (2) US11378451B2 (zh)
JP (1) JP7201662B2 (zh)
KR (1) KR102618395B1 (zh)
CN (1) CN111279166B (zh)
TW (1) TWI785083B (zh)
WO (1) WO2019032412A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156548B2 (en) 2017-12-08 2021-10-26 Kla-Tencor Corporation Measurement methodology of advanced nanostructures
US11060982B2 (en) * 2019-03-17 2021-07-13 Kla Corporation Multi-dimensional model of optical dispersion
CN111595812B (zh) * 2020-05-29 2021-06-22 复旦大学 基于动量空间色散关系的关键参数的量测方法和系统
US20220114438A1 (en) * 2020-10-09 2022-04-14 Kla Corporation Dynamic Control Of Machine Learning Based Measurement Recipe Optimization
CN112484968B (zh) * 2020-11-20 2021-12-21 上海复享光学股份有限公司 用于光学量测的方法、系统、计算设备和存储介质
CN113720795B (zh) * 2021-09-03 2024-03-01 上海科技大学 高通量极紫外多层膜光栅光谱仪

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528944B2 (en) * 2006-05-22 2009-05-05 Kla-Tencor Technologies Corporation Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool
US20130083320A1 (en) * 2011-09-27 2013-04-04 Kla-Tencor Corporation High Throughput Thin Film Characterization And Defect Detection
TW201408988A (zh) * 2012-06-26 2014-03-01 Kla Tencor Corp 近場之量測
US20140375981A1 (en) * 2013-01-14 2014-12-25 Kla-Tencor Corporation Multiple angles of incidence semiconductor metrology systems and methods
TW201610399A (zh) * 2014-06-04 2016-03-16 希瑪有限責任公司 脈衝光束之光譜特徵的評估技術
TW201721308A (zh) * 2015-09-23 2017-06-16 美商克萊譚克公司 光譜光束輪廓疊對度量

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608526A (en) 1995-01-19 1997-03-04 Tencor Instruments Focused beam spectroscopic ellipsometry method and system
US5859424A (en) 1997-04-08 1999-01-12 Kla-Tencor Corporation Apodizing filter system useful for reducing spot size in optical measurements and other applications
US6455853B2 (en) * 2000-02-22 2002-09-24 J.A. Woollam Co., Inc. Determination of thickness and impurity profiles in thin membranes utilizing spectorscopic data obtained from ellipsometric investigation of both front and back surfaces
US6429943B1 (en) 2000-03-29 2002-08-06 Therma-Wave, Inc. Critical dimension analysis with simultaneous multiple angle of incidence measurements
JP4938219B2 (ja) 2001-12-19 2012-05-23 ケーエルエー−テンカー コーポレイション 光学分光システムを使用するパラメトリック・プロフィーリング
WO2003104929A2 (en) 2002-06-05 2003-12-18 Kla-Tencor Technologies Corporation Use of overlay diagnostics for enhanced automatic process control
JP4136740B2 (ja) 2003-03-19 2008-08-20 株式会社堀場製作所 分光エリプソメータを用いた薄膜3層構造の解析方法
US7478019B2 (en) 2005-01-26 2009-01-13 Kla-Tencor Corporation Multiple tool and structure analysis
US7567351B2 (en) 2006-02-02 2009-07-28 Kla-Tencor Corporation High resolution monitoring of CD variations
KR101576958B1 (ko) * 2009-09-04 2015-12-11 삼성전자주식회사 반도체 소자의 제조 방법
US20130245985A1 (en) 2012-03-14 2013-09-19 Kla-Tencor Corporation Calibration Of An Optical Metrology System For Critical Dimension Application Matching
JP5949905B2 (ja) 2012-03-26 2016-07-13 コニカミノルタ株式会社 プリズム及びセンサーチップ
WO2014062972A1 (en) 2012-10-18 2014-04-24 Kla-Tencor Corporation Symmetric target design in scatterometry overlay metrology
US8860937B1 (en) * 2012-10-24 2014-10-14 Kla-Tencor Corp. Metrology systems and methods for high aspect ratio and large lateral dimension structures
US10769320B2 (en) 2012-12-18 2020-09-08 Kla-Tencor Corporation Integrated use of model-based metrology and a process model
US9405290B1 (en) 2013-01-17 2016-08-02 Kla-Tencor Corporation Model for optical dispersion of high-K dielectrics including defects
US9291554B2 (en) 2013-02-05 2016-03-22 Kla-Tencor Corporation Method of electromagnetic modeling of finite structures and finite illumination for metrology and inspection
US10101670B2 (en) 2013-03-27 2018-10-16 Kla-Tencor Corporation Statistical model-based metrology
US9875946B2 (en) 2013-04-19 2018-01-23 Kla-Tencor Corporation On-device metrology
US10079183B2 (en) * 2013-06-26 2018-09-18 Kla-Tenor Corporation Calculated electrical performance metrics for process monitoring and yield management
US10935893B2 (en) 2013-08-11 2021-03-02 Kla-Tencor Corporation Differential methods and apparatus for metrology of semiconductor targets
US9412673B2 (en) 2013-08-23 2016-08-09 Kla-Tencor Corporation Multi-model metrology
US9595481B1 (en) 2013-08-23 2017-03-14 Kla-Tencor Corporation Dispersion model for band gap tracking
US9490182B2 (en) * 2013-12-23 2016-11-08 Kla-Tencor Corporation Measurement of multiple patterning parameters
CN112331576B (zh) * 2014-10-03 2024-07-26 科磊股份有限公司 计量目标设计方法以及验证计量目标
US10139352B2 (en) 2014-10-18 2018-11-27 Kla-Tenor Corporation Measurement of small box size targets
US20160139032A1 (en) 2014-11-19 2016-05-19 Kla-Tencor Corporation Inspection system and method using an off-axis unobscured objective lens
US10152678B2 (en) * 2014-11-19 2018-12-11 Kla-Tencor Corporation System, method and computer program product for combining raw data from multiple metrology tools
US9470639B1 (en) 2015-02-03 2016-10-18 Kla-Tencor Corporation Optical metrology with reduced sensitivity to grating anomalies
US10502549B2 (en) 2015-03-24 2019-12-10 Kla-Tencor Corporation Model-based single parameter measurement
US9903711B2 (en) 2015-04-06 2018-02-27 KLA—Tencor Corporation Feed forward of metrology data in a metrology system
US9664734B2 (en) 2015-05-21 2017-05-30 Kla-Tencor Corporation Multi-oscillator, continuous Cody-Lorentz model of optical dispersion
US20200025554A1 (en) * 2015-12-08 2020-01-23 Kla-Tencor Corporation System, method and computer program product for fast automatic determination of signals for efficient metrology
JP2020509431A (ja) 2017-02-22 2020-03-26 エーエスエムエル ネザーランズ ビー.ブイ. コンピュータによる計測
WO2019035854A1 (en) 2017-08-16 2019-02-21 Kla-Tencor Corporation MACHINE LEARNING IN RELATION TO METROLOGY MEASUREMENTS
US11360397B2 (en) 2019-09-17 2022-06-14 Kla Corporation System and method for application of harmonic detectivity as a quality indicator for imaging-based overlay measurements

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7528944B2 (en) * 2006-05-22 2009-05-05 Kla-Tencor Technologies Corporation Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool
US20130083320A1 (en) * 2011-09-27 2013-04-04 Kla-Tencor Corporation High Throughput Thin Film Characterization And Defect Detection
TW201408988A (zh) * 2012-06-26 2014-03-01 Kla Tencor Corp 近場之量測
US20140375981A1 (en) * 2013-01-14 2014-12-25 Kla-Tencor Corporation Multiple angles of incidence semiconductor metrology systems and methods
TW201610399A (zh) * 2014-06-04 2016-03-16 希瑪有限責任公司 脈衝光束之光譜特徵的評估技術
TW201721308A (zh) * 2015-09-23 2017-06-16 美商克萊譚克公司 光譜光束輪廓疊對度量

Also Published As

Publication number Publication date
WO2019032412A1 (en) 2019-02-14
TW201920911A (zh) 2019-06-01
US11796390B2 (en) 2023-10-24
KR102618395B1 (ko) 2023-12-27
JP2020530206A (ja) 2020-10-15
US11378451B2 (en) 2022-07-05
KR20200029607A (ko) 2020-03-18
JP7201662B2 (ja) 2023-01-10
US20190041266A1 (en) 2019-02-07
US20220349752A1 (en) 2022-11-03
CN111279166A (zh) 2020-06-12
CN111279166B (zh) 2022-12-16

Similar Documents

Publication Publication Date Title
TWI785083B (zh) 使用光譜度量之圖案化膜堆疊之帶隙量測
TWI760309B (zh) 用於校正計量工具之系統、方法及計算機程式產品
US10062157B2 (en) Compressive sensing for metrology
US10101674B2 (en) Methods and apparatus for determining focus
TWI703652B (zh) 用於以影像為基礎之量測及以散射術為基礎之重疊量測之信號回應度量
CN111566674B (zh) 通过先进机器学习技术的测量精确度的自动优化
US9412673B2 (en) Multi-model metrology
TWI641828B (zh) 特徵化半導體晶圓上之所關注結構之方法及半導體度量衡系統
KR102287785B1 (ko) 반도체 타겟의 계측을 위한 차동 방법 및 장치
US10354929B2 (en) Measurement recipe optimization based on spectral sensitivity and process variation
JP6266007B2 (ja) 最適化されたシステムパラメータによる光学計測のための装置および方法
CN106796900B (zh) 验证计量目标及其设计
TWI772278B (zh) 用於快速自動判定用於高效計量之信號之系統、方法及電腦程式產品
KR20170085582A (ko) 다중 계측 툴로부터의 원시 데이터를 결합하는 시스템, 방법 및 컴퓨터 프로그램 제품
TW201918688A (zh) 使用有效介質概算之多層膜度量
TWI821585B (zh) 用於重疊計量學系統之自動配方最佳化
JP2020530206A5 (zh)
JP2018535426A (ja) Vuv光学素子の非接触サーマル測定
WO2015175900A1 (en) Library expansion system, method, and computer program product for metrology
TWI631636B (zh) 以模型爲基礎之量測及一製程模型的整合使用
US20230341337A1 (en) Measurement of thick films and high aspect ratio structures
Wang et al. Improving the measurement performance of angle-resolved scattermetry by use of pupil optimization