WO2021166281A1 - Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device - Google Patents

Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device Download PDF

Info

Publication number
WO2021166281A1
WO2021166281A1 PCT/JP2020/028314 JP2020028314W WO2021166281A1 WO 2021166281 A1 WO2021166281 A1 WO 2021166281A1 JP 2020028314 W JP2020028314 W JP 2020028314W WO 2021166281 A1 WO2021166281 A1 WO 2021166281A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflecting
manufacturing
reflecting element
light reflecting
Prior art date
Application number
PCT/JP2020/028314
Other languages
French (fr)
Japanese (ja)
Inventor
誠 大坪
Original Assignee
株式会社アスカネット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アスカネット filed Critical 株式会社アスカネット
Priority to CN202080096452.8A priority Critical patent/CN115087891B/en
Priority to JP2020562217A priority patent/JP6848133B1/en
Priority to TW110105110A priority patent/TWI779490B/en
Publication of WO2021166281A1 publication Critical patent/WO2021166281A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present invention determines the product quality of a large-sized light-reflecting element in which a plurality of unit light-reflecting elements having a large number of light-reflecting surfaces arranged in parallel at predetermined intervals perpendicular to one surface are arranged in a plane.
  • the present invention relates to a method for manufacturing a large-scale light reflecting element including the method, and a method for manufacturing an optical imaging apparatus using the large-sized light reflecting element manufactured by the manufacturing method.
  • Patent Document 1 describes a method for manufacturing an optical imaging device for the purpose of easily and highly accurately manufacturing a large-sized optical imaging device required for a spatial image display device capable of displaying a large spatial image. It is disclosed.
  • two mirror sheets (light reflecting elements) in which a large number of light reflecting surfaces are erected in parallel are provided so that the light reflecting surfaces of the mirror sheets are orthogonal to each other.
  • a predetermined transparent cover in a state where the process of manufacturing a unit optical imaging element by superimposing them in such a manner and a state in which a plurality of unit optical imaging elements are aligned with each other in the direction of the light reflecting surface of the mirror sheet of the adjacent unit optical imaging elements.
  • At least two or more light reflecting elements 101 and 102 are placed on a flat body (base portion) 104 having a light transmitting portion 103, and the reflecting surface is orthogonal to the light reflecting elements 101 and 102.
  • a light reflecting element (reference mirror plate) 105 is arranged below the light transmitting portion 103 of the plane body 104, and an object to be projected is caused by the arrangement of a plurality of reflecting surfaces included in each of the light reflecting elements 101 and 102 adjacent to each other.
  • Another light-reflecting element (reference mirror plate) 112 is arranged so as to straddle the mirror image (real image) 113 of the projected object 114 imaged by the plurality of light-reflecting elements 110 and 111 and the light-reflecting element 112.
  • the light reflecting elements 101, 102, 110, and 111 represent unit reflecting elements.
  • an imaging element (same as a unit optical imaging element) is formed by superimposing two light reflecting elements (same as a mirror sheet) so that the light reflecting surfaces of the light reflecting elements are orthogonal to each other.
  • a plurality of imaging elements are arranged adjacent to a predetermined transparent flat plate (same as the transparent cover plate) in a two-dimensional manner in the plane direction and pressed and fixed to the transparent flat plate. If the light-reflecting surface of the light-reflecting surface is displaced or slightly deformed, there is a problem that the formed image is distorted. Then, when the formed image is distorted, it is necessary to replace the entire imaging element in which the upper and lower light reflecting elements are integrated.
  • the image to be inspected is an aerial image
  • the present invention has been made in view of such circumstances, and in manufacturing a large-scale light-reflecting element by arranging a plurality of unit light-reflecting elements in a plane, light reflection is performed in order to confirm (inspect) the arrangement of the light-reflecting surfaces. It is not necessary to arrange the light reflecting elements whose surfaces are orthogonal to each other vertically, and it is not necessary to form an aerial image or a mirror image. It is an object of the present invention to provide a method for manufacturing a light reflecting element of the above and a method for manufacturing an optical imaging apparatus using a large-scale light reflecting element manufactured by the manufacturing method.
  • a plurality of unit light-reflecting elements having a plurality of light-reflecting surfaces arranged perpendicularly to one surface and parallel to each other at predetermined intervals are arranged in a plane. It is a method of manufacturing a large-scale light-reflecting element that is manufactured by A plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen.
  • the step A is included, in which the continuity of the light reflecting elements is observed from the other side of the transparent platen, and the quality of the arrangement of the adjacent unit light reflecting elements is determined.
  • the method for manufacturing a large-sized light-reflecting element according to the second invention according to the above object is a unit light-reflecting element having a plurality of light-reflecting surfaces perpendicular to one surface and arranged in parallel at predetermined intervals and having a square unit in a plan view.
  • a plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen.
  • the step A is included, in which the continuity of the light reflecting elements is observed from the other side of the transparent platen, and the quality of the arrangement of the adjacent unit light reflecting elements is determined.
  • the unit light-reflecting element is preferably a square having a side of 90 to 200 mm, but the present invention is not limited to this number.
  • the angle formed by the transparent surface plate and the display is preferably in the range of 40 to 50 degrees.
  • the method for manufacturing a large-scale light reflecting element according to the fourth aspect of the present invention is the method for manufacturing a large-scale light reflecting element.
  • the inspection reference image has a plurality of the horizontal lines and a plurality of vertical lines orthogonal to the horizontal lines. It is preferable that the surface is in a grid pattern.
  • the unit light reflecting element determined to be defective in the step A is replaced with another unit light reflecting element, and the step A is performed. It can be done again.
  • the inspection reference image is preferably an image synthesized by using a computer.
  • the unit light-reflecting element is temporarily fixed to the transparent surface plate by vacuum suction.
  • the method for manufacturing a large-scale light reflecting element according to the fifth invention is described in the first to fourth inventions.
  • the unit light reflecting element The first step of laminating a plurality of transparent plate materials via a light reflector and an adhesive to produce a square columnar block material having a height of h and side surfaces P to S around it.
  • the method for manufacturing a large-scale light reflecting element according to the fifth invention a cutting process is performed in which the distance from the side surface Q to the side surface S is roughly adjusted before polishing the side surfaces Q and S in the second step. Is good. Further, in the method for manufacturing a large-sized light reflecting element according to the fifth invention, the roughness of the side surfaces Q and S polished in the second step and the roughness of both end faces of the unit light reflecting element polished in the fourth step. Is preferably 30 nm or less, but the present invention is not limited to this value. In the method for manufacturing a large-sized light-reflecting element according to the fifth invention, the light-reflecting material is preferably a metal-deposited film formed on at least one surface of the transparent plate material, but may be a metal film.
  • the method for manufacturing the optical imaging apparatus according to the sixth invention is the optical imaging manufactured by using the large-sized light-reflecting element manufactured by the method for manufacturing the large-sized light-reflecting element according to the first to fifth inventions. It ’s a manufacturing method of equipment.
  • Step a to form and It has a step b of superimposing two medium-sized light-reflecting elements so that their respective light-reflecting surfaces are orthogonal to each other.
  • the method for manufacturing an optical imaging apparatus is a method of combining four right-angled isosceles triangle-shaped corners cut out in the step a and reflecting the light at each corner.
  • Two medium-sized light-reflecting elements whose surfaces face in the same direction are prepared, and the two light-reflecting elements are superposed so that the respective light-reflecting surfaces are orthogonal to each other.
  • the method for manufacturing a large-scale light-reflecting element according to the first to fifth inventions uses an inspection reference image (mirror image) of a display device that directly reflects on the light-reflecting surface to confirm (inspect) the arrangement of the light-reflecting surfaces. Therefore, it becomes clearer than the aerial image and the mirror image disclosed in Patent Documents 2 and 3, and since the reference light reflecting element is not used, the device itself can be simplified, and further, the reference light reflecting element can be simplified. It is superior in reliability as compared with Patent Documents 2 and 3 in which the accuracy of the light affects the measurement accuracy.
  • the unit light reflecting element is the first step of laminating a plurality of transparent plate materials via a light reflecting material and an adhesive to produce a square columnar block material having a height of h and side surfaces P to S around it.
  • distortion is caused by using the large-scale light-reflecting element manufactured by the method for manufacturing the large-scale light-reflecting element according to the first to fifth inventions.
  • An optical imaging device capable of displaying a small number of large spatial images can be manufactured with good yield.
  • (A) is an explanatory view of a unit light reflecting element
  • (B) is an explanatory view of a conventional optical imaging device manufactured by using the same unit light reflecting element
  • (C) is an explanatory view of the optical imaging device. It is explanatory drawing of the conventional large-sized optical imaging apparatus manufactured by using the above
  • (D) is a plan view of another conventional optical imaging apparatus cut out from the same large-sized optical imaging apparatus.
  • (A) is a perspective view of a block material used for manufacturing a unit light reflecting element used in the method for manufacturing a large light reflecting element according to an embodiment of the present invention
  • (B) shows a processed state of the block material. It is a plan view.
  • (A) is a plan view showing a cut portion of the block body
  • (B) is a side view of the same block body
  • (C) is a front view of the same block body.
  • (A) is a side view of the light-reflecting base material cut out from the block body, and (B) is a front view of the same.
  • (A) is a side view of a polished unit light reflecting element, and (B) is a perspective view of the same. It is a top view of the transparent surface plate on which the same unit light reflection element is mounted.
  • (A) is an explanatory diagram of individual inspection (good / bad judgment) of a unit light reflecting element used in the method for manufacturing a large light reflecting element according to an embodiment of the present invention
  • (B) is an inspection standard to be displayed on a display device. It is an image (lattice image)
  • (C) is a reference image or an inspection image captured by an imaging device. It is an analysis figure of the inspection image taken by the image pickup apparatus. It is explanatory drawing of the manufacturing method of the large-sized light reflection element which concerns on one Example of this invention.
  • (A) and (B) are explanatory views of the quality determination method of a large-sized light reflection element.
  • (A) is an inspection image captured by an imaging device
  • (B) is a detailed explanatory view thereof.
  • (A) is another inspection image captured by the imaging device
  • (B) is a detailed explanatory view thereof. It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on another Example of this invention. It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on a conventional example. It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on a conventional example.
  • FIG. 1A shows a unit light reflecting element 10 having a square shape (90 to 200 mm on a side) in a plan view.
  • the unit light reflecting element 10 is a light reflection element formed inside a transparent flat plate 11 by a metal vapor deposition film (metal vapor deposition layer) such as aluminum that is perpendicular to the front surface (or the back surface, that is, one surface) of the transparent flat plate 11.
  • a large number of members 12 are arranged in parallel at a constant pitch.
  • Reference numeral 11a indicates a light transmitting portion of the unit light reflecting element 10, and the surface of each light reflecting material 12 functions as a light reflecting surface 12a.
  • the optical imaging device 13 shown in FIG. 1B can be formed by superimposing two unit light reflecting elements 10 in a plan view so that the light reflecting surfaces 12a are orthogonal to each other. Then, it is difficult to manufacture an optical imaging device having a side of more than 20 cm.
  • a large-scale optical imaging device 15 shown in FIG. 1C is manufactured by arranging and pasting a plurality of small optical imaging devices 13 in a plane (vertically and horizontally). At this time, by arranging n square optical imaging devices having two or more natural numbers n in the vertical and horizontal directions, it is possible to manufacture a large square optical imaging device in a plan view, but large optics.
  • the imaging device does not necessarily have to be square in a plan view, and the number and arrangement of small optical imaging devices to be bonded can be appropriately selected according to the size and shape of the large optical imaging device. can.
  • each unit light reflecting element 10 has some distortion and the like.
  • the image is normally formed, but the image is cut out from the large optical imaging device 15 and the optical imaging device 15 of FIG. 1C, which are manufactured by combining a plurality of optical imaging devices 13.
  • imaging is performed by combining minute deviations, distortions, bends, and the like of each light reflecting surface 12a of each optical imaging device 13 (each unit light reflecting element 10). It was sometimes distorted.
  • the unit light reflecting element 10 having a side of 9 to 20 cm, if the light reflecting material 12 (light reflecting surface 12a) is distorted or bent due to a delicate external factor, a large-scale optical result is obtained. Since optical distortion occurs in the imaging device 15 and a problem arises that the large optical imaging device 15 assembled at an angle cannot be used, it is possible to individually judge the quality of the unit light reflecting element 10 at the assembly stage. It was desired.
  • a large-sized light-reflecting element is made by using the unit light-reflecting element 10 without a unit, and these two large-sized light-reflecting elements are viewed in a plan view and superposed so that the light-reflecting surfaces are orthogonal to each other. It was confirmed that the optical imaging apparatus of the above can be manufactured, and the present invention could be achieved.
  • a large square light-reflecting element in a plan view is manufactured by combining four (or nine, sixteen, that is, two or more square units of a natural number n) of square unit light-reflecting elements in a plan view. can do.
  • the large light reflecting element may be square in plan view, and the unit light reflecting element does not necessarily have to be square in plan view, and the shape of the unit light reflecting element constituting the large light reflecting element. The number and arrangement can be selected as appropriate.
  • FIGS. 2 to 5 unit light used in the method for manufacturing a large-sized light reflecting element according to an embodiment of the present invention.
  • a new method for manufacturing the reflecting element 28 (the unit light reflecting element 28 has the same structure as the unit light reflecting element 10) at low cost and with high accuracy will be described.
  • the light transmittance is high
  • the thickness variation is extremely small (for example, the thickness error is 5% or less, more preferably 1% or less)
  • the thickness is, for example, 0.
  • a plurality of transparent plate materials 20 made of a plate glass of 2 to 2 mm or a hard transparent resin plate are prepared.
  • the size of the transparent plate material 20 is preferably a rectangle (including a square) of 90 to 250 mm, and a surface roughness of 100 nm or less (preferably 50 nm or less, more preferably 10 nm or less) is preferable. It is not limited to these.
  • indicates mirror polishing.
  • the transparent plate material 20 is placed in a vacuum furnace, and one side (or both sides) of the transparent plate material 20 is vapor-deposited with a metal such as aluminum (which may be a white metal).
  • the metal vapor deposition layer constitutes the light reflector 21.
  • the light reflecting material 21 forms the light reflecting surface 22 on one side (or both sides) of the transparent plate material 20.
  • a metal reflective sheet for example, a mirror sheet
  • it is formed (arranged) on only one side of the transparent plate material 20. good.
  • a plurality of transparent plate materials 20 (for example, 500 to 1500 sheets) on which the light reflecting surface 22 is formed are pressed and laminated via a transparent adhesive.
  • a transparent adhesive for example, 500 to 1500 sheets
  • the adhesive a thermosetting type, an ultraviolet curing type, a room temperature curing type, a two-component mixed type, or the like can be applied.
  • a block member 23 having a square columnar shape (cube or rectangular parallelepiped) having rectangular shapes on six surfaces is obtained.
  • the side surfaces around the block member 23 are P, Q, R, S, and the ceiling surface and the bottom surface are T, U.
  • the ceiling surface T and the bottom surface U of the block material 23 are the surface of the transparent plate material 20 or the light reflecting material 21 (metal vapor deposition surface), they are maintained at a surface roughness of 100 nm or less (for example, 10 nm) without polishing.
  • the ceiling surface T and the bottom surface U which are the reference surfaces, are parallel within a range of ⁇ 0.05 degrees, preferably ⁇ 0.02 degrees, and the distance (interval) from the ceiling surface T to the bottom surface U. That is, since the height h of the block material 23 needs to be accurate, the height is adjusted by pressing it in a vacuum with a flat press or the like as necessary (height adjustment is performed before or during the adhesive hardening). Good to do). Further, it is preferable to measure and confirm the parallelism and dimensions (preferably within an error of 1 ⁇ m) between the ceiling surface T and the bottom surface U with a three-dimensional measuring device, a height measuring device, or the like (the above is the first step).
  • the block material 23 is viewed from the front (viewed from the side surface P), and both ends in the width direction are cut substantially parallel to the opposite side surfaces Q and S to adjust the width (coarse adjustment). conduct.
  • This is a plurality of vacuums provided on the surface plate 24 by temporarily placing the block member 23 on the surface plate 24 arranged horizontally as shown in FIGS. 2 (B) and 3 (A) to 3 (C). This is performed by sucking and holding the block material 23 by the suction port 27 and cutting it with a band saw (or other cutting means). Then, by polishing both side surfaces (both cut surfaces) that have been cut, the two side surfaces Q1 and S1 are newly formed.
  • a square block body 25 surrounded by the side surface S1, the bottom surface U1, the side surface Q1, and the ceiling surface T1 and viewed from the side surface P1 side is placed and fixed on the surface plate 24.
  • the side surface P1 (or the side surface R1) is cut in parallel or simultaneously at a plurality of places, and as shown in FIGS. 4 (A) and 4 (B), the thickness is the standard thickness (0.5 to 2 mm) + the polishing allowance.
  • the light-reflecting base material 26 is manufactured (the above is the third step).
  • the end face (cut surface) of the cut light-reflecting base material 26 is mirror-polished to obtain optical end faces P2 and R2, and a unit light-reflecting element 28 having a standard dimensional thickness is manufactured.
  • the unit light reflecting elements 28 having a predetermined thickness in which the adjacent laminated end faces Q2, T2, S2, and U2 are orthogonal to each other are shown in FIGS. Since the light reflecting material 21 is formed only on one side of 20a (see the enlarged view of FIG. 4A), the bottom surface (laminated end face U2) of the unit light reflecting element 28 is as shown in FIG. 5A. The light transmitting portion 20a is exposed.
  • the unit light reflecting element 29 (see FIG. 6) having the light reflecting material 21 is formed on both the upper and lower surfaces (laminated end faces T2 and U2).
  • NS The roughness of the polished optical end faces P2 and R2 and the polished laminated end faces Q2 and S2 is preferably 30 nm (or less, for example, 10 nm or less) (the above is the fourth step).
  • a method for manufacturing a large-sized light reflecting element will be described.
  • the unit light-reflecting element 28 adjacent to each other in the stacking direction of the light transmitting portion 20a and the light-reflecting material 21 is the upper surface of one of the unit light-reflecting elements 28.
  • the light transmitting portion 20a and the light reflecting material 21 are alternately arranged by laminating the laminated end surface T2) and the lower surface (laminated end surface U2) of the other unit light reflecting element 28 so as to face each other.
  • the unit light-reflecting element 29 having the light-reflecting material 21 on both the upper and lower surfaces (laminated end faces T2 and U2) the stacking direction of the light transmitting portion 20a and the light-reflecting material 21
  • the unit light reflecting element 29 adjacent to the light reflecting material 21 adheres the light reflecting materials 21 to each other, but this is not a problem because the thickness of the metal vapor deposition film and the adhesive layer is thin.
  • the unit light reflecting element 29 (similarly, the unit light reflecting element 28 is also represented by the unit light reflecting element 29 below) is normally manufactured (standard specifications) will be described. If a large-area transparent plate material and a light-reflecting material are laminated from the beginning to manufacture a large-sized light-reflecting element (mirror plate), a large-sized manufacturing device is required and it becomes difficult to control the dimensions (flatness). A plurality of small-sized (150 mm square in this embodiment) unit light-reflecting element 29 can be manufactured and spread to manufacture a large-sized light-reflecting element. First, an apparatus and a method for individually inspecting each unit light reflecting element 29 will be described.
  • the fixedly arranged transparent platen 31 and the square unit light reflecting element 29 in a plan view are arranged at predetermined positions.
  • a display device (display) 32 arranged below the transparent platen 31 at an angle of 40 to 50 degrees with respect to the transparent platen 31, and a unit from the upper side (other side) of the unit light reflecting element 29. It has an image pickup device 33 that captures a mirror image of the image of the display device 32 via the light reflection element 29.
  • a frame (not shown) is arranged around the transparent platen 31 formed of a glass plate, and the entire transparent platen 31 is in the horizontal direction (x-axis direction and y-axis) as shown in FIG. 7 (A).
  • Direction vertical direction (z-axis direction), tilting (x-axis and y-axis) and in-situ rotation (z-axis rotation ⁇ ) are possible, and a unit light reflecting element mounted on the transparent platen 31
  • the 29 can be placed at any position.
  • the x-axis direction base portion and the y-axis direction base portion of the transparent platen 31 are provided with x guides 34 and y guides 35 that are orthogonal to each other and are placed on the transparent platen 31.
  • the unit light reflecting element 29 can be positioned (temporarily fixed) so that the light reflecting surfaces 22 are in the same direction. Further, it is possible to provide the transparent platen 31 with a plurality of suction mechanisms for vacuum-sucking the mounted unit light reflecting element 29 and holding (temporarily fixing) the unit light reflecting element 29 in place, but this hinders measurement. It is more preferable to provide the pressing mechanisms 29a and 29b to press-clamp the unit light reflecting element 29 from the side. As shown in FIG. 7A, a suction transport means 37 for transporting the unit light reflecting element 29 is provided above the transparent surface plate 31.
  • the display device 32 displays a grid image 39 having a square shape as a whole, which is an example of an inspection reference image.
  • a plurality of vertical lines 41 perpendicular to the x-axis direction (parallel to the y-axis direction) and a plurality of horizontal lines 42 parallel to the x-axis direction are arranged at predetermined pitches (constant intervals), respectively. It is a thing.
  • a reference image 40d as shown in FIG. 7C can be obtained. Therefore, save it as reference image data.
  • the reference image 40d has the vertical line 41 and the horizontal line 42 of the lattice image 39 as the reference vertical line 41d and the reference horizontal line, respectively. It looks like a trapezoid transformed into 42d. It is preferable that the size (specification) of the reference unit light reflecting element 29d matches the size (specification) of the unit light reflecting element 29 to be inspected.
  • the grid image is preferably an image synthesized by using a computer, but the present invention is not limited to this, and vertical lines and horizontal lines may be drawn at exactly regular intervals.
  • the unit light reflecting element 29 to be inspected is placed on the transparent surface plate 31 for positioning. Then, in the same procedure as the unit light reflecting element 29d, the mirror image of the lattice image 39 displayed on the display means 32 is imaged by the imaging device 33 via the unit light reflecting element 29 to obtain the inspection image 40a. Then, the inspection is performed by superimposing the reference image 40d on the inspection image 40a, but since the inspection image 40a is almost the same as the reference image 40d, the reference image 40d or the inspection image 40a is moved and scaled. By matching (overlapping) the contours of both, it is possible to easily compare (inspect) from the similarity (similarity) between the inspection image 40a and the reference image 40d.
  • the inspection horizontal line 42a of the inspection image 40a deviates from the reference horizontal line 42d of the reference image 40d, so that the unit light is caused by the distortion (positional deviation) of the inspection horizontal line 42a.
  • the quality of the reflective element 29 can be determined.
  • the size of the inspection image 40a is set in the range of 0.9 to 0.98 times in the vertical and horizontal directions with respect to the reference image 40d. It may be made smaller.
  • x1, x2 ... xn are assigned to each reference vertical line 41d in the outer frame 43d of the reference image 40d, and y1, y2 ... yn ... Are assigned to each reference horizontal line 42d. Attach. n may be, for example, about 5 to 50.
  • the outer frames 43d and 43a are matched as much as possible. However, in the case of visual comparison, it is sufficient to observe the distortion of the inspection horizontal line 42a, so that the outer frames 43d and 43a match is not an indispensable requirement.
  • the position of the inspection horizontal line 42a shifts upward or downward from the reference horizontal line 42d of the reference image 40d, so that each reference vertical line 41d (x1, x2 ... When xn ...,) and each inspection horizontal line 42a intersect, the upward deviation An of each inspection horizontal line 42a is measured, the maximum value (or average value) is calculated, and the value Ku is larger than the reference value. (Case 1), or when the downward deviation Am (not shown) of each inspection horizontal line 42a is measured, the maximum value (or average value) is calculated, and the value Ks is larger than the reference value (Case 2). ) Is determined to be abnormal in the unit light reflecting element 29, and becomes defective.
  • the measured values Ku and Ks it is preferable to adopt the larger value measured in pixel units.
  • the reference value is obtained by experiment. Since the light reflecting surface 22 of the unit light reflecting element 29 is along the inspection horizontal line 42a of the inspection image 40a, distortion of the inspection vertical line 41a is not normally observed when the unit light reflecting element 29 is placed correctly.
  • the maximum value (or average value) of the deviation An of each inspection horizontal line 42a measured individually was calculated, but the root mean square value (Root Mean Square Value) of all the deviation Ans was calculated and measured in advance. It is also possible to determine the pass / fail (degree of similarity) by comparing with the obtained reference value.
  • the quality of the square unit light reflecting element 29 is determined, and four (or nine or 16) non-defective unit light reflecting elements 29 are flattened so that the light reflecting surfaces 22 are in the same direction.
  • four large light reflecting elements 51 are manufactured.
  • two large light reflecting elements 51 are superposed on the large transparent surface plate 52 so that the respective light reflecting surfaces 22 are orthogonal to each other, and the x guides 53 and y are orthogonal to each other.
  • a large optical imaging device can be formed by positioning with guides 54 and movable guides 55 and 56 and joining them with an adhesive.
  • a large display device 32 is also prepared, which is the same as inspecting one unit light reflecting element 29 as described above.
  • the large-sized light is obtained by strictly inspecting each unit light-reflecting element 29, preparing only the required number of non-defective products, and joining them side by side. It is preferable to manufacture the reflective element 51.
  • a plurality of unit light reflecting elements are arranged on a transparent plate to join adjacent unit light reflecting elements, and at the same time, each unit light is bonded to the transparent plate.
  • the distortion of the light reflecting surface 22 was inspected for the entire unit light reflecting element 29, but since the distortion often occurs only partially, the unit light reflecting element 29
  • the inspection reference image is imaged and the inspection image is inspected from one place.
  • the inspection reference image is also large, so that there are a plurality of inspection reference images. Imaging and inspection may be performed simultaneously from different locations, or a part of a large light reflecting element may be sequentially imaged while moving the imaging device 33, and the inspection image (mirror image) and the reference image may be compared for each portion. ..
  • the visual observation can be performed from a plurality of places, but the reference image may or may not be present.
  • FIGS. 10 A), (B), 11 (A), (B), 12 (A), and (B), a large light reflecting element according to an embodiment of the present invention.
  • the pass / fail judgment method of the above will be described.
  • square unit light reflecting elements 61 to 64 (each having a side of 90 to 200 mm) viewed in a plan view on the transparent surface plate 60 are arranged so that the light reflecting surfaces 69 are in the same direction. Place 4 sheets in close contact with each other.
  • a large light reflecting element 65 can be obtained, but at this point, the unit light reflecting elements 61 to 64 are not joined (for example, transparent by vacuum suction).
  • a flat display 66 is arranged so as to be inclined so as to form a constant angle (40 to 50 degrees) with the transparent surface plate 60.
  • a grid image (an example of an inspection reference image) 39 as shown in FIG. 7B is displayed on the display 66.
  • the number and arrangement (pitch) of the vertical lines of the lattice image and the horizontal lines parallel to the light reflecting surfaces 69 of the unit light reflecting elements 61 to 64 depend on the number and arrangement of the light reflecting surfaces 69 of the large light reflecting element 65. Can be set freely.
  • a lattice image 39 (vertical line 41, horizontal line 42) is displayed on the display 66, the camera 68 is placed directly above the central base of the large light reflecting element 65, and the large light reflecting element 65 is observed.
  • the inspection image is visually recognized.
  • the number of images (mirror images) of the horizontal lines 42 that are reflected by one light reflecting surface 69 of the large light reflecting element 65 and enter the camera 68 is one or a small number depending on the height of the light reflecting surface 69. ..
  • the positions of the light reflecting surfaces 69 of the adjacent unit light reflecting elements 61 to 64 are misaligned, as shown in FIG.
  • the inspection vertical line 41a or the inspection horizontal line 42a may be misaligned. Since a step difference occurs, it is possible to determine whether the arrangement of the light reflecting elements 61 to 64 of each unit is good or bad from the continuity of the mirror image. It is preferable to adjust the angle of the display 66 or the like so that the maximum deviation occurs in the inspection image (inspection vertical line 41a or inspection horizontal line 42a) (step A).
  • 12 (A) and 12 (B) show other inspection images captured by the camera 68, in which a discontinuity 71 is seen on the inspection vertical line 41a and a step difference 72 is seen on the inspection horizontal line 42a. Thereby, the quality of the large light reflecting element 65 can be determined.
  • a large light-reflecting element in which a plurality of unit light-reflecting elements (two or more natural numbers n squared) are arranged side by side, first, two unit light-reflecting elements are arranged side by side and inspected, and then the inspection is performed. It is also possible to sequentially repeat the step A of adding one unit light reflecting element to the inspection.
  • each light reflecting element is performed by the adsorption and transporting means, and the unit light reflecting element determined to be defective in step A is replaced with another unit light reflecting element, and the final step A is performed again.
  • a large-sized light-reflecting element 65 can be obtained by fixing (joining) only the unit light-reflecting element judged to be a good product with an adhesive.
  • the unit light reflecting element is rotated 180 degrees in a plane to change the direction of the light reflecting surface 22.
  • Re-inspection confirmation inspection in step A
  • the unit light reflecting element to be inspected can be turned inside out to perform the inspection.
  • the individual inspection of each unit light-reflecting element described above may be omitted.
  • each light reflecting surface 69 is a medium-sized medium-sized one inclined by 45 degrees with respect to each side of the square.
  • a light reflecting element (not shown) is formed (step a).
  • the (medium-sized) optical imaging device can be manufactured by superimposing the two medium-sized light-reflecting elements so that the respective light-reflecting surfaces 69 are orthogonal to each other (step b).
  • the optical imaging device thus obtained has the same structure as the optical imaging device 17 shown in FIG.
  • the quality is higher than that of the conventional large-scale optical imaging device.
  • the light reflecting surfaces 69 of the two medium-sized light reflecting elements are orthogonal to each other.
  • An optical imaging device was manufactured by superimposing (joining) them in this way, but after superimposing and joining two large light reflecting elements 65 so that their respective light reflecting surfaces 69 were orthogonal to each other, the corners were formed. The portion may be cut diagonally.
  • FIG. 13 a method of manufacturing the optical imaging apparatus according to another embodiment of the present invention will be described.
  • four right-angled isosceles triangular corners (part of the light-reflecting element) 57 cut out in the above step a are combined so that the light-reflecting surfaces 69 of each corner 57 are in the same direction.
  • the above step is performed by preparing two medium-sized light-reflecting elements 58 facing each other and superimposing the two light-reflecting elements 58 on a large transparent platen 52 so that the respective light-reflecting surfaces 69 are orthogonal to each other.
  • the corner portion 57 cut in a By effectively utilizing the corner portion 57 cut in a, it is possible to manufacture an optical imaging device equivalent to the optical imaging device manufactured in the above step b, which is excellent in resource saving.
  • the medium-sized light reflecting element 58 When manufacturing the medium-sized light reflecting element 58 by joining the four corners 57, the four corners 57 are arranged on the transparent plate, and the adjacent corners 57 are joined to each other at the same time.
  • the four corner portions 57 can be reliably integrated, and the medium-sized light reflecting element 58 is excellent in handleability and morphological stability.
  • the corners (a part of the optical imaging device) are cut diagonally after joining the two large light reflecting elements 65, the four cut corners are cut by the transparent plate.
  • An optical imaging device can be obtained simply by arranging them side by side and joining the adjacent corners to each other and at the same time joining each corner to the transparent plate.
  • each unit light-reflecting element and a large-sized light-reflecting element can be easily inspected, and a high-quality large-sized light-reflecting element and optical connection can be performed.
  • the image device can be manufactured at low cost.

Abstract

Provided are a method for manufacturing a large-sized light reflection element and a method for manufacturing an optical image formation device that comprise a step A for disposing a plurality of unit light reflection elements 61-64 on a transparent surface plate 60 such that respective reflection surfaces 69 thereof face the same direction, displaying, on a display 66 disposed at a given angle with respect to the transparent surface plate 60 on one side of the transparent surface plate 60, an inspection reference image 39 having a horizontal line 42 parallel to the respective light reflection surfaces 69 of the unit light reflection elements 61-64, observing, from the other side of the transparent surface plate 60, the continuity of mirror images formed by the horizontal line 42 being once reflected by the respective light reflection surfaces 69, and determining whether the disposition of the unit light reflection elements 61-64 adjacent to each other is good or bad.

Description

大型の光反射素子の製造方法及び光学結像装置の製造方法Manufacturing method of large light reflecting element and manufacturing method of optical imaging device
 本発明は、それぞれが一側の面に垂直に所定間隔で平行配置された多数の光反射面を有する複数の単位光反射素子を平面状に並べて配置した大型の光反射素子の製品良否の判定方法を含む大型の光反射素子の製造方法及びその製造方法で製造された大型の光反射素子を用いた光学結像装置の製造方法に関する。 The present invention determines the product quality of a large-sized light-reflecting element in which a plurality of unit light-reflecting elements having a large number of light-reflecting surfaces arranged in parallel at predetermined intervals perpendicular to one surface are arranged in a plane. The present invention relates to a method for manufacturing a large-scale light reflecting element including the method, and a method for manufacturing an optical imaging apparatus using the large-sized light reflecting element manufactured by the manufacturing method.
 例えば、特許文献1には、大きな空間映像を表示可能な空間映像表示装置に必要な大型の光学結像装置を、簡単かつ高精度に製造することを目的とした光学結像装置の製造方法が開示されている。特許文献1に開示された光学結像装置の製造方法は、それぞれ多数の光反射面が平行に立設された2つミラーシート(光反射素子)を、ミラーシートの光反射面が互いに直交するように重ね合わせて単位光学結像素子を製造する工程と、複数の単位光学結像素子を、隣り合う単位光学結像素子のミラーシートの光反射面の方向を合わせた状態で所定の透明カバー板上に隣接させて二次元状に並べる工程と、上下の透明カバー板により、二次元状に並べられた単位光学結像素子群を、垂直な方向から挟み込むとともに、単位光学結像素子群の周囲を覆う工程と、内部の気圧を下げて上下の透明カバー板により単位光学結像素子群を平面状に固定する工程とを有する。 For example, Patent Document 1 describes a method for manufacturing an optical imaging device for the purpose of easily and highly accurately manufacturing a large-sized optical imaging device required for a spatial image display device capable of displaying a large spatial image. It is disclosed. In the method of manufacturing an optical imaging apparatus disclosed in Patent Document 1, two mirror sheets (light reflecting elements) in which a large number of light reflecting surfaces are erected in parallel are provided so that the light reflecting surfaces of the mirror sheets are orthogonal to each other. A predetermined transparent cover in a state where the process of manufacturing a unit optical imaging element by superimposing them in such a manner and a state in which a plurality of unit optical imaging elements are aligned with each other in the direction of the light reflecting surface of the mirror sheet of the adjacent unit optical imaging elements. The process of arranging the unit optical imaging elements adjacent to each other on the plate in a two-dimensional manner and the upper and lower transparent cover plates sandwich the unit optical imaging element groups arranged in a two-dimensional shape from a vertical direction, and the unit optical imaging element group It includes a step of covering the surroundings and a step of lowering the internal pressure and fixing the unit optical imaging element group in a plane by upper and lower transparent cover plates.
 また、特許文献2には、図14に示すように、厚み方向に直交する第1方向に沿って並ぶ複数の反射面をそれぞれ有する光反射素子(ミラープレート)を複数準備する工程と、複数の光反射素子の中から少なくとも2以上の光反射素子101、102を透光部103を有する平面体(基台部)104上に載置し、光反射素子101、102とは反射面が直交する光反射素子(参照ミラープレート)105を平面体104の透光部103の下部に配置し、互いに隣り合う光反射素子101、102の各々に含まれる複数の反射面の並び方に起因する被投影物(チャート)108の空中映像106、107のずれが小さくなる2つの反射素子の組合わせを選択する工程と、選択された組合わせに含まれる2つの光反射素子101、102を平面上で接合する工程とを備える結像素子の製造方法が開示されている。 Further, in Patent Document 2, as shown in FIG. 14, a step of preparing a plurality of light reflecting elements (mirror plates) each having a plurality of reflecting surfaces arranged along a first direction orthogonal to the thickness direction, and a plurality of steps. At least two or more light reflecting elements 101 and 102 are placed on a flat body (base portion) 104 having a light transmitting portion 103, and the reflecting surface is orthogonal to the light reflecting elements 101 and 102. A light reflecting element (reference mirror plate) 105 is arranged below the light transmitting portion 103 of the plane body 104, and an object to be projected is caused by the arrangement of a plurality of reflecting surfaces included in each of the light reflecting elements 101 and 102 adjacent to each other. (Chart) The step of selecting a combination of two reflecting elements that reduce the deviation of the aerial images 106 and 107 of 108, and joining the two light reflecting elements 101 and 102 included in the selected combination on a plane. A method for manufacturing an imaging element including a step is disclosed.
 そして、特許文献3には、図15に示すように、複数枚の光反射素子(ミラープレート)110、111をその面方向に並ぶように配置する工程と、隣り合う光反射素子110、111に跨るように別の光反射素子(参照ミラープレート)112を配置しておき、複数枚の光反射素子110、111と光反射素子112により結像された被投影物114の鏡映像(実像)113を確認しながら、実像113が被投影物114の形状に対応するように複数枚の光反射素子110、111を相互に位置決めする工程と、相互に位置決めされた複数枚の光反射素子110、111の位置を固定する工程とを備えることが記載されている。なお、以上において、光反射素子101、102、110、111は単位反射素子を示す。 Then, in Patent Document 3, as shown in FIG. 15, a step of arranging a plurality of light reflecting elements (mirror plates) 110 and 111 so as to be arranged in the plane direction thereof, and adjacent light reflecting elements 110 and 111 Another light-reflecting element (reference mirror plate) 112 is arranged so as to straddle the mirror image (real image) 113 of the projected object 114 imaged by the plurality of light-reflecting elements 110 and 111 and the light-reflecting element 112. While confirming the above, the step of mutually positioning the plurality of light reflecting elements 110 and 111 so that the real image 113 corresponds to the shape of the object to be projected 114, and the plurality of mutually positioned light reflecting elements 110 and 111. It is described that the step of fixing the position of the above is provided. In the above, the light reflecting elements 101, 102, 110, and 111 represent unit reflecting elements.
特開2013-101230号公報Japanese Unexamined Patent Publication No. 2013-101230 特開2017-203809号公報JP-A-2017-203809 WO2016/178424号WO2016 / 178424
 しかしながら、特許文献1においては、2つの光反射素子(ミラーシートに同じ)を、光反射素子の光反射面が互いに直交するように重ね合わせることにより結像素子(単位光学結像素子に同じ)を製造し、複数の結像素子を、所定の透明平板(透明カバー板に同じ)上に隣接させて平面方向に二次元状に並べて、透明平板に押圧固定しているので、各結像素子の光反射面がずれていたり、多少変形したりしていると、形成される画像に歪が発生するという問題があった。そして、形成される画像に歪がある場合、上下の光反射素子が一体化された結像素子全体を交換する必要があった。 However, in Patent Document 1, an imaging element (same as a unit optical imaging element) is formed by superimposing two light reflecting elements (same as a mirror sheet) so that the light reflecting surfaces of the light reflecting elements are orthogonal to each other. Is manufactured, and a plurality of imaging elements are arranged adjacent to a predetermined transparent flat plate (same as the transparent cover plate) in a two-dimensional manner in the plane direction and pressed and fixed to the transparent flat plate. If the light-reflecting surface of the light-reflecting surface is displaced or slightly deformed, there is a problem that the formed image is distorted. Then, when the formed image is distorted, it is necessary to replace the entire imaging element in which the upper and lower light reflecting elements are integrated.
 また、特許文献2、3の場合は、比較対象として検査する光反射素子(ミラープレート)A、Bの他にこれらの光反射素子A、Bに対して光反射面が直交する光反射素子C(参照ミラープレート)がなければ、空中映像や鏡映像は結像しないため、光反射素子Cが必須の構成となっている。そして、この光反射素子Cの精度が悪いと単位光反射素子A、Bの正確な測定(選択、位置決め及び良否判定)はできない。 Further, in the case of Patent Documents 2 and 3, in addition to the light reflecting elements (mirror plates) A and B to be inspected for comparison, the light reflecting element C whose light reflecting surface is orthogonal to these light reflecting elements A and B. Without the (reference mirror plate), the aerial image and the mirror image would not be imaged, so the light reflecting element C is indispensable. If the accuracy of the light reflecting element C is poor, accurate measurement (selection, positioning and quality determination) of the unit light reflecting elements A and B cannot be performed.
 更には、検査の対象となる像は空中映像であるので、検査(製造)装置全体が大型化するという問題もある。 Furthermore, since the image to be inspected is an aerial image, there is also a problem that the entire inspection (manufacturing) device becomes large.
 本発明はかかる事情に鑑みてなされたもので、複数の単位光反射素子を平面状に並べて大型の光反射素子を製造するに当たり、光反射面の並びを確認(検査)するために、光反射面が直交する光反射素子を上下に対向して配置する必要がなく、空中映像や鏡映像の結像を必要としないで、平面状に並べた単位光反射素子の配置の良否を判定できる大型の光反射素子の製造方法及びその製造方法で製造された大型の光反射素子を用いた光学結像装置の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and in manufacturing a large-scale light-reflecting element by arranging a plurality of unit light-reflecting elements in a plane, light reflection is performed in order to confirm (inspect) the arrangement of the light-reflecting surfaces. It is not necessary to arrange the light reflecting elements whose surfaces are orthogonal to each other vertically, and it is not necessary to form an aerial image or a mirror image. It is an object of the present invention to provide a method for manufacturing a light reflecting element of the above and a method for manufacturing an optical imaging apparatus using a large-scale light reflecting element manufactured by the manufacturing method.
 前記目的に沿う第1の発明に係る大型の光反射素子の製造方法は、一方の面に垂直かつ所定間隔で平行配置された複数の光反射面を有する単位光反射素子が平面状に複数並べられて製造される大型の光反射素子の製造方法であって、
 複数の前記単位光反射素子を、前記各光反射面が同一方向となるように、透明定盤の上に配置し、該透明定盤の一側に該透明定盤と一定の角度を有して配置されたディスプレイに前記各単位光反射素子の前記各光反射面に平行な横線を有する検査基準画像を表示して、該横線が前記各光反射面に1回反射して形成される鏡像の連続性を前記透明定盤の他側から観察し、隣り合う前記単位光反射素子の配置の良否を判定する工程Aを含む。
In the method for manufacturing a large-sized light-reflecting element according to the first invention, which meets the above object, a plurality of unit light-reflecting elements having a plurality of light-reflecting surfaces arranged perpendicularly to one surface and parallel to each other at predetermined intervals are arranged in a plane. It is a method of manufacturing a large-scale light-reflecting element that is manufactured by
A plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen. A mirror image formed by displaying an inspection reference image having a horizontal line parallel to each light reflecting surface of each unit light reflecting element on a display arranged therein and reflecting the horizontal line once on each light reflecting surface. The step A is included, in which the continuity of the light reflecting elements is observed from the other side of the transparent platen, and the quality of the arrangement of the adjacent unit light reflecting elements is determined.
 前記目的に沿う第2の発明に係る大型の光反射素子の製造方法は、一方の面に垂直かつ所定間隔で平行配置された複数の光反射面を有する平面視して正方形の単位光反射素子が平面状に複数並べられて製造される平面視して正方形の大型の光反射素子の製造方法であって、
 複数の前記単位光反射素子を、前記各光反射面が同一方向となるように、透明定盤の上に配置し、該透明定盤の一側に該透明定盤と一定の角度を有して配置されたディスプレイに前記各単位光反射素子の前記各光反射面に平行な横線を有する検査基準画像を表示して、該横線が前記各光反射面に1回反射して形成される鏡像の連続性を前記透明定盤の他側から観察し、隣り合う前記単位光反射素子の配置の良否を判定する工程Aを含む。
The method for manufacturing a large-sized light-reflecting element according to the second invention according to the above object is a unit light-reflecting element having a plurality of light-reflecting surfaces perpendicular to one surface and arranged in parallel at predetermined intervals and having a square unit in a plan view. Is a method for manufacturing a large-sized light-reflecting element that is square in a plan view and is manufactured by arranging a plurality of light-reflecting elements in a plane.
A plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen. A mirror image formed by displaying an inspection reference image having a horizontal line parallel to each light reflecting surface of each unit light reflecting element on a display arranged therein and reflecting the horizontal line once on each light reflecting surface. The step A is included, in which the continuity of the light reflecting elements is observed from the other side of the transparent platen, and the quality of the arrangement of the adjacent unit light reflecting elements is determined.
 第2の発明に係る大型の光反射素子の製造方法において、前記単位光反射素子は一辺が90~200mmの正方形であるのが好ましいが、この発明はこの数字に限定されるものではない。 In the method for manufacturing a large-scale light-reflecting element according to the second invention, the unit light-reflecting element is preferably a square having a side of 90 to 200 mm, but the present invention is not limited to this number.
 第3の発明に係る大型の光反射素子の製造方法は、第1、第2の発明において、前記透明定盤と前記ディスプレイのなす角度が40~50度の範囲にあるのが好ましい。
 そして、第4の発明に係る大型の光反射素子の製造方法は、第1~第3の発明において、前記検査基準画像は、複数の前記横線と該各横線と直交する複数の縦線を有して格子状となっているのが好ましい。
In the method for manufacturing a large-sized light reflecting element according to the third invention, in the first and second inventions, the angle formed by the transparent surface plate and the display is preferably in the range of 40 to 50 degrees.
The method for manufacturing a large-scale light reflecting element according to the fourth aspect of the present invention is the method for manufacturing a large-scale light reflecting element. In the first to third inventions, the inspection reference image has a plurality of the horizontal lines and a plurality of vertical lines orthogonal to the horizontal lines. It is preferable that the surface is in a grid pattern.
 また、第1~第4の発明に係る大型の光反射素子の製造方法において、前記工程Aで不良と判定された単位光反射素子を、別の単位光反射素子と交換して前記工程Aを再度実施することもできる。
 そして、第1~第4の発明に係る大型の光反射素子の製造方法において、前記検査基準画像は、コンピュータを用いて合成された画像であるのが好ましい。
 更に、以上の大型の光反射素子の製造方法において、前記単位光反射素子の前記透明定盤への仮固定は、真空吸引によって行われるのが好ましい。
Further, in the method for manufacturing a large-sized light reflecting element according to the first to fourth inventions, the unit light reflecting element determined to be defective in the step A is replaced with another unit light reflecting element, and the step A is performed. It can be done again.
Then, in the method for manufacturing a large-sized light reflecting element according to the first to fourth inventions, the inspection reference image is preferably an image synthesized by using a computer.
Further, in the above-mentioned method for manufacturing a large-scale light-reflecting element, it is preferable that the unit light-reflecting element is temporarily fixed to the transparent surface plate by vacuum suction.
 第5の発明に係る大型の光反射素子の製造方法は、第1~第4の発明において、
 前記単位光反射素子が、
 複数の透明板材を光反射材及び接着剤を介して積層し、高さがhで周囲に側面P~Sを有する四角柱状のブロック材を製造する第1工程と、
 前記ブロック材の対向する前記側面Q、Sを研磨して前記側面Qから前記側面Sまでの距離wを前記高さhと同一にし、前記側面P、Rを正方形状にする第2工程と、
 前記第2工程で加工された前記ブロック材を前記側面P又は前記側面Rに平行に切断して同一厚みの光反射基材を複数製造する第3工程と、
 切断された前記各光反射基材の両端面を研磨する第4工程とにより製造されたものである。
The method for manufacturing a large-scale light reflecting element according to the fifth invention is described in the first to fourth inventions.
The unit light reflecting element
The first step of laminating a plurality of transparent plate materials via a light reflector and an adhesive to produce a square columnar block material having a height of h and side surfaces P to S around it.
The second step of polishing the opposite side surfaces Q and S of the block material so that the distance w from the side surface Q to the side surface S is the same as the height h and making the side surfaces P and R square.
A third step of cutting the block material processed in the second step in parallel with the side surface P or the side surface R to produce a plurality of light reflecting base materials having the same thickness.
It is manufactured by the fourth step of polishing both end faces of each of the cut light-reflecting base materials.
 第5の発明に係る大型の光反射素子の製造方法において、前記第2工程で前記側面Q、Sを研磨する前に前記側面Qから前記側面Sまでの距離を粗調整する切断加工を行うのがよい。
 また、第5の発明に係る大型の光反射素子の製造方法において、前記第2工程で研磨した前記側面Q、S及び前記第4工程で研磨した前記単位光反射素子の前記両端面の粗度は30nm以下であるのが好ましいが、本発明はこの数値に限定されない。
 第5の発明に係る大型の光反射素子の製造方法において、前記光反射材は前記透明板材の少なくとも片面に形成された金属蒸着膜であるのが好ましいが、メタルフィルムであってもよい。
In the method for manufacturing a large-scale light reflecting element according to the fifth invention, a cutting process is performed in which the distance from the side surface Q to the side surface S is roughly adjusted before polishing the side surfaces Q and S in the second step. Is good.
Further, in the method for manufacturing a large-sized light reflecting element according to the fifth invention, the roughness of the side surfaces Q and S polished in the second step and the roughness of both end faces of the unit light reflecting element polished in the fourth step. Is preferably 30 nm or less, but the present invention is not limited to this value.
In the method for manufacturing a large-sized light-reflecting element according to the fifth invention, the light-reflecting material is preferably a metal-deposited film formed on at least one surface of the transparent plate material, but may be a metal film.
 第6の発明に係る光学結像装置の製造方法は、第1~第5の発明に係る大型の光反射素子の製造方法で製造された大型の光反射素子を用いて製造される光学結像装置の製造方法であって、
 平面視して外形が正方形となるように前記大型の光反射素子の角部を斜めに切断し、前記各光反射面が前記正方形の各辺に対して45度傾斜した中型の光反射素子を形成する工程aと、
 2枚の前記中型の光反射素子をそれぞれの前記光反射面が直交するようにして重ね合わせる工程bとを有する。
The method for manufacturing the optical imaging apparatus according to the sixth invention is the optical imaging manufactured by using the large-sized light-reflecting element manufactured by the method for manufacturing the large-sized light-reflecting element according to the first to fifth inventions. It ’s a manufacturing method of equipment.
A medium-sized light-reflecting element in which the corners of the large-sized light-reflecting element are diagonally cut so that the outer shape is square when viewed in a plan view, and each light-reflecting surface is inclined by 45 degrees with respect to each side of the square. Step a to form and
It has a step b of superimposing two medium-sized light-reflecting elements so that their respective light-reflecting surfaces are orthogonal to each other.
 第7の発明に係る光学結像装置の製造方法は、第6の発明において、前記工程aで切り取った直角二等辺三角形状の前記角部を4枚合わせて該各角部の前記各光反射面が同一方向を向いた中型の光反射素子を2枚用意し、該2枚の光反射素子をそれぞれの前記光反射面が直交するようにして重ね合わせる。 In the sixth invention, the method for manufacturing an optical imaging apparatus according to a seventh invention is a method of combining four right-angled isosceles triangle-shaped corners cut out in the step a and reflecting the light at each corner. Two medium-sized light-reflecting elements whose surfaces face in the same direction are prepared, and the two light-reflecting elements are superposed so that the respective light-reflecting surfaces are orthogonal to each other.
 第1~第5の発明に係る大型の光反射素子の製造方法は、光反射面の並びを確認(検査)するのに光反射面で直接反射する表示装置の検査基準画像(鏡像)を使用しているので、特許文献2、3に開示されている空中映像や鏡映像より鮮明となり、参照光反射素子も使用しないので、装置自身も簡略化することができ、更には、参照光反射素子の精度が測定精度に影響を与える特許文献2、3に比べて信頼性に優れる。 The method for manufacturing a large-scale light-reflecting element according to the first to fifth inventions uses an inspection reference image (mirror image) of a display device that directly reflects on the light-reflecting surface to confirm (inspect) the arrangement of the light-reflecting surfaces. Therefore, it becomes clearer than the aerial image and the mirror image disclosed in Patent Documents 2 and 3, and since the reference light reflecting element is not used, the device itself can be simplified, and further, the reference light reflecting element can be simplified. It is superior in reliability as compared with Patent Documents 2 and 3 in which the accuracy of the light affects the measurement accuracy.
 特に、単位光反射素子が、複数の透明板材を光反射材及び接着剤を介して積層し、高さがhで周囲に側面P~Sを有する四角柱状のブロック材を製造する第1工程と、ブロック材の対向する側面Q、Sを研磨して側面Qから側面Sまでの距離wを高さhと同一にし、側面P、Rを正方形状にする第2工程と、第2工程で加工されたブロック材を側面P又は側面Rに平行に切断して同一厚みの光反射基材を複数製造する第3工程と、切断された各光反射基材の両端面を研磨する第4工程とにより製造されたものである場合には、同一寸法の単位光反射素子をより効率的に製造できる。 In particular, the unit light reflecting element is the first step of laminating a plurality of transparent plate materials via a light reflecting material and an adhesive to produce a square columnar block material having a height of h and side surfaces P to S around it. , The second step of polishing the opposite side surfaces Q and S of the block material to make the distance w from the side surface Q to the side surface S the same as the height h, and making the side surfaces P and R square, and processing in the second step. A third step of cutting the cut block material in parallel with the side surface P or the side surface R to produce a plurality of light-reflecting base materials having the same thickness, and a fourth step of polishing both end surfaces of each cut light-reflecting base material. When the unit light reflecting element having the same size is manufactured by the above method, the unit light reflecting element having the same size can be manufactured more efficiently.
 また、第6の発明に係る光学結像装置の製造方法は、第1~第5の発明に係る大型の光反射素子の製造方法で製造された大型の光反射素子を用いることにより、歪みの少ない大きな空間画像を表示可能な光学結像装置を歩留り良く製造することができる。 Further, in the method for manufacturing the optical imaging device according to the sixth invention, distortion is caused by using the large-scale light-reflecting element manufactured by the method for manufacturing the large-scale light-reflecting element according to the first to fifth inventions. An optical imaging device capable of displaying a small number of large spatial images can be manufactured with good yield.
(A)は単位光反射素子の説明図であり、(B)は同単位光反射素子を用いて製造された従来の光学結像装置の説明図であり、(C)は同光学結像装置を用いて製造された従来の大型の光学結像装置の説明図であり、(D)は同大型の光学結像装置から切り出された従来の他の光学結像装置の平面図である。(A) is an explanatory view of a unit light reflecting element, (B) is an explanatory view of a conventional optical imaging device manufactured by using the same unit light reflecting element, and (C) is an explanatory view of the optical imaging device. It is explanatory drawing of the conventional large-sized optical imaging apparatus manufactured by using the above, and (D) is a plan view of another conventional optical imaging apparatus cut out from the same large-sized optical imaging apparatus. (A)は本発明の一実施例に係る大型の光反射素子の製造方法に用いられる単位光反射素子の製造に使用するブロック材の斜視図、(B)は同ブロック材の加工状態を示す平面図である。(A) is a perspective view of a block material used for manufacturing a unit light reflecting element used in the method for manufacturing a large light reflecting element according to an embodiment of the present invention, and (B) shows a processed state of the block material. It is a plan view. (A)は同ブロック体の切断箇所を示す平面図、(B)は同側面図、(C)は同正面図である((B)において切断ピッチは極めて粗く記載されているが、ブロック体には例えば500~3000枚の光反射基材がある)。(A) is a plan view showing a cut portion of the block body, (B) is a side view of the same block body, and (C) is a front view of the same block body. Has, for example, 500 to 3000 light-reflecting substrates). (A)は同ブロック体から切り出された状態の光反射基材の側面図、(B)は同正面図である。(A) is a side view of the light-reflecting base material cut out from the block body, and (B) is a front view of the same. (A)は研磨された単位光反射素子の側面図、(B)同斜視図である。(A) is a side view of a polished unit light reflecting element, and (B) is a perspective view of the same. 同単位光反射素子を載せた透明定盤の平面図である。It is a top view of the transparent surface plate on which the same unit light reflection element is mounted. (A)は本発明の一実施例に係る大型の光反射素子の製造方法に用いる単位光反射素子の個別検査(良否判定)の説明図であり、(B)は表示装置に表示する検査基準画像(格子画像)であり、(C)は撮像装置で撮像された基準画像又は検査画像である。(A) is an explanatory diagram of individual inspection (good / bad judgment) of a unit light reflecting element used in the method for manufacturing a large light reflecting element according to an embodiment of the present invention, and (B) is an inspection standard to be displayed on a display device. It is an image (lattice image), and (C) is a reference image or an inspection image captured by an imaging device. 撮像装置で撮像された検査画像の分析図である。It is an analysis figure of the inspection image taken by the image pickup apparatus. 本発明の一実施例に係る大型の光反射素子の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the large-sized light reflection element which concerns on one Example of this invention. (A)、(B)は大型の光反射素子の良否判定方法の説明図である。(A) and (B) are explanatory views of the quality determination method of a large-sized light reflection element. (A)は撮像装置で撮像された検査画像、(B)はその詳細説明図である。(A) is an inspection image captured by an imaging device, and (B) is a detailed explanatory view thereof. (A)は撮像装置で撮像された他の検査画像、(B)はその詳細説明図である。(A) is another inspection image captured by the imaging device, and (B) is a detailed explanatory view thereof. 本発明の他の実施例に係る光学結像装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on another Example of this invention. 従来例に係る光学結像装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on a conventional example. 従来例に係る光学結像装置の製造方法の説明図である。It is explanatory drawing of the manufacturing method of the optical imaging apparatus which concerns on a conventional example.
 続いて、添付する図面を参照しながら、本発明の一実施例に係る大型の光反射素子の製造方法及び光学結像装置の製造方法について説明する。
 本発明の大型の光反射素子の製造方法及び光学結像装置の製造方法について説明する前に、まず、従来の光学結像装置の製造方法について説明する。
 図1(A)に平面視して正方形(一辺が90~200mm)の単位光反射素子10を示す。単位光反射素子10は、透明平板11の内部に透明平板11の表面(又は裏面、即ち、一方の面)に対して垂直なアルミニウム等の金属蒸着膜(金属蒸着層)で形成された光反射材12が一定のピッチで多数平行配置されて構成されたものである。そして、符号11aは単位光反射素子10の光透過部を示し、各光反射材12の表面が光反射面12aとして機能する。2枚の単位光反射素子10を平面視して光反射面12aが直交するようにして重ね合わせることにより、図1(B)に示す光学結像装置13を形成することができるが、この構成では、一辺が20cmを超える光学結像装置を製造することは難しい。
Subsequently, a method for manufacturing a large-scale light reflecting element and a method for manufacturing an optical imaging device according to an embodiment of the present invention will be described with reference to the accompanying drawings.
Before explaining the manufacturing method of the large-scale light reflecting element and the manufacturing method of the optical imaging device of the present invention, first, the manufacturing method of the conventional optical imaging device will be described.
FIG. 1A shows a unit light reflecting element 10 having a square shape (90 to 200 mm on a side) in a plan view. The unit light reflecting element 10 is a light reflection element formed inside a transparent flat plate 11 by a metal vapor deposition film (metal vapor deposition layer) such as aluminum that is perpendicular to the front surface (or the back surface, that is, one surface) of the transparent flat plate 11. A large number of members 12 are arranged in parallel at a constant pitch. Reference numeral 11a indicates a light transmitting portion of the unit light reflecting element 10, and the surface of each light reflecting material 12 functions as a light reflecting surface 12a. The optical imaging device 13 shown in FIG. 1B can be formed by superimposing two unit light reflecting elements 10 in a plan view so that the light reflecting surfaces 12a are orthogonal to each other. Then, it is difficult to manufacture an optical imaging device having a side of more than 20 cm.
 そこで、現状では複数の小型の光学結像装置13を平面状に(縦横に)並べて貼り合わせることにより、図1(C)に示す大型の光学結像装置15を製造している。このとき、2以上の自然数nの二乗個の光学結像装置を縦横にn個ずつ配置することにより、平面視して正方形の大型の光学結像装置を製造することができるが、大型の光学結像装置は必ずしも平面視して正方形である必要はなく、大型の光学結像装置の大きさ及び形状に応じて、貼り合わせる小型の光学結像装置の数及び配置を適宜、選択することができる。
 但し、図1(C)に示した光学結像装置15のように、正方形の一辺に直交する方向に並ぶ光反射面12aを観察者に対して垂直又は水平に向けて使用すると、対象物からの光が上下いずれか一方の単位光反射素子10の光反射面12aのみで反射し、結像しないという問題がある。そこで、実際には、図1(C)に仮想線で示したように、大型の光学結像装置15の角部16を斜めに切断し、図1(D)に示すように、平面視した外形が正方形となって各光反射面12aが正方形の各辺に対して45度傾斜した光学結像装置17を製造して使用している。
Therefore, at present, a large-scale optical imaging device 15 shown in FIG. 1C is manufactured by arranging and pasting a plurality of small optical imaging devices 13 in a plane (vertically and horizontally). At this time, by arranging n square optical imaging devices having two or more natural numbers n in the vertical and horizontal directions, it is possible to manufacture a large square optical imaging device in a plan view, but large optics. The imaging device does not necessarily have to be square in a plan view, and the number and arrangement of small optical imaging devices to be bonded can be appropriately selected according to the size and shape of the large optical imaging device. can.
However, when the light reflecting surfaces 12a arranged in the direction orthogonal to one side of the square are used vertically or horizontally with respect to the observer as in the optical imaging device 15 shown in FIG. There is a problem that the light is reflected only by the light reflecting surface 12a of either the upper or lower unit light reflecting element 10 and does not form an image. Therefore, in reality, as shown by the virtual line in FIG. 1 (C), the corner portion 16 of the large optical imaging device 15 is cut diagonally and viewed in a plan view as shown in FIG. 1 (D). An optical imaging device 17 having a square outer shape and having each light reflecting surface 12a inclined by 45 degrees with respect to each side of the square is manufactured and used.
 しかし、図1(B)に示した光学結像装置13は、上下1枚ずつの単位光反射素子10を1セットとしたものであるため、各単位光反射素子10に多少の歪等が存在しても正常に結像するのに対し、複数の光学結像装置13を組み合わせて製造される図1(C)の大型の光学結像装置15及び光学結像装置15から切り出して製造される図1(D)の光学結像装置17では、各光学結像装置13(各単位光反射素子10)の各光反射面12aの微小なずれ、歪み、曲がり等が組み合わされることにより結像が歪む場合があった。つまり、一辺が9~20cmの単位光反射素子10を製造する過程で、微妙な外的要因により、光反射材12(光反射面12a)が歪んだり、曲がったりすると、結果的に大型の光学結像装置15に光学的歪が発生し、折角組み上げた大型の光学結像装置15が使用できなくなるという問題が発生するので、単位光反射素子10の良否を組立段階で個々に判断することが望まれていた。 However, since the optical imaging apparatus 13 shown in FIG. 1B is a set of one upper and lower unit light reflecting element 10, each unit light reflecting element 10 has some distortion and the like. However, the image is normally formed, but the image is cut out from the large optical imaging device 15 and the optical imaging device 15 of FIG. 1C, which are manufactured by combining a plurality of optical imaging devices 13. In the optical imaging device 17 of FIG. 1D, imaging is performed by combining minute deviations, distortions, bends, and the like of each light reflecting surface 12a of each optical imaging device 13 (each unit light reflecting element 10). It was sometimes distorted. That is, in the process of manufacturing the unit light reflecting element 10 having a side of 9 to 20 cm, if the light reflecting material 12 (light reflecting surface 12a) is distorted or bent due to a delicate external factor, a large-scale optical result is obtained. Since optical distortion occurs in the imaging device 15 and a problem arises that the large optical imaging device 15 assembled at an angle cannot be used, it is possible to individually judge the quality of the unit light reflecting element 10 at the assembly stage. It was desired.
 そこで、光学結像装置13を製造する前の単位光反射素子10(図1(A)参照)の段階で、各単位光反射素子10の構成に異常や欠陥が無いことを確認し、異常等のない単位光反射素子10を使用して、まず、大型の光反射素子を作り、この2枚の大型の光反射素子を平面視して光反射面が直交するように重ね合わせることにより、大型の光学結像装置が製造できることを確認して本発明を成し得た。平面視して正方形の単位光反射素子を4枚(又は、9枚、16枚、即ち、2以上の自然数nの二乗枚)組み合わせることにより、平面視して正方形の大型の光反射素子を製造することができる。なお、大型の光反射素子が平面視して正方形であればよく、単位光反射素子は必ずしも平面視して正方形である必要はなく、大型の光反射素子を構成する単位光反射素子の形状、数及び配置は、適宜、選択することができる。 Therefore, at the stage of the unit light reflecting element 10 (see FIG. 1 (A)) before manufacturing the optical imaging device 13, it is confirmed that there is no abnormality or defect in the configuration of each unit light reflecting element 10, and the abnormality or the like is confirmed. First, a large-sized light-reflecting element is made by using the unit light-reflecting element 10 without a unit, and these two large-sized light-reflecting elements are viewed in a plan view and superposed so that the light-reflecting surfaces are orthogonal to each other. It was confirmed that the optical imaging apparatus of the above can be manufactured, and the present invention could be achieved. A large square light-reflecting element in a plan view is manufactured by combining four (or nine, sixteen, that is, two or more square units of a natural number n) of square unit light-reflecting elements in a plan view. can do. It should be noted that the large light reflecting element may be square in plan view, and the unit light reflecting element does not necessarily have to be square in plan view, and the shape of the unit light reflecting element constituting the large light reflecting element. The number and arrangement can be selected as appropriate.
 大型の光反射素子及び大型の光学結像装置を製造するに当たり、まず、図2~図5を参照しながら、本発明の一実施例に係る大型の光反射素子の製造方法に用いられる単位光反射素子28(単位光反射素子28は単位光反射素子10と同様の構造を有する)を安価にかつ精度よく製造する新しい方法について説明する。図2(A)にその一部を示すように、光透過率が高く、厚みのバラツキが極めて小さく(例えば、厚みの誤差が5%以下、より好ましくは1%以下)、厚みが例えば0.2~2mmの板ガラス又は硬質の透明樹脂板からなる複数の透明板材20を用意する。透明板材20の寸法は90~250mmの矩形(正方形も含む)とするのがよく、面粗度が100nm以下(好ましくは50nm以下、より好ましくは10nm以下)のものを使用するのがよいが、これらに限定されるものではない。なお、図面において▽▽▽は鏡面研磨を示す。 In manufacturing a large-sized light reflecting element and a large-sized optical imaging device, first, referring to FIGS. 2 to 5, unit light used in the method for manufacturing a large-sized light reflecting element according to an embodiment of the present invention. A new method for manufacturing the reflecting element 28 (the unit light reflecting element 28 has the same structure as the unit light reflecting element 10) at low cost and with high accuracy will be described. As shown in part in FIG. 2A, the light transmittance is high, the thickness variation is extremely small (for example, the thickness error is 5% or less, more preferably 1% or less), and the thickness is, for example, 0. A plurality of transparent plate materials 20 made of a plate glass of 2 to 2 mm or a hard transparent resin plate are prepared. The size of the transparent plate material 20 is preferably a rectangle (including a square) of 90 to 250 mm, and a surface roughness of 100 nm or less (preferably 50 nm or less, more preferably 10 nm or less) is preferable. It is not limited to these. In the drawings, ▽▽▽ indicates mirror polishing.
 この透明板材20を真空炉に入れて、その片面(又は両面に)アルミニウム等(白色系金属でもよい)の金属蒸着を行う。なお、この金属蒸着層(金属蒸着膜)が光反射材21を構成する。光反射材21によって、最終的に図3(B)の拡大図に示すように、透明板材20の片面(又は両面に)に光反射面22が形成される。また、ここで、光反射材として金属蒸着層の代わりに金属製反射シート(例えば、ミラーシート)を使用することもできるが、この場合は透明板材20の片面のみに形成(配置)するのがよい。 The transparent plate material 20 is placed in a vacuum furnace, and one side (or both sides) of the transparent plate material 20 is vapor-deposited with a metal such as aluminum (which may be a white metal). The metal vapor deposition layer (metal vapor deposition film) constitutes the light reflector 21. Finally, as shown in the enlarged view of FIG. 3B, the light reflecting material 21 forms the light reflecting surface 22 on one side (or both sides) of the transparent plate material 20. Further, here, a metal reflective sheet (for example, a mirror sheet) can be used instead of the metal vapor deposition layer as the light reflecting material, but in this case, it is formed (arranged) on only one side of the transparent plate material 20. good.
 次に、この光反射面22が形成された透明板材20を複数枚(例えば、500~1500枚)、透明な接着剤を介して押圧積層する。ここで、接着剤には、熱硬化型、紫外線硬化型、常温硬化型、2液混合型等を適用できる。これによって図2(A)に示すように、6面が矩形状の四角柱状(立方体、又は直方体)のブロック材23が得られる。ここで、各透明板材20が下から上に積み上げられているとして、ブロック材23の周囲の側面をP、Q、R、Sとし、天井面及び底面をT、Uとする。 Next, a plurality of transparent plate materials 20 (for example, 500 to 1500 sheets) on which the light reflecting surface 22 is formed are pressed and laminated via a transparent adhesive. Here, as the adhesive, a thermosetting type, an ultraviolet curing type, a room temperature curing type, a two-component mixed type, or the like can be applied. As a result, as shown in FIG. 2 (A), a block member 23 having a square columnar shape (cube or rectangular parallelepiped) having rectangular shapes on six surfaces is obtained. Here, assuming that the transparent plate members 20 are stacked from the bottom to the top, the side surfaces around the block member 23 are P, Q, R, S, and the ceiling surface and the bottom surface are T, U.
 ブロック材23の天井面T及び底面Uは透明板材20の表面又は光反射材21(金属蒸着面)であるので、研磨しなくても100nm以下(例えば、10nm)の表面粗度に保持されている。なお、基準面となる天井面T及び底面Uが±0.05度、好ましくは±0.02度以内の範囲内で平行であること、及び天井面Tから底面Uまでの距離(間隔)、即ち、ブロック材23の高さhは正確である必要があるので、必要に応じて、真空中で平面プレス等で押さえ込んで高さ調整する(高さ調整は接着剤が固まる前か、途中に行うのがよい)。また、天井面Tと底面Uの平行度、寸法(誤差1μm以内が好ましい)は、三次元測定器、又は高さ測定器等で測定し、確認するのが好ましい(以上、第1工程)。 Since the ceiling surface T and the bottom surface U of the block material 23 are the surface of the transparent plate material 20 or the light reflecting material 21 (metal vapor deposition surface), they are maintained at a surface roughness of 100 nm or less (for example, 10 nm) without polishing. There is. The ceiling surface T and the bottom surface U, which are the reference surfaces, are parallel within a range of ± 0.05 degrees, preferably ± 0.02 degrees, and the distance (interval) from the ceiling surface T to the bottom surface U. That is, since the height h of the block material 23 needs to be accurate, the height is adjusted by pressing it in a vacuum with a flat press or the like as necessary (height adjustment is performed before or during the adhesive hardening). Good to do). Further, it is preferable to measure and confirm the parallelism and dimensions (preferably within an error of 1 μm) between the ceiling surface T and the bottom surface U with a three-dimensional measuring device, a height measuring device, or the like (the above is the first step).
 次に、ブロック材23を正面視して(側面Pから見て)、その幅方向の両端部を、対向する側面Q、Sと略平行に切断して幅調整(粗調整)する切断加工を行う。これは図2(B)、図3(A)~(C)に示すように水平配置された定盤24の上にブロック材23を仮置して、定盤24に設けられた複数の真空吸着口27によってブロック材23を吸引保持し、バンドソー(又は、その他の切断手段)によって切断することによって行う。そして、切断加工された両側面(両切断面)を研磨することにより、2つの側面Q1、S1が新たに形成される。これらの側面Q1、S1は、天井面T又は底面Uに対して垂直であり、側面Q1から側面S1までの距離(幅)wは高さhと等しくなっている。これによって、図3(A)~(C)に示すように、幅が短縮された(幅wを有する)新たな天井面T1と底面U1及び、幅wと等しい高さhを有する新たな側面Q1、S1で囲まれる新たな側面P1、R1が完全な正方形となったブロック体25(寸法精度が例えば0.5μm以内)が形成される(以上、第2工程)。なお、切断加工後の両側面(両切断面)の距離は、研磨代を考慮して高さhよりもやや大きくなるように(研磨後の幅w+研磨代となるように)切断することにより、研磨後に所望の寸法が得られる。 Next, the block material 23 is viewed from the front (viewed from the side surface P), and both ends in the width direction are cut substantially parallel to the opposite side surfaces Q and S to adjust the width (coarse adjustment). conduct. This is a plurality of vacuums provided on the surface plate 24 by temporarily placing the block member 23 on the surface plate 24 arranged horizontally as shown in FIGS. 2 (B) and 3 (A) to 3 (C). This is performed by sucking and holding the block material 23 by the suction port 27 and cutting it with a band saw (or other cutting means). Then, by polishing both side surfaces (both cut surfaces) that have been cut, the two side surfaces Q1 and S1 are newly formed. These side surfaces Q1 and S1 are perpendicular to the ceiling surface T or the bottom surface U, and the distance (width) w from the side surface Q1 to the side surface S1 is equal to the height h. As a result, as shown in FIGS. 3A to 3C, a new ceiling surface T1 and a bottom surface U1 having a shortened width (having a width w) and a new side surface having a height h equal to the width w are obtained. A block body 25 (with a dimensional accuracy of, for example, within 0.5 μm) in which the new side surfaces P1 and R1 surrounded by Q1 and S1 are completely square is formed (the above is the second step). The distance between both side surfaces (both cut surfaces) after the cutting process is cut so as to be slightly larger than the height h (width w after polishing + polishing allowance) in consideration of the polishing allowance. The desired dimensions can be obtained after polishing.
 次に、図3、図4に示すように、側面S1、底面U1、側面Q1、天井面T1で囲まれ、側面P1側から見て正方形のブロック体25を定盤24の上に置いて固定し、側面P1(又は側面R1)に平行に順次又は同時に複数個所切断して、図4(A)、(B)に示すように、厚みが規格厚み(0.5~2mm)+研磨代の光反射基材26を製造する(以上、第3工程)。
 次に、切断された光反射基材26の端面(切断面)を鏡面研磨して、光学端面P2、R2とし、規格寸法厚の単位光反射素子28を製造する。
 隣り合う積層端面Q2、T2、S2、U2が直交する所定厚みの単位光反射素子28を図5(A)、(B)に示すが、この実施例では透明板材20で形成された光透過部20aの片面にしか光反射材21を形成していない(図4(A)の拡大図参照)ので、単位光反射素子28の底面(積層端面U2)には、図5(A)に示すように、光透過部20aが露出する。これに対し、光透過部20aの両面に光反射材21を形成した場合は、上下両面(積層端面T2、U2)に光反射材21を有する単位光反射素子29(図6参照)が形成される。研磨された光学端面P2、R2及び研磨された積層端面Q2、S2の粗度は30nm(又はそれ以下、例えば、10nm以下)とするのがよい(以上、第4工程)。
Next, as shown in FIGS. 3 and 4, a square block body 25 surrounded by the side surface S1, the bottom surface U1, the side surface Q1, and the ceiling surface T1 and viewed from the side surface P1 side is placed and fixed on the surface plate 24. Then, the side surface P1 (or the side surface R1) is cut in parallel or simultaneously at a plurality of places, and as shown in FIGS. 4 (A) and 4 (B), the thickness is the standard thickness (0.5 to 2 mm) + the polishing allowance. The light-reflecting base material 26 is manufactured (the above is the third step).
Next, the end face (cut surface) of the cut light-reflecting base material 26 is mirror-polished to obtain optical end faces P2 and R2, and a unit light-reflecting element 28 having a standard dimensional thickness is manufactured.
The unit light reflecting elements 28 having a predetermined thickness in which the adjacent laminated end faces Q2, T2, S2, and U2 are orthogonal to each other are shown in FIGS. Since the light reflecting material 21 is formed only on one side of 20a (see the enlarged view of FIG. 4A), the bottom surface (laminated end face U2) of the unit light reflecting element 28 is as shown in FIG. 5A. The light transmitting portion 20a is exposed. On the other hand, when the light reflecting material 21 is formed on both sides of the light transmitting portion 20a, the unit light reflecting element 29 (see FIG. 6) having the light reflecting material 21 is formed on both the upper and lower surfaces (laminated end faces T2 and U2). NS. The roughness of the polished optical end faces P2 and R2 and the polished laminated end faces Q2 and S2 is preferably 30 nm (or less, for example, 10 nm or less) (the above is the fourth step).
 以下、本発明の一実施例に係る大型の光反射素子の製造方法について説明する。
 単位光反射素子28を用いて大型の光反射素子を製造する場合、光透過部20a及び光反射材21の積層方向に隣り合う単位光反射素子28は、一方の単位光反射素子28の上面(積層端面T2)と、他方の単位光反射素子28の下面(積層端面U2)を向かい合わせて貼り合わせることにより、光透過部20aと光反射材21が交互に配置される。これに対し、上下両面(積層端面T2、U2)に光反射材21を有する単位光反射素子29を用いて大型の光反射素子を製造する場合、光透過部20a及び光反射材21の積層方向に隣り合う単位光反射素子29は、光反射材21同士を接着することになるが、金属蒸着膜及び接着層の厚さが薄いので、あまり問題とはならない。
Hereinafter, a method for manufacturing a large-sized light reflecting element according to an embodiment of the present invention will be described.
When a large-scale light-reflecting element is manufactured using the unit light-reflecting element 28, the unit light-reflecting element 28 adjacent to each other in the stacking direction of the light transmitting portion 20a and the light-reflecting material 21 is the upper surface of one of the unit light-reflecting elements 28. The light transmitting portion 20a and the light reflecting material 21 are alternately arranged by laminating the laminated end surface T2) and the lower surface (laminated end surface U2) of the other unit light reflecting element 28 so as to face each other. On the other hand, when a large-sized light-reflecting element is manufactured by using the unit light-reflecting element 29 having the light-reflecting material 21 on both the upper and lower surfaces (laminated end faces T2 and U2), the stacking direction of the light transmitting portion 20a and the light-reflecting material 21 The unit light reflecting element 29 adjacent to the light reflecting material 21 adheres the light reflecting materials 21 to each other, but this is not a problem because the thickness of the metal vapor deposition film and the adhesive layer is thin.
 次に、単位光反射素子29(単位光反射素子28も同様、以下単位光反射素子29で代表)が正常(標準仕様)に製造されているか否かについて検査する手段及び方法について説明する。初めから大面積の透明板材及び光反射材を積層して大型の光反射素子(ミラープレート)を製造しようとすると、大型の製造装置が必要となり、寸法(平面度)の管理が難しくなるが、小型(この実施例では150mm角)の単位光反射素子29を複数枚製造し、敷き詰めて大型の光反射素子を製造することができる。まず、最初に各単位光反射素子29について個別に検査する装置及び方法について説明する。 Next, a means and a method for inspecting whether or not the unit light reflecting element 29 (similarly, the unit light reflecting element 28 is also represented by the unit light reflecting element 29 below) is normally manufactured (standard specifications) will be described. If a large-area transparent plate material and a light-reflecting material are laminated from the beginning to manufacture a large-sized light-reflecting element (mirror plate), a large-sized manufacturing device is required and it becomes difficult to control the dimensions (flatness). A plurality of small-sized (150 mm square in this embodiment) unit light-reflecting element 29 can be manufactured and spread to manufacture a large-sized light-reflecting element. First, an apparatus and a method for individually inspecting each unit light reflecting element 29 will be described.
 図6、図7(A)に示すように、単位光反射素子の検査装置30は、固定配置された透明定盤31と、平面視して正方形の単位光反射素子29が所定位置に配置された透明定盤31の下方(一側)に、透明定盤31に対して40~50度傾けて配置された表示装置(ディスプレイ)32と、単位光反射素子29の上側(他側)から単位光反射素子29を介して表示装置32の画像の鏡像を撮影する撮像装置33とを有している。 As shown in FIGS. 6 and 7A, in the unit light reflecting element inspection device 30, the fixedly arranged transparent platen 31 and the square unit light reflecting element 29 in a plan view are arranged at predetermined positions. A display device (display) 32 arranged below the transparent platen 31 at an angle of 40 to 50 degrees with respect to the transparent platen 31, and a unit from the upper side (other side) of the unit light reflecting element 29. It has an image pickup device 33 that captures a mirror image of the image of the display device 32 via the light reflection element 29.
 ガラス板で形成された透明定盤31の周囲には図示しない枠体が配置されており、透明定盤31全体が、図7(A)に示すように、水平方向(x軸方向及びy軸方向)、垂直方向(z軸方向)に動き、傾動(x軸回り及びy軸回り)及びその場旋回(z軸回りの回転θ)も可能で、透明定盤31に載せた単位光反射素子29を任意の位置に配置することができる。そして、図6に示すように、透明定盤31のx軸方向基部、y軸方向基部には、互いに直交するxガイド34とyガイド35が設けられており、透明定盤31の上に載せた単位光反射素子29を光反射面22が同一方向となるように位置決めする(仮固定する)ことができる。また、透明定盤31には載置した単位光反射素子29を真空吸引してその場に保持(仮固定)する複数の吸着機構を設けることも可能であるが、測定の障害になるので、押圧機構29a、29bを設けて、側方から単位光反射素子29を押圧クランプするのがより好ましい。透明定盤31の上方には、図7(A)に示すように、単位光反射素子29の搬送を行う吸着搬送手段37が設けられている。 A frame (not shown) is arranged around the transparent platen 31 formed of a glass plate, and the entire transparent platen 31 is in the horizontal direction (x-axis direction and y-axis) as shown in FIG. 7 (A). Direction), vertical direction (z-axis direction), tilting (x-axis and y-axis) and in-situ rotation (z-axis rotation θ) are possible, and a unit light reflecting element mounted on the transparent platen 31 The 29 can be placed at any position. As shown in FIG. 6, the x-axis direction base portion and the y-axis direction base portion of the transparent platen 31 are provided with x guides 34 and y guides 35 that are orthogonal to each other and are placed on the transparent platen 31. The unit light reflecting element 29 can be positioned (temporarily fixed) so that the light reflecting surfaces 22 are in the same direction. Further, it is possible to provide the transparent platen 31 with a plurality of suction mechanisms for vacuum-sucking the mounted unit light reflecting element 29 and holding (temporarily fixing) the unit light reflecting element 29 in place, but this hinders measurement. It is more preferable to provide the pressing mechanisms 29a and 29b to press-clamp the unit light reflecting element 29 from the side. As shown in FIG. 7A, a suction transport means 37 for transporting the unit light reflecting element 29 is provided above the transparent surface plate 31.
 図7(B)に示すように、表示装置32には検査基準画像の一例である全体が正方形の格子画像39が表示される。ここで、格子画像39は、x軸方向に垂直(y軸方向と平行)な複数の縦線41と、x軸方向に平行な複数の横線42がそれぞれ所定ピッチ(一定間隔)で配置されたものである。この格子画像39を各光反射面22に曲がりや歪の無い正規(基準)の単位光反射素子29dを介して撮像装置33で撮像すると図7(C)に示すような基準画像40dが得られるので、基準画像データとして保存する。ここで、単位光反射素子29dには沢山の光反射面22が等ピッチで並んでいるので、一枚のミラーを介して格子画像39を見る場合の画像とは異なり、平行配置された複数の光反射面22を介して格子画像39を見ることになり、図7(C)に示すように、基準画像40dは格子画像39の縦線41、横線42が、それぞれ基準縦線41d、基準横線42dに変形した台形状に見える。なお、基準となる単位光反射素子29dのサイズ(仕様)は検査を行おうとする単位光反射素子29と一致させることが好ましい。また、格子画像はコンピュータを用いて合成された画像であることが好ましいが、これに限定されるものではなく、縦線と横線が正確に一定間隔で描かれていればよい。 As shown in FIG. 7B, the display device 32 displays a grid image 39 having a square shape as a whole, which is an example of an inspection reference image. Here, in the lattice image 39, a plurality of vertical lines 41 perpendicular to the x-axis direction (parallel to the y-axis direction) and a plurality of horizontal lines 42 parallel to the x-axis direction are arranged at predetermined pitches (constant intervals), respectively. It is a thing. When the lattice image 39 is imaged by the image pickup apparatus 33 via a normal (reference) unit light reflecting element 29d having no bending or distortion on each light reflecting surface 22, a reference image 40d as shown in FIG. 7C can be obtained. Therefore, save it as reference image data. Here, since many light reflecting surfaces 22 are arranged at equal pitches on the unit light reflecting element 29d, a plurality of light reflecting surfaces arranged in parallel are arranged in parallel, unlike the image when the lattice image 39 is viewed through one mirror. The lattice image 39 is viewed through the light reflecting surface 22, and as shown in FIG. 7C, the reference image 40d has the vertical line 41 and the horizontal line 42 of the lattice image 39 as the reference vertical line 41d and the reference horizontal line, respectively. It looks like a trapezoid transformed into 42d. It is preferable that the size (specification) of the reference unit light reflecting element 29d matches the size (specification) of the unit light reflecting element 29 to be inspected. Further, the grid image is preferably an image synthesized by using a computer, but the present invention is not limited to this, and vertical lines and horizontal lines may be drawn at exactly regular intervals.
 次に、単位光反射素子29の良否を判断する場合は、検査しようとする単位光反射素子29を透明定盤31の上に載置して位置決めを行う。そして、単位光反射素子29dと同様の手順で、表示手段32に表示された格子画像39の鏡像を単位光反射素子29を介して撮像装置33で撮像し、検査画像40aを得る。そして、検査画像40aに基準画像40dを重ねて表示することにより検査を行うが、検査画像40aも基準画像40dとほぼ同様の画像となるので、基準画像40d又は検査画像40aを移動、拡縮して両者の輪郭を合わせる(重ねる)ことにより、検査画像40aと基準画像40dとの類似性(相似性)から容易に比較(検査)を行うことができる。
 単位光反射素子29の光反射面22に異常がある場合は、例えば検査画像40aの検査横線42aが基準画像40dの基準横線42dよりずれるので、その検査横線42aの歪み(位置ずれ)から単位光反射素子29の良否を判断することができる。なお、検査画像40aと基準画像40dを完全に重ねる(表示倍率を一致させる)代わりに、例えば、検査画像40aの大きさを基準画像40dに対して縦横0.9~0.98倍の範囲で小さくしてもよい。
Next, when determining the quality of the unit light reflecting element 29, the unit light reflecting element 29 to be inspected is placed on the transparent surface plate 31 for positioning. Then, in the same procedure as the unit light reflecting element 29d, the mirror image of the lattice image 39 displayed on the display means 32 is imaged by the imaging device 33 via the unit light reflecting element 29 to obtain the inspection image 40a. Then, the inspection is performed by superimposing the reference image 40d on the inspection image 40a, but since the inspection image 40a is almost the same as the reference image 40d, the reference image 40d or the inspection image 40a is moved and scaled. By matching (overlapping) the contours of both, it is possible to easily compare (inspect) from the similarity (similarity) between the inspection image 40a and the reference image 40d.
If there is an abnormality in the light reflecting surface 22 of the unit light reflecting element 29, for example, the inspection horizontal line 42a of the inspection image 40a deviates from the reference horizontal line 42d of the reference image 40d, so that the unit light is caused by the distortion (positional deviation) of the inspection horizontal line 42a. The quality of the reflective element 29 can be determined. Instead of completely overlapping the inspection image 40a and the reference image 40d (matching the display magnifications), for example, the size of the inspection image 40a is set in the range of 0.9 to 0.98 times in the vertical and horizontal directions with respect to the reference image 40d. It may be made smaller.
 以上の良否の判定は、目視で行ってもよいが、良、不良の境界が明確でない場合があるので、コンピュータを用いて演算処理(画像処理)を行うことが好ましい。
 以下に、コンピュータによる基準画像40dと検査画像40aの類似性の判断(良否判定)の一例を以下に説明する。ここで、図8に示すように、基準画像40dの外枠43d内の各基準縦線41dにx1、x2・・・xn・・、各基準横線42dにy1、y2・・・yn・・を付す。nは例えば5~50程度でよい。なお、基準画像40dと検査画像40aを比較する際、それぞれの外枠43d、43aをできるだけ一致させるのがよい。但し、目視で比較する場合は、検査横線42aの歪みを観察すればよいので、外枠43d、43aの一致は必須の要件ではない。
The above-mentioned judgment of good or bad may be performed visually, but since the boundary between good and bad may not be clear, it is preferable to perform arithmetic processing (image processing) using a computer.
Hereinafter, an example of determining the similarity (pass / fail determination) between the reference image 40d and the inspection image 40a by a computer will be described below. Here, as shown in FIG. 8, x1, x2 ... xn ... Are assigned to each reference vertical line 41d in the outer frame 43d of the reference image 40d, and y1, y2 ... yn ... Are assigned to each reference horizontal line 42d. Attach. n may be, for example, about 5 to 50. When comparing the reference image 40d and the inspection image 40a, it is preferable that the outer frames 43d and 43a are matched as much as possible. However, in the case of visual comparison, it is sufficient to observe the distortion of the inspection horizontal line 42a, so that the outer frames 43d and 43a match is not an indispensable requirement.
 検査をしようとする単位光反射素子29に異常がある場合、検査横線42aの位置が基準画像40dの基準横線42dから上又は下方向にずれるので、各基準縦線41d(x1、x2・・・xn・・、)と各検査横線42aが交わる位置で、各検査横線42aの上方向のずれAnを測定してその最大値(又は平均値)を算出し、その値Kuが基準値より大きい場合(ケース1)、又は、各検査横線42aの下方向のずれAm(図示せず)を測定してその最大値(又は平均値)を算出し、その値Ksが基準値より大きい場合(ケース2)は、単位光反射素子29に異常があると判断され、不良となる。測定した値Ku、Ksは画素の単位で計測した値の大きい方を採用するのが好ましい。基準値は実験により求める。なお、単位光反射素子29の光反射面22は検査画像40aの検査横線42aに沿っているので、単位光反射素子29を正しく置いた場合は、通常は検査縦線41aの歪みは観測されない。
 前記方法では、個々に測定した各検査横線42aのずれAnの最大値(又は平均値)を算出したが、全てのずれAnの二乗平均値(Root Mean Square Value)を計算し、予め測定して得られた基準値と比較してその合否(類似度合い)を求めることもできる。
If there is an abnormality in the unit light reflecting element 29 to be inspected, the position of the inspection horizontal line 42a shifts upward or downward from the reference horizontal line 42d of the reference image 40d, so that each reference vertical line 41d (x1, x2 ... When xn ...,) and each inspection horizontal line 42a intersect, the upward deviation An of each inspection horizontal line 42a is measured, the maximum value (or average value) is calculated, and the value Ku is larger than the reference value. (Case 1), or when the downward deviation Am (not shown) of each inspection horizontal line 42a is measured, the maximum value (or average value) is calculated, and the value Ks is larger than the reference value (Case 2). ) Is determined to be abnormal in the unit light reflecting element 29, and becomes defective. As the measured values Ku and Ks, it is preferable to adopt the larger value measured in pixel units. The reference value is obtained by experiment. Since the light reflecting surface 22 of the unit light reflecting element 29 is along the inspection horizontal line 42a of the inspection image 40a, distortion of the inspection vertical line 41a is not normally observed when the unit light reflecting element 29 is placed correctly.
In the above method, the maximum value (or average value) of the deviation An of each inspection horizontal line 42a measured individually was calculated, but the root mean square value (Root Mean Square Value) of all the deviation Ans was calculated and measured in advance. It is also possible to determine the pass / fail (degree of similarity) by comparing with the obtained reference value.
 このようにして、正方形の単位光反射素子29の良否を判断し、4枚(又は9枚或いは16枚)の良品の単位光反射素子29を各光反射面22が同一方向となるように平面状に並べて貼り合せることにより、大型の光反射素子51を最低2枚製造する。そして、図9に示すように、2枚の大型の光反射素子51をそれぞれの光反射面22が直交するように大型の透明定盤52の上で重ね合わせ、互いに直交するxガイド53、yガイド54、可動ガイド55、56によって位置決めして接着剤で接合し、大型の光学結像装置を形成することができる。
 ここで、図7に示した検査装置30と同一構造の大型のものを用意すると共に大型の表示装置32も用意して、前述のように一枚の単位光反射素子29を検査するのと同様な方法で大型の光反射素子51を検査することもできるが、個々の単位光反射素子29を厳格に検査し、良品のみを必要枚数用意して、これらを並べて接合することにより、大型の光反射素子51を製造するのが好ましい。
 なお、複数の単位光反射素子を並べて接合する際には、複数の単位光反射素子を透明板の上に並べて、隣り合う単位光反射素子同士を接合すると同時に、透明板に対して各単位光反射素子を接合することにより、複数の単位光反射素子を確実に一体化することができ、大型の光反射素子の取扱い性及び形態の安定性に優れる。
In this way, the quality of the square unit light reflecting element 29 is determined, and four (or nine or 16) non-defective unit light reflecting elements 29 are flattened so that the light reflecting surfaces 22 are in the same direction. By arranging them side by side and pasting them together, at least two large light reflecting elements 51 are manufactured. Then, as shown in FIG. 9, two large light reflecting elements 51 are superposed on the large transparent surface plate 52 so that the respective light reflecting surfaces 22 are orthogonal to each other, and the x guides 53 and y are orthogonal to each other. A large optical imaging device can be formed by positioning with guides 54 and movable guides 55 and 56 and joining them with an adhesive.
Here, a large device having the same structure as the inspection device 30 shown in FIG. 7 is prepared, and a large display device 32 is also prepared, which is the same as inspecting one unit light reflecting element 29 as described above. Although it is possible to inspect the large-sized light-reflecting element 51 by various methods, the large-sized light is obtained by strictly inspecting each unit light-reflecting element 29, preparing only the required number of non-defective products, and joining them side by side. It is preferable to manufacture the reflective element 51.
When arranging and joining a plurality of unit light reflecting elements, a plurality of unit light reflecting elements are arranged on a transparent plate to join adjacent unit light reflecting elements, and at the same time, each unit light is bonded to the transparent plate. By joining the reflecting elements, a plurality of unit light reflecting elements can be reliably integrated, and the handling and morphological stability of the large light reflecting element are excellent.
 また、以上の実施例においては、単位光反射素子29の全体について、光反射面22の歪みについて検査したが、歪が発生するのは部分的であることが多いので、単位光反射素子29の一部についてのみ合否の検査を行う場合も本発明は適用される。
 上記実施例においては、検査基準画像の撮像や検査画像の検査等が一カ所から行われているが、対象となる光反射素子が大型となる場合は、検査基準画像も大型となるので、複数個所から同時に撮像や検査を行ってもよいし、撮像装置33を移動させながら大型の光反射素子の一部を順次撮像して部分毎に検査画像(鏡像)と基準画像を比較してもよい。なお、目視で観察する場合も複数個所から行うことができるが、基準画像はあってもなくてもよい。
Further, in the above embodiment, the distortion of the light reflecting surface 22 was inspected for the entire unit light reflecting element 29, but since the distortion often occurs only partially, the unit light reflecting element 29 The present invention also applies to the case where a pass / fail inspection is performed only for a part.
In the above embodiment, the inspection reference image is imaged and the inspection image is inspected from one place. However, when the target light reflecting element is large, the inspection reference image is also large, so that there are a plurality of inspection reference images. Imaging and inspection may be performed simultaneously from different locations, or a part of a large light reflecting element may be sequentially imaged while moving the imaging device 33, and the inspection image (mirror image) and the reference image may be compared for each portion. .. The visual observation can be performed from a plurality of places, but the reference image may or may not be present.
 続いて、図10(A)、(B)、図11(A)、(B)、図12(A)、(B)を参照しながら、本発明の一実施例に係る大型の光反射素子の良否判定方法について説明する。図10(A)に示すように、透明定盤60の上に平面視して正方形の単位光反射素子61~64(それぞれ一辺が90~200mm)を各光反射面69が同一方向となるように4枚密着させて並べる。これら4枚の単位光反射素子61~64を接合することにより、大型の光反射素子65が得られるが、この時点では単位光反射素子61~64は接合されていない(例えば、真空吸引によって透明定盤60に仮固定されている)。透明定盤60の下方には、平面状のディスプレイ66が透明定盤60と一定の角度(40~50度)をなすように傾斜して配置されている。ディスプレイ66には図7(B)に示したような格子画像(検査基準画像の一例)39が表示されている。この格子画像の縦線及び単位光反射素子61~64の各光反射面69に平行な横線の本数と配置(ピッチ)は大型の光反射素子65の光反射面69の数と配置に応じて自由に設定できる。 Subsequently, referring to FIGS. 10 (A), (B), 11 (A), (B), 12 (A), and (B), a large light reflecting element according to an embodiment of the present invention. The pass / fail judgment method of the above will be described. As shown in FIG. 10A, square unit light reflecting elements 61 to 64 (each having a side of 90 to 200 mm) viewed in a plan view on the transparent surface plate 60 are arranged so that the light reflecting surfaces 69 are in the same direction. Place 4 sheets in close contact with each other. By joining these four unit light reflecting elements 61 to 64, a large light reflecting element 65 can be obtained, but at this point, the unit light reflecting elements 61 to 64 are not joined (for example, transparent by vacuum suction). It is temporarily fixed to the platen 60). Below the transparent surface plate 60, a flat display 66 is arranged so as to be inclined so as to form a constant angle (40 to 50 degrees) with the transparent surface plate 60. A grid image (an example of an inspection reference image) 39 as shown in FIG. 7B is displayed on the display 66. The number and arrangement (pitch) of the vertical lines of the lattice image and the horizontal lines parallel to the light reflecting surfaces 69 of the unit light reflecting elements 61 to 64 depend on the number and arrangement of the light reflecting surfaces 69 of the large light reflecting element 65. Can be set freely.
 この状態でディスプレイ66に格子画像39(縦線41、横線42)を表示させて、大型の光反射素子65の中央基部の直上位置にカメラ68を置いて、大型の光反射素子65を観察すると、図11(A)に示すように、検査画像が視認される。この場合、大型の光反射素子65の一つの光反射面69に反射してカメラ68に入る横線42の画像(鏡像)は、光反射面69の高さに応じて一本又は少数本となる。ここで、隣り合う単位光反射素子61~64の光反射面69の位置がずれている場合は、図11(B)に示すように、検査縦線41a又は検査横線42aの繋ぎ部分にずれや段違いが生じるので、この鏡像の連続性から各単位光反射素子61~64の配置の良不良を判定できる。なお、ディスプレイ66の角度等を調整して検査画像(検査縦線41a又は検査横線42a)に最大のずれが発生するようにするのがよい(工程A)。 In this state, when a lattice image 39 (vertical line 41, horizontal line 42) is displayed on the display 66, the camera 68 is placed directly above the central base of the large light reflecting element 65, and the large light reflecting element 65 is observed. , As shown in FIG. 11A, the inspection image is visually recognized. In this case, the number of images (mirror images) of the horizontal lines 42 that are reflected by one light reflecting surface 69 of the large light reflecting element 65 and enter the camera 68 is one or a small number depending on the height of the light reflecting surface 69. .. Here, if the positions of the light reflecting surfaces 69 of the adjacent unit light reflecting elements 61 to 64 are misaligned, as shown in FIG. 11B, the inspection vertical line 41a or the inspection horizontal line 42a may be misaligned. Since a step difference occurs, it is possible to determine whether the arrangement of the light reflecting elements 61 to 64 of each unit is good or bad from the continuity of the mirror image. It is preferable to adjust the angle of the display 66 or the like so that the maximum deviation occurs in the inspection image (inspection vertical line 41a or inspection horizontal line 42a) (step A).
 図12(A)、(B)は、カメラ68で撮像された他の検査画像を示しているが、検査縦線41aに不連続部71が見られ、検査横線42aに段違い72が見られ、これにより大型の光反射素子65の良否を判定できる。
 なお、複数枚(2以上の自然数nの二乗枚)の単位光反射素子を並べて配置する大型の光反射素子を検査する場合は、最初に2枚の単位光反射素子を並べて検査を行い、次に1枚の単位光反射素子を足して検査をする工程Aを順次繰り返すこともできる。これによって同時に多数の光反射素子を並べて検査するより、不良の単位光反射素子の特定が容易となる。各光反射素子の移動、取り換えは吸着搬送手段にて行い、工程Aで不良と判定された単位光反射素子を、別の単位光反射素子と交換して工程Aを再度実施することにより、最終的に良品と判断された単位光反射素子のみを接着剤で固定(接合)して大型の光反射素子65が得られる。
12 (A) and 12 (B) show other inspection images captured by the camera 68, in which a discontinuity 71 is seen on the inspection vertical line 41a and a step difference 72 is seen on the inspection horizontal line 42a. Thereby, the quality of the large light reflecting element 65 can be determined.
When inspecting a large light-reflecting element in which a plurality of unit light-reflecting elements (two or more natural numbers n squared) are arranged side by side, first, two unit light-reflecting elements are arranged side by side and inspected, and then the inspection is performed. It is also possible to sequentially repeat the step A of adding one unit light reflecting element to the inspection. This makes it easier to identify defective unit light-reflecting elements than to inspect a large number of light-reflecting elements side by side at the same time. The movement and replacement of each light reflecting element is performed by the adsorption and transporting means, and the unit light reflecting element determined to be defective in step A is replaced with another unit light reflecting element, and the final step A is performed again. A large-sized light-reflecting element 65 can be obtained by fixing (joining) only the unit light-reflecting element judged to be a good product with an adhesive.
 以上の実施例においては、一つの単位光反射素子に対しては1方向からの検査しか行われていないが、単位光反射素子を平面内で180度回転させて、光反射面22の方向を揃えて再検査(工程Aの確認検査)を行うことができる。これにより良品判定の精度が向上する。更に、検査対象となる単位光反射素子を裏返して、検査を行うこともできる。なお、本実施例に係る大型の光反射素子の良否判定を行う場合は、先に説明した各単位光反射素子の個別検査を省略してもよい。 In the above embodiment, only one unit light reflecting element is inspected from one direction, but the unit light reflecting element is rotated 180 degrees in a plane to change the direction of the light reflecting surface 22. Re-inspection (confirmation inspection in step A) can be performed in line. This improves the accuracy of non-defective product judgment. Further, the unit light reflecting element to be inspected can be turned inside out to perform the inspection. When determining the quality of the large-sized light-reflecting element according to the present embodiment, the individual inspection of each unit light-reflecting element described above may be omitted.
 続いて本発明の一実施例に係る光学結像装置の製造方法について説明する。
 まず、平面視して外形が正方形となるように、前述の大型の光反射素子65の角部を斜めに切断し、各光反射面69が正方形の各辺に対して45度傾斜した中型の光反射素子(図示せず)を形成する(工程a)。そして、2枚の中型の光反射素子をそれぞれの光反射面69が直交するようにして重ね合わせることにより、(中型の)光学結像装置を製造することができる(工程b)。こうして得られる光学結像装置は、図1(D)に示した光学結像装置17と同様の構造であるが、それを構成する各単位光反射素子61~64及び大型の光反射素子65について良否判定が行われていることにより、従来の大型の光学結像装置よりも高品質となっている。なお、本実施例では、大型の光反射素子65の角部を斜めに切断して中型の光反射素子を形成した後、2枚の中型の光反射素子をそれぞれの光反射面69が直交するようにして重ね合わせて(接合して)光学結像装置を製造したが、2枚の大型の光反射素子65をそれぞれの光反射面69が直交するようにして重ね合わせて接合した後、角部を斜めに切断してもよい。
Subsequently, a method of manufacturing an optical imaging apparatus according to an embodiment of the present invention will be described.
First, the corners of the large light reflecting element 65 described above are cut diagonally so that the outer shape is square when viewed in a plan view, and each light reflecting surface 69 is a medium-sized medium-sized one inclined by 45 degrees with respect to each side of the square. A light reflecting element (not shown) is formed (step a). Then, the (medium-sized) optical imaging device can be manufactured by superimposing the two medium-sized light-reflecting elements so that the respective light-reflecting surfaces 69 are orthogonal to each other (step b). The optical imaging device thus obtained has the same structure as the optical imaging device 17 shown in FIG. 1 (D), but with respect to the unit light reflecting elements 61 to 64 and the large light reflecting elements 65 constituting the optical imaging device 17. Due to the quality judgment, the quality is higher than that of the conventional large-scale optical imaging device. In this embodiment, after the corners of the large light reflecting element 65 are diagonally cut to form a medium-sized light reflecting element, the light reflecting surfaces 69 of the two medium-sized light reflecting elements are orthogonal to each other. An optical imaging device was manufactured by superimposing (joining) them in this way, but after superimposing and joining two large light reflecting elements 65 so that their respective light reflecting surfaces 69 were orthogonal to each other, the corners were formed. The portion may be cut diagonally.
 次に本発明の他の実施例に係る光学結像装置の製造方法について説明する。
 図13に示すように、上記の工程aで切り取った直角二等辺三角形状の角部(光反射素子の一部)57を4枚合わせて各角部57の各光反射面69が同一方向を向いた中型の光反射素子58を2枚用意し、2枚の光反射素子58をそれぞれの光反射面69が直交するように大型の透明定盤52の上で重ね合わせることにより、上記の工程aで切断した角部57を有効利用して、上記の工程bで製造された光学結像装置と同等の光学結像装置を製造することができ、省資源性に優れる。なお、4枚の角部57を接合して中型の光反射素子58を製造する際には、4枚の角部57を透明板の上に並べ、隣り合う角部57同士を接合すると同時に、透明板に対して各角部57を接合することにより、4枚の角部57を確実に一体化することができ、中型の光反射素子58の取扱い性及び形態の安定性に優れる。但し、前述のように、2枚の大型の光反射素子65を接合した後に、角部(光学結像装置の一部)を斜めに切断した場合は、切断した4つの角部を透明板の上に並べ、隣り合う角部同士を接合すると同時に、透明板に対して各角部を接合するだけで光学結像装置が得られる。
Next, a method of manufacturing the optical imaging apparatus according to another embodiment of the present invention will be described.
As shown in FIG. 13, four right-angled isosceles triangular corners (part of the light-reflecting element) 57 cut out in the above step a are combined so that the light-reflecting surfaces 69 of each corner 57 are in the same direction. The above step is performed by preparing two medium-sized light-reflecting elements 58 facing each other and superimposing the two light-reflecting elements 58 on a large transparent platen 52 so that the respective light-reflecting surfaces 69 are orthogonal to each other. By effectively utilizing the corner portion 57 cut in a, it is possible to manufacture an optical imaging device equivalent to the optical imaging device manufactured in the above step b, which is excellent in resource saving. When manufacturing the medium-sized light reflecting element 58 by joining the four corners 57, the four corners 57 are arranged on the transparent plate, and the adjacent corners 57 are joined to each other at the same time. By joining each corner portion 57 to the transparent plate, the four corner portions 57 can be reliably integrated, and the medium-sized light reflecting element 58 is excellent in handleability and morphological stability. However, as described above, when the corners (a part of the optical imaging device) are cut diagonally after joining the two large light reflecting elements 65, the four cut corners are cut by the transparent plate. An optical imaging device can be obtained simply by arranging them side by side and joining the adjacent corners to each other and at the same time joining each corner to the transparent plate.
 小型の単位光反射素子を用いて大型の光反射素子を製造するに際し、各単位光反射素子及び大型の光反射素子を簡便に検査することができ、高品質な大型の光反射素子及び光学結像装置を安価に製造できる。 When manufacturing a large-sized light-reflecting element using a small-sized unit light-reflecting element, each unit light-reflecting element and a large-sized light-reflecting element can be easily inspected, and a high-quality large-sized light-reflecting element and optical connection can be performed. The image device can be manufactured at low cost.
 10:単位光反射素子、11:透明平板、11a:光透過部、12:光反射材、12a:光反射面、13:光学結像装置、15:大型の光学結像装置、16:角部、17:光学結像装置、20:透明板材、20a:光透過部、21:光反射材、22:光反射面、23:ブロック材、24:定盤、25:ブロック体、26:光反射基材、27:真空吸着口、28、29:単位光反射素子、29a、29b:押圧機構、29d:正規の光反射素子、30:検査装置、31:透明定盤、32:表示手段(ディスプレイ)、33:撮像装置、34:xガイド、35:yガイド、37:吸着搬送手段、39:格子画像(検査基準画像)、40a:検査画像、40d:基準画像、41:縦線、41a:検査縦線、41d:基準縦線、42:横線、42a:検査横線、42d:基準横線、43a、43d:外枠、51:大型の光反射素子、52:透明定盤、53:xガイド、54:yガイド、55、56:可動ガイド、57:角部、58:中型の光反射素子、60:透明定盤、61~64:単位光反射素子、65:大型の光反射素子、66:ディスプレイ、68:カメラ、69:光反射面、71:不連続部、72:段違い 10: Unit light reflecting element, 11: Transparent flat plate, 11a: Light transmitting part, 12: Light reflecting material, 12a: Light reflecting surface, 13: Optical imaging device, 15: Large optical imaging device, 16: Corner part , 17: Optical imaging device, 20: Transparent plate material, 20a: Light transmitting part, 21: Light reflecting material, 22: Light reflecting surface, 23: Block material, 24: Plate plate, 25: Block body, 26: Light reflecting Base material, 27: Vacuum suction port, 28, 29: Unit light reflecting element, 29a, 29b: Pressing mechanism, 29d: Regular light reflecting element, 30: Inspection device, 31: Transparent platen, 32: Display means (display) ), 33: Imaging device, 34: x guide, 35: y guide, 37: Adsorption transfer means, 39: Lattice image (inspection reference image), 40a: Inspection image, 40d: Reference image, 41: Vertical line, 41a: Inspection vertical line, 41d: Reference vertical line, 42: Horizontal line, 42a: Inspection horizontal line, 42d: Reference horizontal line, 43a, 43d: Outer frame, 51: Large light reflecting element, 52: Transparent platen, 53: x guide, 54: y guide, 55, 56: movable guide, 57: corner, 58: medium-sized light reflecting element, 60: transparent platen, 61 to 64: unit light reflecting element, 65: large light reflecting element, 66: Display, 68: Camera, 69: Light reflecting surface, 71: Discontinuous part, 72: Step difference

Claims (14)

  1. 一方の面に垂直かつ所定間隔で平行配置された複数の光反射面を有する単位光反射素子が平面状に複数並べられて製造される大型の光反射素子の製造方法であって、
    複数の前記単位光反射素子を、前記各光反射面が同一方向となるように、透明定盤の上に配置し、該透明定盤の一側に該透明定盤と一定の角度を有して配置されたディスプレイに前記各単位光反射素子の前記各光反射面に平行な横線を有する検査基準画像を表示して、該横線が前記各光反射面に1回反射して形成される鏡像の連続性を前記透明定盤の他側から観察し、隣り合う前記単位光反射素子の配置の良否を判定する工程Aを含むことを特徴とする大型の光反射素子の製造方法。
    A method for manufacturing a large-scale light-reflecting element, in which a plurality of unit light-reflecting elements having a plurality of light-reflecting surfaces arranged perpendicularly to one surface and parallel to each other at predetermined intervals are arranged in a plane.
    A plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen. A mirror image formed by displaying an inspection reference image having a horizontal line parallel to each light reflecting surface of each unit light reflecting element on a display arranged therein and reflecting the horizontal line once on each light reflecting surface. A method for manufacturing a large-scale light-reflecting element, which comprises a step A of observing the continuity of the light-reflecting elements from the other side of the transparent platen and determining whether or not the adjacent unit light-reflecting elements are arranged.
  2. 一方の面に垂直かつ所定間隔で平行配置された複数の光反射面を有する平面視して正方形の単位光反射素子が平面状に複数並べられて製造される平面視して正方形の大型の光反射素子の製造方法であって、
    複数の前記単位光反射素子を、前記各光反射面が同一方向となるように、透明定盤の上に配置し、該透明定盤の一側に該透明定盤と一定の角度を有して配置されたディスプレイに前記各単位光反射素子の前記各光反射面に平行な横線を有する検査基準画像を表示して、該横線が前記各光反射面に1回反射して形成される鏡像の連続性を前記透明定盤の他側から観察し、隣り合う前記単位光反射素子の配置の良否を判定する工程Aを含むことを特徴とする大型の光反射素子の製造方法。
    Planar-viewing square unit light-reflecting elements having a plurality of light-reflecting surfaces arranged perpendicularly to one surface and parallel to each other at predetermined intervals are manufactured by arranging a plurality of flat-viewing square unit light-reflecting elements in a plane. It is a method of manufacturing a reflective element.
    A plurality of the unit light reflecting elements are arranged on the transparent platen so that the light reflecting surfaces are in the same direction, and one side of the transparent platen has a constant angle with the transparent platen. A mirror image formed by displaying an inspection reference image having a horizontal line parallel to each light reflecting surface of each unit light reflecting element on a display arranged therein and reflecting the horizontal line once on each light reflecting surface. A method for manufacturing a large-scale light-reflecting element, which comprises a step A of observing the continuity of the light-reflecting elements from the other side of the transparent platen and determining whether or not the adjacent unit light-reflecting elements are arranged.
  3. 請求項2記載の大型の光反射素子の製造方法において、前記単位光反射素子は一辺が90~200mmの正方形であることを特徴とする大型の光反射素子の製造方法。 The method for manufacturing a large-scale light-reflecting element according to claim 2, wherein the unit light-reflecting element is a square having a side of 90 to 200 mm.
  4. 請求項1~3のいずれか1記載の大型の光反射素子の製造方法において、前記透明定盤と前記ディスプレイのなす角度は40~50度の範囲にあることを特徴とする大型の光反射素子の製造方法。 The large-scale light-reflecting element according to any one of claims 1 to 3, wherein the angle between the transparent surface plate and the display is in the range of 40 to 50 degrees. Manufacturing method.
  5. 請求項1~4のいずれか1記載の大型の光反射素子の製造方法において、前記検査基準画像は、複数の前記横線と該各横線と直交する複数の縦線を有して格子状となっていることを特徴とする大型の光反射素子の製造方法。 In the method for manufacturing a large-scale light reflecting element according to any one of claims 1 to 4, the inspection reference image has a plurality of the horizontal lines and a plurality of vertical lines orthogonal to the horizontal lines to form a grid. A method for manufacturing a large-scale light-reflecting element, which is characterized by the fact that the light-reflecting element is manufactured.
  6. 請求項1~5のいずれか1記載の大型の光反射素子の製造方法において、前記工程Aで不良と判定された単位光反射素子を、別の単位光反射素子と交換して前記工程Aを再度実施することを特徴とする大型の光反射素子の製造方法。 In the method for manufacturing a large-scale light-reflecting element according to any one of claims 1 to 5, the unit light-reflecting element determined to be defective in the step A is replaced with another unit light-reflecting element, and the step A is performed. A method for manufacturing a large-scale light-reflecting element, which comprises re-implementing.
  7. 請求項1~6のいずれか1記載の大型の光反射素子の製造方法において、前記検査基準画像は、コンピュータを用いて合成された画像であることを特徴とする大型の光反射素子の製造方法。 The method for manufacturing a large-scale light-reflecting element according to any one of claims 1 to 6, wherein the inspection reference image is an image synthesized by using a computer. ..
  8. 請求項1~7のいずれか1記載の大型の光反射素子の製造方法において、前記単位光反射素子の前記透明定盤への仮固定は、真空吸引によって行われることを特徴とする大型の光反射素子の製造方法。 The method for manufacturing a large-scale light-reflecting element according to any one of claims 1 to 7, wherein the unit light-reflecting element is temporarily fixed to the transparent platen by vacuum suction. Manufacturing method of reflective element.
  9. 請求項1~8のいずれか1記載の大型の光反射素子の製造方法において、
    前記単位光反射素子が、
    複数の透明板材を光反射材及び接着剤を介して積層し、高さがhで周囲に側面P~Sを有する四角柱状のブロック材を製造する第1工程と、
    前記ブロック材の対向する前記側面Q、Sを研磨して前記側面Qから前記側面Sまでの距離wを前記高さhと同一にし、前記側面P、Rを正方形状にする第2工程と、
    前記第2工程で加工された前記ブロック材を前記側面P又は前記側面Rに平行に切断して同一厚みの光反射基材を複数製造する第3工程と、
    切断された前記各光反射基材の両端面を研磨する第4工程とにより製造されたものであることを特徴とする大型の光反射素子の製造方法。
    In the method for manufacturing a large-scale light reflecting element according to any one of claims 1 to 8.
    The unit light reflecting element
    The first step of laminating a plurality of transparent plate materials via a light reflector and an adhesive to produce a square columnar block material having a height of h and side surfaces P to S around it.
    The second step of polishing the opposite side surfaces Q and S of the block material so that the distance w from the side surface Q to the side surface S is the same as the height h and making the side surfaces P and R square.
    A third step of cutting the block material processed in the second step in parallel with the side surface P or the side surface R to produce a plurality of light reflecting base materials having the same thickness.
    A method for manufacturing a large-scale light-reflecting element, which is manufactured by a fourth step of polishing both end faces of each of the cut light-reflecting base materials.
  10. 請求項9記載の大型の光反射素子の製造方法において、前記第2工程で前記側面Q、Sを研磨する前に前記側面Qから前記側面Sまでの距離を粗調整する切断加工を行うことを特徴とする大型の光反射素子の製造方法。 In the method for manufacturing a large-scale light reflecting element according to claim 9, a cutting process for roughly adjusting the distance from the side surface Q to the side surface S is performed before polishing the side surfaces Q and S in the second step. A method for manufacturing a large-sized light reflecting element.
  11. 請求項9又は10記載の大型の光反射素子の製造方法において、前記第2工程で研磨した前記側面Q、S及び前記第4工程で研磨した前記単位光反射素子の前記両端面の粗度は30nm以下であることを特徴とする大型の光反射素子の製造方法。 In the method for manufacturing a large-scale light-reflecting element according to claim 9 or 10, the roughness of the side surfaces Q and S polished in the second step and the roughness of both end faces of the unit light-reflecting element polished in the fourth step is A method for manufacturing a large-sized light reflecting element, which is characterized by having a diameter of 30 nm or less.
  12. 請求項9~11のいずれか1記載の光反射素子の製造方法において、前記光反射材は前記透明板材の少なくとも片面に形成された金属蒸着膜であることを特徴とする大型の光反射素子の製造方法。 The method for manufacturing a light-reflecting element according to any one of claims 9 to 11, wherein the light-reflecting material is a metal-deposited film formed on at least one surface of the transparent plate material. Production method.
  13. 請求項1~12のいずれか1記載の大型の光反射素子の製造方法で製造された前記大型の光反射素子を用いて製造される光学結像装置の製造方法であって、
    平面視して外形が正方形となるように前記大型の光反射素子の角部を斜めに切断し、前記各光反射面が前記正方形の各辺に対して45度傾斜した中型の光反射素子を形成する工程aと、
    2枚の前記中型の光反射素子をそれぞれの前記光反射面が直交するようにして重ね合わせる工程bとを有することを特徴とする光学結像装置の製造方法。
    A method for manufacturing an optical imaging apparatus manufactured by using the large-scale light-reflecting element manufactured by the method for manufacturing a large-scale light-reflecting element according to any one of claims 1 to 12.
    A medium-sized light-reflecting element in which the corners of the large-sized light-reflecting element are diagonally cut so that the outer shape is square when viewed in a plan view, and each light-reflecting surface is inclined by 45 degrees with respect to each side of the square. Step a to form and
    A method for manufacturing an optical imaging apparatus, which comprises a step b of superimposing two medium-sized light reflecting elements so that their respective light reflecting surfaces are orthogonal to each other.
  14. 請求項13記載の光学結像装置の製造方法において、前記工程aで切り取った直角二等辺三角形状の前記角部を4枚合わせて該各角部の前記各光反射面が同一方向を向いた中型の光反射素子を2枚用意し、該2枚の光反射素子をそれぞれの前記光反射面が直交するようにして重ね合わせることを特徴とする光学結像装置の製造方法。 In the method for manufacturing an optical imaging apparatus according to claim 13, the four right-angled isosceles triangle-shaped corners cut out in the step a are combined, and the light reflecting surfaces of the corners face the same direction. A method for manufacturing an optical imaging apparatus, which comprises preparing two medium-sized light-reflecting elements and superimposing the two light-reflecting elements so that their respective light-reflecting surfaces are orthogonal to each other.
PCT/JP2020/028314 2020-02-18 2020-07-21 Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device WO2021166281A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080096452.8A CN115087891B (en) 2020-02-18 2020-07-21 Method for manufacturing large light reflecting element and method for manufacturing optical imaging device
JP2020562217A JP6848133B1 (en) 2020-02-18 2020-07-21 Manufacturing method of large light reflecting element and manufacturing method of optical imaging device
TW110105110A TWI779490B (en) 2020-02-18 2021-02-09 Method for producing large light reflection element and method for producing optical image forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-025368 2020-02-18
JP2020025368 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021166281A1 true WO2021166281A1 (en) 2021-08-26

Family

ID=77391905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028314 WO2021166281A1 (en) 2020-02-18 2020-07-21 Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device

Country Status (1)

Country Link
WO (1) WO2021166281A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151690A (en) * 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element
WO2016178424A1 (en) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 Method for manufacturing image-forming optical element, device for manufacturing image-forming optical element, mirror sheet, and image-forming optical element
JP2016212369A (en) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 Image formation optical element fabrication method
WO2017175634A1 (en) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 Manufacturing method of imaging element
JP2017203809A (en) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 Method of manufacturing reflective element and method of manufacturing image forming element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151690A (en) * 2015-02-18 2016-08-22 コニカミノルタ株式会社 Manufacturing method for optical element and imaging element
WO2016178424A1 (en) * 2015-05-07 2016-11-10 コニカミノルタ株式会社 Method for manufacturing image-forming optical element, device for manufacturing image-forming optical element, mirror sheet, and image-forming optical element
JP2016212369A (en) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 Image formation optical element fabrication method
WO2017175634A1 (en) * 2016-04-04 2017-10-12 コニカミノルタ株式会社 Manufacturing method of imaging element
JP2017203809A (en) * 2016-05-09 2017-11-16 コニカミノルタ株式会社 Method of manufacturing reflective element and method of manufacturing image forming element

Similar Documents

Publication Publication Date Title
JP6648759B2 (en) Method for manufacturing imaging optical element and apparatus for manufacturing imaging optical element
WO2010113386A1 (en) Inspection condition data generation method and inspection system of semiconductor wafer appearance inspection apparatus
CN110082922B (en) Substrate laminating device, substrate laminating method, and stereoscopic image display device
JP2008014940A (en) Camera calibration method for camera measurement of planar subject and measuring device applying same
CN113496523A (en) System and method for three-dimensional calibration of visual system
CN110398198B (en) Jig for inspecting flexible display panel and inspection apparatus using the same
JP6446335B2 (en) Imaging optical element and manufacturing method thereof
JP5106192B2 (en) 3D image display device manufacturing apparatus, 3D image display device manufacturing method, and lens plate
JP6848133B1 (en) Manufacturing method of large light reflecting element and manufacturing method of optical imaging device
WO2021166281A1 (en) Method for manufacturing large-sized light reflection element and method for manufacturing optical image formation device
JP2020046660A (en) Sticking device and sticking method
JP6237957B1 (en) Method for manufacturing imaging element
WO2017221812A1 (en) Reflective aerial image forming element, aerial image display device, and manufacturing method for same
WO2016203894A1 (en) Method for manufacturing image forming optical element
JP2018097311A (en) Method for manufacturing optical plate and method for manufacturing aerial image display device
US8303362B2 (en) Manufacturing apparatus for three-dimensional image display and three-dimensional image display manufacturing method
KR100624029B1 (en) Apparatus and method for processing of LCD panel
JPH07295229A (en) Alignment method of projected image for magnifiedprojection type aligner
JP2018097013A (en) Transparent substrate laminate body manufacturing method and aerial video display device manufacturing method
JP2018097073A (en) Optical plate, aerial image display device, aerial image display apparatus, method for manufacturing optical plate and method for manufacturing aerial image display device
CN117346690A (en) Mirror/diffuse reflection surface calibration plate and stripe reflection/projection system calibration method thereof
TW202414122A (en) Method of acquiring drawing position information and drawing method
KR20240041210A (en) Method of acquiring drawing position information and Drawing method
CN114795079A (en) Matching calibration method and device for medical endoscope double-camera module
JP2005062236A (en) Manufacturing method and inspecting device of display panel

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020562217

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919788

Country of ref document: EP

Kind code of ref document: A1