TWI780880B - 檢查方法 - Google Patents

檢查方法 Download PDF

Info

Publication number
TWI780880B
TWI780880B TW110131858A TW110131858A TWI780880B TW I780880 B TWI780880 B TW I780880B TW 110131858 A TW110131858 A TW 110131858A TW 110131858 A TW110131858 A TW 110131858A TW I780880 B TWI780880 B TW I780880B
Authority
TW
Taiwan
Prior art keywords
sample
charged particle
aforementioned
light
pulse
Prior art date
Application number
TW110131858A
Other languages
English (en)
Other versions
TW202215490A (zh
Inventor
三次将太
中村洋平
備前大輔
布施潤一
高田哲
津野夏規
Original Assignee
日商日立全球先端科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日立全球先端科技股份有限公司 filed Critical 日商日立全球先端科技股份有限公司
Publication of TW202215490A publication Critical patent/TW202215490A/zh
Application granted granted Critical
Publication of TWI780880B publication Critical patent/TWI780880B/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/305Contactless testing using electron beams
    • G01R31/307Contactless testing using electron beams of integrated circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/308Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07392Multiple probes manipulating each probe element or tip individually
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/302Contactless testing
    • G01R31/303Contactless testing of integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/14Measuring as part of the manufacturing process for electrical parameters, e.g. resistance, deep-levels, CV, diffusions by electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2653Contactless testing using electron beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/27Testing of devices without physical removal from the circuit of which they form part, e.g. compensating for effects surrounding elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Power Engineering (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

控制裝置,係從藉由自電氣特性解析裝置所作成之電路模型與帶電粒子線裝置檢測到的2次電子之檢測信號,推估被檢查試料的電路常數或缺陷構造,該電氣特性解析裝置,係與經脈衝控制的預定波長之光同步地控制接觸探針,以計測器計測被檢查試料或解析用試料的特性,並基於計測器計測到之值,產生電路模型。

Description

檢查方法
本發明,係關於檢查方法。
電子顯微鏡或離子顯微鏡等的帶電粒子線裝置,係被使用於觀察具有微細構造的各種試料。例如,以半導體元件的製造工程中之製程管理為目的,帶電粒子線裝置的一種即掃描電子顯微鏡被應用於半導體元件圖案之尺寸計測或缺陷檢查等的測定,該半導體元件圖案,係被形成於試料即半導體晶圓上。
使用了電子顯微鏡之試料解析法的1種,已知如下述手法:基於藉由將電子束照射至試料而獲得的二次電子等,形成電位對比像,並基於電位對比像的解析,評估被形成於試料上之元件的電阻。
例如,在專利文獻1,係揭示如下述方法:具備有可將探針接觸於試料而計測電流之機構,並從照射了電子束與光或僅照射了電子束時的電流變化,檢查缺陷。在專利文獻2,係揭示如下述方法:藉由將光照射至試料的方式,使電位對比變化,檢查缺陷的位置・種類。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2003-022946號公報 [專利文獻2]日本特開2003-151483號公報
[本發明所欲解決之課題]
在半導體元件之檢查計測中,係被要求檢測製造工程中之元件的電氣特性之不良。在專利文獻1中,係存在有「雖可從電子束與光照射之條件來檢測因電阻變化所造成的缺陷,但無法檢測依存於電容性等時間響應之缺陷」的課題。又,在專利文獻2中,係雖揭示有檢查缺陷之位置・種類的方法,但為了定量地評估缺陷,係需要作為參考的電路模型。
因此,本發明之一態樣,係以「提供一種可測定以往手法中無法測定之元件的電氣特性之檢查方法」為目的。 [用以解決課題之手段]
本發明之一態樣的檢查方法,係以帶電粒子線裝置來進行,該帶電粒子線裝置,係使用帶電粒子線觀察作為觀察對象之被檢查試料的微細構造,該檢查方法,其特徵係,具備有:帶電粒子光學系統,具有帶電粒子源、電子脈衝產生器及檢測器,該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子;帶電粒子線裝置,具有光照射系統,該光照射系統,係具有將預定波長之光照射至前述被檢查試料的光源與對前述預定波長之光進行脈衝控制的閘門;光照射系統,具有將預定波長之光照射至前述被檢查試料或前述解析用試料的光源與對前述預定波長之光進行脈衝控制的閘門;接觸探針,檢測照射了藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述被檢查試料的特性;計測器,計測藉由前述接觸探針所檢測到之前述被檢查試料或前述被檢查試料的特性;控制裝置,控制前述帶電粒子光學系統與前述光照射系統與前述接觸探針;及可動式平台,設置前述被檢查試料或前述解析用試料,前述控制裝置,係從藉由「與經脈衝控制的前述預定波長之光同步地控制前述接觸探針,以前述計測器計測前述被檢查試料或前述解析用試料的特性,並基於前述計測器計測到之值,產生電路模型」的電氣特性解析裝置與自前述電氣特性解析裝置所作成之前述電路模型與前述帶電粒子線裝置檢測到的前述2次電子之檢測信號,推估前述被檢查試料的電路常數或缺陷構造。 [發明之效果]
根據本發明之一態樣,可測定以往手法中無法測定之元件的電氣特性。
以下,參閱圖面,說明本發明的實施形態。以下之記載及圖面,係用以說明本發明的例示,為了說明之明確化,適當地進行省略及簡化。本發明,係亦能以其他各種形態來實施。只要沒有特別限定,各構成要素,係可為單數個,亦可為複數個。
圖面中所示之各構成要素的位置、大小、形狀、範圍等,係為了使發明容易理解,有時並不表示實際的位置、大小、形狀、範圍等。因此,本發明,係不一定限定於圖面中所示的位置、大小、形狀、範圍等。
在以下說明中,係雖有時以「表」、「列表」等的表達來說明各種資訊,但各種資訊,係亦可由該些以外的資料構造來表達。為了表示不依存於資料構造,有時將「XX表」、「XX列表」等稱為「XX資訊」。當說明關於識別資訊之際,在使用了「識別資訊」、「識別符」、「名稱」、「ID」、「編號」等表達的情況下,可對該些進行相互置換。
當存在複數個具有相同或同樣功能之構成要素的情況下,係有時對相同符號標註不同下標而進行說明。但是,在不需區分該些複數個構成要素的情況下,係有時省略下標而進行說明。
又,在以下說明中,係雖存在有說明執行程式而進行之處理的情形,但由於程式,係藉由處理器(例如CPU(Central Processing Unit)、GPU(Graphics Processing Unit))來執行而適當地使用儲存資源(例如記憶體)及/或介面元件(例如通訊埠)等進行所決定的處理,因此,處理之主體亦可被設成為處理器。相同地,執行程式而進行之處理的主體亦可為具有處理器的控制器、裝置、系統、計算機、節點。執行程式而進行之處理的主體,係只要為運算部即可,亦可包含進行特定之處理的專用電路(例如FPGA(Field-Programmable Gate Array)或ASIC(Application Specific Integrated Circuit))。
程式,係亦可從程式源被安裝於如計算機般的裝置。程式源,係例如亦可為程式分配伺服器或計算機可讀取的記憶媒體。在程式源為程式分配伺服器的情況下,程式分配伺服器,係亦可包含處理器與記憶分配對象之程式的儲存資源,程式分配伺服器之處理器將分配對象的程式分配至其他計算機。又,在以下說明中,2個以上的程式亦可被作為1個程式來實現,或1個程式亦可被作為2個以上的程式來實現。
在以下中,係雖說明關於使用了「掃描型電子顯微鏡」(SEM:Scanning Electron Microscope)作為帶電粒子線裝置之一態樣的情形,但亦可使用SEM以外的顯微鏡,且在實施例2以後說明關於該例子。又,作為觀察對象之圖像,雖以拍攝半導體晶圓上之缺陷所得的圖像為對象而進行說明,但亦可拍攝平板顯示器或生物試料等其他試料所得的圖像為對象。
又,在以下中,作為掃描型電子顯微鏡之一例,雖以計測半導體晶圓上之圖案的裝置為例而進行說明,但「掃描型電子顯微鏡」,係廣泛包含使用電子束來拍攝試料之圖像的裝置。作為掃描型電子顯微鏡之其他例,係可列舉出使用了掃描型電子顯微鏡的檢查裝置、檢查裝置(REVIEW APPARATUS)、通用的掃描型電子顯微鏡、具備有掃描型電子顯微鏡的試料加工裝置或試料解析裝置等,本揭示亦可適用於該些裝置。又,在以下說明之實施例中,掃描型電子顯微鏡,係亦包含上述掃描型電子顯微鏡以網路連接的系統或將複數個上述掃描型電子顯微鏡組合而成的複合裝置。
又,在以下說明之實施例中,「試料」,係雖以形成有圖案的半導體晶圓為一例而進行說明,但並不限於此,亦可為金屬、陶瓷、生物試料等。
又,在以下說明之實施例中,計測半導體晶圓上之圖案的掃描型電子顯微鏡中之「計測」,係雖以測定半導體晶圓上之圖案的電氣特性為一例而進行說明,但並不限於此,亦可為該圖案的觀察、檢查。
(實施例1) 圖1,係表示本實施例之帶電粒子線裝置的構成之一例的概略圖。實施例1中之帶電粒子線裝置100,係具有:SEM本體101A,進行試料的拍攝;及SEM控制機器群101B。又,SEM控制機器群101B,係被連接於計算機115。在圖1中,係雖例示SEM本體101A及SEM控制機器群101B被電性連接於計算機115的系統構成,但該些亦可被構成為1個裝置。
SEM本體101A,係包含有:電子槍102,作為帶電粒子源;電子脈衝產生器103,從自光源114所射出的雷射光產生電子脈衝;聚光透鏡104,形成為藉由電子槍102所產生之1次電子束(照射電子束)的孔徑;偏向器105,對準1次電子束入射至接物透鏡106的位置;接物透鏡106;平台(試料座)108,置放有試料(晶圓);及2次電子檢測器109,檢測藉由1次電子束之照射而從試料S所獲得的2次電子。平台108,係亦可為藉由馬達等的預定之動作機構進行移動的可動式平台。
1次電子束,係藉由聚光透鏡104與接物透鏡106收斂地被照射於試料S。偏向器105,係對準1次電子束入射至接物透鏡106的位置。1次電子束,係藉由未圖示之偏轉器,對試料S掃描。藉由1次電子束之照射而從試料S所獲得的2次電子,係藉由未圖示之E×B濾波器而朝向2次電子檢測器109的方向,且藉由2次電子檢測器109進行檢測。接著,說明關於SEM控制機器群101B。
如圖1所示般,SEM控制機器群101B,係包含有:控制裝置110,控制SEM本體101A的各部及SEM控制機器群101B的各部;分離器等的光路透鏡112,使從光源114所射出的雷射光偏向;閘門113,控制是否阻斷上述雷射光;及光源114,將預定波長的雷射光射出至試料S。2次電子檢測器109所檢測到的信號,係被傳送至控制裝置110而圖像化。在控制裝置110,係含有:圖像產生部,基於從2次電子檢測器109所輸出的信號產生圖像;及機器控制部,控制用以將電壓施加至各種透鏡、偏向器、電極、檢測器、電路基板等的電壓源或用以供給電流的電流源等(省略圖示)。機器控制部或圖像產生部,係如上述般,亦可藉由專用的電路基板作為硬體而構成,或亦可藉由在被連接於帶電粒子線裝置100之電腦中所執行的軟體來構成。在藉由硬體來構成的情況下,係可藉由「將執行處理之複數個運算器聚積於配線基板上或半導體晶片或封裝內」的方式來加以實現。在藉由軟體來構成的情況下,係以「將高速之通用CPU搭載至電腦且執行用以執行所期望的運算處理之程式」的方式來加以實現。接著,說明關於計算機115。
計算機115,係作為硬體,由一般的電腦所構成。計算機115,係具有:運算器116,進行經由SEM控制機器群101B之SEM本體101A的控制或基於該控制用之各種指示的處理;及記憶裝置117,記憶使用於上述控制或處理的各種資料。又,在計算機115,係電性連接有輸入輸出裝置118,該輸入輸出裝置118,係用於進行用以執行上述控制或處理之各種資訊的輸入或顯示,抑或表示執行了上述控制或處理的結果之各種資訊的輸入或顯示。在圖1中,係雖未特別說明,但在計算機115,係具有鍵盤或滑鼠這樣的輸入裝置。
計算機115,係例如可藉由如圖16(電腦之概略圖)所示般之一般的電腦200來加以實現,該電腦200,係具備有:CPU1401;記憶體1402;HDD(Hard Disk Drive)等的外部記憶裝置1403;讀寫裝置1407,對CD(Compact Disk)或DVD(Digital Versatile Disk)等的具有可攜性之記憶媒體1408讀寫資訊;鍵盤或滑鼠等的輸入裝置1406;顯示器等的輸出裝置1405;NIC(Network Interface Card)等的通信裝置1404,用以連接於通信網路;及將該些進行連結之系統匯流排等的內部通信線(稱為系統匯流排)1409。
例如,記憶於計算機115之資料庫或表,係可藉由「CPU1401從記憶體1402或外部記憶裝置1403讀出而加以利用」的方式來實現。又,計算機115所具有的電路映射模型產生部211、電路模擬(電路模擬部)214、比較部216、電路常數推估運算部217、裝置內電路模型產生部2121(皆為後述),係可藉由「CPU1401將被記憶於外部記憶裝置1403之預定程式載入至記憶體1402且執行」的方式來加以實現。計算機115,係CPU1404亦可控制輸入裝置1406而實現輸入輸出裝置118的輸入功能。計算機115,係CPU1404亦可控制輸出裝置1405而實現輸入輸出裝置118的輸出功能。又,計算機115,係CPU1401亦可具有能控制通信裝置1404而實現通信功能的通信部。
上述的預定程式,係亦可經由讀寫裝置1407從記憶媒體1408抑或經由通信裝置1404從網路被記憶(下載)於外部記憶裝置1403,接著被載入至記憶體1402上,藉由CPU1401來執行。又,亦可經由讀寫裝置1407從記憶媒體1408抑或經由通信裝置1404從網路直接被載入至記憶體1402上,藉由CPU1401來執行。
圖2,係表示圖1所示之帶電粒子線裝置的功能構成之一例的方塊圖。關於構成SEM本體101A、SEM控制機器群101B之各部,係賦予與圖1相同的符號,且省略其說明。如圖2所示般,輸入輸出裝置118,係在功能上具有:光條件輸入部201,受理從光源114所射出之雷射光的強度、波長、週期等的條件之輸入;電子束條件輸入部202,受理藉由電子槍102所產生之1次電子束的加速電壓或倍率等的條件之輸入;電子元件電路資訊輸入部203,受理構成作為觀察對象之試料S的座標、網表、對應表等之試料S的電子元件電路資訊之輸入;及電子元件佈局資訊輸入部204,受理試料S之佈局資訊或DRAM或SRAM這樣的元件資訊之輸入。例如在輸入為DRAM的情況下,將裝置內所準備之DRAM的佈局資訊應用於試料S。而且,包含有:裝置內電路模型更新資訊205,從伺服器(例如,模型資料伺服器840)等資訊媒體輸入預先記憶於裝置內的電路模型;推估結果顯示部206,顯示試料S之光響應特性的推估值(例如,電路常數的推估值);及實測結果顯示部207,顯示試料S之光響應特性的實測值(例如,試料S的拍攝結果)。使用圖8,後述關於輸入輸出裝置118輸出入之資訊的例子。
又,計算機115,係在功能上包含有:觀察條件記憶部210,記憶從輸入輸出裝置118之光條件輸入部201、電子束條件輸入部202所輸入的資訊;裝置內電路模型記憶部212,記憶所輸入的裝置內電路模型更新資訊;電路映射模型產生部211,從所輸入之電子元件電路資訊與電子元件佈局資訊與裝置內電路模型記憶部的資訊,產生試料S的電路映射模型;電路模擬214,模擬電路映射模型產生部211之電路映射模型的電氣特性;實測結果記憶部213,記憶2次電子檢測器所檢測到的信號;比較器(比較部)216,比較電路模擬結果與實測結果記憶部213記憶的上述實測結果,並判定兩者是否一致;電路常數推估運算部217,推估被判定為上述模擬結果與上述實測結果一致時的電路常數;及推估結果記憶部218,記憶電路常數推估運算部217的推估結果。計算機所具有的上述各記憶部,係例如作為硬體,可使用上述記憶體或外部記憶裝置。
圖3,係表示實施例1之電氣特性解析裝置900之一例的概略圖。實施例1中之電氣特性解析裝置900,係具有:SEM本體101C,進行試料的拍攝;及SEM控制機器群101D。又,SEM控制機器群101C,係被連接於計算機1151。在圖3中,係雖例示SEM本體101C及SEM控制機器群101D被電性連接於計算機1151的系統構成,但該些亦可被構成為1個裝置。
SEM本體101C,係除了具備有與圖1所示之SEM本體101A相同的構成以外,另具有藉由描繪試料(晶圓)S而觀察試料之性質或形狀等的特性且輸出其檢測信號(例如,流動於試料之電流或磁力、表面電位之檢測信號)的微細接觸探針107。關於各構成要素的基本動作,係由於與圖1相同,因此,在此,係賦予相同符號且省略其說明。接著,說明關於SEM控制機器群101D。
如圖3所示般,SEM控制機器群101D,係具有:計測器即電流・電壓計111,計測控制裝置110之探針的電流或電壓,該控制裝置110,係控制SEM本體101C的各部及SEM控制機器群101D的各部。關於該些以外之各構成要素的基本動作,係由於與圖1的情形相同,因此,在此,係省略其說明。
而且,電氣特性解析裝置900,係亦可與後述圖10的情形相同地被連接於晶圓資料伺服器820且因應所需讀出該些資訊,該晶圓資料伺服器820,係儲存藉由SEM本體101C所獲得之試料S的觀察圖像或關於該觀察圖像的各種資訊(例如,試料S之位置座標或探針條件等)。又,在電氣特性解析裝置900,係亦可被連接於模型資料伺服器840,該模型資料伺服器840,係依照從晶圓資料伺服器820所讀出的座標資訊等來進行探針測定,並儲存所抽出的電路模型。模型資料伺服器840,係為了定量地評估缺陷,亦可儲存以電路映射模型為首的各種電路模型,且因應所需讀出該些資訊。
圖4,係表示圖3所示之電氣特性解析裝置900的功能構成之一例的方塊圖。關於構成SEM本體101C、SEM控制機器群101D之各部,係賦予與圖3相同的符號,且省略其說明。如圖4所示般,輸入輸出裝置1181,係在功能上,除了圖2所示之光條件輸入部201、電子束條件輸入部202以外,另包含有「受理探針之位置座標或施加電壓、計測模式(表示電流計測或電壓計測之任一者的模式)等的條件之輸入」的探針接觸條件輸入部2021,且除了具有圖2所示的電子元件電路資訊輸入部203以外,另包含有「受理試料S之佈局資訊或DRAM或SRAM這樣的元件資訊之輸入」的電子元件佈局資訊輸入部204。而且,除了圖2所示之裝置內電路模型更新資訊輸入部205以外,另包含有:電子元件電路模型顯示部2051,顯示用以從實測值獲得電路的絕對值之包含從電路模型所獲得的缺陷部位之試料S的狀態;及圖2所示的推估結果顯示部206、實測結果顯示部207。
又,計算機1151,係在功能上包含有:裝置內電路模型記憶部212,記憶所輸入的裝置內電路模型更新資訊;電路映射模型產生部211,從所輸入之電子元件電路資訊與電子元件佈局資訊與裝置內電路模型記憶部212的資訊,產生試料S的電路映射模型;實測結果記憶部213,記憶輸入輸出裝置之光條件輸入部201、電子束條件輸入部202、探針接觸條件輸入部203、2次電子檢測器所檢測到的信號及電流・電壓計所計測到的值;觀察條件記憶部210,記憶從電路映射模型產生部211所輸入的資訊;電路模擬214,模擬電路映射模型產生部211所產生之電路映射模型的電氣特性;比較器216,比較電路模擬結果與實測結果記憶部213記憶的上述實測結果,並判定兩者是否一致;電路常數推估運算部217,推估被判定為上述模擬結果與上述實測結果一致時的電路常數;及推估結果記憶部218,記憶電路常數推估運算部217的推估結果。計算機所具有的上述各記憶部,係例如作為硬體,可使用上述記憶體或外部記憶裝置。關於裝置內電路模型產生部2121,係在圖5的流程圖中進行說明。
圖5,係表示在本實施例之電氣特性解析裝置所進行的電路常數推估處理之一例的流程圖,該電路常數推估處理,係表示電路常數推估方法的處理程序。如圖5所示般,首先,計算機之控制部(例如,CPU1401),係從輸入輸出裝置1181接收自光條件輸入部201、電子束條件輸入部202、探針接觸條件輸入部203所輸入的各資訊(S301),並作為觀察條件記憶於觀察條件記憶部210(S302)。
接著,控制裝置110,係依照被記憶於觀察條件記憶部210之上述所輸入的各條件,控制電子槍102、偏向器105、光源114、光路透鏡112、探針107等(S303),並拍攝試料S的圖像(S304)。藉此,使用者,係觀察試料S。
控制裝置110,係將從2次電子檢測器109所獲得的信號與從電壓・電流計所獲得的值輸出至計算機1151,計算機1151之控制部(例如,CPU1401),係將該些資訊作為實測結果並記憶於實測結果記憶部213(S305)。
而且,計算機1151之控制部(例如,CPU1401),係判定由所有觀察條件所進行的試料S之觀察是否已結束(S306),在判定為由所有觀察條件(例如,使用者指定的複數個條件或預先設定的複數個條件)所進行的試料S之觀察已結束的情況下(S306;Yes),裝置內電路模型產生部2121,係基於所輸入之電子元件電路資訊203與電子元件佈局資訊204與裝置內電路模型更新資訊205的資訊,產生電路模型並模擬電路模型的電氣特性。裝置內電路模型產生部2121,係比較模擬結果與實測結果,確認模型的一致性(S307)。
另一方面,計算機1151之控制部(例如,CPU1401),係在判定為由所有觀察條件所進行的試料S之觀察未結束的情況下(S306;No),返回到S303,重覆以後的處理,直至由所有觀察條件所進行的試料S之觀察結束為止。
例如,電路映射模型產生部211,係在模擬結果與實測結果的比較中,在其一致度高於所輸入之閾值的情況下,將電路模型的電路常數顯示為推估結果。另一方面,電路映射模型產生部211,係在模擬結果與實測結果的比較中,在其一致度低於所輸入之閾值的情況下,與另外準備的模擬結果進行比較,重覆直至高於閾值為止。
圖6,係用以說明電氣特性解析裝置的觀察條件中之從光條件輸入部201所輸入的光條件、從電子束條件輸入部202所輸入的電子束條件之一例的圖。圖6(a),係表示依照上述光條件及電子束條件觀察試料S的態樣。控制裝置110,係對基於決定了強度或波長等的上述光條件而射出之雷射光Y、決定了加速電壓或倍率等的上述電子束條件而照射的1次電子束X進行脈衝控制。2次電子檢測器109及探針107,係與經脈衝控制之雷射光Y、1次電子束X同步地對被置放於觀察區域R的試料S進行取樣。圖6(b),係表示「對1次電子束X進行脈衝控制而將雷射光Y之強度設成為固定時所獲得的2次電子檢測信號與探針電流的波形(A)、將1次電子束X之強度設成為固定而對雷射光Y進行脈衝控制時所獲得的2次電子檢測信號與探針電流的波形(B)、對1次電子束X及雷射光Y進行脈衝控制時所獲得的2次電子檢測信號與探針電流的波形(C)」之例子。如該些曲線圖所示般,在將1次電子束X及雷射光Y兩者進行脈衝控制的情況下,由於可在更短時間內獲得2次電子檢測信號與探針電流的波形,因此,可在短時間內檢查缺陷的位置・種類。
接著,返回到圖5,當裝置內電路模型產生部2121產生電路模型時,則基於上述其內容與表示被輸出至輸入輸出裝置118的電路映射模型之構成的資訊,使用使用者所輸入之試料S的位置座標、網表所包含的連接資訊、該些對應表等的電子元件電路資訊與S302中所記憶的觀察條件,產生關於試料S的網表。而且,電路模擬214,係產生關於試料S之網表的等效電路,並執行所產生之等效電路的模擬(S308)。
圖7,係表示網表所包含的連接資訊之一例的圖。在圖7中,係(a)~(g)之各零件被登錄於列表。電路映射模型產生部211,係藉由讀出並組合該些零件或連接資訊的方式,產生關於試料S的網表。而且,電路模擬214,係從所產生的網表產生等效電路,並執行模擬。
比較部216,係比較電路模擬214的模擬結果與實測結果記憶部213記憶的上述實測結果(S309),判定兩者是否一致(S310)。比較部216,係在判定為兩者不一致的情況下(S310;No),返回到S308,持續網表的產生、等效電路的模擬,直至兩者一致為止。
另一方面,在被判定為上述模擬結果與上述實測結果一致的情況下(S310;Yes),電路常數推估運算部217,係將該等效電路之電路常數推估為試料S的電路常數(S311),並且將推估結果記憶於推估結果記憶部218,計算機115之控制部(例如,CPU1401)將S305中所記憶的實測結果與該推估結果分別顯示於輸入輸出裝置118之實測結果顯示部207及推估結果顯示部206(S312)。
圖8,係表示輸出入畫面之例子的圖,該輸出入畫面,係顯示電子元件電路資訊的選擇或各種條件的輸入、電路常數或電路狀態的推估結果。如圖8所示般,在輸出入畫面600,係設置有電子元件電路資訊輸入部204,該電子元件電路資訊輸入部204,係包含有:選擇欄601,用以選擇座標檔案;選擇欄602,用以選擇網表檔案;及選擇欄603,用以選擇對應表檔案。
選擇欄601,係受理決定了試料S之位置座標的座標檔案之選擇。使用者,係從上述座標檔案,讀出預先記憶之從電腦的資料夾或計算機1151接收到的電路映射模型中之試料S的位置座標等。抑或可變更讀出之座標檔案中所決定的位置座標,並設定新的位置座標。
選擇欄602,係受理包含有網表的網表檔案之選擇。使用者,係從上述網表檔案,讀出預先記憶之從電腦的資料夾或計算機1151接收到的電路映射模型中之試料S的網表等。抑或可變更讀出之網表檔案中所決定的網表或零件,並設定新的網表或零件。
選擇欄603,係受理對應表檔案之選擇,該對應表檔案,係將網表與試料S之位置座標建立對應關係而成。使用者,係從上述對應表檔案,讀出預先記憶之從電腦的資料夾或計算機1151接收到的電路映射模型中之試料S的網表與試料S之位置座標的對應表等。抑或可變更讀出之對應表檔案中所決定的對應表,並設定新的對應表。
而且,輸出入畫面600,係具有:電子束條件輸入部202,包含用以輸入電子束條件的輸入欄604;光條件輸入部201,包含用以輸入光條件的輸入欄605;及探針線條件輸入部203,包含用以輸入探針條件的輸入欄606。該些輸入欄,係在使用者觀察試料S之際,因應觀察環境來輸入值。在圖8中,係例如作為加速電壓的800V被輸入至輸入欄604,作為雷射光之強度的10mV被輸入至輸入欄605,作為施加電壓的50mV被輸入至輸入欄606。
而且,在輸出入畫面600,係包含有:圖像顯示部607,顯示以上述選擇欄601~603、上述輸入欄604~606中所選擇或輸入之條件來觀察試料S時的SEM圖像。在圖8中,係表示試料S被置放於位置座標P145的位置。
又,在輸出入畫面600,係具有包含光響應顯示部608的推估結果顯示部206及實測結果顯示部207,該光響應顯示部608,係針對圖像顯示部607中所示的位置座標之試料S的光響應特性,顯示例如在1個曲線圖上表示有電路常數之實測結果與推估結果的光響應比較曲線圖。在圖8中,係可知:表示實測結果之實測曲線圖R與表示推估結果之推估曲線圖P被顯示於1個顯示部並加以比較。
而且,在輸出入畫面600,係具有包含電路狀態顯示部609的電子元件電路狀態顯示部205,電路狀態顯示部609,係顯示作為推估結果的電路狀態。在圖8中,係顯示圖5所示之電路狀態推估處理的結果、N021與N022間所配置之二極體存在有缺陷的情形。
圖9,係表示本實施例中之使用案例之一例的圖。如圖9所示般,在半導體之製造工程中,係於線內環境下,在複數個製造工程P1~P3中,使用與各工程對應而設置的帶電粒子線裝置703及704、晶圓測試器705,進行被形成於基板上之圖案的計測或缺陷檢查。僅經由該些計測或缺陷檢查且滿足固定基準者才被傳送至切割・封裝裝置706,作為製品而出貨。
在線內環境中,係從管理半導體之製造的資料伺服器701,接收裝置內電路模型更新資訊205或配方資訊,並依照該些資訊,在各工程中進行檢查。而且,各工程中之檢查結果作為檢查資訊被反饋至資料伺服器701。特別是,晶圓測試器705,係在預處理工程707中,將直至目前為止之過程所製造的半導體元件與晶圓檢查資料一起輸出至資料伺服器701,該預處理工程707,係在試料S之圖層的上層,去除由後半之製造工程所建構的配線等。
在預處理工程707中,係當進行預處理之預處理裝置(例如,與計算機1151相同的電腦)將去除了上述配線等後的資料輸出至電氣特性解析裝置100,並在電氣特性解析裝置100中進行圖5所示之電路狀態推估處理且檢查缺陷後,其檢查結果作為裝置內電路模型更新資訊205或配方經由資料伺服器710被反饋至任一製造工程。除此之外,在各製造工程中,在帶電粒子線裝置703及704中結束了檢查之半導體元件的一部分會被搬送至電氣特性解析裝置100。
又,資料伺服器701所儲存之資料,係作為GDS(Graphic Data System)資料、程序資訊、晶圓檢查資料被讀入計算伺服器702。計算伺服器702,係亦可替代構成電氣特性解析裝置100的計算機1151。計算伺服器702,係表示試料S之位置座標的座標資訊被輸出至資料伺服器701,並亦可使用於線內的檢查。
如此一來,在本實施例中,係在使用帶電粒子線觀察作為觀察對象的試料(例如,試料S)之微細構造的電氣特性解析裝置800中,具備有:帶電粒子光學系統,具有帶電粒子源(例如,電子槍102)、電子脈衝產生器(例如,電子脈衝產生器103)及檢測器(例如,2次電子檢測器109),該帶電粒子源,係將帶電粒子線照射至上述試料,該電子脈衝產生器,係對上述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由上述經脈衝控制之帶電粒子線被照射至上述試料而產生的2次電子;光照射系統,具有將預定波長之光照射至上述試料的光源(例如,光源114)與對上述預定波長之光進行脈衝控制的閘門(例如,閘門113);接觸探針(例如,微細接觸探針107),檢測照射了藉由上述電子脈衝產生器所脈衝控制之帶電粒子線及藉由上述閘門所脈衝控制的上述預定波長之光的上述試料的特性;計測器(例如,電流・電壓計111),計測藉由上述接觸探針所檢測到之上述試料的特性;及控制裝置(例如,控制裝置110),控制上述帶電粒子光學系統與上述光照射系統與上述接觸探針,由於上述控制裝置,係與經脈衝控制的上述帶電粒子線及上述預定波長之光同步地控制上述接觸探針,且以上述計測器計測上述試料的特性,因此,可測定以往手法中無法測定之元件的電氣特性。
(實施例2) 在實施例1中,係雖說明關於使用了SEM的電氣特性解析裝置,但本發明亦可應用於使用了SEM以外之顯微鏡的情形。在以下中,係說明關於使用了光學顯微鏡以代替SEM的電氣特性解析裝置。
在藉由帶電粒子線對試料進行加工的情況下,操作員,係一面觀察試料之加工位置與帶電粒子線之照射位置,一面進行試料的加工。因此,在該加工期間,需要如實施例1般地取得試料之加工位置的圖像。一般雖使用藉由2次電子檢測器所獲得的2次電子像,但在藉由2次電子檢測器所獲得的2次電子像中,係有時在照射較寬之帶電粒子線的情況下,難以特定進行加工或沈積膜形成的位置。
因此,在以下中,係可藉由光學顯微鏡,特定加工位置與帶電粒子線的照射位置。例如,以光學顯微鏡確認藉由帶電粒子線照射所形成的加工痕,藉此,可確認帶電粒子線的照射位置。又,亦可預先進行機械或電氣之調整,以使帶電粒子線的照射位置與光學顯微鏡的觀察位置對齊。藉此,可從光學顯微鏡之圖像判斷帶電粒子線的加工位置。又,亦可預先記錄帶電粒子線的照射位置與光學顯微鏡的觀察位置之關係。藉此,可從光學顯微鏡之圖像判斷帶電粒子線的加工位置。
圖10,係表示本實施例中之電氣特性解析裝置的構成之一例的概略圖。實施例2中之電氣特性解析裝置,係具有:光學式顯微鏡801A;及顯微鏡控制機器群801B。又,顯微鏡控制機器群801B,係被連接於計算機815。在圖10中,係雖例示光學式顯微鏡801A及顯微鏡控制機器群801B被電性連接於計算機815的系統構成,但與實施例1的情形相同地,該些亦可被構成為1個裝置。
光學式顯微鏡801A,係包含有光學式顯微鏡本體802、與實施例1相同的探針807及平台808。雖未特別表示關於光學式顯微鏡本體802之具體構成,但可使用以往一般已知的光學顯微鏡(例如,具有共焦點光學系統之光學顯微鏡)來作為使用了帶電粒子線的裝置。在以下中,光學顯微鏡本體802,係雖以沿著帶電粒子源的光軸而配置為前提來進行說明,但只要可觀察試料上之帶電粒子源的照射位置,則光學顯微鏡本體802的位置及光軸的位置為任意。例如,光學顯微鏡本體802之光軸,係亦可相對於帶電粒子源的光軸傾斜配置。接著,說明關於顯微鏡控制機器群801B。
如圖10所示般,顯微鏡控制機器群801B,係包含有:控制裝置810,控制光學式顯微鏡801A的各部及顯微鏡控制機器群801B的各部;計測器即電流・電壓計811,計測探針807的電流或電壓;分離器等的光路透鏡812,使從光源814所射出的雷射光偏向;閘門813,控制是否阻斷上述雷射光;及光源814,將預定波長的雷射光射出至試料S。
在光學式顯微鏡本體802中,掃描上述雷射光,藉此,形成有共焦點顯微鏡之像的圖像信號被傳送至控制裝置110而圖像化。在控制裝置810,係含有:圖像產生部,基於從光學式顯微鏡本體802所輸出的圖像信號產生圖像;及機器控制部,控制用以將電壓施加至各種透鏡、偏向器、電極、檢測器、電路基板等的電壓源或用以供給電流的電流源等(省略圖示)。關於該機器控制部,係與實施例1的情形相同地,亦可藉由各種硬體或各種軟體來構成。接著,說明關於計算機815。
計算機815,係與實施例1的情形相同地,作為硬體,由一般的電腦所構成。計算機815,係具有:運算器816,進行經由顯微鏡控制機器群801B之光學式顯微鏡801A的控制或基於該控制用之各種指示的處理;及記憶裝置817,記憶使用於上述控制或處理的各種資料。又,在控制裝置810,係電性連接有輸入輸出裝置118,該輸入輸出裝置118,係用於進行用以執行上述控制或處理之各種資訊的輸入或顯示,抑或表示執行了上述控制或處理的結果之各種資訊的輸入或顯示。在圖10中,係雖例示輸入輸出裝置818被連接於控制裝置810的情形,但與實施例1的情形相同地,輸入輸出裝置818亦可被連接於計算機815。
而且,在電氣特性解析裝置800,係被連接於晶圓資料伺服器820且因應所需讀出該些資訊,該晶圓資料伺服器820,係儲存藉由光學式顯微鏡801A所獲得之試料S的觀察圖像或關於該觀察圖像的各種資訊(例如,試料S之位置座標、圖6所示之光條件605或探針條件606等)。又,在電氣特性解析裝置800,係被連接於模型資料伺服器840,該模型資料伺服器840,係依照從晶圓資料伺服器820所讀出的座標資訊等來進行探針測定,並儲存所抽出的電路模型。模型資料伺服器840,係為了定量地評估缺陷,亦可儲存以電路映射模型為首的各種電路模型,且因應所需讀出該些資訊。
圖11,係用以說明實施例2中之試料S之加工例的圖。在實施例2之電氣特性解析裝置800中,係為了使用光學式顯微鏡以肉眼觀察試料S ,而將試料S的複數個電極匯集於一個區域,並將該區域視為1個電極且作為計測對象。圖11(a),係表示將被配置於試料S的某座標位置之晶片901分割成複數個區域R的例子。在圖11(a)中,係表示「針對某座標位置附近之座標區域決定製程條件(例如,劑量),並在5個區域R之位置設置有被配置於與該座標區域對應的位置座標之晶片901」的情形。
圖11(b),係表示將被形成於圖11(a)所示的複數個區域R中之某一個區域的複數個電極作為1個計測對象的程序。具體而言,係表示塗佈塗覆電極之前(處理前)及塗佈塗覆電極後(處理後)的區域R中之晶片901的上視圖及剖面圖。可知:在處理前之狀態中,係雖區域R之複數個電極E及擴散層D(在圖11(b)中,係9個)分別被配置於相互分離的位置座標並各自獨立,但在處理後之狀態中,係區域R之複數個電極E及擴散層D被形成為擬似1個電極以作為塗覆電極E’。
如此一來,在電氣特性解析裝置800中,係對於在試料S之每個座標區域中改變製程條件的模型作成用晶圓,在每個座標區域進行塗覆處理,藉由探針來測定每個座標區域之光照射時的電氣特性。而且,在每個座標區域產生了塗覆電極之試料的光響應特性之實測值會被記憶於計算機815的記憶裝置817(例如,與實施例1之實測結果記憶部213相同的記憶部),並進行關於產生了該塗覆電極之試料的電路映射模型之產生、網表之產生、等效電路之模擬等、與圖5的S307以後之處理相同的處理。
圖12,係表示本實施例中之使用案例之一例的圖。在圖12所示之使用案例中,係與實施例1的情形相同地,於線內環境下,在複數個製造工程P11~P13中,使用與各工程對應而設置的帶電粒子線裝置803及804、晶圓測試器805,進行被形成於基板上之圖案的計測或缺陷檢查,且僅滿足固定基準者被傳送至切割・封裝裝置806,作為製品而出貨。
又,與實施例1的情形相同地,在線內環境中,係從管理半導體之製造的資料伺服器1001接收裝置內電路模型更新資訊205或配方資訊,並依照該些資訊,在各工程中進行檢查,且各工程中之檢查結果作為檢查資訊被反饋至資料伺服器701。特別是,在本實施例中,係在晶圓測試器805中,除了與實施例1之情形相同的預處理工程1207(預處理工程1)以外,另進行執行圖11所示之加工的預處理工程1208(預處理工程2)。預處理工程1208,係在線內之帶電粒子線裝置803及804後予以進行,且各製造工程中之檢查後半導體元件的一部分被搬送至電氣特性解析裝置800。
又,在晶圓測試器805中,當經由與實施例1之情形相同的預處理工程1207,並在帶電粒子線裝置800中進行如圖所示之電路狀態推估處理且檢查缺陷後,其檢查結果作為裝置內電路模型更新資訊或配方經由資料伺服器1001被反饋至任一製造工程。除此之外,在各製造工程中,關於帶電粒子線裝置803及804中之檢查結果的資料被輸出至電氣特性解析裝置800。資料伺服器1001所儲存之資料,係作為GDS資料、程序資訊、晶圓檢查資料被讀入計算伺服器1002。計算伺服器1002,係亦可替代構成帶電粒子線裝置800的計算機815。計算伺服器1002,係表示試料S之位置座標的座標資訊被輸出至資料伺服器1001,並亦可使用於線內的檢查。
如此一來,在本實施例中,係在使用帶電粒子線觀察作為觀察對象的試料之微細構造的電氣特性解析裝置800中,具備有:帶電粒子光學系統,具有帶電粒子源(例如,與電子槍102相同的電子槍)及電子脈衝產生器(例如,與電子脈衝產生器103相同的電子脈衝產生器),該帶電粒子源,係將帶電粒子線照射至上述試料,該電子脈衝產生器,係對上述帶電粒子線進行脈衝控制;光照射系統,具有將預定波長之光照射至上述試料的光源(例如,光源814)與對上述預定波長之光進行脈衝控制的閘門(例如,閘門813);接觸探針(例如,探針807),檢測照射了藉由上述電子脈衝產生器所脈衝控制之帶電粒子線及藉由上述閘門所脈衝控制的上述預定波長之光的上述試料旳特性;計測器(例如,電流・電壓計811),計測藉由上述接觸探針所檢測到之上述試料的特性;及控制裝置(例如,控制裝置810),控制上述帶電粒子光學系統與上述光照射系統與上述接觸探針,由於上述控制裝置,係與經脈衝控制的上述帶電粒子線及上述預定波長之光同步地控制上述接觸探針,並使用「針對在上述試料之每個座標區域決定了上述試料的製程條件之預定區域(例如,區域R)塗覆有複數個電極E」的塗覆電極E’,且以上述計測器計測上述試料的特性,因此,可藉由不同於實施例1的方法來測定以往手法中無法測定之元件的電氣特性。
(實施例3) 在實施例1中,係雖在使用了SEM的電氣特性解析裝置中,使用「藉由描繪試料(晶圓)S而觀察試料之性質或形狀等的特性且輸出其檢測信號」的微細接觸探針,但亦可使用非接觸探針。在以下中,係在使用了SEM之電氣特性解析裝置中,說明關於使用了非接觸探針的電氣特性解析裝置。
圖13,係表示本實施例之電氣特性解析裝置的構成之一例的概略圖。實施例3中之電氣特性解析裝置1100,係具有:SEM本體1101A,進行試料的拍攝;及SEM控制機器群1101B。又,SEM控制機器群1101B,係與實施例1的情形相同地被連接於計算機1115。在圖13中,係雖例示SEM本體1101A及SEM控制機器群1101B被電性連接於計算機1115的系統構成,但與實施例1的情形相同地,該些亦可被構成為1個裝置。
SEM本體1101A,係與實施例1的情形相同地,具有電子槍1102、電子脈衝產生器1103、聚光透鏡1104、偏向器1105、接物透鏡1106,而且,包含有:非接觸探針1107,在將探針隔開固定距離的非接觸狀態下,觀察試料(晶圓)S之性質或形狀等的特性,且輸出其檢測信號(例如,流動於試料之電流或磁力、表面電位之檢測信號);平台1108,置放有試料;;及2次電子檢測器1109,檢測藉由1次電子束之照射而從試料S所獲得的2次電子。接著,說明關於SEM控制機器群1101B。
如圖13所示般,SEM控制機器群1101B,係與實施例1的情形相同地,除了包含有控制SEM本體1101A之各部及SEM控制機器群1101B之各部的控制裝置110、光路透鏡1112、閘門113、光源114以外,另具有:計測器即電流計1111A,計測流動於探針1107與置放有試料S之平台1108的電流;及計測器即表面電位計1111B,計測試料S的表面電位。接著,說明關於計算機1115。
計算機1115,係作為硬體,由一般的電腦所構成。計算機1115,係與實施例1的情形相同地具有:運算器1116,進行經由SEM控制機器群1101B之SEM本體1101A的控制或基於該控制用之各種指示的處理;及記憶裝置1117,記憶使用於上述控制或處理的各種資料。又,在計算機1115,係與實施例1的情形相同地電性連接有輸入輸出裝置1118,並具有鍵盤或滑鼠這樣的輸入裝置。
又,在電氣特性解析裝置1100,係被連接於模型資料伺服器1140,該模型資料伺服器1140,係以非接觸來進行探針測定,並儲存所抽出的電路模型。模型資料伺服器1140,係亦可與實施例2的情形相同地儲存以電路映射模型為首的各種電路模型,且因應所需讀出該些資訊。
圖14,係表示實施例3中之模型抽出方法之一例的圖。如圖14所示般,在本實施例中,係在電子槍1102使電子束X照射而產生試料S的帶電後,將試料S移動至探針1107下。其後,以表面電位計1111B來測定從光源1114照射了雷射光Y時之試料S的表面電位之變化,並且以電流計1111A來計測流動於探針1107與置放有試料S之平台1108的電流。從計測到之表面電位與流動於試料S的電流作成等效電路模型。該等效電路模型,係與實施例1的情形相同地,只要使用與裝置內電路模型產生部2121相同的裝置內電路模型產生部來進行即可。表面電位計1111B,係亦可設置有狹縫1201,以使雷射光照射至試料S上。
如此一來,在電氣特性解析裝置1100中,係在將電子束照射至試料S並使其帶電後,照射雷射光且測定試料之表面電位及試料電流這樣的光照射時之電氣特性,其試料的光響應特性之實測值會被記憶於計算機1115的記憶裝置1117(例如,與實施例1之實測結果記憶部213相同的記憶部),並進行關於該試料的電路映射模型之產生、網表之產生、等效電路之模擬等、與圖3的S307以後之處理相同的處理。
圖15,係表示本實施例中之使用案例之一例的圖。在圖15中,係與實施例1的情形相同地,於線內環境下,在複數個製造工程P1~P3中,使用與各工程對應而設置的帶電粒子線裝置1303及1304、晶圓測試器1305,進行被形成於基板上之圖案的計測或缺陷檢查,且僅滿足固定基準者被傳送至切割・封裝裝置1306,作為製品而出貨。此外,在線內環境中,係與實施例1的情形相同地,從資料伺服器1301接收裝置內電路模型更新資訊205或配方資訊,並依照該些資訊,在各工程中進行檢查,且檢查結果作為檢查資訊被反饋至資料伺服器1301。
特別是,在本實施例中,係在晶圓測試器1305中,進行與實施例1之情形相同的預處理工程1307,當經由該預處理工程1307,並在電氣特性解析裝置1100中進行圖3所示之電路狀態推估處理且檢查缺陷後,其檢查結果作為裝置內電路模型更新資訊或配方經由資料伺服器710被反饋至任一製造工程。除此之外,在各製造工程中,係在帶電粒子線裝置1303及1304之檢查後,半導體元件的一部分被搬送至電氣特性解析裝置1100。資料伺服器1301所儲存之資料,係作為GDS資料、程序資訊、晶圓檢查資料被讀入計算伺服器1302。計算伺服器1302,係亦可替代構成電氣特性解析裝置1100的計算機118。計算伺服器1302,係表示試料S之位置座標的座標資訊被輸出至資料伺服器1301,並亦可使用於線內的檢查。
如此一來,在本實施例中,係在使用帶電粒子線觀察作為觀察對象的試料(例如,試料S)之微細構造的電氣特性解析裝置1100中,具備有:帶電粒子光學系統,具有帶電粒子源(例如,電子槍1102)、電子脈衝產生器(例如,電子脈衝產生器1103)及檢測器(例如,2次電子檢測器1109),該帶電粒子源,係將帶電粒子線照射至上述試料,該電子脈衝產生器,係對上述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由上述經脈衝控制之帶電粒子線被照射至上述試料而產生的2次電子;光照射系統,具有將預定波長之光照射至上述試料的光源(例如,光源1114)與對上述預定波長之光進行脈衝控制的閘門(例如,閘門1113);非接觸探針(例如,非接觸探針1107),檢測照射了藉由上述電子脈衝產生器所脈衝控制之帶電粒子線及藉由上述閘門所脈衝控制的上述預定波長之光的上述試料的特性;計測器(例如,電流計1111A、表面電位計1111B),計測藉由上述非接觸探針所檢測到之上述試料的特性;及控制裝置(例如,控制裝置1110),控制上述帶電粒子光學系統與上述光照射系統與上述非接觸探針,上述計測器,係具有計測流動於上述非接觸探針之電流的上述電流計111A與計測上述試料之表面電位的上述表面電位計1111B,由於上述控制裝置,係與經脈衝控制的上述帶電粒子線及上述預定波長之光同步地控制上述非接觸探針,且作為上述試料的特性,在使上述帶電粒子線照射而產生上述試料的帶電後,以上述表面電位計來測定照射了上述預定波長之光時的上述試料之表面電位的變化,並以上述電流計來計測流動於上述非接觸探針的電流,因此,可藉由不同於實施例1、實施例2的方法來測定以往手法中無法測定之元件的電氣特性。
又,本發明,係亦可被理解為「使用具備帶電粒子線裝置與接觸探針的電氣特性解析裝置來檢查具有被檢查試料和與該被檢查試料相同構造之解析用試料」的檢查方法。
例如,在實施例1中,亦被理解為如下述般的檢查方法:一種檢查方法,係以帶電粒子線裝置來進行,該帶電粒子線裝置,係使用帶電粒子線觀察作為觀察對象之被檢查試料(例如,試料S)的微細構造,該檢查方法,其特徵係,具備有:帶電粒子光學系統,具有帶電粒子源(例如,電子槍102)、電子脈衝產生器(例如,電子脈衝產生器103)及檢測器(例如,2次電子檢測器109),該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子;光照射系統,具有將預定波長之光照射至前述被檢查試料的光源(例如,光源114)與將預定波長之光照射至前述被檢查試料或前述解析用試料的光源(例如,光源114)與對前述預定波長之光進行脈衝控制的閘門(例如,閘門113);接觸探針(例如,微細接觸探針107),檢測照射了藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述被檢查試料的特性;計測器(例如,電流・電壓計111),計測藉由前述接觸探針所檢測到之前述被檢查試料或前述被檢查試料的特性;控制裝置(例如,控制裝置110),控制前述帶電粒子光學系統與前述光照射系統與前述接觸探針;及可動式平台(例如,平台108),設置前述被檢查試料或前述解析用試料,前述控制裝置,係在具備有「與前述預定波長之光同步地控制前述接觸探針,以前述計測器計測前述被檢查試料或前述解析用試料的特性,並基於前述計測器計測到之值,產生電路模型」的電氣特性解析裝置(例如,電氣特性解析裝置900)之系統中,對藉由自前述電氣特性解析裝置所作成之前述電路模型與前述帶電粒子線裝置檢測到的前述2次電子之檢測信號進行比較等,藉此,推估前述被檢查試料的電路常數或缺陷構造。
而且,在上述檢查方法中,前述電氣特性解析裝置之前述接觸探針,係亦可自動操縱至所輸入的計測座標,並自動地計測前述被檢查試料的電氣特性。例如,依照從探針接觸條件輸入部203所輸入的條件或其他預先決定的條件,控制裝置110亦可自動地操作探針107直至成為預定之目標位置的計測座標。
而且,在上述檢查方法中,前述電氣特性解析裝置,係亦可具備有帶電粒子光學系統,該帶電粒子光學系統,係具有:帶電粒子源(例如,電子槍102),照射帶電粒子線;電子脈衝產生器(例如,電子脈衝產生器103),對前述帶電粒子線進行脈衝控制;及檢測器(例如,2次電子檢測器109),檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子。
而且,在上述檢查方法中,前述電氣特性解析裝置(例如,電氣特性解析裝置800),係亦可藉由光照射系統、接觸探針(例如微細接觸探針107)、計測器(例如,電流・電壓計111)、光學顯微鏡(例如,光學式顯微鏡801A)及控制裝置(例如,控制裝置810),推估前述被檢查試料的電路常數或缺陷構造,該光照射系統,係具有:光源(例如,光源814),將預定波長之光照射至前述被檢查試料或前述解析用試料;及閘門(例如,閘門813),對前述預定波長之光進行脈衝控制,該接觸探針,係檢測照射了藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述解析用試料的特性,該計測器,係計測藉由前述接觸探針所檢測到之前述被檢查試料或前述解析用試料的特性,該光學顯微鏡,係觀察前述被檢查試料或前述解析用試料與前述接觸探針,該控制裝置,係控制前述光照射系統與前述接觸探針與前述光學顯微鏡。
而且,在具有上述光學顯微鏡之系統的上述檢查方法中,例如如圖11所示般,亦可具有在前述解析用試料之預定區域塗覆電極的步驟。
而且,在上述檢查方法中,前述電氣特性解析裝置(例如,電氣特性解析裝置1100),係具備有:帶電粒子光學系統,具有帶電粒子源(例如,電子槍1102)、電子脈衝產生器(例如,電子脈衝產生器1103)及檢測器(例如,2次電子檢測器1109),該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子;光照射系統,具有將預定波長之光照射至前述被檢查試料或前述解析用試料的光源(例如,光源1114)與對前述預定波長之光進行脈衝控制的閘門(例如,閘門1113);非接觸探針(例如,非接觸探針1107),檢測照射了藉由前述電子脈衝產生器所脈衝控制之帶電粒子線及藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述被檢查試料的特性;及計測器(例如,電流計1111A),計測流動於前述被檢查試料或前述解析用試料的電流,亦可使用前述電氣特性解析裝置來推估前述被檢查試料的電路常數或缺陷構造。
而且,在具有上述計測器(例如,電流計1111A、表面電位計1111B)之系統中,前述電氣特性解析裝置,係亦可藉由前述可動式平台,將藉由前述經脈衝控制之帶電粒子線而帶電的前述被檢查試料或解析用試料移動至前述非接觸探針的位置,且與前述經脈衝控制之光同步地,藉由前述非接觸探針來計測表面電位,並藉由前述電流計來計測流動於前述被檢查試料或前述解析用試料的電流。
100:帶電粒子線裝置 800,900,1100:電氣特性解析裝置 101A:SEM本體 101B:SEM控制機器群 102:電子槍 103:電子脈衝產生器 104:聚光透鏡 105:偏向器 106:接物透鏡 107:微細接觸探針 108:平台(試料座) 109:2次電子檢測器 110:控制裝置 111:電流・電壓計 112:光路透鏡 113:閘門 114:光源 115,1151:計算機 116:運算器 117:記憶裝置 118,1181:輸入輸出裝置 201:光條件輸入部 202:電子束條件輸入部 2021:探針接觸條件輸入部 203:電子元件電路資訊輸入部 204:電子元件佈局資訊輸入部 205:裝置內模型更新資訊輸入部 206:推估結果顯示部 207:實測結果顯示部 210:觀察條件記憶部 211:電路映射模型產生部 2121:裝置內電路模型產生部 212:裝置內電路模型記憶部 213:實測結果記憶部 214:電路模擬 216:比較部 217:電路常數推估運算部 218:推估結果記憶部
[圖1]表示實施例1之帶電粒子線裝置的構成之一例的概略圖。 [圖2]表示圖1所示之帶電粒子線裝置的功能構成之一例的方塊圖。 [圖3]表示實施例1之電氣特性解析裝置的構成之一例的概略圖。 [圖4]表示圖3所示之電氣特性解析裝置的功能構成之一例的方塊圖。 [圖5]表示在實施例1之電氣特性解析裝置所進行的電路常數推估處理之一例的流程圖,該電路常數推估處理,係表示電路常數推估方法的處理程序。 [圖6]用以說明觀察條件中之從光條件輸入部所輸入的光條件、從電子束條件輸入部所輸入的電子束條件之一例的圖。 [圖7]表示網表所包含的連接資訊之一例的圖。 [圖8]表示輸出入畫面之例子的圖,該輸出入畫面,係顯示電子元件電路資訊的選擇或各種條件的輸入、電路常數的推估結果。 [圖9]表示實施例1中之使用案例之一例的圖。 [圖10]表示實施例2中之電氣特性解析裝置的構成之一例的概略圖。 [圖11]用以說明實施例2中之試料S之加工例的圖。 [圖12]表示實施例2中之使用案例之一例的圖。 [圖13]表示實施例3之電氣特性解析裝置的構成之一例的概略圖。 [圖14]表示實施例3中之模型抽出方法之一例的圖。 [圖15]表示實施例3中之使用案例之一例的圖。 [圖16]表示計算機的一例之電腦的概略圖。
101A,101B:電子顯微鏡裝置
102:電子源
105:偏向器
107:探針
108:平台
109:2次電子檢測器
110:控制裝置
111:電流.電壓計
113:光調整器
114:光源
201:光條件輸入部
202:電子束條件輸入部
203:電子元件電路資訊輸入部
204:電子元件佈局資訊輸入部
205:裝置內模型更新資訊輸入部
206:推估結果顯示部
207:實測結果顯示部
210:觀察條件記憶部
211:電路映射模型產生部
212:裝置內電路模型記憶部
213:實測結果記憶部
214:電路模擬
216:比較部
217:電路常數推估運算部
218:推估結果記憶部
1151:計算機
1181:入出力裝置
2021:探針接觸條件輸入部
2051:電子元件電路模型顯示部
2121:裝置內電路模型產生部
S:試料

Claims (7)

  1. 一種檢查方法,係以帶電粒子線裝置來進行,該帶電粒子線裝置,係使用帶電粒子線觀察作為觀察對象之被檢查試料的微細構造,該檢查方法,其特徵係,具備有: 帶電粒子光學系統,具有帶電粒子源、電子脈衝產生器及檢測器,該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子; 帶電粒子線裝置,具有光照射系統,該光照射系統,係具有將預定波長之光照射至前述被檢查試料的光源與對前述預定波長之光進行脈衝控制的閘門; 光照射系統,具有將預定波長之光照射至前述被檢查試料或前述解析用試料的光源與對前述預定波長之光進行脈衝控制的閘門; 接觸探針,檢測照射了藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述被檢查試料的特性;計測器,計測藉由前述接觸探針所檢測到之前述被檢查試料或前述被檢查試料的特性;控制裝置,控制前述帶電粒子光學系統與前述光照射系統與前述接觸探針;及可動式平台,設置前述被檢查試料或前述解析用試料, 前述控制裝置,係從藉由「與經脈衝控制的前述預定波長之光同步地控制前述接觸探針,以前述計測器計測前述被檢查試料或前述解析用試料的特性,並基於前述計測器計測到之值,產生電路模型」的電氣特性解析裝置與自前述電氣特性解析裝置所作成之前述電路模型與前述帶電粒子線裝置檢測到的前述2次電子之檢測信號,推估前述被檢查試料的電路常數或缺陷構造。
  2. 如請求項1之檢查方法,其中, 前述電氣特性解析裝置之前述接觸探針,係自動操縱至所輸入的計測座標,並自動地計測前述被檢查試料的電氣特性。
  3. 如請求項1之檢查方法,其中, 前述電氣特性解析裝置,係具備有帶電粒子光學系統,該帶電粒子光學系統,係具有帶電粒子源、電子脈衝產生器及檢測器,該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子。
  4. 如請求項1之檢查方法,其中, 前述電氣特性解析裝置,係藉由光照射系統、接觸探針、計測器、光學顯微鏡及控制裝置,推估前述被檢查試料的電路常數或缺陷構造,該光照射系統,係具有:光源,將預定波長之光照射至前述被檢查試料或前述解析用試料;及閘門,對前述預定波長之光進行脈衝控制,該接觸探針,係檢測照射了藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述解析用試料的特性,該計測器,係計測藉由前述接觸探針所檢測到之前述被檢查試料或前述解析用試料的特性,該光學顯微鏡,係觀察前述被檢查試料或前述解析用試料與前述接觸探針,該控制裝置,係控制前述光照射系統與前述接觸探針與前述光學顯微鏡。
  5. 如請求項4之檢查方法,其中, 具有在前述解析用試料之預定區域塗覆電極的步驟。
  6. 如請求項1之檢查方法,其中, 前述電氣特性解析裝置,係具備有: 帶電粒子光學系統,具有帶電粒子源、電子脈衝產生器及檢測器,該帶電粒子源,係照射帶電粒子線,該電子脈衝產生器,係對前述帶電粒子線進行脈衝控制,該檢測器,係檢測藉由前述經脈衝控制之帶電粒子線被照射至前述被檢查試料而產生的2次電子; 光照射系統,具有將預定波長之光照射至前述被檢查試料或前述解析用試料的光源與對前述預定波長之光進行脈衝控制的閘門; 非接觸探針,檢測照射了藉由前述電子脈衝產生器所脈衝控制之帶電粒子線及藉由前述閘門所脈衝控制的前述預定波長之光的前述被檢查試料或前述被檢查試料的特性;及計測器,計測流動於前述被檢查試料或前述解析用試料的電流, 使用前述電氣特性解析裝置來推估前述被檢查試料的電路常數或缺陷構造。
  7. 如請求項6之檢查方法,其中, 前述電氣特性解析裝置,係藉由前述可動式平台,將藉由前述經脈衝控制之帶電粒子線而帶電的前述被檢查試料或解析用試料移動至前述非接觸探針的位置,且與前述經脈衝控制之光同步地,藉由前述非接觸探針來計測表面電位,並藉由前述計測器來計測流動於前述被檢查試料或前述解析用試料的電流。
TW110131858A 2020-09-30 2021-08-27 檢查方法 TWI780880B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2020/037156 2020-09-30
PCT/JP2020/037156 WO2022070308A1 (ja) 2020-09-30 2020-09-30 検査方法

Publications (2)

Publication Number Publication Date
TW202215490A TW202215490A (zh) 2022-04-16
TWI780880B true TWI780880B (zh) 2022-10-11

Family

ID=80951264

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110131858A TWI780880B (zh) 2020-09-30 2021-08-27 檢查方法

Country Status (5)

Country Link
US (1) US20230273254A1 (zh)
JP (1) JP7499864B2 (zh)
KR (1) KR20230047443A (zh)
TW (1) TWI780880B (zh)
WO (1) WO2022070308A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508903A2 (en) * 2011-03-15 2012-10-10 Ebara Corporation Inspection device using secondary charged particle detection
JP2013187510A (ja) * 2012-03-09 2013-09-19 Hitachi High-Technologies Corp 半導体検査装置および半導体検査方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015352B2 (ja) 2000-02-22 2007-11-28 株式会社日立製作所 荷電粒子ビームを用いた検査方法
JP2003022946A (ja) 2001-07-06 2003-01-24 Hitachi Ltd 半導体装置の製造方法
JP2003151483A (ja) 2001-11-19 2003-05-23 Hitachi Ltd 荷電粒子線を用いた回路パターン用基板検査装置および基板検査方法
JP4891036B2 (ja) 2006-11-16 2012-03-07 ルネサスエレクトロニクス株式会社 半導体装置の製造方法および半導体検査装置
JP2011014798A (ja) 2009-07-03 2011-01-20 Hitachi High-Technologies Corp 半導体検査装置および半導体検査方法
JP2011043346A (ja) 2009-08-19 2011-03-03 Jeol Ltd 半導体デバイス検査方法及び装置
JP6937254B2 (ja) 2018-02-08 2021-09-22 株式会社日立ハイテク 検査システム、画像処理装置、および検査方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2508903A2 (en) * 2011-03-15 2012-10-10 Ebara Corporation Inspection device using secondary charged particle detection
US20160307726A1 (en) * 2011-03-15 2016-10-20 Ebara Corporation Inspection device
JP2013187510A (ja) * 2012-03-09 2013-09-19 Hitachi High-Technologies Corp 半導体検査装置および半導体検査方法

Also Published As

Publication number Publication date
JPWO2022070308A1 (zh) 2022-04-07
TW202215490A (zh) 2022-04-16
KR20230047443A (ko) 2023-04-07
US20230273254A1 (en) 2023-08-31
JP7499864B2 (ja) 2024-06-14
WO2022070308A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP6873129B2 (ja) 領域適応的欠陥検出を行うシステムおよび方法
JP4312910B2 (ja) レビューsem
JP3877952B2 (ja) デバイス検査装置および検査方法
US8237119B2 (en) Scanning type charged particle beam microscope and an image processing method using the same
JP5069904B2 (ja) 指定位置特定方法及び指定位置測定装置
JP2004191187A (ja) 欠陥組成分析方法及び装置
KR20150086302A (ko) 결함 관찰 방법 및 결함 관찰 장치
JP7159312B2 (ja) 半導体検査装置
KR101709433B1 (ko) 시료 관찰 장치
JPH1140096A (ja) 粒子ビーム検査装置および検査方法並びに粒子ビーム応用装置
WO2003019456A1 (en) Predicting chip yields through critical area matching
CN102680505A (zh) X线分析装置
JP2006119133A (ja) 半導体デバイス検査装置
JP4287863B2 (ja) レビューsem
TWI780880B (zh) 檢查方法
JP4745380B2 (ja) レビューsem
JP2010103320A (ja) 半導体検査装置
JP5036889B2 (ja) レビューsem
KR102616002B1 (ko) 전자 현미경 및 전자 현미경의 포커스 조정 방법
WO2022219695A1 (ja) 試料検査装置、検査システム、薄片試料作製装置および試料の検査方法
JPWO2022070308A5 (zh)
JPH04252976A (ja) 荷電粒子ビーム装置及び荷電粒子ビーム位置決め方法
JP2010123934A (ja) 半導体検査装置のデータ処理方法とデータ表示方法と半導体検査装置
US20130088585A1 (en) Surface imaging with materials identified by color
JPH09264935A (ja) 電子ビーム検査装置

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent