TWI779490B - Method for producing large light reflection element and method for producing optical image forming device - Google Patents

Method for producing large light reflection element and method for producing optical image forming device Download PDF

Info

Publication number
TWI779490B
TWI779490B TW110105110A TW110105110A TWI779490B TW I779490 B TWI779490 B TW I779490B TW 110105110 A TW110105110 A TW 110105110A TW 110105110 A TW110105110 A TW 110105110A TW I779490 B TWI779490 B TW I779490B
Authority
TW
Taiwan
Prior art keywords
light reflection
aforementioned
manufacturing
light
elements
Prior art date
Application number
TW110105110A
Other languages
Chinese (zh)
Other versions
TW202141114A (en
Inventor
大坪誠
Original Assignee
日商亞斯卡奈特股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2020/028314 external-priority patent/WO2021166281A1/en
Application filed by 日商亞斯卡奈特股份有限公司 filed Critical 日商亞斯卡奈特股份有限公司
Publication of TW202141114A publication Critical patent/TW202141114A/en
Application granted granted Critical
Publication of TWI779490B publication Critical patent/TWI779490B/en

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laser Beam Printer (AREA)

Abstract

一種大型之光反射元件的製造方法及光學成像裝置的製造方法,包含有如下製程:將複數個單位光反射元件以各光反射面為相同方向的方式配置於透明平板上,且於顯示器顯示具有與各單位光反射元件之各光反射面平行之橫線的檢查基準圖像,然後從透明平板的另一側觀察橫線於各光反射面反射1次而形成之鏡像的連續性,判定相鄰之單位光反射元件之配置的良窳,前述顯示器是與透明平板具有一定的角度而配置於透明平板之一側。A method for manufacturing a large-scale light reflection element and a method for manufacturing an optical imaging device, including the following process: a plurality of unit light reflection elements are arranged on a transparent flat plate with the light reflection surfaces in the same direction, and the display has a The inspection reference image of the horizontal line parallel to each light reflecting surface of each unit light reflecting element, and then observe the continuity of the mirror image formed by the horizontal line reflecting once on each light reflecting surface from the other side of the transparent plate, and judge the phase The disposition of adjacent unit light reflection elements is good, the aforementioned display has a certain angle with the transparent plate and is arranged on one side of the transparent plate.

Description

大型之光反射元件的製造方法及光學成像裝置的製造方法Manufacturing method of large light reflection element and manufacturing method of optical imaging device

發明領域 field of invention

本發明是有關於一種包含大型之光反射元件之製品良窳之判定方法的大型之光反射元件的製造方法、及使用了以該製造方法製造出之大型之光反射元件的光學成像裝置的製造方法,前述大型之光反射元件是將複數個單位光反射元件呈平面狀排列配置而成,且前述複數個單位光反射元件是具有各自垂直於一側面且以預定間隔平行配置之多數個光反射面。 The present invention relates to a method of manufacturing a large-scale light reflection element including a method for judging the product quality of a large-scale light reflection element, and to the manufacture of an optical imaging device using the large-scale light reflection element manufactured by the manufacturing method method, the aforementioned large-scale light reflective element is formed by arranging a plurality of unit light reflective elements in a planar shape, and the aforementioned plurality of unit light reflective elements has a plurality of light reflective elements perpendicular to one side and arranged in parallel at predetermined intervals. noodle.

發明背景 Background of the invention

例如,在專利文獻1揭示了一種光學成像裝置的製造方法,其目的在於簡單且高精度地製造可顯示大的空間影像之空間影像顯示裝置所需要的大型光學成像裝置。專利文獻1所揭示之光學成像裝置的製造方法具有如下製程:各個多數之光反射面平行地豎立設置之2個鏡面板(光反射元件),以鏡面板之光反射面會互相正交的方式重疊來製造單位光學成像元件;以相鄰之單位光學成像元件之鏡面板之光反射面的方向一致的狀態,使複數個單位光學成像元件鄰接於預定之透明罩板上而呈二維狀排列;藉由上下之透明罩板,從垂直的方向夾入呈二維狀排列的單位光學成像元件群,並且覆蓋單位光學成像元件群的周圍;及降低內部的氣壓而藉由上下之透明罩板將單位光學成像元件群固定成平面 狀。 For example, Patent Document 1 discloses a method of manufacturing an optical imaging device, which aims to easily and precisely manufacture a large optical imaging device required for an aerial image display device capable of displaying a large aerial image. The manufacturing method of the optical imaging device disclosed in Patent Document 1 has the following process: two mirror panels (light reflection elements) are vertically arranged in parallel with a plurality of light reflection surfaces, and the light reflection surfaces of the mirror panels are perpendicular to each other. Overlapping to manufacture unit optical imaging elements; in the state that the direction of the light reflection surface of the mirror plate of adjacent unit optical imaging elements is consistent, a plurality of unit optical imaging elements are adjacent to a predetermined transparent cover plate and arranged in a two-dimensional shape ; With the upper and lower transparent cover plates, the unit optical imaging element group arranged in two dimensions is sandwiched from the vertical direction, and the surrounding of the unit optical imaging element group is covered; and the internal air pressure is reduced by the upper and lower transparent cover plates Fix the unit optical imaging element group into a plane shape.

又,在專利文獻2如圖14所示,揭示了一種成像元件之製造方法,具備如下製程:準備複數個光反射元件(鏡面板),前述複數個光反射元件是沿著與厚度方向正交的第1方向排列且分別具有複數個反射面;從複數個光反射元件之中將至少2個以上之光反射元件101、102載置於具有透光部103的平面體(基台部)104上,將反射面與光反射元件101、102正交的光反射元件(參考鏡面板)105配置於平面體104之透光部103的下部,選擇彼此相鄰之光反射元件101、102之各自所包含的複數個反射面之排列方式起因之被投影物(圖)108的空中影像106、107的偏移變小的2個反射元件之組合;及將選出之組合所包含的2個光反射元件101、102在平面上進行接合。 In addition, as shown in FIG. 14 in Patent Document 2, a method of manufacturing an imaging element is disclosed, which has the following process: prepare a plurality of light reflection elements (mirror panels), and the plurality of light reflection elements are along the direction perpendicular to the thickness direction. Arranged in the first direction and each has a plurality of reflective surfaces; from among the plurality of light reflective elements, at least two or more light reflective elements 101, 102 are placed on a planar body (base portion) 104 having a light-transmitting portion 103 Above, the light reflective element (refer to the mirror panel) 105 whose reflective surface is perpendicular to the light reflective elements 101 and 102 is arranged on the lower part of the light-transmitting part 103 of the planar body 104, and each of the light reflective elements 101 and 102 adjacent to each other is selected. The arrangement of the plurality of reflective surfaces included is the combination of 2 reflective elements that cause the offset of the aerial images 106, 107 of the projected object (figure) 108 to become smaller; and reflect the 2 light included in the selected combination The elements 101, 102 are joined on a plane.

而且,專利文獻3如圖15所示,記載了具備如下製程:將複數片光反射元件(鏡面板)110、111以朝其面方向排列的方式進行配置;以橫跨相鄰之光反射元件110、111的方式先配置另外的光反射元件(參考鏡面板)112,一面確認由複數片光反射元件110、111與光反射元件112所成像之被投影物114的鏡影像(實像)113,一面以實像113對應於被投影物114之形狀的方式來相互定位複數片光反射元件110、111;及將相互定位之複數片光反射元件110、111的位置固定。再者,上述當中,光反射元件101、102、110、111是顯示單位反射元件。 Furthermore, Patent Document 3, as shown in FIG. 15 , describes the following process: arranging a plurality of light reflection elements (mirror panels) 110, 111 in the direction of their planes; The way of 110, 111 first configures another light reflective element (refer to the mirror panel) 112, and confirms the mirror image (real image) 113 of the projected object 114 imaged by the plurality of light reflective elements 110, 111 and light reflective element 112, On the one hand, the plurality of light reflective elements 110, 111 are positioned mutually in such a way that the real image 113 corresponds to the shape of the projected object 114; and the positions of the plurality of light reflective elements 110, 111 positioned mutually are fixed. Furthermore, among the above, the light reflective elements 101 , 102 , 110 , and 111 are display unit reflective elements.

先行技術文獻 Prior art literature

專利文獻 patent documents

[專利文獻1]日本特開第2013-101230號公報 [Patent Document 1] Japanese Unexamined Patent Publication No. 2013-101230

[專利文獻2]日本特開第2017-203809號公報 [Patent Document 2] Japanese Unexamined Patent Publication No. 2017-203809

[專利文獻3】WO第2016/178424號 [Patent Document 3] WO No. 2016/178424

發明概要 Summary of the invention

然而,在專利文獻1中,由於是將2個光反射元件(同鏡面板)以光反射元件之光反射面互相正交的方式重疊,藉此以製造成像元件(同單位光學成像元件),並使複數個成像元件鄰接於預定之透明平板(同透明罩板)上而在平面方向上呈二維狀排列,按壓固定於透明平板,因此各成像元件的光反射面會偏移、或者稍微變形時,會有在要形成的圖像產生扭曲的問題。而且,若要形成的圖像有扭曲的話,則必須將上下之光反射元件一體化的成像元件整體進行更換。 However, in Patent Document 1, an imaging element (same unit optical imaging element) is manufactured by overlapping two light reflection elements (same mirror panel) so that the light reflection surfaces of the light reflection elements are perpendicular to each other. And a plurality of imaging elements are adjacent to a predetermined transparent flat plate (with the transparent cover plate) and arranged in a two-dimensional shape in the plane direction, and are pressed and fixed on the transparent flat plate, so the light reflection surface of each imaging element will be shifted, or slightly When deforming, there is a problem that the image to be formed is distorted. Moreover, if the image to be formed is distorted, the entire imaging element in which the upper and lower light reflection elements are integrated must be replaced.

又,專利文獻2、3的情況是,若是除了作為比較對象檢查的光反射元件(鏡面板)A、B之外,沒有光反射面相對於該等光反射元件A、B正交的光反射元件C(參考鏡面板)的話,則空中影像或鏡影像不成像,因此光反射元件C成為必須的構成。而且,當該光反射元件C的精度差時,則單位光反射元件A、B無法正確的測定(選擇、定位及良窳判定)。 In addition, in the case of Patent Documents 2 and 3, except for the light reflection elements (mirror panels) A and B to be inspected as comparison objects, there is no light reflection element whose light reflection surface is perpendicular to the light reflection elements A, B In the case of C (referring to the mirror panel), the aerial image or the mirror image is not formed, so the light reflection element C becomes an essential configuration. Furthermore, if the accuracy of the light reflection element C is poor, the unit light reflection elements A and B cannot be accurately measured (selection, positioning, and quality determination).

還有,由於成為檢查對象的像為空中影像,因此也有檢查(製造)裝置整體大型化的問題。 In addition, since the image to be inspected is an aerial image, there is also a problem of increasing the size of the entire inspection (manufacturing) apparatus.

本發明是有鑑於如此的情事而做成者,其目的在於提供一種大型之光反射元件的製造方法及使用了以其製造方法製造出之大型之光反射元件的光學成像裝置的製造方法,大型之光反射元件的製造方法是將複數個單位光反射元件呈平面狀排列來製造大型之光反射元件時,不需要為了確認(檢查)光反射面之排列,而將光反射面正交之光反射元件朝上下對向配置,並可在不需要空中影像或鏡影像之成像之下,判定呈平面狀排列之單位光反射元件之配置良窳。 The present invention is made in view of such circumstances, and its object is to provide a method for manufacturing a large-scale light reflection element and a method for manufacturing an optical imaging device using the large-scale light reflection element manufactured by the method. The manufacturing method of the light reflective element is to arrange a plurality of unit light reflective elements in a planar shape to manufacture a large light reflective element. In order to confirm (check) the arrangement of the light reflective surface, it is not necessary to arrange the light reflective surface orthogonally. The reflective elements are arranged facing up and down, and it is possible to determine whether the arrangement of the unit light reflective elements arranged in a planar shape is good without the imaging of an aerial image or a mirror image.

實行前述目的之第1發明的大型之光反射元件的製造方法是單位光反射元件呈平面狀排列複數個而製造之大型之光反射元件的製造方法,前述單位光反射元件具有垂直於其中一面且以預定間隔平行配置的複數個光反射 面,前述大型之光反射元件的製造方法的特徵在於包含製程A,前述製程A是將複數個前述單位光反射元件以前述各光反射面為相同方向的方式,配置於透明平板上,於顯示器顯示具有與前述各單位光反射元件之前述各光反射面平行的橫線的檢查基準圖像,然後從前述透明平板之另一側觀察該橫線於前述各光反射面反射1次而形成之鏡像的連續性,判定相鄰之前述單位光反射元件之配置的良窳,前述顯示器與該透明平板具有一定的角度而配置於該透明平板之一側。 The method of manufacturing a large light reflective element according to the first invention for carrying out the aforementioned object is a method of manufacturing a large light reflective element in which a plurality of unit light reflective elements are arranged in a planar shape. A plurality of light reflections arranged in parallel at predetermined intervals On the other hand, the manufacturing method of the above-mentioned large-scale light reflection element is characterized in that it includes process A. The above-mentioned process A is to arrange a plurality of the above-mentioned unit light reflection elements on a transparent flat plate with the above-mentioned light reflection surfaces in the same direction, and place them on the display. Display an inspection reference image with a horizontal line parallel to the light reflecting surfaces of each unit light reflecting element, and then observe from the other side of the transparent plate that the horizontal line is reflected once on each of the light reflecting surfaces The continuity of the mirror image is used to determine the configuration of the adjacent aforementioned unit light reflection elements. The aforementioned display has a certain angle to the transparent flat panel and is arranged on one side of the transparent flat panel.

實行前述目的之第2發明之大型之光反射元件的製造方法是單位光反射元件呈平面狀排列複數個而製造之以平面來看為正方形的大型之光反射元件的製造方法,前述單位光反射元件具有垂直於其中一面且以預定間隔平行配置的複數個光反射面且從平面來看為正方形,前述大型之光反射元件的製造方法的特徵在於包含製程A,前述製程A是將複數個前述單位光反射元件以前述各光反射面為相同方向的方式,配置於透明平板上,於顯示器顯示具有與前述各單位光反射元件之前述各光反射面平行的橫線的檢查基準圖像,然後從前述透明平板之另一側觀察該橫線於前述各光反射面反射1次而形成之鏡像的連續性,判定相鄰之前述單位光反射元件之配置的良窳,前述顯示器與該透明平板具有一定的角度而配置於該透明平板之一側。 The method of manufacturing a large-scale light reflective element of the second invention that implements the aforementioned object is a method of manufacturing a large-scale light reflective element that is square in plan view by arranging a plurality of unit light reflective elements in a planar shape. The element has a plurality of light-reflecting surfaces perpendicular to one side and arranged in parallel at predetermined intervals, and is square in plan view. The manufacturing method of the aforementioned large-scale light-reflecting element is characterized in that it includes a process A. The unit light reflection elements are disposed on a transparent flat plate with the aforementioned light reflection surfaces in the same direction, and an inspection reference image having horizontal lines parallel to the aforementioned light reflection surfaces of each of the aforementioned unit light reflection elements is displayed on the display, and then From the other side of the transparent plate, observe the continuity of the mirror image formed by the horizontal line reflecting once on each of the light reflecting surfaces, and judge whether the configuration of the adjacent aforementioned unit light reflecting elements is good, the aforementioned display and the transparent plate It has a certain angle and is arranged on one side of the transparent plate.

在第2發明之大型之光反射元件的製造方法中,前述單位光反射元件宜為一邊為90~200mm的正方形,但本發明不限定於該數字。 In the manufacturing method of the large-scale light reflection element of the second invention, the above-mentioned unit light reflection element is preferably a square with a side of 90-200 mm, but the present invention is not limited to this figure.

第3發明之大型之光反射元件的製造方法是在第1、第2發明中,前述透明平板與前述顯示器構成的角度宜在40~50度之範圍內。 In the manufacturing method of the large-scale light reflection element of the third invention, in the first and second inventions, the angle formed by the aforementioned transparent flat panel and the aforementioned display is preferably in the range of 40 to 50 degrees.

而且,第4發明之大型之光反射元件的製造方法是在第1~第3發明中,前述檢查基準圖像宜具有複數條前述橫線及與該各橫線正交之複數條縱線而呈格子狀。 Furthermore, in the method for manufacturing a large-scale light reflection element according to the fourth invention, in the first to third inventions, the inspection reference image preferably has a plurality of horizontal lines and a plurality of vertical lines perpendicular to the horizontal lines. In grid shape.

又,第1~第4發明之大型之光反射元件的製造方法中,其亦可將在前述製程A判定為不良之單位光反射元件與其他單位光反射元件更換,而再度實施前述製程A。 In addition, in the manufacturing methods of the large-scale light reflection elements of the first to fourth inventions, the unit light reflection elements determined to be defective in the aforementioned process A may be replaced with other unit light reflective elements, and the aforementioned process A may be performed again.

而且,在第1~第4發明之大型之光反射元件的製造方法中,前述檢查基準圖像宜使用電腦合成的圖像。 Moreover, in the manufacturing method of the large-scale light reflection element of the first to fourth inventions, it is preferable to use a computer-synthesized image for the aforementioned inspection reference image.

進而,在以上之大型之光反射元件的製造方法中,前述單位光反射元件往前述透明平板的暫時固定宜藉由真空吸引而進行。 Furthermore, in the manufacturing method of the above-mentioned large-scale light reflection element, the temporary fixation of the said unit light reflection element to the said transparent plate is preferably performed by vacuum suction.

第5發明之大型之光反射元件的製造方法是在第1~第4發明中,前述單位光反射元件藉由以下製程而製造:第1製程,透過光反射材及接著劑將複數個透明板材積層,製造高度為h且於周圍具有側面P~S之四角柱狀的塊材;第2製程,將前述塊材之對向的前述側面Q、S研磨,且將從前述側面Q到前述側面S的距離w設定為與前述高度h相同,並且使前述側面P、R為正方形;第3製程,將在前述第2製程加工之前述塊材與前述側面P或前述側面R平行地切斷而製造複數個相同厚度的光反射基材;及第4製程,將切斷之前述各光反射基材的兩端面研磨。 The manufacturing method of the large-scale light reflection element of the fifth invention is that in the first to fourth inventions, the above-mentioned unit light reflection element is manufactured by the following process: In the first process, a plurality of transparent plates are passed through the light reflection material and the adhesive Lamination, manufacturing a block with a height of h and having side surfaces P~S around it; the second process is to grind the opposite sides Q and S of the block, and grind from the side Q to the side The distance w of S is set to be the same as the aforementioned height h, and the aforementioned side surfaces P and R are square; the third process is to cut the aforementioned block processed in the aforementioned second process parallel to the aforementioned side P or the aforementioned side R. Manufacturing a plurality of light-reflective substrates with the same thickness; and the fourth process, grinding the two ends of the cut light-reflective substrates.

在第5發明之大型之光反射元件的製造方法中,可在前述第2製程進行切斷加工,前述切斷加工是在研磨前述側面Q、S前,粗調整從前述側面Q到前述側面S的距離。 In the manufacturing method of the large-sized light reflection element of the fifth invention, the cutting process can be performed in the second process, and the cutting process is to roughly adjust from the side Q to the side S before grinding the sides Q and S. distance.

又,在第5發明之大型之光反射元件的製造方法中,在前述第2製程研磨之前述側面Q、S及在前述第4製程研磨之前述單位光反射元件之前述兩端面的粗度宜在30nm以下,但本發明不限定於該數值。 Also, in the manufacturing method of the large-scale light reflective element of the fifth invention, the roughness of the aforementioned side surfaces Q and S polished in the aforementioned second process and the aforementioned both ends of the aforementioned unit light reflective element polished in the aforementioned fourth process is preferably It is 30 nm or less, but the present invention is not limited to this numerical value.

在第5發明之大型之光反射元件的製造方法中,前述光反射材宜為於前述透明板材之至少單面形成的金屬蒸鍍膜,但亦可為金屬膜。 In the method for manufacturing a large-scale light-reflecting element according to the fifth invention, the light-reflecting material is preferably a metal vapor-deposited film formed on at least one side of the transparent plate, but may also be a metal film.

第6發明之光學成像裝置的製造方法是使用由第1~第5發明之大型之光反射元件的製造方法所製造出之大型之光反射元件而製造出的光學成像裝置的製造方法,具有:製程a,以從平面來看外形成為正方形的方式,將前述大型之光反射元件之角部斜向切斷,形成前述各光反射面相對於前述正方形之各邊傾斜了45度之中型的光反射元件;及製程b,使各個前述光反射面正交而將2片之前述中型之光反射元件重疊。 The manufacturing method of the optical imaging device of the 6th invention is a manufacturing method of the optical imaging device manufactured by using the large light reflecting element manufactured by the manufacturing method of the large light reflecting element of the 1st - 5th invention, which has: In process a, the corners of the aforementioned large-scale light reflective elements are obliquely cut in such a way that the outer shape is square when viewed from the plane, to form a medium-sized light reflector with each of the aforementioned light reflective surfaces inclined at 45 degrees relative to the sides of the aforementioned square. element; and process b, making each of the aforementioned light reflecting surfaces orthogonal to each other and overlapping two aforementioned medium-sized light reflecting elements.

第7發明之光學成像裝置的製造方法是在第6發明中,其是準備2片中型之光反射元件,前述中型之光反射元件是將在前述製程a切取之直角等邊三角形之前述角部4片合在一起而該各角部之前述各光反射面朝向相同方向,使各個前述光反射面正交而將該2片之光反射元件重疊。 The manufacturing method of the optical imaging device of the 7th invention is in the 6th invention, which is to prepare two medium-sized light reflective elements, and the aforementioned medium-sized light reflective elements are the aforementioned corners of the right-angled equilateral triangles cut out in the aforementioned process a. 4 pieces are put together so that the light reflection surfaces of the respective corners face the same direction, and the light reflection surfaces of the two pieces are made to be perpendicular to each other, and the light reflection elements of the 2 pieces are superimposed.

第1~第5發明之大型之光反射元件的製造方法是對確認(檢查)光反射面之排列,使用在光反射面直接反射之顯示裝置的檢查基準圖像(鏡像),因此比專利文獻2、3揭示之空中影像或鏡影像更鮮明,由於也不使用參考光反射元件,因此裝置本身也可簡化,進而,相較於參考光反射元件之精度會影響測定精度的專利文獻2、3,信賴性優異。 The manufacturing method of the large-scale light reflection element of the first to fifth inventions is to confirm (inspect) the arrangement of the light reflection surface, and use the inspection reference image (mirror image) of the display device directly reflected on the light reflection surface, so it is better than the patent document The aerial image or mirror image disclosed in 2 and 3 is more vivid, and since the reference light reflection element is not used, the device itself can also be simplified, and furthermore, compared with the patent documents 2 and 3 that the accuracy of the reference light reflection element will affect the measurement accuracy , excellent reliability.

特別是,若是藉由第1製程、第2製程、第3製程、及第4製程而製造者的情況,則可更有效率地製造相同尺寸的單位光反射元件,前述第1製程是單位光反射元件透過光反射材及接著劑而將複數個透明板材積層,製造高度為h且於周圍具有側面P~S之四角柱狀的塊材;前述第2製程是研磨塊材之對向的側面Q、S,而令從側面Q到側面S之距離w與高度h相同,將側面P、R作成正方形;第3製程是將已在第2製程加工之塊材與側面P或側面R平行地切斷而製造複數個相同厚度的光反射基材;第4製程是研磨業經切斷之各光反射基材的兩端面。 In particular, in the case of manufacturing by the first process, the second process, the third process, and the fourth process, unit light reflection elements of the same size can be manufactured more efficiently. The reflective element laminates a plurality of transparent plates through the light reflective material and the adhesive to produce a rectangular columnar block with a height of h and surrounding sides P~S; the aforementioned second process is to grind the opposite side of the block Q, S, and make the distance w from the side Q to the side S the same as the height h, and make the sides P and R square; the third process is to make the block processed in the second process parallel to the side P or side R Cutting to produce a plurality of light reflective substrates with the same thickness; the fourth process is to grind the two ends of the cut light reflective substrates.

又,第6發明之光學成像裝置的製造方法是使用由第1~第5發明之大型之光反射元件的製造方法所製造出之大型之光反射元件,藉此可產率佳地製造可顯示扭曲少之大空間圖像的光學成像裝置。 In addition, the manufacturing method of the optical imaging device according to the sixth invention uses the large-scale light reflecting element manufactured by the manufacturing method of the large-sized light reflecting element according to the first to fifth inventions, whereby it is possible to manufacture a displayable optical device with high yield. Optical imaging device for large spatial images with less distortion.

10:單位光反射元件 10: unit light reflection element

11:透明平板 11: Transparent flat panel

11a:光透過部 11a: light transmission part

12:光反射材 12: Light reflective material

12a:光反射面 12a: light reflecting surface

13:光學成像裝置 13: Optical imaging device

15:大型之光學成像裝置 15: Large-scale optical imaging device

16:角部 16: Corner

17:光學成像裝置 17: Optical imaging device

20:透明板材 20: Transparent sheet

20a:光透過部 20a: light transmission part

21:光反射材 21: light reflective material

22:光反射面 22: light reflective surface

23:塊材 23: blocks

24:平板 24: Tablet

25:塊體 25: block

26:光反射基材 26: Light reflective substrate

27:真空吸附口 27: Vacuum suction port

28,29:單位光反射元件 28,29: unit light reflective element

29a,29b:按壓機構 29a, 29b: pressing mechanism

29d:正規之光反射元件 29d: regular light reflective element

30:檢查裝置 30: Check device

31:透明平板 31: Transparent flat panel

32:顯示裝置(顯示器) 32: Display device (monitor)

33:攝像裝置 33: camera device

34:x導引部 34:x guide department

35:y導引部 35:y guidance department

37:吸附搬送設備 37: Adsorption and conveying equipment

39:格子圖像(檢查基準圖像) 39: Lattice image (check reference image)

40a:檢查圖像 40a: Check image

40d:基準圖像 40d: Reference image

41:縱線 41: vertical line

41a:檢查縱線 41a: Check longitudinal lines

41d:基準縱線 41d: Datum longitudinal line

42:橫線 42:Horizontal line

42a:檢查橫線 42a: Check horizontal lines

42d:基準橫線 42d: Datum horizontal line

43a,43d:外框 43a, 43d: outer frame

51:大型之光反射元件 51:Large light reflective element

52:透明平板 52: Transparent flat panel

53:x導引部 53:x guide department

54:y導引部 54:y guidance department

55,56:可動導引部 55,56: Movable guide part

57:角部 57: corner

58:中型之光反射元件 58: Medium-sized light reflective element

60:透明平板 60: transparent plate

61~64:單位光反射元件 61~64: unit light reflection element

65:大型之光反射元件 65:Large light reflective element

66:顯示器 66: display

68:相機 68: camera

69:光反射面 69: light reflective surface

71:不連續部 71: Discontinuous part

72:落差部 72: Drop Department

101:光反射元件 101: Light reflection element

102:光反射元件 102: Light reflection element

103:透光部 103: Translucent part

104:平面體(基台部) 104: planar body (abutment)

105:光反射元件(參考鏡面板) 105: Light reflection element (refer to mirror panel)

106:空中影像 106: Aerial image

107:空中影像 107: Aerial image

108:被投影物(圖) 108: Projected Object (Figure)

110:光反射元件(鏡面板) 110: Light reflection element (mirror panel)

111:光反射元件(鏡面板) 111: Light reflection element (mirror panel)

112:光反射元件 112: Light reflection element

113:鏡影像(實像) 113: mirror image (real image)

114:被投影物 114: Projected object

A,B,C:光反射元件 A,B,C: light reflective element

An:偏移 An: Offset

Am:偏移 Am: Offset

Ku:值 Ku: value

Ks:值 Ks: value

P:側面 P: side

P1:新的側面 P1: new profile

P2:光學端面 P2: Optical end face

Q:側面 Q: side

Q1:側面 Q1: side

Q2:積層端面 Q2:Laminated end face

R:側面 R: side

R1:新的側面 R1: New side

R2:光學端面 R2: Optical end face

S:側面 S: side

S1:側面 S1: side

S2:積層端面 S2: laminated end face

T:側面 T: side

T1:頂面 T1: top surface

T2:積層端面 T2: laminated end face

U:底面 U: Bottom

U1:底面 U1: bottom surface

U2:積層端面 U2: laminated end face

h:高度 h: height

w:寬度 w: width

x:x軸方向 x: x-axis direction

y:y軸方向 y: y-axis direction

z:z軸方向 z: z-axis direction

θ:繞z軸的旋轉 θ: rotation around the z-axis

圖1(A)是單位光反射元件的說明圖,(B)是使用同單位光反射元件製造之習知之光學成像裝置的說明圖,(C)是使用同光學成像裝置製造之習知之大型之光學成像裝置的說明圖,(D)是從同一大型之光學成像裝置切出之習知之其他光學成像裝置的平面圖。 1(A) is an explanatory diagram of a unit light reflection element, (B) is an explanatory diagram of a conventional optical imaging device manufactured using the same unit light reflection element, and (C) is a conventional large-scale optical imaging device manufactured using the same optical imaging device. An explanatory diagram of the optical imaging device, (D) is a plan view of other known optical imaging devices cut out from the same large optical imaging device.

圖2(A)是本發明之一實施例之大型之光反射元件的製造方法所使用之單位光反射元件在製造時使用之塊材的立體圖,(B)是同塊材之加工狀態的平面圖。 Fig. 2(A) is a perspective view of a block used in the manufacture of a unit light reflective element used in the manufacturing method of a large light reflective element according to an embodiment of the present invention, and (B) is a plan view of the processed state of the same block .

圖3(A)是顯示同塊體之切斷處的平面圖,(B)是同側面圖,(C)是同正面圖((B)中切斷間距被極為粗略地記載,但塊體有例如500~3000片的光反射基材)。 Fig. 3(A) is a plan view showing the cutting part of the same block, (B) is the same side view, (C) is the same front view ((B) the cutting distance is very roughly recorded, but the block has For example, 500~3000 pieces of light reflective substrate).

圖4(A)是從同塊體切出之狀態之光反射基材的側面圖,(B)是同正面圖。 Fig. 4(A) is a side view of the light-reflecting substrate cut out from the same block, and (B) is the same front view.

圖5(A)是經過研磨之單位光反射元件的側面圖,(B)是同立體圖。 Fig. 5(A) is a side view of a polished unit light reflection element, and Fig. 5(B) is a perspective view of the same.

圖6是載置同單位光反射元件之透明平板的平面圖。 Fig. 6 is a plan view of a transparent flat plate on which the same unit light reflection element is placed.

圖7(A)是本發明之一實施例之大型之光反射元件的製造方法所使用之單位光反射元件的個別檢查(良窳判定)的說明圖,(B)是表示於顯示裝置之檢查基準圖像(格子圖像),(C)是攝像裝置所拍攝之基準圖像或檢查圖像。 7(A) is an explanatory diagram of individual inspection (determination of goodness) of a unit light reflection element used in the method of manufacturing a large-scale light reflection element according to an embodiment of the present invention, and (B) shows the inspection on a display device. The reference image (grid image), (C) is the reference image or inspection image captured by the imaging device.

圖8是攝像裝置所拍攝之檢查圖像的分析圖。 FIG. 8 is an analysis diagram of an inspection image captured by an imaging device.

圖9是本發明之一實施例之大型之光反射元件的製造方法的說明圖。 Fig. 9 is an explanatory diagram of a method of manufacturing a large-sized light reflection element according to an embodiment of the present invention.

圖10(A)、(B)是大型之光反射元件之良窳判定方法的說明圖。 10(A) and (B) are explanatory views of a method of judging the goodness of a large-sized light reflection element.

圖11(A)是攝像裝置所拍攝之檢查圖像,(B)是其詳細說明圖。 Fig. 11(A) is an inspection image captured by an imaging device, and Fig. 11(B) is a detailed view thereof.

圖12(A)是攝像裝置所拍攝之其他檢查圖像,(B)是其詳細說明圖。 Fig. 12(A) is another inspection image captured by the imaging device, and Fig. 12(B) is a detailed view thereof.

圖13是本發明之其他實施例之光學成像裝置的製造方法的說明圖。 FIG. 13 is an explanatory diagram of a method of manufacturing an optical imaging device according to another embodiment of the present invention.

圖14是習知例之光學成像裝置的製造方法的說明圖。 FIG. 14 is an explanatory diagram of a conventional method of manufacturing an optical imaging device.

圖15是習知例之光學成像裝置的製造方法的說明圖。 FIG. 15 is an explanatory diagram of a conventional method of manufacturing an optical imaging device.

較佳實施例之詳細說明 Detailed Description of the Preferred Embodiment

接著,一面參照添附圖式,一面說明本發明之一實施例的大型之光反射元件的製造方法及光學成像裝置的製造方法。 Next, a method of manufacturing a large light reflection element and a method of manufacturing an optical imaging device according to an embodiment of the present invention will be described with reference to the attached drawings.

在說明本發明之大型之光反射元件的製造方法及光學成像裝置的製造方法之前,首先,說明習知之光學成像裝置的製造方法。 Before explaining the manufacturing method of the large-scale light reflection element and the manufacturing method of the optical imaging device of the present invention, firstly, the manufacturing method of the conventional optical imaging device will be described.

圖1(A)是顯示從平面來看為正方形(一邊為90~200mm)的單位光反射元件10。單位光反射元件10是光反射材12以一定的間距平行配置多數個而構成者,前述光反射材12是於透明平板11的內部由相對於透明平板11之表面(或背面,即,其中一面)垂直的鋁等金屬蒸鍍膜(金屬蒸鍍層)形成。而且,符號11a是顯示單位光反射元件10的光穿透部,各光反射材12的表面是發揮作為光反射面12a的功能。將2片單位光反射元件10以從平面來看光反射面12a會正交的方式重疊,藉此可形成圖1(B)所示之光學成像裝置13,但在此構成中,難以製造一邊大於20cm的光學成像裝置。 FIG. 1(A) shows a unit light reflection element 10 that is square (90 to 200 mm on one side) viewed from a plane. The unit light reflection element 10 is formed by arranging a plurality of light reflection materials 12 in parallel at a certain distance. ) Vertical metal vapor deposition film (metal vapor deposition layer) such as aluminum is formed. Moreover, the symbol 11a shows the light transmission part of the unit light reflection element 10, and the surface of each light reflection material 12 functions as the light reflection surface 12a. The optical imaging device 13 shown in FIG. Optical imaging devices larger than 20cm.

因此,現狀是藉由將複數個小型之光學成像裝置13呈平面狀(縱橫地)排列且貼合,而製造出圖1(C)所示的大型之光學成像裝置15。此時,藉由將2以上之自然數n之二次方個的光學成像裝置每n個縱橫地配置,可製造出從平面來看為正方形的大型之光學成像裝置,但大型之光學成像裝置從平面來看未必要是正方形,可因應於大型之光學成像裝置的大小及形狀,而適宜選擇貼合的小型之光學成像裝置的數目及配置。 Therefore, the current situation is to manufacture a large optical imaging device 15 as shown in FIG. In this case, a large optical imaging device that is square in plan view can be manufactured by arranging n optical imaging devices of a natural number n of 2 or more squarely arranged vertically and horizontally. However, a large optical imaging device It does not have to be a square in plan view, and the number and configuration of small optical imaging devices to be bonded can be appropriately selected according to the size and shape of the large optical imaging device.

但,如圖1(C)所示之光學成像裝置15,將在正交於正方形之一邊的方向上排列的光反射面12a相對於觀察者呈垂直或水平來使用時,會有來自對象物的光僅 在上下任一者的單位光反射元件10的光反射面12a反射、不成像的問題。因此,實際上,是如圖1(C)假想線所示,將大型之光學成像裝置15的角部16斜向切斷,並如圖1(D)所示,製造出從平面來看的外形成為正方形且各光反射面12a相對於正方形的各邊傾斜45度的光學成像裝置17來使用。 But, when the optical imaging device 15 shown in Figure 1 (C) will be vertical or horizontal to the observer when the light reflection surface 12a arranged in the direction perpendicular to one side of the square is used, there will be light from the object. light only The problem that the light reflection surface 12a of the unit light reflection element 10 either up or down reflects and does not form an image. Therefore, in fact, as shown in FIG. 1(C) imaginary line, the corner 16 of the large-scale optical imaging device 15 is obliquely cut, and as shown in FIG. 1(D), a plane-viewed The optical imaging device 17 whose outer shape is a square and each light reflection surface 12a is inclined at 45 degrees with respect to each side of the square is used.

可是,由於圖1(B)所示之光學成像裝置13是令上下各1片單位光反射元件10為1組者,因此即使在各單位光反射元件10存在稍微的扭曲等也正常地成像,相對於此,將複數個光學成像裝置13組合而製出之圖1(C)之大型之光學成像裝置15及從光學成像裝置15切出而製出之圖1(D)的光學成像裝置17中,會有因為各光學成像裝置13(各單位光反射元件10)之各光反射面12a之微小的偏移、扭曲、彎曲等組合而成像扭曲。也就是說,在製造一邊為9~20cm之單位光反射元件10的過程中,因為微妙的外在因素而光反射材12(光反射面12a)扭曲、彎曲時,結果會發生諸如在大型之光學成像裝置15發生光學的扭曲、特地組裝的大型之光學成像裝置15變得無法使用的問題,因此至今期望著在組裝階段一個個地判斷單位光反射元件10的良窳。 However, since the optical imaging device 13 shown in FIG. 1(B) is made of one set of unit light reflection elements 10 up and down, even if there is a slight twist in each unit light reflection element 10, it can image normally. In contrast, the large-scale optical imaging device 15 of FIG. 1(C) produced by combining a plurality of optical imaging devices 13 and the optical imaging device 17 of FIG. 1(D) produced by cutting out the optical imaging device 15 In this case, there will be imaging distortion due to combinations of slight offset, twist, and bend of each light reflection surface 12a of each optical imaging device 13 (each unit light reflection element 10 ). That is to say, in the process of manufacturing a unit light reflective element 10 with a side of 9-20 cm, when the light reflective material 12 (light reflective surface 12a) is twisted or bent due to subtle external factors, the result will occur such as large-scale Optical distortion occurs in the optical imaging device 15 , and a specially assembled large optical imaging device 15 becomes unusable. Therefore, it has been desired to judge the quality of the unit light reflection elements 10 one by one in the assembly stage.

因此,確認如下情況而完成本發明,該情況是在製造光學成像裝置13之前的單位光反射元件10(參照圖1(A))的階段,確認於各單位光反射元件10的構成無異常或缺陷,並使用無異常等的單位光反射元件10,首先,製作大型之光反射元件,並將該2片大型之光反射元件以從平面來看光反射面正交的方式來重疊,藉此可製造大型之光學成像裝置。藉由將從平面來看為正方形的單位光反射元件組合4片(或9片、16片,即,2以上之自然數n的二次方片數),可製出從平面來看為正方形之大型之光反射元件。再者,只要是大型之光反射元件從平面來看為正方形即可,單位光反射元件未必要是從平面來看為正方形,構成大型之光反射元件的單位光反射元件的形狀、數量及配置可適宜選擇。 Therefore, the present invention has been completed by confirming that there is no abnormality or abnormality in the structure of each unit light reflection element 10 at the stage of the unit light reflection element 10 (see FIG. 1(A)) before manufacturing the optical imaging device 13. defect, and use unit light reflective elements 10 without abnormalities etc., first, make a large light reflective element, and overlap the two large light reflective elements in a way that the light reflective surfaces are perpendicular to each other when viewed from a plane, thereby Large-scale optical imaging devices can be manufactured. By combining 4 pieces (or 9 pieces, 16 pieces, that is, the number of square pieces of a natural number n greater than 2) of unit light reflection elements that are square when viewed from the plane, it is possible to produce a square that is square when viewed from the plane. A large light reflective element. Furthermore, as long as the large-scale light reflection element is square in plan view, the unit light reflection element does not have to be square in plan view. The shape, number and arrangement of the unit light reflection elements constituting the large-scale light reflection element Can be selected appropriately.

在製造大型之光反射元件及大型之光學成像裝置時,首先,一面 參考圖2~圖5,一面說明便宜且精度佳地製造本發明之一實施例之大型之光反射元件的製造方法所使用之單位光反射元件28(單位光反射元件28具有與單位光反射元件10同樣的構造)的新方法。如圖2(A)顯示其一部分,準備光穿透率高、厚度不均極小(例如,厚度的誤差在5%以下,較佳的是1%以下)、且厚度為例如0.2~2mm之板玻璃或硬質之透明樹脂板構成的複數個透明板材20。透明板材20的尺寸可設定為90~250mm之矩形(也包含正方形),可使用面粗度在100nm以下(宜為50nm以下,更宜為10nm以下)者,但不限定於該等。再者,圖式中▽▽▽是顯示鏡面研磨。 When manufacturing large-scale light reflection elements and large-scale optical imaging devices, first of all, Referring to Fig. 2 ~ Fig. 5, the unit light reflective element 28 (unit light reflective element 28 has the unit light reflective element 28 that is used for the manufacturing method of the large-scale light reflective element of one embodiment of the present invention cheaply and accurately is described 10 the same structure) of the new method. As shown in Figure 2(A), prepare a plate with high light transmittance, extremely small thickness unevenness (for example, the error of thickness is less than 5%, preferably less than 1%), and the thickness is, for example, 0.2~2mm A plurality of transparent boards 20 made of glass or hard transparent resin boards. The size of the transparent plate 20 can be set to a rectangle (including a square) of 90-250mm, and the surface thickness can be used below 100nm (preferably below 50nm, more preferably below 10nm), but it is not limited to these. Furthermore, ▽▽▽ in the drawing indicates mirror polishing.

將該透明板材20放入真空爐,於其單面(或兩面)進行鋁等(亦可為白色系金屬)的金屬蒸鍍。再者,該金屬蒸鍍層(金屬蒸鍍膜)構成光反射材21。藉由光反射材21,最後如圖3(B)之放大圖所示,於透明板材20之單面(或兩面)形成光反射面22。又,在此,光反射材亦可使用金屬製反射板(例如,鏡面板)來取代金屬蒸鍍層,但此種情況可僅於透明板材20之單面形成(配置)。 The transparent board 20 is put into a vacuum furnace, and metal vapor deposition such as aluminum (or white metal) is performed on one side (or both sides) thereof. In addition, this metal vapor-deposition layer (metal vapor-deposition film) constitutes the light reflection material 21 . With the light reflection material 21, finally, as shown in the enlarged view of FIG. 3(B), a light reflection surface 22 is formed on one side (or both sides) of the transparent plate 20. In addition, here, instead of the vapor-deposited metal layer, a metal reflection plate (for example, a mirror plate) may be used as the light reflection material, but in this case, it may be formed (arranged) only on one side of the transparent plate 20 .

其次,透過透明的接著劑,將形成有該光反射面22的透明板材20按壓積層複數片(例如,500~1500片)。在此,接著劑可使用熱硬化型、紫外線硬化型、常溫硬化型、2液混合型等。藉此,如圖2(A)所示,可得到6面為矩形的四角柱狀(立方體、或長方體)之塊材23。在此,各透明板材20從下往上堆疊,令塊材23之周圍的側面為P、Q、R、S,令頂面及底面為T、U。 Next, a plurality of sheets (for example, 500 to 1500 sheets) of the transparent plate 20 formed with the light reflection surface 22 are pressed and laminated through a transparent adhesive. Here, as the adhesive, a thermosetting type, an ultraviolet curing type, a room temperature curing type, a two-component mixing type, or the like can be used. Thereby, as shown in FIG. 2(A) , a block 23 having six sides in the shape of a rectangular column (cube or cuboid) can be obtained. Here, the transparent boards 20 are stacked from bottom to top, let the side faces around the block 23 be P, Q, R, S, and let the top and bottom faces be T, U.

由於塊材23的頂面T及底面U為透明板材20的表面或光反射材21(金屬蒸鍍面),因此,即使不研磨也保持在100nm以下(例如10nm)的表面粗度。再者,成為基準面的頂面T及底面U必須在±0.05度、宜為±0.02度以內的範圍內平行、及從頂面T到底面U的距離(間隔)、即塊材23的高度h必須是正確的,因此視需要而在真空中以平面軋製等予以緊壓來調整高度(高度調整可在接著劑固化前或中途進行)。又,頂面T與底面U的平行度、尺寸(誤差宜在1μm以內),宜以三維 測定器、或高度測定器等來測定、確認(以上為第1製程)。 Since the top surface T and the bottom surface U of the block 23 are the surface of the transparent plate 20 or the light reflection material 21 (metal deposition surface), the surface roughness is maintained at 100 nm or less (for example, 10 nm) even without polishing. Furthermore, the top surface T and the bottom surface U to be the reference plane must be parallel within the range of ±0.05 degrees, preferably ±0.02 degrees, and the distance (interval) from the top surface T to the bottom surface U, that is, the height of the block 23 h must be correct, so if necessary, adjust the height by pressing in a vacuum with flat rolling or the like (height adjustment can be performed before or during the curing of the adhesive). In addition, the parallelism and size of the top surface T and the bottom surface U (the error should be within 1 μm) should be measured in three dimensions. Measure and confirm with a measuring device or a height measuring device (the above is the first process).

其次,進行切斷加工,前述切斷加工是從正面來看(從側面P來看)塊材23,將其寬度方向的兩端部與對向的側面Q、S略平行地切斷來進行寬度調整(粗調整)。此是如圖2(B)、圖3(A)~(C)所示,藉由將塊材23暫置於水平配置的平板24上,利用設置於平板24的複數個真空吸附口27來吸引保持塊材23,並利用帶鋸機(或其他切斷設備)予以切斷而進行的。接著,研磨業經切斷加工的兩側面(兩切斷面),藉此新形成2個側面Q1、S1。該等側面Q1、S1相對於頂面T或底面U是垂直的,從側面Q1到側面S1的距離(寬度)w與高度h相等。藉此,如圖3(A)~(C)所示,形成寬度縮短(具有寬度w)之新的頂面T1與底面U1、以及被具有與寬度w相等之高度h之新的側面Q1、S1包圍之新的側面P1、R1成為完全的正方形之塊體25(尺寸精度為例如0.5μm以內)(以上為第2製程)。再者,考慮到研磨量,切斷加工後之兩側面(兩切斷面)的距離被切斷成比高度h略大(研磨後的寬度w+研磨量),藉此在研磨後得到所期望的尺寸。 Next, a cutting process is performed. The above-mentioned cutting process is performed by cutting the block material 23 from the front (viewed from the side surface P), and cutting the two ends in the width direction approximately parallel to the opposing side surfaces Q and S. Width adjustment (coarse adjustment). This is shown in Figure 2(B) and Figure 3(A)~(C), by temporarily placing the block material 23 on a flat plate 24 arranged horizontally, and utilizing a plurality of vacuum suction ports 27 arranged on the flat plate 24 to The blocks 23 are sucked and held, and cut with a band saw (or other cutting equipment). Next, the two side surfaces (two cut surfaces) subjected to the cutting process are ground to form two new side surfaces Q1, S1. The side surfaces Q1 and S1 are perpendicular to the top surface T or the bottom surface U, and the distance (width) w from the side surface Q1 to the side surface S1 is equal to the height h. Thereby, as shown in Fig. 3 (A) ~ (C), form the new top surface T1 and bottom surface U1 of shortened width (having width w), and the new side surface Q1 that has the height h equal to width w equal, The new side faces P1 and R1 surrounded by S1 become a complete square block 25 (with a dimensional accuracy within 0.5 μm, for example) (the above is the second process). Furthermore, considering the amount of grinding, the distance between the two sides (two cut surfaces) after cutting is cut to be slightly larger than the height h (width w after grinding + amount of grinding), so that the desired surface can be obtained after grinding. size of.

其次,如圖3、圖4所示,將被側面S1、底面U1、側面Q1、頂面T1包圍,且從側面P1側來看為正方形的塊體25置於平板24上且予以固定,與側面P1(或側面R1)平行地依序或同時切斷複數處,而如圖4(A)、(B)所示,製造厚度為規格厚度(0.5~2mm)+研磨量的製造光反射基材26(以上為第3製程)。 Next, as shown in Fig. 3 and Fig. 4, the block body 25 surrounded by the side S1, the bottom U1, the side Q1, and the top T1 and viewed from the side P1 is placed on the flat plate 24 and fixed, and The side P1 (or side R1) cuts off multiple places in parallel sequentially or simultaneously, and as shown in Figure 4 (A) and (B), the manufacturing thickness is the standard thickness (0.5~2mm) + grinding amount of the manufacturing light reflection base Material 26 (the above is the third process).

其次,將切斷之光反射基材26的端面(切斷面)進行鏡面研磨,作為光學端面P2、R2,製造規格尺寸厚的單位光反射元件28。 Next, the end surfaces (cut surfaces) of the cut light reflection base material 26 are mirror-polished to form the optical end surfaces P2 and R2 to manufacture a unit light reflection element 28 having a thickness of the standard size.

於圖5(A)、(B)顯示相鄰之積層端面Q2、T2、S2、U2正交之預定厚度的單位光反射元件28,但在該實施例中,只於以透明板材20形成之光穿透部20a的單面形成光反射材21(參照圖4(A)之放大圖),故於單位光反射元件28的底面(積層端面U2),如圖5(A)所示,光穿透部20a露出。相對於此,在光穿透部20a的兩面形成有光反射材21的情況則是於上下兩面(積層端面T2、U2)形成具有光反射材21的 單位光反射元件29(參照圖6)。業經研磨的光學端面P2、R2及業經研磨的積層端面Q2、S2的表面粗度可為30nm(或其以下,例如10nm以下)(以上為第4製程)。 5(A), (B) show the unit light reflection element 28 of the predetermined thickness perpendicular to the adjacent laminated end faces Q2, T2, S2, U2, but in this embodiment, only on the transparent plate 20 formed The light reflection material 21 is formed on one side of the light penetrating portion 20a (refer to the enlarged view of FIG. The penetrating portion 20a is exposed. On the other hand, in the case where the light reflection material 21 is formed on both surfaces of the light transmission portion 20a, the light reflection material 21 is formed on the upper and lower surfaces (lamination end surfaces T2, U2). The unit light reflection element 29 (see FIG. 6 ). The surface roughness of the ground optical end faces P2, R2 and the ground laminated end faces Q2, S2 can be 30nm (or less, eg less than 10nm) (the above is the fourth process).

以下,說明本發明之一實施例的大型之光反射元件的製造方法。 Hereinafter, a method of manufacturing a large light reflection element according to an embodiment of the present invention will be described.

使用單位光反射元件28來製造大型之光反射元件時,在與光穿透部20a及光反射材21之積層方向上相鄰之單位光反射元件28是將其中一單位光反射元件28的上表面(積層端面T2)與另一單位光反射元件28的下表面(積層端面U2)相向貼合,藉此光穿透部20a與光反射材21交互地配置。相對於此,使用在上下兩面(積層端面T2、U2)具有光反射材21之單位光反射元件29製造大型之光反射元件時,在光穿透部20a及光反射材21之積層方向上相鄰之單位光反射元件29會將光反射材21之間接著,但由於金屬蒸鍍膜及接著層的厚度較薄,因此幾乎不會成為問題。 When using the unit light reflection element 28 to manufacture a large-scale light reflection element, the unit light reflection element 28 adjacent to the stacking direction of the light penetrating part 20a and the light reflection material 21 is to place the top of one of the unit light reflection elements 28 The surface (lamination end surface T2 ) and the lower surface (lamination end surface U2 ) of another unit light reflection element 28 face each other, whereby the light penetrating portion 20 a and the light reflection material 21 are arranged alternately. On the other hand, when a large-scale light reflection element is manufactured using a unit light reflection element 29 having a light reflection material 21 on both upper and lower surfaces (lamination end faces T2, U2), the lamination direction of the light transmission part 20a and the light reflection material 21 is opposite. Adjacent unit light reflection elements 29 bond the light reflection materials 21 , but since the metal vapor deposition film and the adhesive layer are thin, there is hardly any problem.

其次,針對單位光反射元件29(單位光反射元件28也同樣,以下以單位光反射元件29作為代表)是否正常(標準規格)製造進行檢查的設備及方法予以說明。一開始要將大面積的透明板材及光反射材積層以製造大型之光反射元件(鏡面板)時,需要大型之製造裝置,尺寸(平面度)的管理變難,但可製造複數片小型(在本實施例中為150mm平方)之單位光反射元件29將之鋪滿來製造大型之光反射元件。首先,就最初針對各單位光反射元件29個別進行檢查的裝置及方法進行說明。 Next, the equipment and method for inspecting whether the unit light reflection element 29 (the unit light reflection element 28 is the same, and the unit light reflection element 29 will be hereinafter represented) whether it is manufactured normally (standard specification) or not will be described. At the beginning, when large-area transparent boards and light-reflecting materials are laminated to manufacture large-scale light-reflecting elements (mirror panels), large-scale manufacturing equipment is required, and size (flatness) management becomes difficult, but multiple pieces of small ( In this embodiment, the unit light reflection element 29 of 150mm square) is covered to make a large light reflection element. First, an apparatus and method for individually inspecting each unit light reflection element 29 will be described first.

如圖6、圖7(A)所示,單位光反射元件之檢查裝置30具有:固定配置的透明平板31;顯示裝置(顯示器)32,是相對於透明平板31傾斜40~50度而配置於透明平板31的下方(一側),前述透明平板31於預定位置配置有從平面來看為正方形的單位光反射元件29;及攝像裝置33,從單位光反射元件29的上側(另一側)經由單位光反射元件29拍攝顯示裝置32之圖像的鏡像。 As shown in Fig. 6 and Fig. 7 (A), the inspection device 30 of the unit light reflection element has: a transparent flat plate 31 fixedly arranged; Below (one side) of transparent plate 31, above-mentioned transparent plate 31 is arranged with the unit light reflection element 29 that is square when viewed from the plane at predetermined position; A mirror image of the image of the display device 32 is captured via the unit light reflection element 29 .

在玻璃板所形成之透明平板31的周圍配置有不圖示的框體,透明 平板31整體如圖7(A)所示,可於水平方向(x軸方向及y軸方向)、垂直方向(z軸方向)上動作,也可傾動(繞x軸及y軸)及樞轉(繞z軸的旋轉θ),可將置放於透明平板31的單位光反射元件29配置在任意的位置。而且,如圖6所示,於透明平板31的x軸方向基部、y軸方向基部,設置有互相正交的x導引部34與y導引部35,可將置放於透明平板31上的單位光反射元件29定位成與光反射面22成為相同方向(暫時固定)。又,亦可設置用以將載置於透明平板31之單位光反射元件29真空吸引而保持於該處(暫時固定)的複數個吸附機構,但由於會妨礙測定,因此較佳的是設置按壓機構29a、29b,從側方將單位光反射元件29進行按壓夾持。於透明平板31的上方,如圖7(A)所示,設置有進行單位光反射元件29之搬送的吸附搬送設備37。 A frame (not shown) is disposed around a transparent flat plate 31 formed of a glass plate, and is transparent. As shown in Figure 7(A) as a whole, the plate 31 can move in the horizontal direction (x-axis direction and y-axis direction), vertical direction (z-axis direction), and can also tilt (around the x-axis and y-axis direction) and pivot (rotation θ around the z-axis), the unit light reflection elements 29 placed on the transparent plate 31 can be arranged at any position. Moreover, as shown in FIG. 6 , at the base of the x-axis direction and the base of the y-axis direction of the transparent flat plate 31, mutually orthogonal x-guiding portions 34 and y-guiding portions 35 are provided, so that the transparent flat plate 31 can be placed The unit light reflection elements 29 are positioned in the same direction as the light reflection surface 22 (temporarily fixed). Also, it is also possible to provide a plurality of suction mechanisms for vacuum suctioning and holding (temporarily fixing) the unit light reflection elements 29 mounted on the transparent flat plate 31 there, but it is preferable to provide a pressing mechanism because it will interfere with the measurement. The mechanisms 29a, 29b press and hold the unit light reflection element 29 from the side. Above the transparent flat plate 31 , as shown in FIG. 7(A) , an adsorption transport device 37 for transporting the unit light reflection elements 29 is provided.

如圖7(B)所示,於顯示裝置32顯示為檢查基準圖像之一例的整體為正方形的格子圖像39。在此,格子圖像39是垂直於x軸方向(與y軸方向平行)的複數條縱線41、及與x軸方向平行的複數條橫線42分別以預定間距(一定間隔)配置而成為格子狀。透過在各光反射面22無彎曲或扭曲之正規(基準)的單位光反射元件29d,以攝像裝置33拍攝該格子圖像39時,可得到如圖7(C)所示之基準圖像40d,因此保存作為基準圖像資料。在此,由於在單位光反射元件29d,很多的光反射面22以等間距排列,因此與透過一片鏡子看格子圖像39時的圖像不同,會是透過平行配置之複數個光反射面22看格子圖像39,如圖7(C)所示,基準圖像40d看起來是格子圖像39的縱線41、橫線42分別變形為基準縱線41d、基準橫線42d的梯形。再者,為基準的單位光反射元件29d的尺寸(規格)宜與要進行檢查的單位光反射元件29一致。又,格子圖像宜為使用電腦合成的圖像,但不限定於此,只要縱線與橫線正確地以一定間隔描繪即可。 As shown in FIG. 7(B), an overall square grid image 39 as an example of an inspection reference image is displayed on the display device 32 . Here, the grid image 39 is formed by arranging a plurality of vertical lines 41 perpendicular to the x-axis direction (parallel to the y-axis direction) and a plurality of horizontal lines 42 parallel to the x-axis direction at predetermined pitches (regular intervals). lattice. When the grid image 39 is photographed by the imaging device 33 through a regular (standard) unit light reflection element 29d without bending or twisting on each light reflection surface 22, a reference image 40d as shown in FIG. 7(C) can be obtained. , so it is saved as the reference image data. Here, since many light reflecting surfaces 22 are arranged at equal intervals in the unit light reflecting element 29d, it is different from the image when viewing the grid image 39 through a single mirror, and it will pass through a plurality of light reflecting surfaces 22 arranged in parallel. Looking at the grid image 39, as shown in FIG. 7(C), the reference image 40d appears to be a trapezoid in which the vertical lines 41 and horizontal lines 42 of the grid image 39 are respectively transformed into reference vertical lines 41d and reference horizontal lines 42d. Furthermore, it is desirable that the size (specification) of the unit light reflection element 29d used as a reference is consistent with that of the unit light reflection element 29 to be inspected. In addition, the grid image is preferably an image synthesized using a computer, but is not limited thereto, as long as the vertical lines and horizontal lines are accurately drawn at regular intervals.

其次,在判斷單位光反射元件29的良窳時,將要進行檢查的單位光反射元件29載置於透明平板31上進行定位。接著,以與單位光反射元件29d同樣的順序,將顯示於顯示裝置32之格子圖像39的鏡像經由單位光反射元件29而 以攝像裝置33拍攝,得到檢查圖像40a。而且,雖然藉由於檢查圖像40a重疊基準圖像40d來顯示以進行檢查,但檢查圖像40a也成為與基準圖像40d幾乎相同的圖像,因此,將基準圖像40d或檢查圖像40a移動、放大縮小而將兩者的輪廓對照(重疊),藉此可從檢查圖像40a與基準圖像40d的類似性(相似性)容易地進行比較(檢查)。 Next, when judging the quality of the unit light reflection element 29 , the unit light reflection element 29 to be inspected is placed on the transparent flat plate 31 and positioned. Next, in the same procedure as that of the unit light reflection element 29d, the mirror image of the grid image 39 displayed on the display device 32 is mirrored via the unit light reflection element 29. The inspection image 40a is obtained by photographing with the imaging device 33 . Furthermore, although inspection is performed by displaying the inspection image 40a superimposed on the reference image 40d, the inspection image 40a becomes almost the same image as the reference image 40d. Therefore, the reference image 40d or the inspection image 40a By moving, zooming in and out, and comparing (overlapping) the outlines of both, it is possible to easily compare (check) from the similarity (similarity) between the inspection image 40a and the reference image 40d.

若於單位光反射元件29的光反射面22有異常的話,例如檢查圖像40a之檢查橫線42a偏離基準圖像40d之基準橫線42d,因此可從其檢查橫線42a之扭曲(偏位)來判斷單位光反射元件29的良窳。再者,亦可取代將檢查圖像40a與基準圖像40d完全重疊(使表示倍率一致),而是例如將檢查圖像40a的大小以相對於基準圖像40d縱橫0.9~0.98倍的範圍縮小。 If there is abnormality in the light reflection surface 22 of the unit light reflection element 29, for example, the inspection horizontal line 42a of the inspection image 40a deviates from the reference horizontal line 42d of the reference image 40d, so the distortion (deviation) of the inspection horizontal line 42a can be obtained from it. ) to judge the quality of the unit light reflection element 29. In addition, instead of completely overlapping the inspection image 40a and the reference image 40d (making the display magnification consistent), for example, the size of the inspection image 40a may be reduced in a range of 0.9 to 0.98 times the reference image 40d vertically and horizontally. .

以上之良窳的判定亦可以目視來進行,但由於會有良、不良之界線不明確的情況,因此宜使用電腦來進行運算處理(圖像處理)。 The above-mentioned good or bad judgment can also be carried out visually, but since the boundary line between good and bad may not be clear, it is advisable to use a computer for calculation processing (image processing).

以下,說明電腦進行之基準圖像40d與檢查圖像40a之類似性的判斷(良窳判定)的一例。在此,如圖8所示,於基準圖像40d之外框43d內之各基準縱線41d標上x1、x2...xn...,於各基準橫線42d標上y1、y2...yn...。n可為例如5~50左右。再者,比較基準圖像40d與檢查圖像40a時,亦可盡量使各個外框43d、43a一致。但,以目視進行比較時,只要觀察檢查橫線42a的扭曲即可,因此外框43d、43a的一致並非必要的要件。 Hereinafter, an example of the determination of the similarity between the reference image 40d and the inspection image 40a (good or bad determination) by a computer will be described. Here, as shown in FIG. 8, mark x1, x2...xn... on each reference vertical line 41d inside the outer frame 43d of the reference image 40d, and mark y1, y2 on each reference horizontal line 42d. ..yn.... n may be, for example, about 5 to 50. Furthermore, when comparing the reference image 40d and the inspection image 40a, the outer frames 43d and 43a may be made to match as much as possible. However, when comparing visually, it is only necessary to observe and check the distortion of the horizontal line 42a, and therefore the matching of the outer frames 43d and 43a is not an essential requirement.

要進行檢查的單位光反射元件29有異常時,由於檢查橫線42a的位置朝上或下方向偏離基準圖像40d之基準橫線42d,因此在各基準縱線41d(x1、x2...xn..,)與各檢查橫線42a交錯的位置,測定各檢查橫線42a之上方向的偏移An而算出其最大值(或平均值),並且其值Ku比基準值大時(情況1),或,測定各檢查橫線42a之下方向的偏移Am(未圖示)而算出其最大值(或平均值),其值Ks大於基準值時(情況2),則判斷為於單位光反射元件29有異常,為不良。測定出之值Ku、 Ks宜採用以畫素之單位計測之值較大者。基準值是藉由實驗求出。再者,單位光反射元件29的光反射面22是沿著檢查圖像40a的檢查橫線42a,因此若單位光反射元件29正確置放的話,通常不會觀測檢查縱線41a的扭曲。 When there is abnormality in the unit light reflection element 29 to be inspected, since the position of the inspection horizontal line 42a deviates from the reference horizontal line 42d of the reference image 40d in the upward or downward direction, each reference vertical line 41d (x1, x2... xn..,) intersects with each inspection horizontal line 42a, measure the deviation An above the direction of each inspection horizontal line 42a and calculate its maximum value (or average value), and when its value Ku is larger than the reference value (case 1), or, measure the deviation Am (not shown) in the direction below each inspection horizontal line 42a and calculate its maximum value (or average value), and when its value Ks is greater than the reference value (case 2), then it is judged to be in The unit light reflection element 29 has an abnormality and is defective. The measured value Ku, Ks is preferably the larger value measured in pixel units. The reference value is obtained by experiment. Furthermore, the light reflective surface 22 of the unit light reflective element 29 is along the inspection horizontal line 42a of the inspection image 40a, so if the unit light reflective element 29 is placed correctly, the distortion of the inspection longitudinal line 41a is usually not observed.

在前述方法中,已算出各個測定之各檢查橫線42a之偏移An的最大值(或平均值),但亦可計算所有的偏移An之均方根值(Root Mean Square Value),與預先測定所得到的基準值比較,求出其合格與否(類似程度)。 In the aforementioned method, the maximum value (or average value) of the deviation An of each inspection horizontal line 42a of each measurement has been calculated, but the root mean square value (Root Mean Square Value) of all deviations An can also be calculated, and The standard values measured in advance are compared to determine pass/fail (degree of similarity).

如此,判斷正方形之單位光反射元件29的良窳,將4片(或9片或者16片)之良品的單位光反射元件29以各光反射面22為相同方向的方式呈平面狀排列貼合,藉此以製造最少2片大型之光反射元件51。接著,如圖9所示,可將2片大型之光反射元件51以各自之光反射面22正交的方式在大型之透明平板52上重疊,藉由互為正交的x導引部53、y導引部54、可動導引部55、56定位而以接著劑接合,形成大型之光學成像裝置。 In this way, to determine the goodness of the square unit light reflection elements 29, arrange and bond four (or nine or 16) good quality unit light reflection elements 29 in a planar manner so that the light reflection surfaces 22 are in the same direction. , so as to manufacture at least two large-scale light reflection elements 51 . Next, as shown in FIG. 9 , two large-scale light reflection elements 51 can be stacked on a large-scale transparent flat plate 52 in such a way that their respective light reflection surfaces 22 are orthogonal to each other. , y guide part 54, movable guide parts 55, 56 are positioned and bonded with adhesive to form a large optical imaging device.

在此,亦可準備與圖7所示之檢查裝置30相同構造的大型物,並且也準備大型之顯示裝置,然後如前述般,以與檢查一片單位光反射元件29同樣的方法檢查大型之光反射元件51,但宜嚴格檢查各個單位光反射元件29,僅準備良品的必要片數,將其等排列接合,藉此以製造大型之光反射元件51。 Here, it is also possible to prepare a large object with the same structure as the inspection device 30 shown in FIG. For the reflective element 51, it is preferable to strictly inspect each unit light reflective element 29, prepare only the necessary number of good products, and arrange and join them to manufacture a large light reflective element 51.

再者,將複數個單位光反射元件排列接合時,將複數個單位光反射元件在透明板上排列,在接合相鄰之單位光反射元件之間,同時對透明板接合各單位光反射元件,藉此可確實地將複數個單位光反射元件一體化,大型之光反射元件之處理性及形態之安定性優異。 Furthermore, when a plurality of unit light reflection elements are arranged and bonded, the plurality of unit light reflection elements are arranged on a transparent plate, and each unit light reflection element is bonded to the transparent plate at the same time between adjacent unit light reflection elements, Thereby, a plurality of unit light reflection elements can be reliably integrated, and a large light reflection element is excellent in handling and shape stability.

又,以上之實施例中,是就單位光反射元件29之整體,針對光反射面22的扭曲進行檢查,但由於發生扭曲的是一部分的情況較多,因此僅針對單位光反射元件29的一部分來進行合格與否之檢查的情況也適用本發明。 Also, in the above embodiment, the whole unit light reflection element 29 is inspected for the distortion of the light reflection surface 22, but since the distortion is often a part of the unit light reflection element 29, only a part of the unit light reflection element 29 is inspected. The present invention is also applicable to the situation where a pass or fail check is performed.

上述實施例中,是從一處進行檢查基準圖像的拍攝或檢查圖像的檢查等,但 為對象之光反射元件是大型之情況時,由於檢查基準圖像也成為大型,因此亦可從複數處同時進行拍攝或檢查,亦可一面使攝像裝置33移動,一面依序拍攝大型之光反射元件的一部分而依每部分比較檢查圖像(鏡像)與基準圖像。再者,以目視觀察時亦可從複數處進行,但基準圖像可有可無。 In the above-mentioned embodiments, shooting of inspection reference images or inspection of inspection images is performed from one place, but When the target light reflection element is large, since the inspection reference image is also large, it is also possible to simultaneously photograph or inspect from multiple places, and it is also possible to sequentially capture large light reflections while moving the imaging device 33 For each part of the component, the inspection image (mirror image) is compared with the reference image. Furthermore, visual observation can also be performed from plural places, but the presence or absence of the reference image is optional.

接著,一面參照圖10(A)、(B)、圖11(A)、(B)、圖12(A)、(B),一面就本發明之一實施例之大型光反射元件的良窳判定方法進行說明。如圖10(A)所示,在透明平板60上,將從平面來看為正方形之單位光反射元件61~64(分別是一邊為90~200mm)以各光反射面69為相同方向的方式密接4片而呈平面狀排列。藉由將該等4片單位光反射元件61~64接合,可得到從平面來看為正方形的大型之光反射元件65,但在此時間點,單位光反射元件61~64未接合(例如,藉由真空吸引暫時固定於透明平板60)。在透明平板60的下方,平面狀之顯示器66是以與透明平板60成一定的角度(40~50度)的方式傾斜配置。於顯示器66顯示了如圖7(B)所示之格子圖像(檢查基準圖像之一例)39。與該格子圖像之縱線及單位光反射元件61~64之各光反射面69平行的橫線之條數與配置(間距)可因應於大型之光反射元件65之光反射面69的數目與配置而自由地設定。 Next, referring to Fig. 10(A), (B), Fig. 11(A), (B), Fig. 12(A), (B), on the one hand, the goodness of the large-scale light reflection element of one embodiment of the present invention The judgment method will be described. As shown in FIG. 10(A), on the transparent plate 60, the unit light reflection elements 61-64 (one side is 90-200mm respectively) which are square in plan view are arranged in the same direction with each light reflection surface 69. 4 sheets are closely bonded and arranged in a planar shape. By bonding these four unit light reflection elements 61 to 64, a large light reflection element 65 that is square in plan view can be obtained, but at this point in time, the unit light reflection elements 61 to 64 are not bonded (for example, Temporarily fixed to the transparent plate 60 by vacuum suction). Below the transparent flat panel 60, the planar display 66 is arranged obliquely so as to form a certain angle (40-50 degrees) with the transparent flat panel 60 . A grid image (an example of an inspection reference image) 39 as shown in FIG. 7(B) is displayed on the display 66 . The number and arrangement (pitch) of the horizontal lines parallel to the vertical lines of the grid image and the light reflection surfaces 69 of the unit light reflection elements 61 to 64 can correspond to the number of light reflection surfaces 69 of the large light reflection element 65 It can be set freely according to configuration.

在此狀態下,使格子圖像39(縱線41、橫線42)顯示於顯示器66,且於大型之光反射元件65之中央基部的正上方位置放置相機68,觀察大型之光反射元件65時,如圖11(A)所示,目視確認檢查圖像。此種情況下,於大型之光反射元件65的一個光反射面69反射1次而進入相機68之橫線42的圖像(鏡像),因應於光反射面69的高度而成為一條或少數條。在此,當相鄰之單位光反射元件61~64之光反射面69的位置偏移時,如圖11(B)所示,由於在檢查縱線41a或檢查橫線42a之連繫部分產生偏移或落差,因此可從該鏡像之連續性判定各單位光反射元件61~64之配置的良與不良。再者,可調整顯示器66的角度等而於檢查圖像(檢查縱線41a或檢查橫線42a)產生最大之偏移(製程A)。 In this state, the grid image 39 (vertical line 41, horizontal line 42) is displayed on the display 66, and the camera 68 is placed directly above the central base of the large-scale light-reflecting element 65 to observe the large-scale light-reflecting element 65 , as shown in FIG. 11(A), the inspection image is visually confirmed. In this case, the image (mirror image) of the horizontal line 42 entering the camera 68 after being reflected once on a light reflection surface 69 of the large light reflection element 65 becomes one or a few according to the height of the light reflection surface 69 . Here, when the positions of the light reflection surfaces 69 of adjacent unit light reflection elements 61 to 64 deviate, as shown in FIG. Therefore, it can be judged from the continuity of the mirror image whether the arrangement of each unit light reflection element 61-64 is good or not. Furthermore, the angle of the display 66 can be adjusted so as to produce the largest deviation from the inspection image (inspection vertical line 41a or inspection horizontal line 42a) (process A).

圖12(A)、(B)顯示了以相機68所拍攝之其他檢查圖像,於檢查縱線41a可看到不連續部71,於檢查橫線42a可看到落差部72,據此,可判定大型之光反射元件65的良窳。 Figure 12 (A), (B) shows other inspection images taken by the camera 68, the discontinuity 71 can be seen on the inspection vertical line 41a, and the drop portion 72 can be seen on the inspection horizontal line 42a, accordingly, The quality of the large light reflection element 65 can be judged.

再者,檢查複數片(2以上之自然數n之二次方片數)的單位光反射元件排列配置的大型之光反射元件時,亦可依序重複一開始將2片之單位光反射元件排列進行檢查,其次加上1片之單位光反射元件來進行檢查的製程A。藉此,相較於同時排列多數個光反射元件進行檢查,更容易特定出不良的單位光反射元件。各光反射元件之移動、置換是以吸附搬送設備進行,將在製程A判定為不良的單位光反射元件與其他單位光反射元件更換,再度實施製程A,藉此,最後僅判斷為良品的單位光反射元件以接著劑固定(接合),而得到大型之光反射元件65。 Furthermore, when inspecting a large-scale light reflection element in which the unit light reflection elements of a plurality of pieces (the number of the square of the natural number n of 2 or more) are arranged in a row, it is also possible to repeat the first two pieces of unit light reflection elements in sequence. Process A where the array is inspected, and then a unit light reflection element is added for inspection. Thereby, compared with arranging a plurality of light reflective elements at the same time for inspection, it is easier to identify defective unit light reflective elements. The movement and replacement of each light reflective element is carried out by suction and transfer equipment. The unit light reflective element judged to be defective in process A is replaced with other unit light reflective elements, and process A is carried out again. In this way, only the units judged as good products are finally determined. The light reflection element is fixed (bonded) with an adhesive to obtain a large light reflection element 65 .

在以上的實施例中,是對一個單位光反射元件只進行從1方向的檢查,但可使單位光反射元件在平面內旋轉180度,而使光反射面22之方向一致來進行再檢查(製程A之確認檢查)。藉此提高良品判定的精度。進而,亦可將為檢查對象的單位光反射元件翻面來進行檢查。再者,在進行本實施例之大型之光反射元件的良窳判定時,亦可省略先前所說明之各單位光反射元件的個別檢查。 In the above embodiments, a unit light reflection element is only inspected from one direction, but the unit light reflection element can be rotated 180 degrees in the plane, and the direction of the light reflection surface 22 is consistent for re-inspection ( Confirmation inspection of process A). In this way, the accuracy of good product judgment can be improved. Furthermore, the unit light reflection element to be inspected may be turned over and inspected. Furthermore, when performing good or bad judgment of the large-scale light reflective element of this embodiment, the individual inspection of each unit light reflective element described above can also be omitted.

再來說明本發明之一實施例之光學成像裝置的製造方法。 Next, a method for manufacturing an optical imaging device according to an embodiment of the present invention will be described.

首先,以從平面來看外形為正方形的方式,將前述之大型之光反射元件65的角部斜向切斷,形成各光反射面69相對於正方形之各邊傾斜45度之中型之光反射元件(未圖示)(製程a)。接著,將2片中型之光反射元件使各自之光反射面69正交來重疊,藉此可製造(中型之)光學成像裝置(製程b)。如此而得到之光學成像裝置與圖1(D)所示之光學成像裝置17是同樣的構造,但藉由對構成其之各單位光反射元件61~64及大型之光反射元件65進行良窳判定,也比以往的大型之光學成像裝置更成為高品質。再者,本實施例中,是在將大型之光反射元件65的角部斜向切斷而形成中型之光反射元件後,將2片之中型之光反射元件使各自的光反射面 69正交來予以重疊(接合)而製造出光學成像裝置,但亦可在將2片之大型之光反射元件65使各自之光反射面69正交來予以重疊接合後,將角部斜向切斷。 First, the corners of the above-mentioned large-scale light reflection elements 65 are obliquely cut in such a way that the outer shape is a square when viewed from a plane, and each light reflection surface 69 is formed as a medium-sized light reflection element inclined at 45 degrees relative to each side of the square. Components (not shown) (process a). Next, the (medium-sized) optical imaging device can be manufactured by overlapping two medium-sized light-reflecting elements so that their respective light-reflecting surfaces 69 are perpendicular to each other (process b). The optical imaging device thus obtained has the same structure as the optical imaging device 17 shown in FIG. Judgment is also higher quality than conventional large-scale optical imaging devices. Furthermore, in the present embodiment, after the corners of the large-scale light reflection element 65 are obliquely cut to form a medium-sized light reflection element, two medium-sized light reflection elements are made so that the respective light reflection surfaces 69 orthogonally overlapped (bonded) to manufacture an optical imaging device, but it is also possible to make the respective light reflecting surfaces 69 of two large-scale light reflecting elements 65 overlapped and bonded orthogonally, and then the corners can be obliquely cut off.

其次就本發明之其他實施例之光學成像裝置的製造方法進行說明。 Next, the manufacturing method of the optical imaging device of other embodiments of the present invention will be described.

如圖13所示,準備2片中型的光反射元件58,前述2片中型的光反射元件58是將在上述之製程a所切取之直角等邊三角形的4片角部(光反射元件之一部分)57合在一起後,各角部57之各光反射面69朝向同一方向,將2片光反射元件58以各個光反射面69正交的方式在大型之透明平板52上重疊,藉此有效利用在上述之製程a所切斷的角部57,而可製造與在上述之製程b所製造出之光學成像裝置同等的光學成像裝置,省資源性優異。再者,將4片角部57接合來製造中型之光反射元件58時,將4片角部57排列於透明板上,將相鄰之角部57之間接合,同時對透明板接合各角部57,藉此可確實地將4片角部57一體化,中型之光反射元件58之處理性及形態之安定性優異。但,如前所述,在將2片大型之光反射元件65接合後,將角部(光學成像裝置之一部分)斜切斷時,僅將切斷的4個角部排列於透明板上,並將相鄰之角部之間接合,同時對透明板接合各角部,即可得到光學成像裝置。 As shown in Figure 13, prepare 2 pieces of medium-sized light reflection elements 58, the above-mentioned 2 pieces of medium-sized light reflection elements 58 are the 4 pieces of corners of the right-angled equilateral triangle cut in the above-mentioned process a (a part of the light reflection element) ) 57 together, each light reflection surface 69 of each corner 57 faces the same direction, and two light reflection elements 58 are overlapped on the large-scale transparent flat plate 52 in the mode that each light reflection surface 69 is orthogonal, thereby effectively Using the corner portion 57 cut off in the above-mentioned process a, an optical imaging device equivalent to the optical imaging device produced in the above-mentioned process b can be manufactured, which is excellent in resource saving. Furthermore, when four corners 57 are joined to manufacture a medium-sized light reflection element 58, four corners 57 are arranged on a transparent plate, and adjacent corners 57 are joined, and each corner is joined to the transparent plate at the same time. 57, so that the four corners 57 can be reliably integrated, and the medium-sized light reflection element 58 is excellent in handling and form stability. However, as mentioned above, when the corners (a part of the optical imaging device) are obliquely cut after joining the two large light reflection elements 65, only the cut four corners are arranged on the transparent plate, The adjacent corners are joined together, and the corners are joined to the transparent plate at the same time to obtain an optical imaging device.

產業上之可利用性 Industrial availability

使用小型之單位光反射元件製造大型之光反射元件時,可簡便地檢查各單位光反射元件及大型之光反射元件,並可便宜地製造高品質的大型之光反射元件及光學成像裝置。 When using small unit light reflective elements to manufacture large light reflective elements, each unit light reflective element and large light reflective elements can be easily inspected, and high-quality large light reflective elements and optical imaging devices can be manufactured cheaply.

39:格子圖像 39: grid image

60:透明平板 60: transparent plate

61~64:單位光反射元件 61~64: unit light reflection element

65:大型之光反射元件 65:Large light reflective element

66:顯示器 66: display

68:相機 68: camera

69:光反射面 69: light reflective surface

Claims (8)

一種大型之光反射元件的製造方法,是單位光反射元件呈平面狀排列複數個而製造之大型之光反射元件的製造方法,前述單位光反射元件具有垂直於其中一面且以預定間隔平行配置的複數個光反射面,前述大型之光反射元件的製造方法的特徵在於包含製程A,前述製程A是將複數個前述單位光反射元件以前述各光反射面為相同方向的方式,配置於透明平板上,於顯示器顯示具有與前述各單位光反射元件之前述各光反射面平行的橫線的檢查基準圖像,然後從前述透明平板之另一側觀察該橫線於前述各光反射面反射1次而形成之鏡像的連續性,判定相鄰之前述單位光反射元件之配置的良窳,前述顯示器與該透明平板具有一定的角度而配置於該透明平板之一側。 A method of manufacturing a large-scale light reflective element, which is a large-scale light reflective element manufactured by arranging a plurality of unit light reflective elements in a planar shape. A plurality of light reflecting surfaces, the manufacturing method of the aforementioned large-scale light reflecting element is characterized in that it includes a process A, the aforementioned process A is to arrange a plurality of the aforementioned unit light reflecting elements on a transparent flat plate in such a way that the aforementioned light reflecting surfaces are in the same direction On the display, display an inspection reference image with a horizontal line parallel to the aforementioned light reflecting surfaces of each of the aforementioned unit light reflecting elements, and then observe the horizontal line from the other side of the aforementioned transparent plate to reflect 1 Next, the continuity of the mirror images formed determines whether the disposition of the adjacent aforementioned unit light reflection elements is good, and the aforementioned display has a certain angle with the transparent flat panel and is arranged on one side of the transparent flat panel. 一種大型之光反射元件的製造方法,是單位光反射元件呈平面狀排列複數個而製造之以平面來看為正方形的大型之光反射元件的製造方法,前述單位光反射元件具有垂直於其中一面且以預定間隔平行配置的複數個光反射面且從平面來看為正方形,前述大型之光反射元件的製造方法的特徵在於包含製程A,前述製程A是將複數個前述單位光反射元件以前述各光反射面為相同方向的方式,配置於透明平板上,於顯示器顯示具有與前述各單位光反射元件之前述各光反射面平行的橫線的檢查基準圖像,然後從前述透明平板之另一側觀察該橫線於前述各光反射面反射1次而形成之鏡像的連續性,判定相鄰之前述單位光反射元件之配置的良窳,前述顯示器與該透明平板具有一定的角度而配置於該透明平板之一側。 A method for manufacturing a large-scale light reflection element, which is a method for manufacturing a large-scale light reflection element that is square in plan view by arranging a plurality of unit light reflection elements in a planar shape. The plurality of light reflection surfaces arranged in parallel at predetermined intervals are square when viewed from a plane, and the manufacturing method of the aforementioned large-scale light reflection element is characterized in that it includes process A. The aforementioned process A is to combine the plurality of aforementioned unit light reflection elements with the aforementioned Each light reflective surface is arranged in the same direction on a transparent flat plate, and the inspection reference image having a horizontal line parallel to the aforementioned light reflective surfaces of each of the aforementioned unit light reflective elements is displayed on the display, and then from the other side of the aforementioned transparent flat plate Observe the continuity of the mirror image formed by reflecting the horizontal line once on each of the aforementioned light-reflecting surfaces, and determine whether the configuration of the adjacent aforementioned unit light-reflecting elements is good. The aforementioned display and the transparent plate are arranged at a certain angle. on one side of the transparent plate. 如請求項1或2之大型之光反射元件的製造方法,其中前述透明平板與前述顯示器構成的角度在40~50度之範圍內。 The method of manufacturing a large-scale light reflection element according to Claim 1 or 2, wherein the angle formed by the aforementioned transparent plate and the aforementioned display is in the range of 40 to 50 degrees. 如請求項1或2之大型之光反射元件的製造方法,其中前述檢查基準圖像具有複數條前述橫線及與該各橫線正交之複數條縱線而呈格子狀。 The manufacturing method of a large-scale light reflection element according to claim 1 or 2, wherein the inspection reference image has a plurality of horizontal lines and a plurality of vertical lines perpendicular to the horizontal lines in a grid shape. 如請求項1或2之大型之光反射元件的製造方法,其是將在前述製程A判定為不良之單位光反射元件與其他單位光反射元件更換,而再度實施前述製程A。 The method of manufacturing a large light reflective element as claimed in claim 1 or 2, which is to replace the unit light reflective element judged to be defective in the aforementioned process A with other unit light reflective elements, and implement the aforementioned process A again. 如請求項1或2之大型之光反射元件的製造方法,其中前述檢查基準圖像是使用電腦合成的圖像。 The method of manufacturing a large-scale light reflective element according to claim 1 or 2, wherein the aforementioned inspection reference image is an image synthesized by a computer. 如請求項1或2之大型之光反射元件的製造方法,其中前述單位光反射元件往前述透明平板的暫時固定是藉由真空吸引而進行。 The manufacturing method of a large-scale light reflective element according to claim 1 or 2, wherein the temporary fixation of the unit light reflective element to the transparent flat plate is performed by vacuum suction. 一種光學成像裝置的製造方法,是使用以請求項2之大型之光反射元件的製造方法所製造出之前述大型之光反射元件而製造之光學成像裝置的製造方法,其特徵在於具有:製程a,以從平面來看外形為正方形的方式,將前述大型之光反射元件的角部斜向切斷,形成前述各光反射面相對於前述正方形之各邊傾斜了45度之中型的光反射元件;及製程b,使各個前述光反射面正交而將2片之前述中型之光反射元件重疊。 A method for manufacturing an optical imaging device, which is a method for manufacturing an optical imaging device using the aforementioned large-scale light reflection element manufactured by the method for manufacturing a large-scale light reflection element in claim 2, characterized in that it has: process a , cutting off the corners of the aforementioned large-scale light reflective element obliquely in such a way that the shape is square when viewed from a plane, forming a medium-sized light reflective element with each light reflective surface inclined at 45 degrees relative to each side of the aforementioned square; And process b, making each of the above-mentioned light-reflecting surfaces orthogonal to each other and overlapping two pieces of the above-mentioned medium-sized light-reflecting elements.
TW110105110A 2020-02-18 2021-02-09 Method for producing large light reflection element and method for producing optical image forming device TWI779490B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020025368 2020-02-18
JP2020-025368 2020-02-18
PCT/JP2020/028314 WO2021166281A1 (en) 2020-02-18 2020-07-21 Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device
WOPCT/JP2020/028314 2020-07-21

Publications (2)

Publication Number Publication Date
TW202141114A TW202141114A (en) 2021-11-01
TWI779490B true TWI779490B (en) 2022-10-01

Family

ID=74879275

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110105110A TWI779490B (en) 2020-02-18 2021-02-09 Method for producing large light reflection element and method for producing optical image forming device

Country Status (3)

Country Link
JP (1) JP6848133B1 (en)
CN (1) CN115087891B (en)
TW (1) TWI779490B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124222A1 (en) * 2012-03-30 2015-05-07 Nitto Denko Corporation Display device
JP2017187646A (en) * 2016-04-06 2017-10-12 コニカミノルタ株式会社 Imaging element and manufacturing method therefor
WO2017175634A1 (en) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 Manufacturing method of imaging element
CN109073889A (en) * 2016-02-04 2018-12-21 迪吉伦斯公司 Holographical wave guide optical tracker

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170146705A1 (en) * 2014-06-27 2017-05-25 Asukanet Company, Ltd. Retroreflective body, and volumetric image display apparatus and volumetric image display method using the same
WO2016178424A1 (en) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 Method for manufacturing image-forming optical element, device for manufacturing image-forming optical element, mirror sheet, and image-forming optical element
WO2017014221A1 (en) * 2015-07-22 2017-01-26 コニカミノルタ株式会社 Optical panel, method for manufacturing optical panel, in-air video display device, and method for manufacturing in-air video display device
CN209946546U (en) * 2019-05-14 2020-01-14 亚斯卡奈特股份有限公司 Large aerial image imaging device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124222A1 (en) * 2012-03-30 2015-05-07 Nitto Denko Corporation Display device
CN109073889A (en) * 2016-02-04 2018-12-21 迪吉伦斯公司 Holographical wave guide optical tracker
WO2017175634A1 (en) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 Manufacturing method of imaging element
JP2017187646A (en) * 2016-04-06 2017-10-12 コニカミノルタ株式会社 Imaging element and manufacturing method therefor

Also Published As

Publication number Publication date
CN115087891A (en) 2022-09-20
TW202141114A (en) 2021-11-01
JPWO2021166281A1 (en) 2021-08-26
CN115087891B (en) 2024-04-12
JP6848133B1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
TWI357969B (en) Method for inspecting polarizer bonding precision
JP5862616B2 (en) Polarizing light irradiation apparatus for photo-alignment and polarized light irradiation method for photo-alignment
CN110398198B (en) Jig for inspecting flexible display panel and inspection apparatus using the same
CN110082922B (en) Substrate laminating device, substrate laminating method, and stereoscopic image display device
JP6446335B2 (en) Imaging optical element and manufacturing method thereof
KR20210117959A (en) System and method for three-dimensional calibration of a vision system
JP2016212417A (en) Image formation optical element evaluation method and image formation optical element fabrication method
JP2016038565A (en) Optical film sticking position measuring device
JP2020046660A (en) Sticking device and sticking method
JP2004233184A (en) Polarizing plate application accuracy inspection method of liquid crystal panel
TWI779490B (en) Method for producing large light reflection element and method for producing optical image forming device
JP6717382B2 (en) Length measuring device
JP2012248728A (en) Die bonder and bonding method
JP5211904B2 (en) Single crystal material plane alignment apparatus and plane alignment method
WO2021166281A1 (en) Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device
JP5580553B2 (en) Camera installation position detection device, detection method, and camera installation position detection jig
JP2018097311A (en) Method for manufacturing optical plate and method for manufacturing aerial image display device
KR100624029B1 (en) Apparatus and method for processing of LCD panel
WO2016203894A1 (en) Method for manufacturing image forming optical element
KR20240103252A (en) OLED panel inspecting apparatus and OLED panel manufacturing system with the same
TW201336646A (en) Apparatus for cutting out optical film chip and method for cutting out optical film chip
KR20110046372A (en) Off-axis sheet-processing device and method for transfer-mode measurement
JPS63102294A (en) Electronic component tester
TWI386658B (en) Light emitter inspecting device and method thereof
JP2017227683A (en) Aerial video display device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent