TWI780350B - 沈積氮化矽之方法 - Google Patents

沈積氮化矽之方法 Download PDF

Info

Publication number
TWI780350B
TWI780350B TW108127210A TW108127210A TWI780350B TW I780350 B TWI780350 B TW I780350B TW 108127210 A TW108127210 A TW 108127210A TW 108127210 A TW108127210 A TW 108127210A TW I780350 B TWI780350 B TW I780350B
Authority
TW
Taiwan
Prior art keywords
power
plasma
chamber
introducing
precursor
Prior art date
Application number
TW108127210A
Other languages
English (en)
Other versions
TW202020205A (zh
Inventor
凱薩琳 克洛克
史提夫 柏吉斯
Original Assignee
英商Spts科技公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英商Spts科技公司 filed Critical 英商Spts科技公司
Publication of TW202020205A publication Critical patent/TW202020205A/zh
Application granted granted Critical
Publication of TWI780350B publication Critical patent/TWI780350B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3322Problems associated with coating
    • H01J2237/3323Problems associated with coating uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

根據本發明,提供一種藉由電漿增強化學氣相沈積(PECVD)沈積氮化矽之方法,該方法包含以下步驟: 提供包含一腔室及安置於該腔室內之一基體支撐件的一PECVD設備; 將一基體定位於該基體支撐件上; 將一氮氣(N2 )前驅物引入至該腔室中; 施加一高頻率(HF) RF功率及一低頻率(LF) RF功率以在該腔室中維持一電漿; 當正在施加該HF RF功率及該LF RF功率時,將一矽烷前驅物引入至該腔室中,使得該矽烷前驅物形成所維持之該電漿之部分;以及 隨後移除該LF RF功率或將該LF RF功率降低至少90%,同時繼續維持該電漿,使得藉由PECVD將氮化矽沈積至該基體上。

Description

沈積氮化矽之方法
發明領域 本發明係關於一種沈積氮化矽之方法。更具體而言,本發明係關於一種藉由電漿增強化學氣相沈積(PECVD)將氮化矽沈積至基體上之方法。本發明亦係關於一種用於將氮化矽沈積至基體上之電漿增強化學氣相沈積(PECVD)設備。
發明背景 使用低溫電漿增強化學氣相沈積(PECVD)製程產生之氮化矽膜在半導體及微電子工業中具有用途。舉例而言,此類氮化矽膜可用作薄層以在低溫下經由顯露應用控制晶圓應力及/或晶圓彎曲。對於此等氮化矽膜而言,展現極佳電性質同時維持低熱預算係至關重要的。已知製程通常使用具有高沈積速率(0.2 μm/min至0.6 μm/min)之低溫PECVD製程以達成氮化矽膜之所要性質。
然而,已在此類低溫PECVD製程期間觀察到非所需富矽粒子之形成。圖1A及圖1B係藉由聚焦離子束(FIB)分割之缺陷的SEM影像,其展示在藉由PECVD沈積氮化矽期間形成於基體之表面上之富矽粒子的實例。此等粒子亦可結合在一起以在基體之表面上形成粒子簇(如圖2及圖3中所展示)。圖4展示當藉由低溫PECVD沈積氮化矽時在基體之表面上形成之3至10 μm直徑之粒子的分佈。此等粒子可影響所得膜之電性質及熱性質。另外,此等粒子可能導致基體構形之不規則性,此情形係不合需要的。期望在藉由PECVD沈積氮化矽期間,尤其在低溫PECVD期間根除此等粒子之形成。
為了控制富矽粒子之盛行率,已知方法涉及沈積氮化矽之連續薄層。此允許富矽粒子在黏附於基體表面之前被泵出。然而,此方法耗時且成本高。
本發明在其實施例中之至少一些中試圖解決上述問題、需求及需要中之一些。本發明在其實施例中之至少一些中提供一種用於實質上根除在藉由PECVD沈積氮化矽期間形成之非所需富矽粒子之形成的方法。
發明概要 根據本發明之第一態樣,提供一種藉由電漿增強化學氣相沈積(PECVD)沈積氮化矽之方法,該方法包含以下步驟: 提供包含一腔室及安置於該腔室內之一基體支撐件的一PECVD設備; 將一基體定位於該基體支撐件上; 將一氮氣(N2 )前驅物引入至該腔室中; 施加一高頻率(HF) RF功率及一低頻率(LF) RF功率以在該腔室中維持一電漿; 當正在施加該HF RF功率及該LF RF功率時,將一矽烷前驅物引入至該腔室中,使得該矽烷前驅物形成所維持之該電漿之部分;以及 隨後移除該LF RF功率或將該LF RF功率降低至少90%,同時繼續維持該電漿,使得藉由PECVD將氮化矽沈積至該基體上。
已發現,當正在施加HF RF功率及LF RF功率二者時將矽烷前驅物引入至腔室中降低了在用於沈積氮化矽之PECVD製程期間形成之非所需富矽粒子的盛行率。不希望受任何理論或推測束縛,咸信額外LF RF功率(與HF RF功率組合)有助於形成更穩定的電漿狀態。
可在緊接在引入矽烷前驅物之前的時段內施加HF RF功率及LF RF功率,其中該時段足以使所維持之電漿穩定化。該時段可為至少2 s,且較佳為至少3 s。在緊接在引入矽烷之前的至少2 s之時段內施加LF RF功率有助於使電漿充分穩定化且藉此根除非所需富矽粒子之形成。
可在緊接在將矽烷前驅物引入至腔室中之步驟之前的小於約15 s、較佳小於約10 s、更佳為約5 s之時段內施加LF RF功率。在小於約15 s、較佳為約5 s之時段內施加LF RF功率有助於減少處理時間且增加基體產量。
LF RF功率可在自將矽烷前驅物引入至腔室中約10 s、較佳小於約5 s,且更佳小於約2 s內被移除或降低至少90%。較佳地,一旦矽烷前驅物形成所維持之電漿之部分,或在矽烷前驅物形成所維持之電漿之部分之後不久,就移除LF RF功率。舉例而言,一旦矽烷前驅物之流動速率達到所要流動速率,就可移除LF RF功率或將其降低至少90%。將矽烷前驅物引入至腔室中可能暫時使電漿去穩定化。移除或降低LF RF功率之步驟可在電漿已重新穩定化時執行。移除或減小LF RF功率之步驟可經最佳化以使電漿之穩定性最大化而不損害經沈積之氮化矽膜之性質。較佳地,LF RF功率減少了至少95%,更佳減少了至少99%,且最佳減少了100%,同時繼續維持電漿。也就是說,最佳完全移除LF RF功率,同時繼續維持電漿。
HFRF功率可施加至PECVD設備之進氣口。進氣口可為噴頭。LF RF功率可施加至PECVD設備之進氣口或基體支撐件。
高頻率(HF)及低頻率(LF)功率係射頻(RF)功率。HF RF功率之頻率可大於2 MHz,且較佳為約13.56 MHz。
LF RF功率之頻率可為300至500 kHz、較佳為350至400 kHz,且更佳為約360至380 kHz。
HF RF功率可具有500至1200 w之功率,例如在處理300 mm直徑之基體時。所施加之HF RF功率與氮化矽沈積速率相關。較佳地,氮化矽沈積速率為約0.2至0.6 μm/min。500至1200 W之HF RF功率可適合於實現此較佳沈積速率。超出1200 W之HF RF功率可能引發非所需氣相副反應,該等氣相副反應可能形成非所要微小顆粒沈積物。
低頻率(LF) RF功率在施加高頻率(HF) RF功率及低頻率(LF) RF功率之步驟期間可具有100至300 W之功率以在腔室中維持電漿。在此範圍內之LF RF功率可有益於完全根除富矽粒子之形成,而不損害經沈積之氮化矽膜之品質。
矽烷前驅物可為SiH4 。替代地,矽烷前驅物可為具有通式Sin H2n +2 之高階矽烷,其中n = 2至5。自實用觀點來看,較佳使用SiH4
該方法可進一步包含將H2 引入至腔室中之步驟。H2 可在任何適合時間引入至腔室中。舉例而言,H2 可與氮氣(N2 )前驅物或矽烷前驅物同時引入至腔室中。
該方法可在小於250℃、較佳小於200℃之溫度下執行。該方法可在大於80℃之溫度下執行。
該方法可進一步包含以下步驟:將惰性氣體引入至腔室中;以及在引入氮氣(N2 )前驅物之前產生電漿,其中惰性氣體較佳為氬氣或氦氣。惰性氣體可為載體氣體。惰性氣體可為氣體之混合物。惰性氣體可在任何適合時間,諸如與氮氣(N2 )同時引入至腔室中。惰性氣體可促進產生電漿。
根據本發明之第二態樣,提供一種用於將氮化矽沈積至基體上之電漿增強化學氣相沈積(PECVD)設備,其包含: 一腔室; 一基體支撐件,其安置於該腔室內; 一進氣口系統,其用於將氣體引入至該腔室中; 一高頻率(HF) RF電源供應器,其經組配以將一HF RF功率施加至該進氣口系統; 一低頻率(LF) RF電源供應器,其經組配以將一LF RF功率施加至該進氣口系統或該基體支撐件中之一者; 將一氮氣(N2 )前驅物供應至該進氣口系統之一供應器; 將一矽烷前驅物供應至該進氣口系統之一供應器;以及 一控制器; 其中該控制器在使用時將該矽烷前驅物引入至該腔室中,同時施加該HF RF功率及該LF RF功率,使得該矽烷前驅物可形成在該腔室中維持之一電漿之部分,且隨後移除該LF RF功率,同時繼續維持該電漿,使得可藉由PECVD將氮化矽沈積至該基體上。
儘管上文已描述本發明,但其擴展為上文,或在以下描述、圖式或申請專利範圍中闡明之特徵之任何發明性組合。舉例而言,關於本發明之第一態樣所揭示的任何特徵可與本發明之第二態樣的任何特徵組合。
較佳實施例之詳細說明 圖5A展示適合於執行本發明之方法之PECVD設備50的示意性橫截面圖。設備50包含腔室52、呈噴頭(showerhead)54形式之進氣口系統,及用於支撐基體(55)之基體支撐件56。高頻率電源供應器57及低頻率電源供應器58經組配以將高頻率(HF)及低頻率(LF) RF功率施加至進氣口系統54。分別向高頻率RF電源供應器57及低頻率RF電源供應器58提供匹配單元59及510。圖5A將基體支撐件56展示為電接地。然而,視需要可方便地將HF及/或LF RF功率供應至基體支撐件。控制器(未示出)通常用以控制處理氣體至腔室52中之引入,且用以控制所施加之HF及LF功率。提供泵送出口511以移除剩餘反應氣體。
圖6之流程圖中說明了根據本發明之第一實施例之方法。本發明之第一實施例係一種使用PECVD製程沈積氮化矽之方法,其中PECVD製程之前驅物包含氮氣(N2 )及矽烷,諸如SiH4 。圖5A展示適合於將至少二種氣體(例如SiH4 及N2 )引入至腔室52中之設備50。任擇地,氫氣(H2 )可另外用作反應前驅物。圖5B展示適合於經由進氣口54B將至少三種氣體(例如SiH4 、N2 及H2 )引入至腔室中之PECVD設備50B的示意性橫截面圖。為避免疑問,已使用相同參考數字指代相同特徵。較佳地,本發明之PECVD製程不包括氨氣(NH3 )作為前驅物。然而,本發明在此方面不受限制。
首先,將氣體引入至腔室52中且產生電漿。在第一實施例中,氣體係氮(N2 )氣前驅物(步驟60)。然而,可方便地使用諸如氬氣或氦氣之惰性氣體來產生電漿。惰性氣體可方便地用作載體氣體。N2 氣體前驅物係本發明之PECVD製程中之反應性起始材料。通常,在產生電漿之前使氣體壓力穩定化。
在第一實施例中,藉由同時施加混合高頻率(HF)功率及低頻率(LF) RF功率產生電漿(步驟62)。然而,電漿可使用任何已知方法產生,諸如藉由僅施加HF RF功率或藉由僅施加LF RF功率。本發明不限於施加HF及LF功率之次序。通常將HF功率施加至諸如噴頭54之進氣口。HF RF功率通常具有高於2 MHz,且較佳為約13.56 MHz之頻率。HF RF功率通常具有500至1200 W之量值。通常將LF功率施加至諸如噴頭54之進氣口或基體支撐件。LF RF功率通常具有300至500 kHz,較佳350至400 kHz,且更佳約360至380 kHz之頻率。LF RF功率通常具有100至300 W之量值。HF及LF功率通常為RF功率。
當產生電漿時,噴頭54上之DC偏壓可提供關於電漿性質之資訊。噴頭54上之實質上穩定的DC偏壓指示正維持穩定電漿。噴頭54上之變化DC偏壓指示電漿在初始電漿產生之後並未完全穩定化,或電漿經去穩定化。圖7A及圖7B展示當使用混合HF及LF RF功率產生氮氣(N2 )電漿時,噴頭上之DC偏壓(線70)如何變化。線72對應於所施加之LF RF功率(以瓦特為單位)。為避免疑問,已使用相同參考數字指代相同特徵。
參考圖7A,在由虛線A指示之時間同時施加HF及LF RF功率,此使得產生/點燃電漿。隨著電漿點燃,噴頭上之DC偏壓移位至更負偏壓(在虛線A與B之間)。隨著電漿穩定化,DC偏壓達到實質上穩態的電壓。電漿在由虛線B指示之時間完全穩定化。氮氣電漿在施加HF及LF RF功率之約2 s內穩定化。
參考圖7B,最初在由虛線C指示之時間施加HF RF功率,此使得產生/點燃電漿。最初在由虛線D指示之時間施加LF RF功率。HF RF功率係在LF RF功率之前施加。隨著電漿點燃,噴頭上之DC偏壓移位至更負偏壓,直至其達到實質上穩態的電壓。電漿在由虛線B指示之時間完全穩定化。氮氣(N2 )電漿在施加HF RF功率之約2 s內穩定化。
當電漿已穩定化時,將矽烷前驅物引入至腔室52中(步驟64)。在氫氣(H2 )亦用作前驅物之實施例中,氫氣(H2 )可方便地與矽烷前驅物同時引入至腔室52中。矽烷前驅物及氮氣(N2 )前驅物經歷電漿輔助反應以形成氮化矽,隨後經沈積該氮化矽。矽烷前驅物較佳為矽烷(SiH4 ),然而,亦可使用具有下式之高階矽烷:Sin H2n +2 ,其中n = 2至5。在仍施加HF及LF RF功率時引入矽烷前驅物。矽烷前驅物與所維持之電漿相互作用以形成電漿之一部分。
當已形成矽烷前驅物之流動時(亦即,當矽烷前驅物已形成電漿之部分時),移除LF RF功率(步驟66)。較佳地,在矽烷前驅物之流動已達到所要流動速率之後立即移除LF功率。 儘管移除了LF RF功率,但藉由繼續施加HF RF功率且藉由繼續使氮氣(N2 )及矽烷前驅物流入腔室52中來繼續維持電漿。藉由PECVD進行氮化矽之主體沈積(bulk deposition) (步驟68)發生在LF RF功率已移除之後。通常,主體沈積步驟68在約80至200℃下發生。
在主體沈積步驟68期間施加之HF功率之量值與氮化矽之沈積速率相關。對於氮化矽之低溫PECVD,較佳使用高沈積速率,例如約0.2至0.6 μm/min。此可通常使用具有500至1200 W之量值的HF功率來達成。小於約500 W之功率通常並不達到足夠沈積速率。超過約1200 W之功率通常使經沈積膜具有混濁(而非鏡面)外觀。不希望受任何理論或推測束縛,咸信高於約1200 W之功率使得發生氣相反應(而非電漿輔助反應)。氣相反應產物在基體上形成微小顆粒沈積物,此使基體失去其鏡面外觀。
在第一實施例中,在主體沈積步驟68期間不施加LF RF功率。較佳完全移除LF功率,使得在主體沈積步驟68期間僅施加HF功率。
藉由(僅)施加HF功率而產生及維持的電漿允許在諸如玻璃結合薄矽基體之基體之整個表面上達成均一耦合。此允許將在主體沈積步驟68期間形成之氮化矽的均一沈積。相比之下,若僅在主體沈積步驟期間使用LF功率,則LF功率往往會經由最小電阻路徑耦合。此通常導致氮化矽之非均一沈積厚度。該非均一性在結合基體上加劇。
若在主體沈積步驟68期間維持LF功率(除HF功率以外),則基體在主體沈積期間經受較大離子影響,此不利地影響經沈積氮化矽膜之物理性質。較佳在主體沈積步驟68期間完全移除LF功率。然而,在主體沈積步驟68期間將LF RF功率之量值實質上降低至標稱水準可為便利的,例如將LF RF功率降低至少90%、較佳至少95%且更佳至少99%可為便利的。通常,降低之LF RF功率具有小於30 W、較佳小於15 W、更佳小於3 W,且最佳為0 W之功率。
本發明人已發現,在施加HF及LF RF功率時將矽烷前驅物引入至腔室52中可出人意料地防止在藉由PECVD沈積氮化矽期間形成富矽粒子。
相比之下,在整個沈積製程中僅利用HF RF功率之已知PECVD製程期間持續形成非所需富矽粒子。圖8展示根據僅使用HF功率之已知PECVD製程,噴頭上之DC偏壓(線80)如何隨著矽烷流(線82)引入至腔室中而變化。單一縱座標(y )軸主要展示DC偏壓80 (以伏特為單位)。然而,y 軸亦表示矽烷流動速率82 (以sccm為單位)。在此實例中,在噴頭上之DC偏壓已完全穩定化之後,將矽烷前驅物引入至腔室中。在藉由PECVD沈積氮化矽之已知方法期間產生的富矽粒子展示於圖1至圖3中。非所需粒子通常在基體上具有可再現之尺寸、形態及位置。圖9係基體92上之富矽粒子90之簡化示意性橫截面。粒子90通常具有富矽芯94以及氮化矽塗層96。粒子90之典型直徑為約3至5 μm,且獨立於總沈積時間。氮化矽塗層96之典型厚度通常為約1 μm,且對應於在基體上沈積之氮化矽之全厚度。
不希望受任何理論或推測束縛,咸信富矽粒子90係在沈積工藝之初始電漿產生階段期間形成。更具體言之,咸信該等粒子係經由在將矽烷引入至處理腔室中後起始的氣相反應而形成。若電漿僅藉由HF功率供以動力,則HF電漿不穩定。歸因於不穩定HF電漿之鞘傳導性質,引入矽烷前驅物使所維持之電漿去穩定化。此持續導致局部非所需富矽粒子簇之產生。電漿去穩定化伴隨著噴頭上之DC偏壓之變化。更具體言之,富矽粒子之形成伴隨著在將矽烷前驅物引入至腔室中時噴頭上之DC偏壓中之正(亦即,較不負)尖峰84 (圖8)。同樣不希望受任何理論或推測束縛,咸信DC偏壓中之正尖峰84係由電漿之形狀變化引起,此對應於上部電極(亦即,噴頭)之耦合面積相對於下部電極(亦即,基體支撐件)減小。此伴隨著電漿密度在噴頭上之點位置處瞬時增大。同樣,不希望受任何理論或推測束縛,咸信噴頭之不規則性為富矽粒子90最初形成提供成核位點,詳言之在電漿密度瞬時增大之點位置處。富矽粒子90隨後沈積至基體上,假定藉由自噴頭落至基體上。當矽烷前驅物之流動速率已達到其所要值時,電漿重新穩定化且不形成另外的富矽粒子90。
本發明之方法顯著降低在PECVD期間形成之非所需富矽粒子90的盛行率。不希望受任何理論或推測束縛,咸信額外LF功率有利地有助於使在腔室內維持之電漿穩定化,尤其在形成反應性電漿狀態時。增加LF功率有助於形成更難以去穩定化之更穩固電漿狀態。因此,當將矽烷前驅物引入腔室中時,電漿在較小程度上去穩定化,且富矽粒子90之形成經根除。
如先前所提及,在主體沈積步驟68期間不需要施加LF功率。較佳地,LF功率經調節以使初始電漿之穩定性最大化(亦即,在步驟64處引入矽烷前驅物之前),而不損害主體沈積之性質。通常,一旦矽烷前驅物已變得形成為電漿之部分,或在矽烷前驅物已變得形成為電漿之部分之後不久,或當已達到矽烷前驅物之所要流動速率時,就移除LF功率。
根據本發明之實施例之藉由低溫PECVD沈積氮化矽的典型製程條件提供於下表1中。 1
Figure 108127210-A0304-0001
上部電極(例如噴頭)與基體之間的距離通常為約20至25 mm。
表2展示氮化矽厚度及折射率如何隨LF功率(以瓦特為單位)變化。 2
Figure 108127210-A0304-0002
本發明人已發現,可經由記錄之RF參數,例如藉由在處理期間監測噴頭上之DC偏壓來偵測富矽粒子之存在。富矽粒子之形成的特徵為在矽烷前驅物引入腔室中時DC偏壓中之正(亦即,較不負)電壓尖峰。相比之下,未形成富矽粒子之製程在引入矽烷前驅物時展現DC偏壓之負移位。
僅藉助於實例,圖10展示噴頭上之DC偏壓(以伏特為單位) (線100)在根據本發明之實施例之方法期間如何變化。線102對應於所施加之LF RF功率(以瓦特為單位)。線104對應於矽烷前驅物之流動速率(以sccm為單位)。單一縱座標(y )軸主要展示噴頭100上之DC偏壓(以伏特為單位)。然而,y 軸亦表示所施加之LF RF功率102 (以瓦特為單位)及矽烷前驅物104之流動速率(以sccm為單位)。藉由同時將HF及LF RF功率施加至噴頭而產生電漿。電漿之產生伴隨著噴頭上之DC偏壓之負移位。在已在10 s之時段內施加HF及LF功率之後,將矽烷前驅物引入至腔室中。此時段(亦被稱作「穩定化時段(stabilisation period)」允許所形成之電漿在引入矽烷前驅物之前完全穩定化。實質上穩定的DC偏壓指示完全電漿穩定化。
矽烷前驅物之引入使電漿去穩定化。然而,此去穩定化藉由以下操作最小化:在電漿完全形成且經由HF及LF RF功率二者之使用完全穩定化之後,僅將矽烷前驅物引入至腔室中。此有助於根除富矽粒子之形成。通常,在矽烷前驅物已形成電漿之部分且電漿已重新穩定化之後,不形成另外的富矽粒子。
在此實例中,矽烷前驅物之引入伴隨著噴頭上之DC偏壓的進一步負移位(在虛線64與66之間)。隨後當矽烷之流動速率已上升至所要流動速率時移除LF功率。在此例示性實驗期間未形成富矽粒子。
為了使基體產量最大化,較佳使穩定化時段之持續時間最小化。
在另一實例中,圖11展示噴頭上之DC偏壓(以伏特為單位) (線110)在根據本發明之實施例之方法期間如何變化。線112對應於LF功率(以瓦特為單位)。線114對應於矽烷前驅物之流動速率(以sccm為單位)。單一縱座標(y )軸主要展示噴頭110上之DC偏壓(以伏特為單位)。然而,y 軸亦表示所施加之LF功率112 (以瓦特為單位)及矽烷前驅物114之流動速率(以sccm為單位)。所用方法與用於圖10之方法類似,不同之處在於在已施加HF及LF RF功率(亦即,已使電漿穩定化)5 s之時段之後將矽烷前驅物引入腔室中。矽烷前驅物之引入伴隨著DC偏壓之負移位,其指示在此例示性實驗期間未形成富矽粒子。
在另一實例中,圖12及圖13展示噴頭上之DC偏壓(以伏特為單位) (線120及130)在根據本發明之實施例之方法期間如何變化。線122及132對應於LF功率(以瓦特為單位)。線124及134對應於矽烷前驅物之流動速率(以sccm為單位)。單一縱座標(y )軸主要展示噴頭上之DC偏壓(以伏特為單位)。然而,y 軸亦表示所施加之LF功率(以瓦特為單位)及矽烷前驅物之流動速率(以sccm為單位)。所用方法與關於圖10及圖11之實例中所使用之方法類似,不同之處在於在已施加HF及LF功率(亦即,已使電漿穩定化)2 s之時段之後將矽烷前驅物引入至腔室中。2 s之穩定化時段在間歇基礎上產生富矽粒子。
參考圖12,矽烷前驅物之引入伴隨著DC偏壓之負移位(在虛線64與66之間)。在此實例中,未形成富矽粒子。
轉至圖13,矽烷前驅物之引入伴隨著DC偏壓中之正(亦即,較不負)尖峰136。DC偏壓中之正尖峰136對應於富矽粒子之形成。在電漿在添加矽烷前驅物後重新穩定化之後,未形成另外的富矽粒子。
不希望受任何理論或推測束縛,咸信富矽粒子往往會在電漿已完全穩定化之前引入矽烷前驅物的情況下形成。電漿花費大約2 s以在初始電漿產生之後完全形成且穩定化。穩定化時段取決於處理參數。在一些情況下,部分電漿穩定化可足以抑制富矽粒子之形成。較佳在所維持之電漿已完全穩定化之後引入矽烷前驅物。較佳地,穩定化時段係至少2 s,或更佳至少3 s。
50、50B:電漿增強化學氣相沈積(PECVD)設備 52:腔室 54:噴頭 54B:進氣口 55、92:基體 56:基體支撐件 57:高頻率RF電源供應器 58:低頻率RF電源供應器 59、510:匹配單元 60、62、64、66、68:步驟 70、72、120、122、124、130、132、134:線 80:線/DC偏壓 82:線/矽烷流動速率 84、136:正尖峰 90:富矽粒子 94:富矽芯 96:氮化矽塗層 100、110:線/噴頭 102:線/LF RF功率 104、114:線/矽烷前驅物 112:線/LF功率 511:泵送出口 A、B、C、D:虛線
現將參看附圖描述根據本發明之方法之實施例,其中: 圖1A及圖1B係在氮化矽之PECVD期間形成於基體上的經聚焦離子束(FIB)分割之富矽粒子的SEM影像; 圖2係展示在氮化矽之PECVD期間形成於基體上之富矽粒子簇的光學顯微鏡影像; 圖3係在氮化矽之PECVD期間形成於基體上之富矽粒子簇的掃描電子顯微照片(SEM); 圖4係展示在氮化矽之PECVD期間形成之3至10 μm直徑之富矽粒子在基體上之分佈的Surfscan影像; 圖5A和圖5B係根據本發明之PECVD設備的示意性橫截面圖; 圖6係說明根據第一實施例之方法中之步驟的流程圖; 圖7A及圖7B係展示當使用混合的HF及LF功率來產生及維持氮氣(N2 )電漿時,噴頭上之DC偏壓相對於時間之穩定化的圖表; 圖8係展示當(僅)使用HF功率來點燃及維持電漿(先前技術)時,噴頭上之DC偏壓相對於時間之變化的圖表; 圖9係說明展示富矽粒子之組成的橫截面; 圖10係展示當在引入矽烷前驅物之前在10 s之時段內施加HF及LF功率時,噴頭上之DC偏壓相對於時間之變化的圖表; 圖11係展示當在引入矽烷前驅物之前在5 s之時段內施加HF及LF功率時,噴頭上之DC偏壓相對於時間之變化的圖表; 圖12係展示當在引入矽烷前驅物之前在2 s之時段內施加HF及LF功率時,噴頭上之DC偏壓相對於時間之變化的圖表; 圖13係展示當在引入矽烷前驅物之前在2 s之時段內施加HF及LF功率時,噴頭上之DC偏壓相對於時間之變化的圖表。
60、62、64、66、68:步驟

Claims (16)

  1. 一種藉由電漿增強化學氣相沈積(PECVD)沈積氮化矽之方法,該方法包含以下步驟:提供包含一腔室及安置於該腔室內之一基體支撐件的一PECVD設備;將一基體定位於該基體支撐件上;將一氮氣(N2)前驅物引入至該腔室中;施加一高頻率(HF)RF功率及一低頻率(LF)RF功率以在該腔室中維持一電漿;當正在施加該HF RF功率及該LF RF功率時,將一矽烷前驅物引入至該腔室中,使得該矽烷前驅物形成所維持之該電漿之部分;以及隨後移除該LF RF功率或將該LF RF功率降低至少90%,同時繼續維持該電漿,使得藉由PECVD將氮化矽沈積至該基體上。
  2. 如請求項1之方法,其中該HF RF功率及該LF RF功率係在緊接在引入該矽烷前驅物之前的一時段內被施加,其中該時段足以使所維持之該電漿穩定。
  3. 如請求項2之方法,其中該時段為至少2s。
  4. 如請求項1之方法,其中該LF RF功率係在緊接在將該矽烷前驅物引入至該腔室中之步驟之前的一時段內被施加,該時段小於約15s。
  5. 如請求項1之方法,其中該LF RF功率係在自將該矽烷前驅物引入至該腔室中約10s內被移除。
  6. 如請求項1之方法,其中該HF RF功率被施加至該PECVD設備之一進氣口。
  7. 如請求項6之方法,其中該進氣口係一噴頭。
  8. 如請求項6之方法,其中該LF RF功率被施加至該PECVD設備之該進氣口或該基體支撐件。
  9. 如請求項1之方法,其中該HF RF功率之頻率大於2MHz。
  10. 如請求項1之方法,其中該LF RF功率之頻率為300至500kHz。
  11. 如請求項1之方法,其中該HF RF功率具有500至1200W之一功率。
  12. 如請求項1之方法,其中該LF RF功率在施加該HF RF功率及該LF RF功率以在該腔室中維持該電漿之步驟期間具有100至300W之一功率。
  13. 如請求項1之方法,其中該矽烷前驅物係SiH4
  14. 如請求項1之方法,其進一步包含將一氫氣(H2)前驅物引入至該腔室中之步驟。
  15. 如請求項1之方法,其係在小於250℃之一溫度下執行。
  16. 如請求項1之方法,其進一步包含以下步驟:將一惰性氣體引入至該腔室中;以及在引入該氮氣(N2)前驅物之前產生一電漿,其中該惰性氣體為氬氣或氦氣。
TW108127210A 2018-08-17 2019-07-31 沈積氮化矽之方法 TWI780350B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB1813467.6A GB201813467D0 (en) 2018-08-17 2018-08-17 Method of depositing silicon nitride
GB1813467.6 2018-08-17

Publications (2)

Publication Number Publication Date
TW202020205A TW202020205A (zh) 2020-06-01
TWI780350B true TWI780350B (zh) 2022-10-11

Family

ID=63668303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108127210A TWI780350B (zh) 2018-08-17 2019-07-31 沈積氮化矽之方法

Country Status (6)

Country Link
US (1) US11251037B2 (zh)
EP (1) EP3617342B1 (zh)
KR (1) KR102542745B1 (zh)
CN (1) CN110835748B (zh)
GB (1) GB201813467D0 (zh)
TW (1) TWI780350B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130171834A1 (en) * 2010-03-25 2013-07-04 Jason Haverkamp In-situ deposition of film stacks
TW201341569A (zh) * 2012-02-14 2013-10-16 Novellus Systems Inc 用於半導體元件應用之氮化矽膜
CN104513973A (zh) * 2013-09-30 2015-04-15 朗姆研究公司 通过脉冲低频射频功率获得高选择性和低应力碳硬膜
TW201543574A (zh) * 2009-12-04 2015-11-16 Novellus Systems Inc 硬遮罩材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2641385B2 (ja) * 1993-09-24 1997-08-13 アプライド マテリアルズ インコーポレイテッド 膜形成方法
US6098568A (en) * 1997-12-01 2000-08-08 Applied Materials, Inc. Mixed frequency CVD apparatus
DE10223954A1 (de) * 2002-05-29 2003-12-11 Infineon Technologies Ag Plasmaangeregtes chemisches Gasphasenabscheide-Verfahren zum Abscheiden von Siliziumnitrid oder Siliziumoxinitrid, Verfahren zum Herstellen einer Schicht-Anordnung und Schicht-Anordnung
US7608300B2 (en) 2003-08-27 2009-10-27 Applied Materials, Inc. Methods and devices to reduce defects in dielectric stack structures
TWI254345B (en) 2005-02-05 2006-05-01 United Microelectronics Corp Method of reducing number of particles on low-k material layer
CN100437934C (zh) 2005-02-08 2008-11-26 联华电子股份有限公司 减少低介电常数材料层的微粒数目的方法
JP2011155077A (ja) 2010-01-26 2011-08-11 Renesas Electronics Corp 半導体装置の製造方法
US8741394B2 (en) * 2010-03-25 2014-06-03 Novellus Systems, Inc. In-situ deposition of film stacks
US9598771B2 (en) 2011-08-30 2017-03-21 Taiwan Semiconductor Manufacturing Company, Ltd. Dielectric film defect reduction
GB201603581D0 (en) * 2016-03-01 2016-04-13 Spts Technologies Ltd Plasma processing apparatus
GB202008892D0 (en) * 2020-06-11 2020-07-29 Spts Technologies Ltd Method of deposition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201543574A (zh) * 2009-12-04 2015-11-16 Novellus Systems Inc 硬遮罩材料
US20130171834A1 (en) * 2010-03-25 2013-07-04 Jason Haverkamp In-situ deposition of film stacks
TW201341569A (zh) * 2012-02-14 2013-10-16 Novellus Systems Inc 用於半導體元件應用之氮化矽膜
CN104513973A (zh) * 2013-09-30 2015-04-15 朗姆研究公司 通过脉冲低频射频功率获得高选择性和低应力碳硬膜

Also Published As

Publication number Publication date
US20200058498A1 (en) 2020-02-20
EP3617342A1 (en) 2020-03-04
KR102542745B1 (ko) 2023-06-12
CN110835748B (zh) 2023-11-07
KR20200020647A (ko) 2020-02-26
CN110835748A (zh) 2020-02-25
US11251037B2 (en) 2022-02-15
GB201813467D0 (en) 2018-10-03
TW202020205A (zh) 2020-06-01
EP3617342B1 (en) 2022-06-08

Similar Documents

Publication Publication Date Title
TW202129068A (zh) 形成薄膜之方法及修飾薄膜表面之方法
JP5297048B2 (ja) プラズマ処理方法及びプラズマ処理装置
JP3595853B2 (ja) プラズマcvd成膜装置
US6071573A (en) Process for precoating plasma CVD reactors
US7226869B2 (en) Methods for protecting silicon or silicon carbide electrode surfaces from morphological modification during plasma etch processing
TWI383066B (zh) 改善pecvd不定形碳膜層之膜內缺陷的方法
TWI434334B (zh) 電漿cvd裝置
JP4066332B2 (ja) シリコンカーバイド膜の製造方法
US20090090382A1 (en) Method of self-cleaning of carbon-based film
US20070248767A1 (en) Method of self-cleaning of carbon-based film
US20070158182A1 (en) Silicon dot forming method and apparatus
KR102007019B1 (ko) 플라즈마 처리에 의한 불화 알루미늄 경감
TWI700386B (zh) 非晶矽膜的形成方法
JPH0766186A (ja) 誘電体の異方性堆積法
WO2018098202A1 (en) Methods for depositing flowable silicon containing films using hot wire chemical vapor deposition
TWI780350B (zh) 沈積氮化矽之方法
JP3649650B2 (ja) 基板エッチング方法、半導体装置製造方法
TWI810682B (zh) 減少多層pecvd teos氧化物膜中的缺陷的方法
JP5069598B2 (ja) ガスバリアフィルムの製造方法
JP2916119B2 (ja) 薄膜形成方法
KR20230096722A (ko) 기판 처리 방법 및 pecvd를 이용한 실리콘질화막 증착 방법
JP2007273686A (ja) 半導体装置の製造方法
KR100689655B1 (ko) 테트라에틸올쏘실리케이트를 이용한 플라즈마 씨브이디증착 방법
JP2023157446A (ja) プラズマ処理方法、プラズマ処理装置、およびステージ
RU2142344C1 (ru) Способ получения углеродосодержащих, в том числе алмазоподобных, покрытий

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent