WO2017221812A1 - Reflective aerial image forming element, aerial image display device, and manufacturing method for same - Google Patents

Reflective aerial image forming element, aerial image display device, and manufacturing method for same Download PDF

Info

Publication number
WO2017221812A1
WO2017221812A1 PCT/JP2017/022186 JP2017022186W WO2017221812A1 WO 2017221812 A1 WO2017221812 A1 WO 2017221812A1 JP 2017022186 W JP2017022186 W JP 2017022186W WO 2017221812 A1 WO2017221812 A1 WO 2017221812A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
aerial
chart
reflective
imaging element
Prior art date
Application number
PCT/JP2017/022186
Other languages
French (fr)
Japanese (ja)
Inventor
藤代 一朗
博久 北野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2017221812A1 publication Critical patent/WO2017221812A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory

Definitions

  • the present invention relates to a reflective aerial imaging element that forms a real image of a projection object in the air, an aerial image display device including the reflective aerial imaging element, and a method of manufacturing the same.
  • a conventional aerial image display device is disclosed in Patent Document 1.
  • This aerial image display device includes a reflective aerial imaging element and a light source.
  • the reflection type aerial imaging element is formed by vertically stacking two flat optical elements.
  • the optical element is formed by adhering a plurality of transparent base materials having reflective surfaces with an adhesive.
  • the reflecting surface is formed in parallel with the thickness direction of the optical element by vapor deposition of aluminum or the like, and is arranged at a predetermined period in a direction perpendicular to the thickness direction.
  • a reflection type aerial imaging element is formed by bonding two optical elements so that the reflection surfaces are orthogonal to each other.
  • the light source irradiates light toward a projection object disposed below the reflective aerial imaging element.
  • the projection object is disposed below the reflective aerial imaging element, the light source is turned on, and light is emitted toward the projection object.
  • a part of the light reflected by the projection enters the lower optical element from the lower surface, and is reflected by the reflecting surface and then enters the upper optical element.
  • the light reflected by the reflective surface of the upper optical element is emitted from the upper surface of the reflective aerial imaging element, and the real image of the projected object is obtained in the air at a position symmetrical to the projection object with respect to the reflective aerial imaging element.
  • Imaged Thereby, the image of the projection object is displayed in a state of floating in the air. That is, an aerial image of the projection object is displayed.
  • a reflective surface is formed by vapor deposition of aluminum on a surface perpendicular to the thickness direction of the transparent substrate, and a laminate is formed by laminating and bonding a plurality of transparent substrates in the thickness direction.
  • An optical element is obtained by cutting the laminate at a predetermined interval in a direction perpendicular to the reflecting surface. Then, a reflective aerial imaging element is obtained by bonding a pair of optical elements in the thickness direction so that the reflecting surfaces are orthogonal to each other.
  • Patent Document 2 discloses an aerial image display device including a large reflective aerial imaging element.
  • This large reflective aerial imaging element is formed by joining a plurality of flat reflective aerial imaging elements at the seams of the side end faces. That is, it is formed by tiling a plurality of reflective aerial imaging elements.
  • the plurality of upper optical elements are bonded so that the reflecting surfaces are parallel to each other, and the plurality of lower optical elements are bonded so that the reflecting surfaces are parallel to each other.
  • JP 2012-155345 A (6th page, 7th page, FIGS. 4 and 5)
  • JP2013-101230A (6th page, FIG. 6)
  • the reflection angle deviation or scattering of the reflected light of the projection object is caused by the deviation of the reflection surface between the adjacent optical elements at the joint or the gap between the reflection surfaces. This is likely to cause a shift in the imaging position.
  • An object of the present invention is to provide a reflective aerial imaging element and an aerial image display device capable of improving the image quality of an aerial image. Another object of the present invention is to provide these production methods.
  • the present invention provides: An image display unit that displays an image, a reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit, a storage unit that stores data, and an input to the image display unit
  • the manufacturing method of the aerial video display device comprising an image correction unit that corrects the obtained image based on the data stored in the storage unit, A first measurement step of observing an aerial image of a predetermined chart and measuring an occurrence position and amount of a deviation between the chart and the aerial image of the chart; A first holding step of holding, on a predetermined first recording medium, first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element; An installation step of installing the reflective aerial imaging element and the image display unit at a predetermined position; A first reading step of reading the first data corresponding to the reflective aerial imaging element from the first recording medium into the storage unit; It is characterized by having.
  • the present invention provides a method for manufacturing a reflective aerial imaging element that forms an aerial image corresponding to a projection object.
  • the aerial video display device of the present invention An image display unit for displaying an image; A reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit; A storage unit for storing first data based on a predetermined chart and an occurrence position and amount of a deviation between the predetermined image and the aerial image of the chart imaged by the reflective aerial imaging element; An image correcting unit that corrects and outputs an image to be displayed on the image display unit based on the first data; It is characterized by having.
  • the first data is associated with first data that is acquired in advance and held on a predetermined recording medium. This is based on the occurrence position and amount of deviation between the chart of FIG.
  • the manufacturing method of the reflective aerial imaging element and the manufacturing method of the aerial image display device of the present invention the occurrence position and amount of the deviation between the chart and the aerial image of the chart are measured, and the first position based on the occurrence position and amount of the deviation is measured.
  • One data is stored in the first recording medium in association with the reflective aerial imaging element.
  • the first data is read into the storage unit from the first recording medium corresponding to the reflective aerial imaging element.
  • the input image of the image display unit is corrected by the image correction unit based on the first data, and a good aerial image with less distortion is displayed, so that the image quality of the aerial image can be improved.
  • the first data based on the position and amount of occurrence of the deviation between the chart and the aerial image of the chart is associated with the reflective aerial imaging element. Then, the image input to the image display unit is corrected based on the first data and output. Thereby, a good aerial image with little distortion is displayed, and the image quality of the aerial image can be improved.
  • the block diagram which shows the structure of the aerial image display apparatus of 1st Embodiment of this invention.
  • the top view for demonstrating the image formation of the aerial image by the aerial image display apparatus of 1st Embodiment of this invention.
  • the side view for demonstrating image formation of the aerial image by the aerial image display apparatus of 1st Embodiment of this invention.
  • difference of the image formation position of the aerial image by the aerial image display device of 1st Embodiment of this invention The figure which shows image formation of the point image by the reflection type aerial image formation element of the aerial image display device of 1st Embodiment of this invention.
  • Front view showing an aerial image formed by a reflective aerial imaging element in which foreign matter is mixed between the reflecting surface and the substrate
  • Top view showing a reflective aerial imaging element formed by tiling
  • the figure which shows the manufacturing process of the aerial image display apparatus of 1st Embodiment of this invention.
  • the side view which shows the 1st measurement process of 1st Embodiment of this invention.
  • the front view which shows the chart used for the 1st measurement process of 1st Embodiment of this invention.
  • the front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 1st Embodiment of this invention.
  • the front view which shows the other example of the aerial image of the chart observed at the 1st measurement process of 1st Embodiment of this invention The front view which shows an example of the aerial image observed at the 2nd measurement process of 1st Embodiment of this invention.
  • the front view which shows an example of the output image on the display panel of the image display part correct
  • the front view which shows the chart used for the 1st measurement process of 2nd Embodiment of this invention.
  • the front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 2nd Embodiment of this invention.
  • the front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 3rd Embodiment of this invention.
  • the front view which shows an example of the output image on the display panel of the image display part correct
  • the front view which shows the chart used for the 1st measurement process of 4th Embodiment of this invention.
  • 1 and 2 are a perspective view and a side view, respectively, of the aerial image display device of the first embodiment.
  • the X direction, the Y direction, and the Z direction indicate the width direction, the thickness direction, and the depth direction of the reflective aerial imaging element 10 of the aerial image display device 1, respectively.
  • the aerial image display device 1 includes a reflective aerial imaging element 10 and an image display unit 20.
  • the reflective aerial imaging element 10 is formed by juxtaposing two flat optical elements 11 in the thickness direction (Y direction), and forms an aerial image FI corresponding to the projection object OB.
  • the lower surface of the lower optical element 11 is an incident surface 18 on which light is incident, and the upper surface of the upper optical element 11 is an output surface 19 from which light is emitted.
  • the image display unit 20 is disposed below the reflective aerial imaging element 10 and includes a display panel 21 and a light source (not shown). At this time, the reflective aerial imaging element 10 and the image display unit 20 are arranged at predetermined positions in the aerial image display device 1. Thereby, the positional relationship between the reflective aerial imaging element 10 and the image display unit 20 is defined.
  • the display panel 21 is composed of a liquid crystal display panel, for example, and displays an input image P that is a projection object OB.
  • a light source consists of LED, for example, and radiates
  • the display panel 21 is arranged so that the optical axis of the light from the input image P displayed on the display panel 21 is incident on the incident surface 18 at an incident angle of about 45 °.
  • the light source may be formed by CCFL (Cold Cathode Fluorescent Lamp).
  • FIG. 3 is an enlarged perspective view of the reflective aerial imaging element 10.
  • FIG. 4 shows a plan view of the reflective aerial imaging element 10.
  • FIG. 5 shows a perspective view of the optical element 11.
  • an arrow Q indicates an optical path.
  • the planar shape of the optical element 11 is formed in a substantially square shape having a side length of, for example, about 200 mm.
  • the optical element 11 is made of a light-transmitting material, and a reflecting surface 14 parallel to the thickness direction (Y direction) is arranged in parallel at a predetermined period T (for example, 0.52 mm).
  • the optical element 11 is formed by adhering a plurality of transparent base materials 12 each having a reflecting surface 14 on both sides with an adhesive 13 (see FIG. 6) disposed on the reflecting surface 14.
  • the substrate 12 is formed of a transparent resin such as an acrylic resin or glass.
  • the adhesive 13 is made of a two-component mixed adhesive in which a main agent made of, for example, an epoxy resin or an acrylic resin and a curing agent made of, for example, a polyamide resin are mixed.
  • the reflective surface 14 is formed on the base material 12 by sputtering or vapor deposition of, for example, aluminum or silver.
  • FIG. 6 shows an enlarged side view of an adhesion portion between adjacent base materials 12.
  • a plurality of dot-like spacers 15 are arranged in a matrix on the reflecting surface 14 in plan view.
  • the spacer 15 is made of, for example, an ultraviolet curable resin, and has a height H (a protrusion amount in a direction perpendicular to the reflecting surface 14) in a range of 20 ⁇ m ⁇ 1 ⁇ m, and has a predetermined pitch E (this embodiment) in two orthogonal directions. Is 1 mm).
  • H a protrusion amount in a direction perpendicular to the reflecting surface 14
  • E this embodiment
  • the two optical elements 11 are arranged in the thickness direction so that the direction in which the reflecting surface 14 of the lower optical element 11 extends and the direction in which the reflecting surface 14 of the upper optical element 11 extends are orthogonal to each other. (Y direction).
  • FIG. 7 is a block diagram showing the configuration of the aerial video display device 1.
  • the aerial video display device 1 includes a control unit 100 that controls each unit.
  • An image display unit 20, an image correction unit 40, and a storage unit 50 are connected to the control unit 100.
  • the storage unit 50 stores a control program and various data for the aerial video display device 1.
  • the data stored in the storage unit 50 includes deviation correction data (first data) based on the position and amount of deviation of the aerial image FI due to the defect DP of the reflective aerial imaging element 10, and the aerial image FI.
  • Brightness unevenness correction data (second data) based on the occurrence position and the amount of brightness unevenness is included.
  • the image correction unit 40 corrects and outputs the image (input image) input to the image display unit 20 based on the shift correction data and the luminance unevenness correction data.
  • the aerial image display device 1 having the above configuration, when the light source of the image display unit 20 is turned on and the input image P (projected object OB) is displayed on the display panel 21, the light from the input image P is indicated by the arrow Q ( As shown in FIG. 3, the light enters the lower optical element 11 from the incident surface 18, is reflected by the reflecting surface 14 of the lower optical element 11, and then enters the upper optical element 11.
  • the light reflected by the reflecting surface 14 of the upper optical element 11 is emitted upward from the emission surface 19 on the upper surface of the reflective aerial imaging element 10 and is plane-symmetric with the input image P with respect to the reflective aerial imaging element 10.
  • a real image (aerial image FI) of the input image P is formed in the air at the position. Thereby, the aerial image FI corresponding to the input image P is displayed in a state of floating in the air.
  • the reflecting surface 14 of the optical element 11 is projected 45 onto the surface parallel to the incident surface 18 with respect to the viewing direction EL of the observer's eye EY (see FIGS. 1 and 2).
  • the visibility of the aerial image FI can be optimized.
  • the aerial image display device 1 may be mounted on a game machine or the like.
  • Reflective surfaces 14 are formed on both sides of a rectangular thin transparent substrate (not shown) perpendicular to the thickness direction by sputtering or vapor deposition of aluminum or silver.
  • the substrate is made of, for example, acrylic resin or glass.
  • the reflective surface 14 may be formed only on one of the surfaces perpendicular to the thickness direction of the substrate.
  • a plurality of substrates on which the reflection surface 14 is formed are laminated in the thickness direction via the spacers 15 to form a laminate (not shown).
  • the laminate is immersed in a liquid adhesive 13 in a storage tank (not shown), and the adhesive 13 is filled between adjacent substrates of the laminate.
  • the laminate is pulled up from the storage tank, and the laminate is fixed by curing the adhesive 13.
  • the material of the optical element 11 is obtained by cutting the fixed laminated body at a predetermined period using a wire saw or the like in a direction perpendicular to the reflecting surface 14.
  • the optical element 11 is obtained by polishing a surface perpendicular to the reflection surface 14 of the material of the optical element 11.
  • the two optical elements 11 are juxtaposed in the thickness direction (Y direction) so that the directions in which the reflecting surfaces 14 extend are orthogonal to each other, and are joined with an adhesive or the like, so that the reflective aerial connection shown in FIG. An image element 10 is obtained.
  • FIG. 8 and 9 are a top view and a side view, respectively, of the aerial image display device 1 for explaining the formation of the aerial image FI. 8 and 9, the point image PI is displayed on the display panel 21 of the image display unit 20 as the projection object OB (see FIG. 3), and the aerial image FI (see FIG. 3) including the point image PI ′ is displayed on the camera 200.
  • the projection object OB see FIG. 3
  • the aerial image FI see FIG. 3
  • FIG. 3 the aerial image FI
  • FIG. 3 the aerial image FI (see FIG. 3) including the point image PI ′ is displayed on the camera 200. The case of observing will be described.
  • the light beam from the point image PI displayed on the display panel 21 is reflected by the reflecting surface 14 of the reflective aerial imaging element 10, and the point image is in the plane symmetrical to the point image PI with respect to the reflective aerial imaging element 10.
  • PI ′ is imaged.
  • Light reflected by the reflecting surface 14 of the predetermined circular image forming region IR of the reflective aerial imaging element 10 enters the camera 200 that observes the point image PI ′.
  • the distance (projection amount) between the center of the image forming region IR and the point image PI ′ is Lf
  • the distance (observation distance) between the lens (not shown) of the camera 200 and the point image PI ′ is Lv
  • the aperture of the lens is calculated by the equation (1).
  • the diameter D of the image forming region IR is 3.6 mm.
  • a defect DP (see FIG. 2) of the reflective aerial imaging element 10 may partially occur.
  • the defect DP is generated due to a decrease in flatness and parallelism of the reflecting surface 14 due to foreign matter mixing between the base materials 12, non-uniformity of the refractive index distribution in the base material 12, and the like.
  • the defect DP of the reflective aerial imaging element 10 exists, the imaging position of the light reflected on the defect DP is shifted, and the image quality of the aerial image FI (see FIG. 3) is deteriorated.
  • the image quality degradation of the aerial image FI due to the defect DP of the reflective aerial imaging element 10 will be described.
  • FIG. 10 shows a top view for explaining the progress of the reflected light of the point image PI (projection object OB) on the reflection surface 14 of the reflective aerial imaging element 10.
  • a solid line indicates the reflecting surface 14 of the upper optical element 11, and a broken line indicates the reflecting surface 14 of the lower optical element 11.
  • a two-dot chain line indicates a reflecting surface 14 ′ of the lower optical element 11 when a defect DP occurs, and the reflecting surface 14 ′ is curved in a direction orthogonal to the Y direction.
  • An arrow R indicates a reflected ray of the point image PI reflected by the reflection surface 14 (normal reflection surface 14) having no defect DP of the reflective aerial imaging element 10, and an arrow R ′ is a reflection surface 14 ′ having the defect DP.
  • the reflected ray of the reflected point image PI is shown.
  • the reflected light of the point image PI reflected by the reflecting surface 14 having no defect DP forms a point image PI ′ at a position symmetrical to the point image PI.
  • the same point image PI ′ as the point image PI is observed as shown in FIG.
  • the reflected light of the point image PI reflected by the curved reflecting surface 14 ′ deviates from the reflected light of the point image PI reflected by the normal reflecting surface 14 and is emitted from the emitting surface 19. Therefore, as shown in FIG. 11, the point image Pz is formed at a position shifted from the point image PI ′.
  • the overlap (point image deformation) of the point image PI ′ and the point image Pz is observed.
  • the reflection surface 14 has a large curvature, as shown in FIG. 14, the division (point image division) between the point image PI ′ and the point image Pz is observed. For this reason, the image quality of the aerial image FI deteriorates.
  • FIG. 15 is a front view of an aerial image FI formed by the reflective aerial imaging element 10 having a defect DP.
  • a plurality of parallel lines are displayed on the image display unit 20 as the projection object OB.
  • a defect DP is formed due to a decrease in the flatness of the reflecting surface 14 due to foreign matter mixing between the reflecting surface 14 (see FIG. 6) and the substrate 12 (see FIG. 6). According to the figure, a deviation occurs in the portion of the reflective surface 14 of the aerial image FI where the flatness is lowered, and streaks are observed.
  • a large reflective aerial imaging element may be formed by tiling the plurality of reflective aerial imaging elements 10.
  • FIG. 16 shows a plan view of the tiled reflective aerial imaging element 10 ′.
  • a plurality of reflective aerial imaging elements 10 ' are joined and tiled at the joint 10b of the side end face 10a to form a large reflective aerial imaging element 10'.
  • FIG. 17 shows a front view of an aerial image FI imaged by the reflective aerial imaging element 10 ′ having a defect DP at the time of tiling.
  • an aerial image FI is formed by displaying a plurality of parallel lines as the projection object OB on the image display unit 20 and forming an image by light passing through the area surrounded by the broken line in FIG.
  • the reflection surface 14 of the adjacent reflective aerial imaging element 10 at the time of tiling is arranged so as to be shifted from the same plane, thereby forming a defect DP. According to the figure, streaks due to the displacement of the reflecting surface 14 are observed at the joint 10b.
  • FIG. 18 is a diagram showing a manufacturing process of the aerial image display device 1.
  • the manufacturing process of the aerial video display device 1 includes a first measurement process, a first holding process, a second measurement process, a second holding process, an installation process, a first reading process, and a second reading process.
  • FIG. 19 is a side view showing the first measurement process.
  • a display panel 21 is disposed below the reflective aerial imaging element 10 and a camera 200 is disposed above.
  • the display panel 21 displays a chart C1 composed of a plurality of black lines arranged in a grid pattern. Then, an occurrence position and an amount of deviation between the aerial image FI of the chart C1 captured by the camera 200 and the chart C1 are measured by image processing.
  • FIG. 21 is a front view showing an example of an aerial image FI of the chart C1 by the reflective aerial image element 10 having the defect DP (see FIG. 2).
  • the horizontal line is curved upward and the vertical line is curved to the left due to the defect DP, and a deviation between the chart C1 and the aerial image FI of the chart C1 occurs. That is, the position Fa is imaged with a shift of ⁇ A and ⁇ B in the vertical and horizontal directions from the original image formation position Fa ′, and the shift generation position Fa and the shift amounts ⁇ A and ⁇ B are measured.
  • FIG. 22 is a front view showing another example of the aerial image FI of the chart C1 by the reflective aerial image element 10 having the defect DP (see FIG. 2).
  • the aerial image FI a vertical line and a horizontal line are shifted due to a shift between the chart C1 and the aerial image FI of the chart C1 in a region K surrounded by a broken line in the upper right part of the boundary line S. For this reason, the position Fa of all the lattice points in the region K and the shift amounts ⁇ A and ⁇ B are measured.
  • the shift correction data (first data) based on the shift generation position Fa and the shift amounts ⁇ A and ⁇ B is associated with the reflective aerial imaging element 10 and held on a predetermined recording medium.
  • the recording medium is not particularly limited, and for example, paper, an optical disk, a USB memory, a server, and the like can be used.
  • the deviation correction data includes, for example, coordinates on the display panel 21 corresponding to the position Fa and deviation amounts ⁇ A and ⁇ B. Since the image correction unit 40 (see FIG. 7) corrects the image on the display panel 21 based on the deviation correction data, the coordinates on the display panel 21 corresponding to the position Fa and the correction amount ( ⁇ A, ⁇ B) are used. ).
  • the shift correction data may be the shift amount or correction amount of all grid points on the chart C1. At this time, the shift correction data holds data based on the generation position, which is a grid point with a shift amount other than zero.
  • a plain image is displayed on the display panel 21. Then, the occurrence position and amount (luminance value) of the luminance unevenness of the aerial image FI of the plain image captured by the camera 200 are measured by image processing.
  • FIG. 23 is a front view showing an example of the aerial image FI at this time. Black spots are observed in the region surrounded by the alternate long and short dash line in the drawing due to the defect DP of the reflective aerial imaging element 10. Black spots occur when the reflectance of the reflective surface 14 is reduced due to peeling or oxidation due to corrosion of the reflective surface 14 when the optical element 11 is formed.
  • the upper part of the aerial image FI has a longer optical path length than the lower part. For this reason, the brightness of the lower part gradually increases with respect to the upper part of the aerial image FI, and uneven brightness occurs in the aerial image FI.
  • the occurrence position and amount (luminance value) of luminance unevenness on the aerial image FI are measured.
  • luminance unevenness correction data (second data) based on the occurrence position and amount of the luminance unevenness is associated with the reflective aerial imaging element 10 and held on a predetermined recording medium.
  • the recording medium is not particularly limited, and for example, paper, an optical disk, a USB memory, a server, and the like can be used.
  • the luminance unevenness correction data may be held in the same recording medium as the recording medium holding the deviation correction data, or the luminance unevenness correction data may be held in a different recording medium.
  • the reflective aerial imaging element 10 and the image display unit 20 are fixedly attached at predetermined positions.
  • deviation correction data corresponding to the reflective aerial imaging element 10 is read from the recording medium into the storage unit 50.
  • luminance unevenness correction data corresponding to the reflective aerial imaging element 10 is read from the recording medium into the storage unit 50.
  • the aerial video display device 1 shown in FIG. 1 is formed.
  • the image input to the image display unit 20 is corrected by the image correction unit 40 based on the deviation correction data and the luminance unevenness correction data stored in the storage unit 50 and output.
  • the shift generation position Fa is discontinuously held as a discontinuous point on the display panel 21 in the shift correction data, but the shift amount between the adjacent generation positions Fa is interpolated by the image correction unit 40.
  • the occurrence positions of brightness unevenness are held as discontinuous points on the display panel 21, but the brightness between adjacent occurrence positions is interpolated by the image correction unit 40.
  • FIG. 24 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • the input image of the image display unit 20 is the chart C1 (see FIG. 20), and the above-described aerial image FI in FIG. 21 is corrected.
  • a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
  • the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 24, the vertical line and the horizontal line are curved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
  • FIG. 25 shows another example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • An input image of the image display unit 20 is a chart C1 (see FIG. 20), and the aerial image FI shown in FIG. 22 is corrected.
  • a region K ′ surrounded by a broken line corresponds to a broken line region R in FIG. 22.
  • the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region K ′ surrounded by the broken line in FIG. 25, the vertical line and the horizontal line are shifted in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
  • FIG. 26 shows another example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • the input image of the image display unit 20 is a plain image and corrects the aerial image FI shown in FIG.
  • a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
  • the output image P ′ is corrected in a direction to cancel the luminance unevenness at the position where the luminance unevenness due to the defect and arrangement of the reflective aerial imaging element 10 occurs. . That is, the luminance value of the portion corresponding to the black spot portion in FIG. 23 is high, and the luminance of the upper portion is gradually higher than the lower portion of the output image P ′. Thereby, the observer can observe the aerial image FI with reduced luminance unevenness.
  • the deviation correction data (first data) based on the occurrence position Fa and the deviation amounts ⁇ A and ⁇ B between the chart C1 and the aerial image FI of the chart C1 are associated with the reflective aerial imaging element 10.
  • the image correction unit 40 corrects and outputs the input image of the image display unit 20 based on the shift correction data. Thereby, a good aerial image FI with little distortion is observed. Therefore, the image quality of the aerial video FI can be improved.
  • the chart C1 is composed of a plurality of lines arranged in a grid pattern, the first measurement process can be easily performed.
  • the luminance correction data (second data) based on the position and amount of occurrence of luminance unevenness in the aerial image FI is associated with the reflective aerial imaging element 10. Then, the image correction unit 40 corrects and outputs the input image of the image display unit 20 based on the luminance correction data. Thereby, it is possible to observe a good aerial image FI with little luminance unevenness.
  • a large reflective aerial connection is formed by joining a plurality of optical elements 11 at seams 10b in a direction orthogonal to the thickness direction (Y direction) so that the reflecting surfaces 14 are parallel to each other.
  • An image element 10 ' may be formed.
  • the reflective aerial imaging element 10 can be easily enlarged and a large aerial image FI can be displayed.
  • the aerial video display device 1 is provided with an image correction unit 40 that corrects and outputs an image input to the image display unit 20 based on the shift correction data. Thereby, the image quality of the aerial image FI can be improved.
  • the reflective aerial imaging element 10 is associated with deviation correction data acquired in advance and held on the recording medium, and the deviation correction data indicates the position and amount of deviation between the chart C1 and the aerial image FI of the chart C1. Is based. Thereby, the image quality of the aerial image FI can be improved.
  • FIG. 27 shows a front view of a chart C2 used in the first measurement process of the second embodiment.
  • FIG. 28 shows a front view of an example of the aerial image FI of the chart C2.
  • the broken line in the drawing is attached for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C2.
  • the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS.
  • This embodiment is different from the first embodiment in that a chart C2 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
  • Chart C2 is composed of a plurality of dots arranged in a grid pattern. All dots have the same shape and color. As shown in FIG. 28, in the first measurement process, the two dots in the area surrounded by the alternate long and short dash line are shifted to the left, and a shift between the chart C2 and the aerial image FI of the chart C2 occurs.
  • the chart C2 is composed of a plurality of dots arranged in a grid pattern, the position and amount of deviation are easily measured by comparing the position coordinates of each dot in the aerial image FI of the chart C2 and the chart C2. can do.
  • the captured image of the aerial image FI may be binarized, and the position and amount of deviation may be measured based on the center of gravity of each dot.
  • FIG. 29 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • the input image of the image display unit 20 is the chart C2 (see FIG. 27), and the aerial image FI shown in FIG. 28 is corrected.
  • a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
  • the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 29, the two dots have moved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
  • the same effect as in the first embodiment can be obtained.
  • the chart C2 is composed of a plurality of dots arranged in a grid pattern
  • the difference between the chart C2 and the aerial image FI of the chart C2 is obtained by comparing the position coordinates of the dots of the aerial image FI of the chart C2 and the chart C2. The position and amount of occurrence can be easily measured.
  • FIG. 30 shows a front view of a chart C3 used in the first measurement process of the third embodiment.
  • FIG. 31 shows a front view of an example of the aerial image FI of the chart C3.
  • the broken line in the figure is attached for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C3.
  • the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS.
  • This embodiment is different from the first embodiment in that a chart C3 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
  • Chart C3 is composed of a plurality of circular dots and a plurality of square dots, and the dots are arranged in a grid pattern. Moreover, the color of all the dots is the same black, and the shape of adjacent dots is different.
  • the eight dots in the region surrounded by the alternate long and short dash line are shifted in different directions, and a shift between the chart C3 and the aerial image FI of the chart C3 occurs.
  • pattern matching is performed to determine the shape of dots.
  • the shapes of adjacent dots in the chart C3 are different, even when the number of displaced dots is large in the first measurement step as shown by the region surrounded by the one-dot chain line in FIG. It is possible to easily measure the occurrence position and amount of deviation from the aerial image FI of C3.
  • the shape of the dot is not limited to a circle and a rectangle, and may be an ellipse or a triangle, for example. That is, it suffices if the shapes of adjacent dots are different.
  • FIG. 32 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • the input image of the image display unit 20 is a chart C3 (see FIG. 30), and the aerial image FI shown in FIG. 31 is corrected.
  • a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
  • the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 32, eight dots are moving in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
  • the same effect as in the first embodiment can be obtained. Moreover, since the shapes of adjacent dots are different, the position and amount of occurrence of the deviation between the chart C3 and the aerial image FI of the chart C3 can be measured more easily than in the second embodiment.
  • FIG. 33 shows a front view of a chart C4 used in the first measurement process of the fourth embodiment.
  • FIG. 34 shows a front view of an example of the aerial image FI of the chart C4.
  • the broken line in the drawing is added for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C4.
  • the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS.
  • This embodiment is different from the first embodiment in that a chart C4 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
  • the chart C4 is composed of a plurality of white dots and a plurality of black dots, and the dots are arranged in a grid pattern. Moreover, the shape of all the dots is the same circle, and the colors of adjacent dots are different. In the first measurement step, as shown in FIG. 34, the eight dots in the region surrounded by the alternate long and short dash line are shifted in different directions, and a shift between the chart C4 and the aerial image FI of the chart C4 occurs.
  • the chart C4 and the chart It is possible to easily measure the occurrence position and amount of deviation from the C4 aerial image FI.
  • pattern matching in image processing, it is necessary to perform pattern matching for determining the shape of dots, but according to this embodiment, pattern matching can be omitted.
  • the color of the dots is not limited to white and black, and may be red and blue, for example. That is, it is only necessary that adjacent dots have different colors.
  • FIG. 35 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40.
  • the input image of the image display unit 20 is the chart C4 (see FIG. 33), and the aerial image FI shown in FIG. 34 is corrected.
  • a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
  • the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs.
  • eight dots have moved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
  • the same effect as in the first embodiment can be obtained. Further, since the colors of adjacent dots are different, the position and amount of occurrence of the deviation between the chart C4 and the aerial image FI of the chart C4 can be measured more easily than in the second embodiment.
  • the chart C5a is composed of a plurality of vertical lines arranged in parallel to each other
  • the chart C5b is composed of a plurality of horizontal lines arranged in parallel to each other.
  • the charts C5a and C5b are displayed on the display panel 21 in order, and the occurrence position and amount of deviation between the charts C5a and C5b and the aerial images FI of the charts C5a and C5b are measured.
  • the vertical line curves to the left and the horizontal line curves upward, and Deviation has occurred.
  • the captured image of the aerial image FI of the chart C5a is scanned in the direction from the left to the right in FIG. 38, for example.
  • the captured image of the aerial video FI of the chart C5b is scanned in the direction from the upper side to the lower side of FIG. 39, for example.
  • the chart C5a since the chart C5a is used, the horizontal line is not imaged, and the horizontal shift can be easily detected by scanning. Further, since the chart C5b is used, the vertical line is not imaged, and the vertical shift can be easily detected by scanning. That is, by using the charts C5a and C5b, it is possible to more easily measure the occurrence position and amount of deviation between the charts C5a and C5b and the aerial images FI of the charts C5a and C5b by image processing.
  • the shift generation position Fa is discontinuously held as a discontinuous point on the display panel 21 in the shift correction data, but the shift amount between the adjacent generation positions Fa is interpolated by the image correction unit 40.
  • the output image is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, on the output image, the vertical line corresponding to the curved vertical line in the region surrounded by the alternate long and short dash line in FIG. 38 curves in the opposite direction to the case of the aerial image FI. Also, on the output image, the horizontal line corresponding to the curved horizontal line in the region surrounded by the one-dot chain line in FIG. 39 curves in the opposite direction to the case of the aerial image FI. Thereby, the observer can observe the aerial image FI without distortion.
  • the chart C5a includes a plurality of vertical lines arranged in parallel to each other, and the chart C5b includes a plurality of horizontal lines arranged in parallel to each other.
  • FIG. 40 shows a front view of a chart C6 used in the first measurement process of the sixth embodiment.
  • FIG. 41 shows a front view of an example of the aerial image FI of the chart C6.
  • the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS.
  • This embodiment is different from the first embodiment in that a chart C6 is used instead of the chart C1.
  • Other parts are the same as those in the first embodiment.
  • the chart C6 includes a plurality of lines 61 and 62 that are arranged in parallel to each other and extend in the vertical direction. Further, the line width of the line 62 is larger than the line width of the line 61.
  • the lines 62 are arranged in the horizontal direction at predetermined intervals (5 mm period in the present embodiment), and the lines 61 are arranged between adjacent lines 62 at a predetermined period (1 mm period in the present embodiment).
  • the measurer visually observes the aerial image FI shown in FIG.
  • the measurer can easily measure the occurrence position of the deviation between the chart C6 and the aerial image FI of the chart C6 (the displaced vertical line within the area surrounded by the broken line). Further, the measurer can easily measure the amount of deviation between the chart C6 and the aerial image FI of the chart C6 as 0.5 mm.
  • the output image is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, on the output image, the vertical line corresponding to the shifted vertical line in the region surrounded by the broken line in FIG. 41 moves in the opposite direction to the case of the aerial image FI. Thereby, the observer can observe the aerial image FI without distortion.
  • the same effect as in the first embodiment can be obtained.
  • the lines 62 arranged at predetermined intervals have a large line width and a different shape from the adjacent lines 61. Thereby, in the first measurement step, the measurer can easily visually measure the occurrence position and amount of the deviation between the chart C6 and the aerial image FI of the chart C6.
  • a wavy line, a broken line, a one-dot chain line, or the like may be provided instead of the line 62. That is, it is only necessary that the line 62 arranged at every predetermined period has a different shape from the adjacent line 61. Further, the color of the line 61 and the color of the line 62 may be different. In this case, the shapes of the lines 61 and 62 may be the same.
  • the reflective aerial imaging element 10 is formed by arranging a plurality of quadrangular prisms having reflecting surfaces 14 on two orthogonal side surfaces in a matrix on a transparent substrate. May be.
  • the reflective aerial imaging element 10 may be formed by providing a plurality of through holes having a rectangular cross section in a matrix on a transparent substrate and forming the reflecting surfaces 14 on two side surfaces orthogonal to the through holes.
  • the present invention includes an image display unit that displays an image, a reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit, a storage unit that stores data, and the image display
  • an aerial video display device manufacturing method comprising an image correction unit that corrects an image input to a unit based on data stored in the storage unit, the aerial video of a predetermined chart is observed, and the chart and the A first measurement step of measuring a position and amount of deviation of the chart from the aerial image, and first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element and a predetermined first recording medium
  • a first reading step of reading in the memory unit and comprising: a.
  • the chart includes a plurality of lines arranged in a lattice pattern.
  • the chart includes a plurality of dots arranged in a grid pattern.
  • the adjacent dots have different shapes or colors.
  • the present invention is preferably composed of a plurality of lines in which the chart is arranged in parallel.
  • the lines arranged at every predetermined period have different shapes or colors from adjacent lines.
  • a second measurement step of observing an aerial image to measure the occurrence position and amount of luminance unevenness and a second measurement step based on the occurrence position and amount of the luminance unevenness.
  • the reflective aerial imaging element includes a plurality of light-transmitting optical elements in which reflective surfaces parallel to the thickness direction are arranged in parallel at a predetermined period. It is preferable that the optical elements are arranged in parallel in the thickness direction, and the plurality of optical elements are joined at a seam of side end faces in a direction orthogonal to the thickness direction so that the reflecting surfaces are parallel to each other.
  • the present invention provides a method for manufacturing a reflective aerial imaging element that forms an aerial image corresponding to an object to be projected, and observes an aerial image of a predetermined chart to detect a deviation between the chart and the aerial image of the chart.
  • the aerial video display device of the present invention An image display unit for displaying an image; A reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit; A storage unit for storing first data based on a predetermined chart and an occurrence position and amount of a deviation between the predetermined image and the aerial image of the chart imaged by the reflective aerial imaging element; An image correcting unit that corrects and outputs an image to be displayed on the image display unit based on the first data; It is characterized by having.
  • the first data is associated with first data that is acquired in advance and held on a predetermined recording medium. This is based on the occurrence position and amount of deviation between the chart of FIG.
  • the present invention can be used for a reflective aerial imaging element that forms a real image of a projection object in the air and an aerial image display device including the same.

Abstract

The purpose of the present invention is to provide a manufacturing method for an aerial image display device with which the image quality of aerial images can be improved. Provided is a manufacturing method for an aerial display device, which is provided with an image display unit for displaying an image, a reflective aerial image forming element (10) for forming an aerial image corresponding to an image displayed on the image display unit, a storage unit for storing data, and an image correction unit for correcting images input to the image display unit on the basis of data stored in the storage unit, said method comprising a first measurement step for observing an aerial image of a prescribed chart (PI) and measuring position and the amount of deviation of the actual aerial image (Pz) of the chart from a correct aerial image (PI') of the chart, a first holding step for holding first data based on the position and amount of deviation in association with the reflective aerial image forming element (10) in a prescribed first recording medium, an installation step for installing the reflective aerial image forming element (10) and the image display unit in prescribed positions, and a first reading step for reading the first data corresponding to the reflective aerial image forming element (10) from the first recording medium to the storage unit.

Description

反射型空中結像素子、空中映像表示装置及びこれらの製造方法Reflective aerial imaging element, aerial image display device and manufacturing method thereof
 本発明は、被投影物の実像を空中に結像させる反射型空中結像素子、反射型空中結像素子を備えた空中映像表示装置及びこれらの製造方法に関する。 The present invention relates to a reflective aerial imaging element that forms a real image of a projection object in the air, an aerial image display device including the reflective aerial imaging element, and a method of manufacturing the same.
 従来の空中映像表示装置は特許文献1に開示されている。この空中映像表示装置は反射型空中結像素子及び光源を備える。反射型空中結像素子は2枚の平板状の光学素子を上下に重ねて形成される。光学素子は反射面を有した透明な複数の基材を接着剤により接着して形成される。反射面はアルミニウム等の蒸着により光学素子の厚み方向に平行に形成され、厚み方向に垂直な方向に所定周期で配されている。2枚の光学素子を反射面が互いに直交するように接着して反射型空中結像素子が形成される。光源は反射型空中結像素子の下方に配置した被投影物に向けて光を照射する。 A conventional aerial image display device is disclosed in Patent Document 1. This aerial image display device includes a reflective aerial imaging element and a light source. The reflection type aerial imaging element is formed by vertically stacking two flat optical elements. The optical element is formed by adhering a plurality of transparent base materials having reflective surfaces with an adhesive. The reflecting surface is formed in parallel with the thickness direction of the optical element by vapor deposition of aluminum or the like, and is arranged at a predetermined period in a direction perpendicular to the thickness direction. A reflection type aerial imaging element is formed by bonding two optical elements so that the reflection surfaces are orthogonal to each other. The light source irradiates light toward a projection object disposed below the reflective aerial imaging element.
 上記構成の空中映像表示装置において、反射型空中結像素子の下方に被投影物を配置し、光源を点灯して被投影物に向けて光を照射する。被投影物で反射した光の一部は下方の光学素子に下面から入射し、反射面で反射した後に上方の光学素子に入射する。上方の光学素子の反射面で反射した光は反射型空中結像素子の上面から出射し、反射型空中結像素子に対して被投影物と面対称の位置の空中で被投影物の実像が結像される。これにより、被投影物の映像が空中に浮かんだ状態で表示される。すなわち、被投影物の空中映像が表示される。 In the aerial image display device having the above-described configuration, the projection object is disposed below the reflective aerial imaging element, the light source is turned on, and light is emitted toward the projection object. A part of the light reflected by the projection enters the lower optical element from the lower surface, and is reflected by the reflecting surface and then enters the upper optical element. The light reflected by the reflective surface of the upper optical element is emitted from the upper surface of the reflective aerial imaging element, and the real image of the projected object is obtained in the air at a position symmetrical to the projection object with respect to the reflective aerial imaging element. Imaged. Thereby, the image of the projection object is displayed in a state of floating in the air. That is, an aerial image of the projection object is displayed.
 光学素子の製造工程では、透明基板の板厚方向に垂直な面にアルミニウムの蒸着により反射面が形成され、複数の透明基板を板厚方向に積層して接着することにより積層体が形成される。積層体を反射面に垂直な方向で所定間隔で切断することにより光学素子が得られる。そして、一対の光学素子を反射面が互いに直交するように厚み方向に並設して接着することにより反射型空中結像素子が得られる。 In the optical element manufacturing process, a reflective surface is formed by vapor deposition of aluminum on a surface perpendicular to the thickness direction of the transparent substrate, and a laminate is formed by laminating and bonding a plurality of transparent substrates in the thickness direction. . An optical element is obtained by cutting the laminate at a predetermined interval in a direction perpendicular to the reflecting surface. Then, a reflective aerial imaging element is obtained by bonding a pair of optical elements in the thickness direction so that the reflecting surfaces are orthogonal to each other.
 特許文献2には大型の反射型空中結像素子を備える空中映像表示装置が開示される。この大型の反射型空中結像素子は複数の平板状の反射型空中結像素子を側端面の継ぎ目で接合して形成される。すなわち、複数の反射型空中結像素子をタイリングして形成される。この時、上方の複数の光学素子は反射面が互いに平行になるように接合され、下方の複数の光学素子は反射面が互いに平行になるように接合される。 Patent Document 2 discloses an aerial image display device including a large reflective aerial imaging element. This large reflective aerial imaging element is formed by joining a plurality of flat reflective aerial imaging elements at the seams of the side end faces. That is, it is formed by tiling a plurality of reflective aerial imaging elements. At this time, the plurality of upper optical elements are bonded so that the reflecting surfaces are parallel to each other, and the plurality of lower optical elements are bonded so that the reflecting surfaces are parallel to each other.
特開2012-155345号公報(第6頁、第7頁、第4図、第5図)JP 2012-155345 A (6th page, 7th page, FIGS. 4 and 5) 特開2013-101230号公報(第6頁、第6図)JP2013-101230A (6th page, FIG. 6)
 しかしながら、上記特許文献1、2の空中映像表示装置によると、光学素子の形成時に積層される透明基板間の異物混入や透明基板の平面精度等による欠陥が反射型空中結像素子に生じる場合がある。このため、反射型空中結像素子の欠陥による空中映像の歪が発生する問題があった。 However, according to the aerial image display devices of Patent Documents 1 and 2, there are cases in which a defect due to foreign matter contamination between the transparent substrates stacked at the time of forming the optical element or the flat accuracy of the transparent substrate occurs in the reflective aerial imaging element. is there. For this reason, there has been a problem that aerial image distortion occurs due to a defect in the reflective aerial imaging element.
 また、上記特許文献2の空中映像表示装置によると、継ぎ目で隣接する光学素子間での反射面のずれや反射面間の隙間等により被投影物の反射光線の反射角度のずれや散乱等が生じ、結像位置のずれが発生し易くなる。 Further, according to the aerial image display device of Patent Document 2, the reflection angle deviation or scattering of the reflected light of the projection object is caused by the deviation of the reflection surface between the adjacent optical elements at the joint or the gap between the reflection surfaces. This is likely to cause a shift in the imaging position.
 本発明は、空中映像の画質を向上できる反射型空中結像素子及び空中映像表示装置を提供することを目的とする。また本発明はこれらの製造方法を提供することを目的とする。 An object of the present invention is to provide a reflective aerial imaging element and an aerial image display device capable of improving the image quality of an aerial image. Another object of the present invention is to provide these production methods.
 上記目的を達成するために本発明は、
 画像を表示する画像表示部と、前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、データを記憶する記憶部と、前記画像表示部に入力された画像を前記記憶部に記憶されたデータに基づいて補正する画像補正部とを備えた空中映像表示装置の製造方法において、
 所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、
 前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の第1記録媒体に保持する第1保持工程と、
 前記反射型空中結像素子と前記画像表示部とを所定位置に据え付ける据付工程と、
 前記反射型空中結像素子に対応する前記第1データを前記第1記録媒体から前記記憶部に読み込む第1読込工程と、
 を備えることを特徴としている。
In order to achieve the above object, the present invention provides:
An image display unit that displays an image, a reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit, a storage unit that stores data, and an input to the image display unit In the manufacturing method of the aerial video display device comprising an image correction unit that corrects the obtained image based on the data stored in the storage unit,
A first measurement step of observing an aerial image of a predetermined chart and measuring an occurrence position and amount of a deviation between the chart and the aerial image of the chart;
A first holding step of holding, on a predetermined first recording medium, first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element;
An installation step of installing the reflective aerial imaging element and the image display unit at a predetermined position;
A first reading step of reading the first data corresponding to the reflective aerial imaging element from the first recording medium into the storage unit;
It is characterized by having.
 また本発明は、被投影物に対応する空中映像を結像する反射型空中結像素子の製造方法において、
 所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、
 前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の記録媒体に保持する第1保持工程と、を備えることを特徴としている。
Further, the present invention provides a method for manufacturing a reflective aerial imaging element that forms an aerial image corresponding to a projection object.
A first measurement step of observing an aerial image of a predetermined chart and measuring an occurrence position and amount of a deviation between the chart and the aerial image of the chart;
A first holding step of holding the first data based on the occurrence position and amount of the deviation on a predetermined recording medium in association with the reflective aerial imaging element.
 また本発明の空中映像表示装置は、
 画像を表示する画像表示部と、
 前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、
 所定のチャートと、前記反射型空中結像素子によって結像された前記チャートの空中映像とのずれの発生位置及び量に基づく第1データを記憶する記憶部と、
 前記画像表示部で表示する画像を前記第1データに基づいて補正して出力する画像補正部と、
 を備えたことを特徴としている。
In addition, the aerial video display device of the present invention,
An image display unit for displaying an image;
A reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit;
A storage unit for storing first data based on a predetermined chart and an occurrence position and amount of a deviation between the predetermined image and the aerial image of the chart imaged by the reflective aerial imaging element;
An image correcting unit that corrects and outputs an image to be displayed on the image display unit based on the first data;
It is characterized by having.
 また本発明は、被投影物に対応する空中映像を結像する反射型空中結像素子において、予め取得して所定の記録媒体に保持される第1データに関連付けられ、前記第1データが所定のチャートと前記チャートの空中映像とのずれの発生位置及び量に基づくことを特徴としている。 According to the present invention, in a reflective aerial imaging element that forms an aerial image corresponding to an object to be projected, the first data is associated with first data that is acquired in advance and held on a predetermined recording medium. This is based on the occurrence position and amount of deviation between the chart of FIG.
 本発明の反射型空中結像素子の製造方法及び空中映像表示装置の製造方法によると、チャートとチャートの空中映像とのずれの発生位置及び量を測定し、ずれの発生位置及び量に基づく第1データを反射型空中結像素子と関連付けて第1記録媒体に保持する。そして、反射型空中結像素子に対応する第1記録媒体から記憶部に第1データを読み込む。これにより、第1データに基づいて画像補正部により画像表示部の入力画像を補正して歪みの少ない良好な空中映像が表示され、空中映像の画質を向上させることができる。 According to the manufacturing method of the reflective aerial imaging element and the manufacturing method of the aerial image display device of the present invention, the occurrence position and amount of the deviation between the chart and the aerial image of the chart are measured, and the first position based on the occurrence position and amount of the deviation is measured. One data is stored in the first recording medium in association with the reflective aerial imaging element. Then, the first data is read into the storage unit from the first recording medium corresponding to the reflective aerial imaging element. Thereby, the input image of the image display unit is corrected by the image correction unit based on the first data, and a good aerial image with less distortion is displayed, so that the image quality of the aerial image can be improved.
 また、本発明の反射型空中結像素子及び空中映像表示装置によると、チャートとチャートの空中映像とのずれの発生位置及び量に基づく第1データを反射型空中結像素子と関連付けている。そして、画像表示部に入力された画像を第1データに基づいて補正して出力する。これにより、歪みの少ない良好な空中映像が表示され、空中映像の画質を向上させることができる。 Further, according to the reflective aerial imaging element and the aerial image display device of the present invention, the first data based on the position and amount of occurrence of the deviation between the chart and the aerial image of the chart is associated with the reflective aerial imaging element. Then, the image input to the image display unit is corrected based on the first data and output. Thereby, a good aerial image with little distortion is displayed, and the image quality of the aerial image can be improved.
本発明の第1実施形態の空中映像表示装置を示す斜視図The perspective view which shows the aerial image display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置を示す側面図The side view which shows the aerial image display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子を拡大した斜視図The perspective view which expanded the reflection type aerial image formation element of the aerial image display device of a 1st embodiment of the present invention. 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子を示す平面図The top view which shows the reflection type aerial image formation element of the aerial image display device of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子に用いる光学素子を示す斜視図The perspective view which shows the optical element used for the reflection type aerial image formation element of the aerial image display device of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子に用いる光学素子の基材間の接着部分を拡大した側面図The side view which expanded the adhesion part between the base materials of the optical element used for the reflection type aerial image formation element of the aerial image display device of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置の構成を示すブロック図The block diagram which shows the structure of the aerial image display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置による空中映像の結像を説明するための上面図The top view for demonstrating the image formation of the aerial image by the aerial image display apparatus of 1st Embodiment of this invention 本発明の第1実施形態の空中映像表示装置による空中映像の結像を説明するための側面図The side view for demonstrating image formation of the aerial image by the aerial image display apparatus of 1st Embodiment of this invention 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子の反射面での被投影物の反射光の再帰反射を説明するための上面図The top view for demonstrating the retroreflection of the reflected light of the to-be-projected object in the reflective surface of the reflection type aerial image formation element of the aerial image display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の空中映像表示装置による空中映像の結像位置のずれを説明するための側面図The side view for demonstrating the shift | offset | difference of the image formation position of the aerial image by the aerial image display device of 1st Embodiment of this invention 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子による点像の結像を示す図The figure which shows image formation of the point image by the reflection type aerial image formation element of the aerial image display device of 1st Embodiment of this invention. 本発明の第1実施形態空中映像表示装置の反射型空中結像素子による点像の変形の一例を示す図The figure which shows an example of a deformation | transformation of the point image by the reflection type aerial imaging element of 1st Embodiment aerial image display apparatus of this invention. 本発明の第1実施形態の空中映像表示装置の反射型空中結像素子による点像の分割の一例を示す図The figure which shows an example of the division | segmentation of the point image by the reflection type aerial imaging element of the aerial image display device of 1st Embodiment of this invention. 反射面と基材との間に異物が混入した反射型空中結像素子によって結像した空中映像を示す正面図Front view showing an aerial image formed by a reflective aerial imaging element in which foreign matter is mixed between the reflecting surface and the substrate タイリングによって形成された反射型空中結像素子を示す平面図Top view showing a reflective aerial imaging element formed by tiling タイリングによって形成された反射型空中結像素子の側端面の継ぎ目の近傍を通る光により結像した空中映像の正面図Front view of aerial image formed by light passing near seam of side end face of reflective aerial imaging element formed by tiling 本発明の第1実施形態の空中映像表示装置の製造工程を示す図The figure which shows the manufacturing process of the aerial image display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の第1測定工程を示す側面図The side view which shows the 1st measurement process of 1st Embodiment of this invention. 本発明の第1実施形態の第1測定工程に用いるチャートを示す正面図The front view which shows the chart used for the 1st measurement process of 1st Embodiment of this invention. 本発明の第1実施形態の第1測定工程で観察されるチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 1st Embodiment of this invention. 本発明の第1実施形態の第1測定工程で観察されるチャートの空中映像の他の例を示す正面図The front view which shows the other example of the aerial image of the chart observed at the 1st measurement process of 1st Embodiment of this invention. 本発明の第1実施形態の第2測定工程で観察される空中映像の一例を示す正面図The front view which shows an example of the aerial image observed at the 2nd measurement process of 1st Embodiment of this invention. 本発明の第1実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の一例を示す正面図The front view which shows an example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の他の例を示す正面図The front view which shows the other example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 1st Embodiment of this invention. 本発明の第1実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の一例を示す正面図The front view which shows an example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 1st Embodiment of this invention. 本発明の第2実施形態の第1測定工程に用いるチャートを示す正面図The front view which shows the chart used for the 1st measurement process of 2nd Embodiment of this invention. 本発明の第2実施形態の第1測定工程で観察されるチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 2nd Embodiment of this invention. 本発明の第2実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の一例を示す正面図The front view which shows an example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の第1測定工程に用いるチャートを示す正面図The front view which shows the chart used for the 1st measurement process of 3rd Embodiment of this invention. 本発明の第3実施形態の第1測定工程で観察されるチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 3rd Embodiment of this invention. 本発明の第3実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の一例を示す正面図The front view which shows an example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態の第1測定工程に用いるチャートを示す正面図The front view which shows the chart used for the 1st measurement process of 4th Embodiment of this invention. 本発明の第4実施形態の第1測定工程で観察されるチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 4th Embodiment of this invention. 本発明の第4実施形態の映像表示装置の画像補正部により補正した画像表示部の表示パネル上の出力画像の一例を示す正面図The front view which shows an example of the output image on the display panel of the image display part correct | amended by the image correction part of the video display apparatus of 4th Embodiment of this invention. 本発明の第5実施形態の第1測定工程に用いる一方のチャートを示す正面図The front view which shows one chart used for the 1st measurement process of 5th Embodiment of this invention. 本発明の第5実施形態の第1測定工程に用いる他方のチャートを示す正面図The front view which shows the other chart used for the 1st measurement process of 5th Embodiment of this invention. 本発明の第5実施形態の第1測定工程で観察される一方のチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of one chart observed at the 1st measurement process of 5th Embodiment of this invention. 本発明の第5実施形態の第1測定工程で観察される他方のチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the other chart observed at the 1st measurement process of 5th Embodiment of this invention. 本発明の第6実施形態の第1測定工程に用いるチャートを示す正面図The front view which shows the chart used for the 1st measurement process of 6th Embodiment of this invention. 本発明の第6実施形態の第1測定工程で観察されるチャートの空中映像の一例を示す正面図The front view which shows an example of the aerial image of the chart observed at the 1st measurement process of 6th Embodiment of this invention.
 <第1実施形態>
 以下に図面を参照して本発明の実施形態を説明する。図1及び図2は第1実施形態の空中映像表示装置の斜視図及び側面図をそれぞれ示している。X方向、Y方向及びZ方向は空中映像表示装置1の反射型空中結像素子10の幅方向、厚み方向及び奥行方向をそれぞれ示している。
<First Embodiment>
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 are a perspective view and a side view, respectively, of the aerial image display device of the first embodiment. The X direction, the Y direction, and the Z direction indicate the width direction, the thickness direction, and the depth direction of the reflective aerial imaging element 10 of the aerial image display device 1, respectively.
 空中映像表示装置1は反射型空中結像素子10及び画像表示部20を有する。反射型空中結像素子10は2枚の平板状の光学素子11を厚み方向(Y方向)に並設して形成され、被投影物OBに対応する空中映像FIを結像する。下方の光学素子11の下面は光が入射する入射面18になるとともに、上方の光学素子11の上面は光が出射する出射面19になる。 The aerial image display device 1 includes a reflective aerial imaging element 10 and an image display unit 20. The reflective aerial imaging element 10 is formed by juxtaposing two flat optical elements 11 in the thickness direction (Y direction), and forms an aerial image FI corresponding to the projection object OB. The lower surface of the lower optical element 11 is an incident surface 18 on which light is incident, and the upper surface of the upper optical element 11 is an output surface 19 from which light is emitted.
 画像表示部20は反射型空中結像素子10よりも下方に配され、表示パネル21及び光源(不図示)を有する。この時、反射型空中結像素子10及び画像表示部20は空中映像表示装置1内の予め決められた位置に配置される。これにより、反射型空中結像素子10と画像表示部20との位置関係が規定される。 The image display unit 20 is disposed below the reflective aerial imaging element 10 and includes a display panel 21 and a light source (not shown). At this time, the reflective aerial imaging element 10 and the image display unit 20 are arranged at predetermined positions in the aerial image display device 1. Thereby, the positional relationship between the reflective aerial imaging element 10 and the image display unit 20 is defined.
 表示パネル21は例えば液晶表示パネルから成り、被投影物OBである入力画像Pを表示する。光源は例えばLEDから成り、白色の照明光を出射する。表示パネル21に表示された入力画像Pからの光の光軸が約45°の入射角で入射面18に入射するように表示パネル21は配置される。なお、CCFL(Cold Cathode Fluorescent Lamp)により光源を形成してもよい。 The display panel 21 is composed of a liquid crystal display panel, for example, and displays an input image P that is a projection object OB. A light source consists of LED, for example, and radiates | emits white illumination light. The display panel 21 is arranged so that the optical axis of the light from the input image P displayed on the display panel 21 is incident on the incident surface 18 at an incident angle of about 45 °. The light source may be formed by CCFL (Cold Cathode Fluorescent Lamp).
 図3は反射型空中結像素子10の拡大した斜視図を示している。図4は反射型空中結像素子10の平面図を示している。図5は光学素子11の斜視図を示している。なお、図3において矢印Qは光路を示している。光学素子11の平面形状は一辺の長さが例えば約200mmの略正方形に形成される。光学素子11は光透過性材料により形成され、厚み方向(Y方向)に平行な反射面14が所定周期T(例えば、0.52mm)で平行に配される。 FIG. 3 is an enlarged perspective view of the reflective aerial imaging element 10. FIG. 4 shows a plan view of the reflective aerial imaging element 10. FIG. 5 shows a perspective view of the optical element 11. In FIG. 3, an arrow Q indicates an optical path. The planar shape of the optical element 11 is formed in a substantially square shape having a side length of, for example, about 200 mm. The optical element 11 is made of a light-transmitting material, and a reflecting surface 14 parallel to the thickness direction (Y direction) is arranged in parallel at a predetermined period T (for example, 0.52 mm).
 光学素子11は両面に反射面14を形成した透明な複数の基材12を反射面14上に配した接着剤13(図6参照)により接着して形成される。基材12はアクリル樹脂等の透明な樹脂やガラスにより形成される。接着剤13は例えばエポキシ樹脂やアクリル樹脂等から成る主剤と例えばポリアミド樹脂等から成る硬化剤とを混合した二液混合型の接着剤から成る。 The optical element 11 is formed by adhering a plurality of transparent base materials 12 each having a reflecting surface 14 on both sides with an adhesive 13 (see FIG. 6) disposed on the reflecting surface 14. The substrate 12 is formed of a transparent resin such as an acrylic resin or glass. The adhesive 13 is made of a two-component mixed adhesive in which a main agent made of, for example, an epoxy resin or an acrylic resin and a curing agent made of, for example, a polyamide resin are mixed.
 反射面14は基材12上に例えばアルミニウムや銀等のスパッタや蒸着を行って形成される。 The reflective surface 14 is formed on the base material 12 by sputtering or vapor deposition of, for example, aluminum or silver.
 図6は隣接する基材12間の接着部分を拡大した側面図を示している。隣接する基材12間には反射面14上にドット状の複数のスペーサー15が平面視でマトリクス状に配置されている。スペーサー15は例えば紫外線硬化性樹脂から成り、高さH(反射面14に垂直な方向の突出量)が20μm±1μmの範囲内で形成され、直交する二方向に所定のピッチE(本実施形態では1mm)で配置される。これにより、各接着剤13の層の膜厚を揃えることができ、複数の反射面14を互いに平行に維持することができる。 FIG. 6 shows an enlarged side view of an adhesion portion between adjacent base materials 12. Between the adjacent base materials 12, a plurality of dot-like spacers 15 are arranged in a matrix on the reflecting surface 14 in plan view. The spacer 15 is made of, for example, an ultraviolet curable resin, and has a height H (a protrusion amount in a direction perpendicular to the reflecting surface 14) in a range of 20 μm ± 1 μm, and has a predetermined pitch E (this embodiment) in two orthogonal directions. Is 1 mm). Thereby, the film thicknesses of the layers of the adhesives 13 can be made uniform, and the plurality of reflecting surfaces 14 can be maintained parallel to each other.
 反射型空中結像素子10は下方の光学素子11の反射面14が延びる方向と上方の光学素子11の反射面14が延びる方向とが互いに直交するように2枚の光学素子11を厚み方向(Y方向)に重ねて形成される。 In the reflective aerial imaging element 10, the two optical elements 11 are arranged in the thickness direction so that the direction in which the reflecting surface 14 of the lower optical element 11 extends and the direction in which the reflecting surface 14 of the upper optical element 11 extends are orthogonal to each other. (Y direction).
 図7は空中映像表示装置1の構成を示すブロック図である。空中映像表示装置1は各部を制御する制御部100を有する。制御部100には画像表示部20、画像補正部40及び記憶部50が接続される。記憶部50は空中映像表示装置1の制御プログラム及び各種データを格納する。後述するように、記憶部50が記憶するデータには反射型空中結像素子10の欠陥DPによる空中映像FIのずれの発生位置及び量に基づくずれ補正データ(第1データ)、及び空中映像FIの輝度ムラの発生位置及び量に基づく輝度ムラ補正データ(第2データ)が含まれる。画像補正部40は、画像表示部20に入力された画像(入力画像)をずれ補正データ及び輝度ムラ補正データに基づいて補正して出力する。 FIG. 7 is a block diagram showing the configuration of the aerial video display device 1. The aerial video display device 1 includes a control unit 100 that controls each unit. An image display unit 20, an image correction unit 40, and a storage unit 50 are connected to the control unit 100. The storage unit 50 stores a control program and various data for the aerial video display device 1. As will be described later, the data stored in the storage unit 50 includes deviation correction data (first data) based on the position and amount of deviation of the aerial image FI due to the defect DP of the reflective aerial imaging element 10, and the aerial image FI. Brightness unevenness correction data (second data) based on the occurrence position and the amount of brightness unevenness is included. The image correction unit 40 corrects and outputs the image (input image) input to the image display unit 20 based on the shift correction data and the luminance unevenness correction data.
 上記構成の空中映像表示装置1において、画像表示部20の光源が点灯されて表示パネル21上に入力画像P(被投影物OB)が表示されると、入力画像Pからの光は矢印Q(図3参照)で示すように、下方の光学素子11に入射面18から入射し、下方の光学素子11の反射面14で反射した後に上方の光学素子11に入射する。 In the aerial image display device 1 having the above configuration, when the light source of the image display unit 20 is turned on and the input image P (projected object OB) is displayed on the display panel 21, the light from the input image P is indicated by the arrow Q ( As shown in FIG. 3, the light enters the lower optical element 11 from the incident surface 18, is reflected by the reflecting surface 14 of the lower optical element 11, and then enters the upper optical element 11.
 上方の光学素子11の反射面14で反射した光は反射型空中結像素子10の上面の出射面19から上方へ出射され、反射型空中結像素子10に対して入力画像Pと面対称の位置の空中で入力画像Pの実像(空中映像FI)が結像される。これにより、入力画像Pに対応する空中映像FIが空中に浮かんだ状態で表示される。 The light reflected by the reflecting surface 14 of the upper optical element 11 is emitted upward from the emission surface 19 on the upper surface of the reflective aerial imaging element 10 and is plane-symmetric with the input image P with respect to the reflective aerial imaging element 10. A real image (aerial image FI) of the input image P is formed in the air at the position. Thereby, the aerial image FI corresponding to the input image P is displayed in a state of floating in the air.
 この時、図4に示すように、入射面18に平行な面に投影して観察者の眼EY(図1、図2参照)の視線方向ELに対して光学素子11の反射面14が45゜傾斜すると、空中映像FIの視認性を最良にできる。 At this time, as shown in FIG. 4, the reflecting surface 14 of the optical element 11 is projected 45 onto the surface parallel to the incident surface 18 with respect to the viewing direction EL of the observer's eye EY (see FIGS. 1 and 2). When tilted, the visibility of the aerial image FI can be optimized.
 なお、光学素子11の基材12間の接着剤13(図6参照)に例えば45°の入射角で入射した光は反射面14で数十回反射した後に接着剤13から出射される。これにより、接着剤13に入射した光は大きく減衰して出射されるため、空中映像FIの結像には殆ど寄与しない。したがって、光学素子11の基材12間の接着剤13にスペーサー15を配置しても大きな支障はない。 Note that light incident on the adhesive 13 (see FIG. 6) between the base materials 12 of the optical element 11 at an incident angle of 45 °, for example, is reflected from the reflecting surface 14 and then emitted from the adhesive 13. As a result, the light incident on the adhesive 13 is greatly attenuated and emitted, and thus hardly contributes to the image formation of the aerial image FI. Therefore, even if the spacer 15 is arranged on the adhesive 13 between the base materials 12 of the optical element 11, there is no big trouble.
 また、入力画像Pが例えば商品等に関する情報であれば、空中映像FIにより商品等の広告宣伝を行うことができる。なお、空中映像表示装置1をゲーム機等に搭載してもよい。 Further, if the input image P is, for example, information related to a product or the like, it is possible to advertise the product or the like using the aerial video FI. The aerial image display device 1 may be mounted on a game machine or the like.
 以下、光学素子11及び反射型空中結像素子10の形成方法について説明する。矩形の薄板状の透明な基板(不図示)の板厚方向に垂直な両面にアルミニウムや銀等のスパッタや蒸着等によって反射面14を形成する。基板は例えばアクリル樹脂またはガラスにより形成される。なお、基板の板厚方向に垂直な面の一方のみに反射面14を形成してもよい。 Hereinafter, a method for forming the optical element 11 and the reflective aerial imaging element 10 will be described. Reflective surfaces 14 are formed on both sides of a rectangular thin transparent substrate (not shown) perpendicular to the thickness direction by sputtering or vapor deposition of aluminum or silver. The substrate is made of, for example, acrylic resin or glass. The reflective surface 14 may be formed only on one of the surfaces perpendicular to the thickness direction of the substrate.
 次に、反射面14を形成した複数の基板をスペーサー15を介して板厚方向に積層して積層体(不図示)を形成する。積層体を貯留槽(不図示)内の液状の接着剤13に浸漬して積層体の隣接する基板間に接着剤13を充填する。次に、積層体を貯留槽から引き上げ、接着剤13の硬化により積層体を固着する。固着された積層体を反射面14に垂直な方向にワイヤーソー等を用いて所定周期で切断することにより、光学素子11の素材が得られる。光学素子11の素材の反射面14に垂直な面を研磨することにより光学素子11が得られる。次に、反射面14が延びる方向が互いに直交するように2枚の光学素子11を厚み方向(Y方向)に並設して接着剤等で接合することにより、図1に示す反射型空中結像素子10が得られる。 Next, a plurality of substrates on which the reflection surface 14 is formed are laminated in the thickness direction via the spacers 15 to form a laminate (not shown). The laminate is immersed in a liquid adhesive 13 in a storage tank (not shown), and the adhesive 13 is filled between adjacent substrates of the laminate. Next, the laminate is pulled up from the storage tank, and the laminate is fixed by curing the adhesive 13. The material of the optical element 11 is obtained by cutting the fixed laminated body at a predetermined period using a wire saw or the like in a direction perpendicular to the reflecting surface 14. The optical element 11 is obtained by polishing a surface perpendicular to the reflection surface 14 of the material of the optical element 11. Next, the two optical elements 11 are juxtaposed in the thickness direction (Y direction) so that the directions in which the reflecting surfaces 14 extend are orthogonal to each other, and are joined with an adhesive or the like, so that the reflective aerial connection shown in FIG. An image element 10 is obtained.
 図8及び図9は空中映像FIの結像を説明するための空中映像表示装置1の上面図及び側面図をそれぞれ示している。図8及び図9では被投影物OB(図3参照)として点画像PIを画像表示部20の表示パネル21上に表示し、点像PI´から成る空中映像FI(図3参照)をカメラ200により観察する場合について説明する。 8 and 9 are a top view and a side view, respectively, of the aerial image display device 1 for explaining the formation of the aerial image FI. 8 and 9, the point image PI is displayed on the display panel 21 of the image display unit 20 as the projection object OB (see FIG. 3), and the aerial image FI (see FIG. 3) including the point image PI ′ is displayed on the camera 200. The case of observing will be described.
 表示パネル21上に表示した点画像PIからの光束は反射型空中結像素子10の反射面14で反射し、反射型空中結像素子10に対して点画像PIと面対称の空中に点像PI´を結像する。点像PI´を観察するカメラ200には、反射型空中結像素子10の所定の円形の像形成領域IRの反射面14で反射した光が入射する。 The light beam from the point image PI displayed on the display panel 21 is reflected by the reflecting surface 14 of the reflective aerial imaging element 10, and the point image is in the plane symmetrical to the point image PI with respect to the reflective aerial imaging element 10. PI ′ is imaged. Light reflected by the reflecting surface 14 of the predetermined circular image forming region IR of the reflective aerial imaging element 10 enters the camera 200 that observes the point image PI ′.
 この時、像形成領域IRの中心と点像PI´との距離(飛び出し量)をLf、カメラ200のレンズ(不図示)と点像PI´との距離(観察距離)をLv、レンズの口径をφとしたとき、像形成領域IRの直径Dは式(1)で算出される。 At this time, the distance (projection amount) between the center of the image forming region IR and the point image PI ′ is Lf, the distance (observation distance) between the lens (not shown) of the camera 200 and the point image PI ′ is Lv, and the aperture of the lens. Is φ, the diameter D of the image forming region IR is calculated by the equation (1).
 D=Lf×φ/Lv ・・・(1) D = Lf × φ / Lv (1)
 例えば、飛び出し量Lf、観察距離Lv、口径φがそれぞれ300mm、500mm及び6mmの場合、像形成領域IRの直径Dは3.6mmとなる。 For example, when the pop-out amount Lf, the observation distance Lv, and the aperture φ are 300 mm, 500 mm, and 6 mm, respectively, the diameter D of the image forming region IR is 3.6 mm.
 反射型空中結像素子10の形成時に、反射型空中結像素子10の欠陥DP(図2参照)が部分的に発生する場合がある。欠陥DPは基材12間の異物混入による反射面14の平面度及び平行度の低下、基材12内の屈折率分布の不均一性等によって発生する。反射型空中結像素子10の欠陥DPが存在すると、欠陥DP上で反射する光の結像位置にずれが生じ、空中映像FI(図3参照)の画質が低下する。以下、反射型空中結像素子10の欠陥DPによる空中映像FIの画質低下について説明する。 When the reflective aerial imaging element 10 is formed, a defect DP (see FIG. 2) of the reflective aerial imaging element 10 may partially occur. The defect DP is generated due to a decrease in flatness and parallelism of the reflecting surface 14 due to foreign matter mixing between the base materials 12, non-uniformity of the refractive index distribution in the base material 12, and the like. When the defect DP of the reflective aerial imaging element 10 exists, the imaging position of the light reflected on the defect DP is shifted, and the image quality of the aerial image FI (see FIG. 3) is deteriorated. Hereinafter, the image quality degradation of the aerial image FI due to the defect DP of the reflective aerial imaging element 10 will be described.
 図10は、反射型空中結像素子10の反射面14での点画像PI(被投影物OB)の反射光の進行を説明するための上面図を示している。実線は上方の光学素子11の反射面14を示し、破線は下方の光学素子11の反射面14を示している。また、二点鎖線は欠陥DPが生じた場合の下方の光学素子11の反射面14´を示し、反射面14´はY方向に直交する方向に湾曲している。矢印Rは反射型空中結像素子10の欠陥DPがない反射面14(正常な反射面14)で反射した点画像PIの反射光線を示し、矢印R´は欠陥DPがある反射面14´で反射した点画像PIの反射光線を示している。 FIG. 10 shows a top view for explaining the progress of the reflected light of the point image PI (projection object OB) on the reflection surface 14 of the reflective aerial imaging element 10. A solid line indicates the reflecting surface 14 of the upper optical element 11, and a broken line indicates the reflecting surface 14 of the lower optical element 11. A two-dot chain line indicates a reflecting surface 14 ′ of the lower optical element 11 when a defect DP occurs, and the reflecting surface 14 ′ is curved in a direction orthogonal to the Y direction. An arrow R indicates a reflected ray of the point image PI reflected by the reflection surface 14 (normal reflection surface 14) having no defect DP of the reflective aerial imaging element 10, and an arrow R ′ is a reflection surface 14 ′ having the defect DP. The reflected ray of the reflected point image PI is shown.
 欠陥DPのない反射面14で反射した点画像PIの反射光線は点画像PIと面対称な位置で点像PI´を結像する。この時の結像をカメラ200(図8参照)により撮像すると、図12に示すように、点画像PIと同じ点像PI’が観察される。 The reflected light of the point image PI reflected by the reflecting surface 14 having no defect DP forms a point image PI ′ at a position symmetrical to the point image PI. When the image formed at this time is imaged by the camera 200 (see FIG. 8), the same point image PI ′ as the point image PI is observed as shown in FIG.
 湾曲した反射面14´で反射した点画像PIの反射光線は、正常な反射面14で反射した点画像PIの反射光線からずれて出射面19から出射する。このため、図11に示すように、点像PI´からずれた位置で点像Pzが結像される。この時の結像をカメラ200(図8参照)により撮像すると、図13に示すように、点像PI´と点像Pzとの重なり(点像の変形)が観察される。また、反射面14の湾曲が大きい場合は、図14に示すように、点像PI´と点像Pzとの分断(点像の分割)が観察される。このため、空中映像FIの画質が低下する。 The reflected light of the point image PI reflected by the curved reflecting surface 14 ′ deviates from the reflected light of the point image PI reflected by the normal reflecting surface 14 and is emitted from the emitting surface 19. Therefore, as shown in FIG. 11, the point image Pz is formed at a position shifted from the point image PI ′. When the image at this time is picked up by the camera 200 (see FIG. 8), as shown in FIG. 13, the overlap (point image deformation) of the point image PI ′ and the point image Pz is observed. Further, when the reflection surface 14 has a large curvature, as shown in FIG. 14, the division (point image division) between the point image PI ′ and the point image Pz is observed. For this reason, the image quality of the aerial image FI deteriorates.
 図15は欠陥DPを有する反射型空中結像素子10により結像した空中映像FIの正面図を示している。被投影物OBとして複数の平行線を画像表示部20に表示している。また、反射面14(図6参照)と基材12(図6参照)との間の異物混入による反射面14の平面度低下により欠陥DPが形成されている。同図によると、空中映像FIの反射面14の平面度低下した部分にずれが生じ、筋目が観察される。 FIG. 15 is a front view of an aerial image FI formed by the reflective aerial imaging element 10 having a defect DP. A plurality of parallel lines are displayed on the image display unit 20 as the projection object OB. Further, a defect DP is formed due to a decrease in the flatness of the reflecting surface 14 due to foreign matter mixing between the reflecting surface 14 (see FIG. 6) and the substrate 12 (see FIG. 6). According to the figure, a deviation occurs in the portion of the reflective surface 14 of the aerial image FI where the flatness is lowered, and streaks are observed.
 また、複数の反射型空中結像素子10のタイリングによって大型の反射型空中結像素子が形成される場合がある。図16はタイリングされた反射型空中結像素子10´の平面図を示している。複数の反射型空中結像素子10を側端面10aの継ぎ目10bで接合してタイリングし、大型の反射型空中結像素子10´が形成される。 Also, a large reflective aerial imaging element may be formed by tiling the plurality of reflective aerial imaging elements 10. FIG. 16 shows a plan view of the tiled reflective aerial imaging element 10 ′. A plurality of reflective aerial imaging elements 10 'are joined and tiled at the joint 10b of the side end face 10a to form a large reflective aerial imaging element 10'.
 図17はタイリング時の欠陥DPを有する反射型空中結像素子10´により結像した空中映像FIの正面図を示している。同図において、被投影物OBとして複数の平行線を画像表示部20に表示し、図16の破線で囲んだ領域内を通過した光によって結像した空中映像FIを示している。また、タイリング時の隣接する反射型空中結像素子10の反射面14が同一平面上からずれて配置されて欠陥DPが形成されている。同図によると、継ぎ目10bでは反射面14のずれによる筋目が観察される。 FIG. 17 shows a front view of an aerial image FI imaged by the reflective aerial imaging element 10 ′ having a defect DP at the time of tiling. In the figure, an aerial image FI is formed by displaying a plurality of parallel lines as the projection object OB on the image display unit 20 and forming an image by light passing through the area surrounded by the broken line in FIG. Further, the reflection surface 14 of the adjacent reflective aerial imaging element 10 at the time of tiling is arranged so as to be shifted from the same plane, thereby forming a defect DP. According to the figure, streaks due to the displacement of the reflecting surface 14 are observed at the joint 10b.
 図18は空中映像表示装置1の製造工程を示す図である。空中映像表示装置1の製造工程は、第1測定工程、第1保持工程、第2測定工程、第2保持工程、据付工程、第1読込工程及び第2読込工程を有する。 FIG. 18 is a diagram showing a manufacturing process of the aerial image display device 1. The manufacturing process of the aerial video display device 1 includes a first measurement process, a first holding process, a second measurement process, a second holding process, an installation process, a first reading process, and a second reading process.
 図19は第1測定工程を示す側面図である。反射型空中結像素子10の下方には表示パネル21が配され、上方にはカメラ200が配置される。表示パネル21には図20に示すように、格子状に配した複数の黒色の線から成るチャートC1が表示される。そして、カメラ200により撮像されたチャートC1の空中映像FIとチャートC1とのずれの発生位置及びずれ量が画像処理によって測定される。 FIG. 19 is a side view showing the first measurement process. A display panel 21 is disposed below the reflective aerial imaging element 10 and a camera 200 is disposed above. As shown in FIG. 20, the display panel 21 displays a chart C1 composed of a plurality of black lines arranged in a grid pattern. Then, an occurrence position and an amount of deviation between the aerial image FI of the chart C1 captured by the camera 200 and the chart C1 are measured by image processing.
 図21は、欠陥DP(図2参照)を有した反射型空中映像素子10によるチャートC1の空中映像FIの一例を示す正面図である。図中、一点鎖線で囲まれた領域内において、欠陥DPによって横線が上方に湾曲するとともに縦線が左方に湾曲し、チャートC1とチャートC1の空中映像FIとのずれが発生している。即ち、位置Faは本来の結像の位置Fa´から縦方向及び横方向に、ΔA、ΔBずれて結像され、ずれの発生位置Fa及びずれの量ΔA、ΔBが測定される。 FIG. 21 is a front view showing an example of an aerial image FI of the chart C1 by the reflective aerial image element 10 having the defect DP (see FIG. 2). In the figure, in the region surrounded by the alternate long and short dash line, the horizontal line is curved upward and the vertical line is curved to the left due to the defect DP, and a deviation between the chart C1 and the aerial image FI of the chart C1 occurs. That is, the position Fa is imaged with a shift of ΔA and ΔB in the vertical and horizontal directions from the original image formation position Fa ′, and the shift generation position Fa and the shift amounts ΔA and ΔB are measured.
 図22は欠陥DP(図2参照)を有した反射型空中映像素子10によるチャートC1の空中映像FIの他の例を示す正面図である。空中映像FIには境界線Sよりも右上部分の破線で囲んだ領域KでチャートC1とチャートC1の空中映像FIとのずれが発生して縦線及び横線がシフトしている。このため、領域K内の全格子点の位置Fa及びずれの量ΔA、ΔBが測定される。 FIG. 22 is a front view showing another example of the aerial image FI of the chart C1 by the reflective aerial image element 10 having the defect DP (see FIG. 2). In the aerial image FI, a vertical line and a horizontal line are shifted due to a shift between the chart C1 and the aerial image FI of the chart C1 in a region K surrounded by a broken line in the upper right part of the boundary line S. For this reason, the position Fa of all the lattice points in the region K and the shift amounts ΔA and ΔB are measured.
 次に、第1保持工程では、上記ずれの発生位置Fa及びずれの量ΔA、ΔBに基づくずれ補正データ(第1データ)を反射型空中結像素子10と関連付けて所定の記録媒体に保持させる。記録媒体に特に限定はなく、例えば、紙、光学ディスク、USBメモリ、サーバ等を用いることができる。 Next, in the first holding step, the shift correction data (first data) based on the shift generation position Fa and the shift amounts ΔA and ΔB is associated with the reflective aerial imaging element 10 and held on a predetermined recording medium. . The recording medium is not particularly limited, and for example, paper, an optical disk, a USB memory, a server, and the like can be used.
 ずれ補正データは例えば、位置Faに対応する表示パネル21上の座標及びずれの量ΔA、ΔBから成る。画像補正部40(図7参照)はずれ補正データに基づいて表示パネル21上の画像を補正するため、ずれ補正データを位置Faに対応する表示パネル21上の座標及び補正量(-ΔA、-ΔB)としてもよい。また、ずれ補正データをチャートC1上の全格子点のずれ量または補正量としてもよい。この時、ずれ補正データはずれ量が0以外の格子点である発生位置に基づくデータを保持する。 The deviation correction data includes, for example, coordinates on the display panel 21 corresponding to the position Fa and deviation amounts ΔA and ΔB. Since the image correction unit 40 (see FIG. 7) corrects the image on the display panel 21 based on the deviation correction data, the coordinates on the display panel 21 corresponding to the position Fa and the correction amount (−ΔA, −ΔB) are used. ). The shift correction data may be the shift amount or correction amount of all grid points on the chart C1. At this time, the shift correction data holds data based on the generation position, which is a grid point with a shift amount other than zero.
 次に、第2測定工程では、表示パネル21上に無地画像が表示される。そして、カメラ200により撮像された無地画像の空中映像FIの輝度ムラの発生位置及び量(輝度値)が画像処理によって測定される。 Next, in the second measurement process, a plain image is displayed on the display panel 21. Then, the occurrence position and amount (luminance value) of the luminance unevenness of the aerial image FI of the plain image captured by the camera 200 are measured by image processing.
 図23はこの時の空中映像FIの一例を示す正面図である。反射型空中結像素子10の欠陥DPによって同図の一点鎖線で囲まれた領域内に黒斑が観察されている。黒斑は、光学素子11の形成時の反射面14の腐食による剥離や酸化により反射面14の反射率が低下している場合等に発生する。 FIG. 23 is a front view showing an example of the aerial image FI at this time. Black spots are observed in the region surrounded by the alternate long and short dash line in the drawing due to the defect DP of the reflective aerial imaging element 10. Black spots occur when the reflectance of the reflective surface 14 is reduced due to peeling or oxidation due to corrosion of the reflective surface 14 when the optical element 11 is formed.
 また、図2に示すように表示パネル21は傾斜して配置されるため、空中映像FIの上部が下部に対して光路長が長くなる。このため、空中映像FIの上部に対して下部の輝度が漸次高くなり、空中映像FIに輝度ムラが発生する。第2測定工程では、空中映像FI上の輝度ムラの発生位置及び量(輝度値)を測定する。 Further, as shown in FIG. 2, since the display panel 21 is inclined, the upper part of the aerial image FI has a longer optical path length than the lower part. For this reason, the brightness of the lower part gradually increases with respect to the upper part of the aerial image FI, and uneven brightness occurs in the aerial image FI. In the second measurement step, the occurrence position and amount (luminance value) of luminance unevenness on the aerial image FI are measured.
 次に、第2保持工程では、上記輝度ムラの発生位置及び量に基づく輝度ムラ補正データ(第2データ)を反射型空中結像素子10と関連付けて所定の記録媒体に保持させる。記録媒体に特に限定はなく、例えば、紙、光学ディスク、USBメモリ、サーバ等を用いることができる。ずれ補正データを保持する記録媒体と同じ記録媒体に輝度ムラ補正データを保持してもよく、異なる記録媒体に輝度ムラ補正データを保持してもよい。 Next, in the second holding step, luminance unevenness correction data (second data) based on the occurrence position and amount of the luminance unevenness is associated with the reflective aerial imaging element 10 and held on a predetermined recording medium. The recording medium is not particularly limited, and for example, paper, an optical disk, a USB memory, a server, and the like can be used. The luminance unevenness correction data may be held in the same recording medium as the recording medium holding the deviation correction data, or the luminance unevenness correction data may be held in a different recording medium.
 次に、据付工程では、反射型空中結像素子10と画像表示部20とをそれぞれ所定位置に固定して取り付ける。次に、第1読込工程では反射型空中結像素子10に対応するずれ補正データを記録媒体から記憶部50に読み込ませる。次に、第2読込工程では反射型空中結像素子10に対応する輝度ムラ補正データを記録媒体から記憶部50に読み込ませる。以上により、図1に示す空中映像表示装置1が形成される。 Next, in the installation step, the reflective aerial imaging element 10 and the image display unit 20 are fixedly attached at predetermined positions. Next, in the first reading step, deviation correction data corresponding to the reflective aerial imaging element 10 is read from the recording medium into the storage unit 50. Next, in the second reading step, luminance unevenness correction data corresponding to the reflective aerial imaging element 10 is read from the recording medium into the storage unit 50. Thus, the aerial video display device 1 shown in FIG. 1 is formed.
 上記構成の空中映像表示装置1において、画像表示部20に入力される画像は記憶部50に記憶されるずれ補正データ及び輝度ムラ補正データに基づいて画像補正部40により補正して出力される。この時、ずれ補正データにはずれの発生位置Faが表示パネル21上の不連続な点として不連続に保持されるが、隣接する発生位置Fa間のずれ量は画像補正部40により補間される。同様に、輝度ムラ補正データには輝度ムラの発生位置が表示パネル21上の不連続な点として保持されるが、隣接する発生位置間の輝度は画像補正部40により補間される。 In the aerial video display device 1 having the above-described configuration, the image input to the image display unit 20 is corrected by the image correction unit 40 based on the deviation correction data and the luminance unevenness correction data stored in the storage unit 50 and output. At this time, the shift generation position Fa is discontinuously held as a discontinuous point on the display panel 21 in the shift correction data, but the shift amount between the adjacent generation positions Fa is interpolated by the image correction unit 40. Similarly, in the brightness unevenness correction data, the occurrence positions of brightness unevenness are held as discontinuous points on the display panel 21, but the brightness between adjacent occurrence positions is interpolated by the image correction unit 40.
 図24は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の一例を示している。画像表示部20の入力画像はチャートC1(図20参照)であり、前述の図21の空中映像FIを補正している。図中、一点鎖線で囲まれた領域は図21の一点鎖線で囲まれた領域に対応している。 FIG. 24 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. The input image of the image display unit 20 is the chart C1 (see FIG. 20), and the above-described aerial image FI in FIG. 21 is corrected. In the figure, a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
 この時、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像P´が補正される。即ち、図24の一点鎖線で囲まれた領域において、縦線と横線が図21の空中映像FIの場合と反対方向に湾曲している。これにより、観察者は歪のない空中映像FIを観察することができる。 At this time, based on the deviation correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 24, the vertical line and the horizontal line are curved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
 図25は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の他の例を示している。画像表示部20の入力画像はチャートC1(図20参照)であり、前述の図22の空中映像FIを補正している。図中、破線で囲んだ領域K´は図22の破線の領域Rに対応している。 FIG. 25 shows another example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. An input image of the image display unit 20 is a chart C1 (see FIG. 20), and the aerial image FI shown in FIG. 22 is corrected. In the drawing, a region K ′ surrounded by a broken line corresponds to a broken line region R in FIG. 22.
 この時、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像P´が補正される。即ち、図25の破線で囲まれた領域K´において、縦線と横線が図22の空中映像FIの場合と反対方向にシフトしている。これにより、観察者は歪のない空中映像FIを観察することができる。 At this time, based on the deviation correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region K ′ surrounded by the broken line in FIG. 25, the vertical line and the horizontal line are shifted in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
 図26は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の他の例を示している。画像表示部20の入力画像は無地画像であり、前述の図23の空中映像FIを補正している。図中、一点鎖線で囲まれた領域は図23の一点鎖線に囲まれた領域に対応している。 FIG. 26 shows another example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. The input image of the image display unit 20 is a plain image and corrects the aerial image FI shown in FIG. In the figure, a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
 この時、記憶部50に記憶された輝度ムラ補正データに基づいて、反射型空中結像素子10の欠陥及び配置による輝度ムラの発生位置で輝度ムラを打ち消す方向に出力画像P´が補正される。即ち、図23の黒斑部分に対応する部分の輝度値が高くなっており、出力画像P´の下部に対して上部の輝度が漸次高くなっている。これにより、観察者は輝度ムラの低減された空中映像FIを観察することができる。 At this time, based on the luminance unevenness correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the luminance unevenness at the position where the luminance unevenness due to the defect and arrangement of the reflective aerial imaging element 10 occurs. . That is, the luminance value of the portion corresponding to the black spot portion in FIG. 23 is high, and the luminance of the upper portion is gradually higher than the lower portion of the output image P ′. Thereby, the observer can observe the aerial image FI with reduced luminance unevenness.
 本実施形態によると、チャートC1とチャートC1の空中映像FIとのずれの発生位置Fa及びずれの量ΔA、ΔBに基づくずれ補正データ(第1データ)を反射型空中結像素子10と関連付けて記憶媒体に記憶する。そして、画像表示部20の入力画像を画像補正部40がずれ補正データに基づいて補正して出力する。これにより、歪みの少ない良好な空中映像FIが観察される。したがって、空中映像FIの画質を向上させることができる。 According to the present embodiment, the deviation correction data (first data) based on the occurrence position Fa and the deviation amounts ΔA and ΔB between the chart C1 and the aerial image FI of the chart C1 are associated with the reflective aerial imaging element 10. Store in a storage medium. Then, the image correction unit 40 corrects and outputs the input image of the image display unit 20 based on the shift correction data. Thereby, a good aerial image FI with little distortion is observed. Therefore, the image quality of the aerial video FI can be improved.
 また、チャートC1が格子状に配した複数の線から成るため、第1測定工程を容易に行うことができる。 Further, since the chart C1 is composed of a plurality of lines arranged in a grid pattern, the first measurement process can be easily performed.
 また、空中映像FIの輝度ムラの発生位置及び量に基づく輝度補正データ(第2データ)を反射型空中結像素子10と関連付けている。そして、画像表示部20の入力画像を画像補正部40が輝度補正データに基づいて補正して出力する。これにより、輝度ムラの少ない良好な空中映像FIを観察することができる。 Also, the luminance correction data (second data) based on the position and amount of occurrence of luminance unevenness in the aerial image FI is associated with the reflective aerial imaging element 10. Then, the image correction unit 40 corrects and outputs the input image of the image display unit 20 based on the luminance correction data. Thereby, it is possible to observe a good aerial image FI with little luminance unevenness.
 また、図16に示すように、反射面14が互いに平行になるように厚み方向(Y方向)に直交する方向で複数の光学素子11を継ぎ目10bで接合することにより、大型の反射型空中結像素子10´を形成してもよい。これにより、反射型空中結像素子10を容易に大型化して、大型の空中映像FIを表示することができる。この時、第1測定工程、第1保持工程及び第1読込工程を行うことにより、継ぎ目10bによる空中映像FIの画質低下を容易に防止することができる。 Also, as shown in FIG. 16, a large reflective aerial connection is formed by joining a plurality of optical elements 11 at seams 10b in a direction orthogonal to the thickness direction (Y direction) so that the reflecting surfaces 14 are parallel to each other. An image element 10 'may be formed. Thereby, the reflective aerial imaging element 10 can be easily enlarged and a large aerial image FI can be displayed. At this time, by performing the first measurement process, the first holding process, and the first reading process, it is possible to easily prevent the image quality of the aerial image FI from being deteriorated by the joint 10b.
 また、画像表示部20に入力された画像をずれ補正データに基づいて補正して出力する画像補正部40を空中映像表示装置1に設けている。これにより、空中映像FIの画質を向上させることができる。 Further, the aerial video display device 1 is provided with an image correction unit 40 that corrects and outputs an image input to the image display unit 20 based on the shift correction data. Thereby, the image quality of the aerial image FI can be improved.
 また、反射型空中結像素子10は、予め取得して記録媒体に保持されるずれ補正データに関連付けられ、ずれ補正データがチャートC1とチャートC1の空中映像FIとのずれの発生位置及び量に基づいている。これにより、空中映像FIの画質を向上させることができる。 The reflective aerial imaging element 10 is associated with deviation correction data acquired in advance and held on the recording medium, and the deviation correction data indicates the position and amount of deviation between the chart C1 and the aerial image FI of the chart C1. Is based. Thereby, the image quality of the aerial image FI can be improved.
 <第2実施形態>
 次に本発明の第2実施形態について説明する。図27は第2実施形態の第1測定工程に使用されるチャートC2の正面図を示している。図28はチャートC2の空中映像FIの一例の正面図を示している。なお、図中の破線は各ドットの位置関係をわかりやすくするため便宜的に付したものであり、チャートC2には形成されていない。説明の便宜上、図1~図26に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態ではチャートC1に替えてチャートC2を用いる点で第1実施形態とは異なっている。その他の部分は第1実施形態と同様である。
Second Embodiment
Next, a second embodiment of the present invention will be described. FIG. 27 shows a front view of a chart C2 used in the first measurement process of the second embodiment. FIG. 28 shows a front view of an example of the aerial image FI of the chart C2. In addition, the broken line in the drawing is attached for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C2. For convenience of explanation, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. This embodiment is different from the first embodiment in that a chart C2 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
 チャートC2は格子状に配列される複数のドットから成る。全てのドットの形状及び色は同一になっている。図28に示すように、第1測定工程において、一点鎖線で囲んだ領域内の2個のドットが左方にずれ、チャートC2とチャートC2の空中映像FIとのずれが発生している。 Chart C2 is composed of a plurality of dots arranged in a grid pattern. All dots have the same shape and color. As shown in FIG. 28, in the first measurement process, the two dots in the area surrounded by the alternate long and short dash line are shifted to the left, and a shift between the chart C2 and the aerial image FI of the chart C2 occurs.
 この時、チャートC2は格子状に配列される複数のドットから成るため、チャートC2とチャートC2の空中映像FIの各ドットの位置座標を比較することにより、ずれの発生位置及び量を容易に測定することができる。例えば、空中映像FIの撮像画像を二値化し、各ドットの重心に基づいて、ずれの発生位置及び量を測定してもよい。 At this time, since the chart C2 is composed of a plurality of dots arranged in a grid pattern, the position and amount of deviation are easily measured by comparing the position coordinates of each dot in the aerial image FI of the chart C2 and the chart C2. can do. For example, the captured image of the aerial image FI may be binarized, and the position and amount of deviation may be measured based on the center of gravity of each dot.
 図29は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の一例を示している。画像表示部20の入力画像はチャートC2(図27参照)であり、前述の図28の空中映像FIを補正している。図中、一点鎖線で囲まれた領域は図28の一点鎖線で囲まれた領域に対応している。 FIG. 29 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. The input image of the image display unit 20 is the chart C2 (see FIG. 27), and the aerial image FI shown in FIG. 28 is corrected. In the drawing, a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
 この時、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像P´が補正される。即ち、図29の一点鎖線で囲まれた領域において、2個のドットが図28の空中映像FIの場合と反対方向に移動している。これにより、観察者は歪のない空中映像FIを観察することができる。 At this time, based on the deviation correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 29, the two dots have moved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
 本実施形態でも第1実施形態と同様の効果を得ることができる。また、チャートC2は格子状に配列される複数のドットから成るため、チャートC2とチャートC2の空中映像FIのドットの位置座標を比較することにより、チャートC2とチャートC2の空中映像FIとのずれの発生位置及び量を容易に測定することができる。 In this embodiment, the same effect as in the first embodiment can be obtained. In addition, since the chart C2 is composed of a plurality of dots arranged in a grid pattern, the difference between the chart C2 and the aerial image FI of the chart C2 is obtained by comparing the position coordinates of the dots of the aerial image FI of the chart C2 and the chart C2. The position and amount of occurrence can be easily measured.
 <第3実施形態>
 次に本発明の第3実施形態について説明する。図30は第3実施形態の第1測定工程に使用されるチャートC3の正面図を示している。図31はチャートC3の空中映像FIの一例の正面図を示している。なお、図中の破線は各ドットの位置関係をわかりやすくするため便宜的に付したものであり、チャートC3には形成されていない。説明の便宜上、図1~図26に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態ではチャートC1に替えてチャートC3を用いる点で第1実施形態とは異なっている。その他の部分は第1実施形態と同様である。
<Third Embodiment>
Next, a third embodiment of the present invention will be described. FIG. 30 shows a front view of a chart C3 used in the first measurement process of the third embodiment. FIG. 31 shows a front view of an example of the aerial image FI of the chart C3. In addition, the broken line in the figure is attached for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C3. For convenience of explanation, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. This embodiment is different from the first embodiment in that a chart C3 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
 チャートC3は複数の円形のドットと複数の四角形のドットとから成り、ドットは格子状に配列されている。また、全てのドットの色は同じ黒色であり、隣接するドットの形状が異なっている。第1測定工程において、図31に示すように、一点鎖線で囲んだ領域内の8個のドットがそれぞれ異なる方向にずれ、チャートC3とチャートC3の空中映像FIとのずれが発生している。なお、画像処理において、ドットの形状を判別するパターンマッチングを行う。 Chart C3 is composed of a plurality of circular dots and a plurality of square dots, and the dots are arranged in a grid pattern. Moreover, the color of all the dots is the same black, and the shape of adjacent dots is different. In the first measurement step, as shown in FIG. 31, the eight dots in the region surrounded by the alternate long and short dash line are shifted in different directions, and a shift between the chart C3 and the aerial image FI of the chart C3 occurs. In image processing, pattern matching is performed to determine the shape of dots.
 この時、チャートC3の隣接するドットの形状が異なるため、第1測定工程において、図31の一点鎖線で囲まれた領域で示すように、ずれているドットの数が多い場合でもチャートC3とチャートC3の空中映像FIとのずれの発生位置及び量を容易に測定することができる。なお、ドットの形状は円形及び四角形に限定されず、例えば楕円形及び三角形等でもよい。すなわち、隣接するドットの形状が異なればよい。 At this time, since the shapes of adjacent dots in the chart C3 are different, even when the number of displaced dots is large in the first measurement step as shown by the region surrounded by the one-dot chain line in FIG. It is possible to easily measure the occurrence position and amount of deviation from the aerial image FI of C3. The shape of the dot is not limited to a circle and a rectangle, and may be an ellipse or a triangle, for example. That is, it suffices if the shapes of adjacent dots are different.
 図32は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の一例を示している。画像表示部20の入力画像はチャートC3(図30参照)であり、前述の図31の空中映像FIを補正している。図中、一点鎖線で囲まれた領域は図31の一点鎖線で囲まれた領域に対応している。 FIG. 32 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. The input image of the image display unit 20 is a chart C3 (see FIG. 30), and the aerial image FI shown in FIG. 31 is corrected. In the drawing, a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
 この時、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像P´が補正される。即ち、図32の一点鎖線で囲まれた領域において、8個のドットが図31の空中映像FIの場合と反対方向に移動している。これにより、観察者は歪のない空中映像FIを観察することができる。 At this time, based on the deviation correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, in the region surrounded by the one-dot chain line in FIG. 32, eight dots are moving in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
 本実施形態でも第1実施形態と同様の効果を得ることができる。また、隣接するドットの形状が異なるため、チャートC3とチャートC3の空中映像FIとのずれの発生位置及び量を第2実施形態の場合よりも容易に測定することができる。 In this embodiment, the same effect as in the first embodiment can be obtained. Moreover, since the shapes of adjacent dots are different, the position and amount of occurrence of the deviation between the chart C3 and the aerial image FI of the chart C3 can be measured more easily than in the second embodiment.
 <第4実施形態>
 次に本発明の第4実施形態について説明する。図33は第4実施形態の第1測定工程に使用されるチャートC4の正面図を示している。図34はチャートC4の空中映像FIの一例の正面図を示している。なお、図中の破線は各ドットの位置関係をわかりやすくするため便宜的に付したものであり、チャートC4には形成されていない。説明の便宜上、図1~図26に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態ではチャートC1に替えてチャートC4を用いる点で第1実施形態とは異なっている。その他の部分は第1実施形態と同様である。
<Fourth embodiment>
Next, a fourth embodiment of the present invention will be described. FIG. 33 shows a front view of a chart C4 used in the first measurement process of the fourth embodiment. FIG. 34 shows a front view of an example of the aerial image FI of the chart C4. In addition, the broken line in the drawing is added for convenience in order to make the positional relationship of each dot easy to understand, and is not formed in the chart C4. For convenience of explanation, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. This embodiment is different from the first embodiment in that a chart C4 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
 チャートC4は複数の白色のドットと複数の黒色のドットとから成り、ドットは格子状に配列されている。また、全てのドットの形状は同じ円形であり、隣接するドットの色が異なっている。第1測定工程において、図34に示すように、一点鎖線で囲んだ領域内の8個のドットがそれぞれ異なる方向にずれ、チャートC4とチャートC4の空中映像FIとのずれが発生している。 The chart C4 is composed of a plurality of white dots and a plurality of black dots, and the dots are arranged in a grid pattern. Moreover, the shape of all the dots is the same circle, and the colors of adjacent dots are different. In the first measurement step, as shown in FIG. 34, the eight dots in the region surrounded by the alternate long and short dash line are shifted in different directions, and a shift between the chart C4 and the aerial image FI of the chart C4 occurs.
 この時、チャートC4の隣接するドットの色が異なるため、第1測定工程において、図34の一点鎖線で囲まれた領域で示すように、ずれているドットの数が多い場合でもチャートC4とチャートC4の空中映像FIとのずれの発生位置及び量を容易に測定することができる。 At this time, since the colors of adjacent dots in the chart C4 are different, even in the first measurement step, even when the number of displaced dots is large as shown by the region surrounded by the one-dot chain line in FIG. 34, the chart C4 and the chart It is possible to easily measure the occurrence position and amount of deviation from the C4 aerial image FI.
 また、第3実施形態では、画像処理において、ドットの形状を判別するパターンマッチングを行う必要があるが、本実施形態によればパターンマッチングを省くことができる。 Further, in the third embodiment, in image processing, it is necessary to perform pattern matching for determining the shape of dots, but according to this embodiment, pattern matching can be omitted.
 なお、ドットの色は白色及び黒色に限定されず、例えば赤色及び青色等でもよい。すなわち、隣接するドットの色が異なればよい。 Note that the color of the dots is not limited to white and black, and may be red and blue, for example. That is, it is only necessary that adjacent dots have different colors.
 図35は、画像補正部40により補正した画像表示部20の表示パネル21上の出力画像P´の一例を示している。画像表示部20の入力画像はチャートC4(図33参照)であり、前述の図34の空中映像FIを補正している。図中、一点鎖線で囲まれた領域は図34の一点鎖線で囲まれた領域に対応している。 FIG. 35 shows an example of the output image P ′ on the display panel 21 of the image display unit 20 corrected by the image correction unit 40. The input image of the image display unit 20 is the chart C4 (see FIG. 33), and the aerial image FI shown in FIG. 34 is corrected. In the drawing, a region surrounded by a one-dot chain line corresponds to a region surrounded by a one-dot chain line in FIG.
 この時、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像P´が補正される。即ち、図35の一点鎖線で囲まれた領域において、8個のドットが図34の空中映像FIの場合と反対方向に移動している。これにより、観察者は歪のない空中映像FIを観察することができる。 At this time, based on the deviation correction data stored in the storage unit 50, the output image P ′ is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. In other words, in the region surrounded by the one-dot chain line in FIG. 35, eight dots have moved in the opposite direction to the case of the aerial image FI in FIG. Thereby, the observer can observe the aerial image FI without distortion.
 本実施形態でも第1実施形態と同様の効果を得ることができる。また、隣接するドットの色が異なるため、チャートC4とチャートC4の空中映像FIとのずれの発生位置及び量を第2実施形態の場合よりも容易に測定することができる。 In this embodiment, the same effect as in the first embodiment can be obtained. Further, since the colors of adjacent dots are different, the position and amount of occurrence of the deviation between the chart C4 and the aerial image FI of the chart C4 can be measured more easily than in the second embodiment.
 <第5実施形態>
 次に本発明の第5実施形態について説明する。図36及び図37は第5実施形態の第1測定工程に使用されるチャートC5a、C5bの正面図をそれぞれ示している。図38及び図39はチャートC5a、C5bの空中映像FIの一例の正面図をそれぞれ示している。説明の便宜上、図1~図26に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態ではチャートC1に替えてチャートC5a、C5bを用いる点で第1実施形態とは異なっている。その他の部分は第1実施形態と同様である。
<Fifth Embodiment>
Next, a fifth embodiment of the present invention will be described. 36 and 37 show front views of charts C5a and C5b used in the first measurement process of the fifth embodiment, respectively. 38 and 39 show front views of examples of the aerial images FI of the charts C5a and C5b, respectively. For convenience of explanation, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. The present embodiment is different from the first embodiment in that charts C5a and C5b are used instead of the chart C1. Other parts are the same as those in the first embodiment.
 チャートC5aは互いに平行に配される複数の縦線から成り、チャートC5bは互いに平行に配される複数の横線から成る。第1測定工程において、チャートC5a、C5bを順に表示パネル21上に表示して、チャートC5a、C5bとチャートC5a、C5bの空中映像FIとのずれの発生位置及び量を測定する。 The chart C5a is composed of a plurality of vertical lines arranged in parallel to each other, and the chart C5b is composed of a plurality of horizontal lines arranged in parallel to each other. In the first measurement step, the charts C5a and C5b are displayed on the display panel 21 in order, and the occurrence position and amount of deviation between the charts C5a and C5b and the aerial images FI of the charts C5a and C5b are measured.
 第1測定工程において、図38及び図39の一点鎖線に囲まれる領域において、縦線が左方に湾曲するとともに横線が上方に湾曲し、チャートC5a、C5bとチャートC5a、C5bの空中映像FIとのずれが発生している。第1測定工程の画像処理の時にチャートC5aの空中映像FIの撮像画像は例えば図38の左方から右方への方向でスキャンされる。また、チャートC5bの空中映像FIの撮像画像は例えば図39の上方から下方への方向でスキャンされる。 In the first measurement step, in the region surrounded by the alternate long and short dash line in FIG. 38 and FIG. 39, the vertical line curves to the left and the horizontal line curves upward, and Deviation has occurred. At the time of image processing in the first measurement process, the captured image of the aerial image FI of the chart C5a is scanned in the direction from the left to the right in FIG. 38, for example. Further, the captured image of the aerial video FI of the chart C5b is scanned in the direction from the upper side to the lower side of FIG. 39, for example.
 この時、チャートC5aを用いているため、横線が撮像されずスキャニングにより横方向のずれを容易に検出することができる。また、チャートC5bを用いているため、縦線が撮像されずスキャニングにより縦方向のずれを容易に検出することができる。すなわち、チャートC5a、C5bを用いることにより、チャートC5a、C5bとチャートC5a、C5bの空中映像FIとのずれの発生位置及び量を画像処理でより容易に測定することができる。 At this time, since the chart C5a is used, the horizontal line is not imaged, and the horizontal shift can be easily detected by scanning. Further, since the chart C5b is used, the vertical line is not imaged, and the vertical shift can be easily detected by scanning. That is, by using the charts C5a and C5b, it is possible to more easily measure the occurrence position and amount of deviation between the charts C5a and C5b and the aerial images FI of the charts C5a and C5b by image processing.
 この時、ずれ補正データにはずれの発生位置Faが表示パネル21上の不連続な点として不連続に保持されるが、隣接する発生位置Fa間のずれ量は画像補正部40により補間される。 At this time, the shift generation position Fa is discontinuously held as a discontinuous point on the display panel 21 in the shift correction data, but the shift amount between the adjacent generation positions Fa is interpolated by the image correction unit 40.
 そして、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像が補正される。即ち、出力画像上で図38の一点鎖線で囲まれた領域内の湾曲した縦線に対応する縦線が空中映像FIの場合と反対方向に湾曲する。また、出力画像上で図39の一点鎖線で囲まれた領域内の湾曲した横線に対応する横線が空中映像FIの場合と反対方向に湾曲する。これにより、観察者は歪のない空中映像FIを観察することができる。 Then, based on the deviation correction data stored in the storage unit 50, the output image is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, on the output image, the vertical line corresponding to the curved vertical line in the region surrounded by the alternate long and short dash line in FIG. 38 curves in the opposite direction to the case of the aerial image FI. Also, on the output image, the horizontal line corresponding to the curved horizontal line in the region surrounded by the one-dot chain line in FIG. 39 curves in the opposite direction to the case of the aerial image FI. Thereby, the observer can observe the aerial image FI without distortion.
 本実施形態でも第1実施形態と同様の効果を得ることができる。また、チャートC5aは互いに平行に配される複数の縦線から成り、チャートC5bは互いに平行に配される複数の横線から成る。これにより、チャートC5a、C5bとチャートC5a、C5bの空中映像FIとのずれの発生位置及び量を画像処理でより容易に測定することができる。 In this embodiment, the same effect as in the first embodiment can be obtained. The chart C5a includes a plurality of vertical lines arranged in parallel to each other, and the chart C5b includes a plurality of horizontal lines arranged in parallel to each other. Thereby, the position and amount of deviation between the charts C5a and C5b and the aerial images FI of the charts C5a and C5b can be more easily measured by image processing.
 <第6実施形態>
 次に本発明の第6実施形態について説明する。図40は第6実施形態の第1測定工程に使用されるチャートC6の正面図を示している。図41はチャートC6の空中映像FIの一例の正面図を示している。説明の便宜上、図1~図26に示す第1実施形態と同様の部分には同一の符号を付している。本実施形態ではチャートC1に替えてチャートC6を用いる点で1実施形態とは異なっている。その他の部分は第1実施形態と同様である。
<Sixth Embodiment>
Next, a sixth embodiment of the present invention will be described. FIG. 40 shows a front view of a chart C6 used in the first measurement process of the sixth embodiment. FIG. 41 shows a front view of an example of the aerial image FI of the chart C6. For convenience of explanation, the same reference numerals are given to the same parts as those in the first embodiment shown in FIGS. This embodiment is different from the first embodiment in that a chart C6 is used instead of the chart C1. Other parts are the same as those in the first embodiment.
 チャートC6は互いに平行に配されて縦方向に延びる複数の線61、62から成っている。また、線62の線幅は線61の線幅よりも大きくなっている。線62は横方向に所定周期(本実施形態では5mm周期)毎に配され、隣接する線62間に線61は所定周期(本実施形態では1mm周期)で配される。 The chart C6 includes a plurality of lines 61 and 62 that are arranged in parallel to each other and extend in the vertical direction. Further, the line width of the line 62 is larger than the line width of the line 61. The lines 62 are arranged in the horizontal direction at predetermined intervals (5 mm period in the present embodiment), and the lines 61 are arranged between adjacent lines 62 at a predetermined period (1 mm period in the present embodiment).
 第1測定工程において、測定者は図41に示す空中映像FIを目視する。これにより、測定者はチャートC6とチャートC6の空中映像FIとのずれの発生位置(破線で囲んだ領域内のずれている縦線)を容易に測定することができる。また、測定者はチャートC6とチャートC6の空中映像FIとのずれの量が0.5mmと容易に測定することができる。 In the first measurement process, the measurer visually observes the aerial image FI shown in FIG. As a result, the measurer can easily measure the occurrence position of the deviation between the chart C6 and the aerial image FI of the chart C6 (the displaced vertical line within the area surrounded by the broken line). Further, the measurer can easily measure the amount of deviation between the chart C6 and the aerial image FI of the chart C6 as 0.5 mm.
 そして、記憶部50に記憶されたずれ補正データに基づいて、反射型空中結像素子10の欠陥DPによるずれの発生位置でずれを打ち消す方向に出力画像が補正される。即ち、出力画像上で図41の破線で囲まれた領域内のずれた縦線に対応する縦線が空中映像FIの場合と反対方向に移動する。これにより、観察者は歪のない空中映像FIを観察することができる。 Then, based on the deviation correction data stored in the storage unit 50, the output image is corrected in a direction to cancel the deviation at the position where the deviation due to the defect DP of the reflective aerial imaging element 10 occurs. That is, on the output image, the vertical line corresponding to the shifted vertical line in the region surrounded by the broken line in FIG. 41 moves in the opposite direction to the case of the aerial image FI. Thereby, the observer can observe the aerial image FI without distortion.
 本実施形態でも第1実施形態と同様の効果を得ることができる。また、所定周期毎に配される線62が、隣接する線61に対して線幅が大きく形状が異なっている。これにより、第1測定工程において、測定者はチャートC6とチャートC6の空中映像FIとのずれの発生位置及び量を目視で容易に測定することができる。 In this embodiment, the same effect as in the first embodiment can be obtained. Further, the lines 62 arranged at predetermined intervals have a large line width and a different shape from the adjacent lines 61. Thereby, in the first measurement step, the measurer can easily visually measure the occurrence position and amount of the deviation between the chart C6 and the aerial image FI of the chart C6.
 なお、線62に替えて、波線、破線や一点鎖線等を設けてもよい。すなわち、所定周期毎に配される線62が、隣接する線61に対して形状が異なっていればよい。また、線61の色と線62の色が異なってもよく、この場合には線61、62の形状は同じでもよい。 In addition, instead of the line 62, a wavy line, a broken line, a one-dot chain line, or the like may be provided. That is, it is only necessary that the line 62 arranged at every predetermined period has a different shape from the adjacent line 61. Further, the color of the line 61 and the color of the line 62 may be different. In this case, the shapes of the lines 61 and 62 may be the same.
 なお、第1実施形態~第6実施形態において、直交する二側面に反射面14を形成した複数の四角柱を透明な基板上にマトリクス状に配置して反射型空中結像素子10を形成してもよい。また、透明な基板に断面矩形の複数の貫通孔をマトリクス状に設け、貫通孔の直交する二側面に反射面14を形成することにより反射型空中結像素子10を形成してもよい。 In the first to sixth embodiments, the reflective aerial imaging element 10 is formed by arranging a plurality of quadrangular prisms having reflecting surfaces 14 on two orthogonal side surfaces in a matrix on a transparent substrate. May be. Alternatively, the reflective aerial imaging element 10 may be formed by providing a plurality of through holes having a rectangular cross section in a matrix on a transparent substrate and forming the reflecting surfaces 14 on two side surfaces orthogonal to the through holes.
 本発明は、画像を表示する画像表示部と、前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、データを記憶する記憶部と、前記画像表示部に入力された画像を前記記憶部に記憶されたデータに基づいて補正する画像補正部とを備えた空中映像表示装置の製造方法において、所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の第1記録媒体に保持する第1保持工程と、前記反射型空中結像素子と前記画像表示部とを所定位置に据え付ける据付工程と、前記反射型空中結像素子に対応する前記第1データを前記第1記録媒体から前記記憶部に読み込む第1読込工程と、を備えることを特徴としている。 The present invention includes an image display unit that displays an image, a reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit, a storage unit that stores data, and the image display In an aerial video display device manufacturing method comprising an image correction unit that corrects an image input to a unit based on data stored in the storage unit, the aerial video of a predetermined chart is observed, and the chart and the A first measurement step of measuring a position and amount of deviation of the chart from the aerial image, and first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element and a predetermined first recording medium A first holding step of holding the reflection type aerial imaging element and the image display unit at a predetermined position, and the first data corresponding to the reflection type aerial imaging element in the first recording Previous from medium A first reading step of reading in the memory unit, and comprising: a.
 また本発明は、上記構成の空中映像表示装置の製造方法において、前記チャートが格子状に配した複数の線から成ると好ましい。 In the method for manufacturing an aerial image display apparatus having the above-described configuration, it is preferable that the chart includes a plurality of lines arranged in a lattice pattern.
 また本発明は、上記構成の空中映像表示装置の製造方法において、前記チャートが格子状に配列される複数のドットから成ると好ましい。 In the method for manufacturing an aerial image display device having the above-described configuration, it is preferable that the chart includes a plurality of dots arranged in a grid pattern.
 また本発明は、上記構成の空中映像表示装置の製造方法において、隣接する前記ドットの形状または色が異なると好ましい。 In the method for manufacturing an aerial image display device having the above-described configuration, it is preferable that the adjacent dots have different shapes or colors.
 また本発明は、上記構成の空中映像表示装置の製造方法において、前記チャートが平行に配される複数の線から成ると好ましい。 In the method for manufacturing an aerial image display apparatus having the above-described configuration, the present invention is preferably composed of a plurality of lines in which the chart is arranged in parallel.
 また本発明は、上記構成の空中映像表示装置の製造方法において、所定周期毎に配される線が、隣接する線に対して形状または色が異なると好ましい。 In the method for manufacturing an aerial image display device having the above-described configuration, it is preferable that the lines arranged at every predetermined period have different shapes or colors from adjacent lines.
 また本発明は、上記構成の空中映像表示装置の製造方法において、空中映像を観察して輝度ムラの発生位置及び量を測定する第2測定工程と、前記輝度ムラの発生位置及び量に基づく第2データを前記反射型空中結像素子と関連付けて所定の第2記録媒体に保持する第2保持工程と、前記反射型空中結像素子に対応する前記第2データを前記第2記録媒体から前記記憶部に読み込む第2読込工程と、を備えると好ましい。 According to the present invention, in the method for manufacturing an aerial image display apparatus having the above-described configuration, a second measurement step of observing an aerial image to measure the occurrence position and amount of luminance unevenness, and a second measurement step based on the occurrence position and amount of the luminance unevenness. A second holding step of holding two data in a predetermined second recording medium in association with the reflective aerial imaging element, and the second data corresponding to the reflective aerial imaging element from the second recording medium. It is preferable to include a second reading step for reading into the storage unit.
 また本発明は、上記構成の空中映像表示装置の製造方法において、前記反射型空中結像素子は、厚み方向に平行な反射面を所定周期で平行に配した光透過性の複数の光学素子を前記厚み方向に並設するとともに、前記反射面が互いに平行になるように前記厚み方向に直交する方向で複数の前記光学素子を側端面の継ぎ目で接合して形成されると好ましい。 According to the present invention, in the method for manufacturing an aerial image display device having the above-described configuration, the reflective aerial imaging element includes a plurality of light-transmitting optical elements in which reflective surfaces parallel to the thickness direction are arranged in parallel at a predetermined period. It is preferable that the optical elements are arranged in parallel in the thickness direction, and the plurality of optical elements are joined at a seam of side end faces in a direction orthogonal to the thickness direction so that the reflecting surfaces are parallel to each other.
 また本発明は、被投影物に対応する空中映像を結像する反射型空中結像素子の製造方法において、所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の記録媒体に保持する第1保持工程と、を備えることを特徴としている。 Further, the present invention provides a method for manufacturing a reflective aerial imaging element that forms an aerial image corresponding to an object to be projected, and observes an aerial image of a predetermined chart to detect a deviation between the chart and the aerial image of the chart. A first measurement step for measuring the generation position and amount, and a first holding step for holding first data based on the generation position and amount of the deviation on a predetermined recording medium in association with the reflective aerial imaging element. It is characterized by providing.
 また本発明の空中映像表示装置は、
 画像を表示する画像表示部と、
 前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、
 所定のチャートと、前記反射型空中結像素子によって結像された前記チャートの空中映像とのずれの発生位置及び量に基づく第1データを記憶する記憶部と、
 前記画像表示部で表示する画像を前記第1データに基づいて補正して出力する画像補正部と、
 を備えたことを特徴としている。
In addition, the aerial video display device of the present invention,
An image display unit for displaying an image;
A reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit;
A storage unit for storing first data based on a predetermined chart and an occurrence position and amount of a deviation between the predetermined image and the aerial image of the chart imaged by the reflective aerial imaging element;
An image correcting unit that corrects and outputs an image to be displayed on the image display unit based on the first data;
It is characterized by having.
 また本発明は、被投影物に対応する空中映像を結像する反射型空中結像素子において、予め取得して所定の記録媒体に保持される第1データに関連付けられ、前記第1データが所定のチャートと前記チャートの空中映像とのずれの発生位置及び量に基づくことを特徴としている。 According to the present invention, in a reflective aerial imaging element that forms an aerial image corresponding to an object to be projected, the first data is associated with first data that is acquired in advance and held on a predetermined recording medium. This is based on the occurrence position and amount of deviation between the chart of FIG.
 本発明は、空中に被投影物の実像を結像させる反射型空中結像素子及びそれを備えた空中映像表示装置に利用することができる。 The present invention can be used for a reflective aerial imaging element that forms a real image of a projection object in the air and an aerial image display device including the same.
   1  空中映像表示装置
  10  反射型空中結像素子
  11  光学素子
  12  基材
  13  接着剤
  14  反射面
  15  スペーサー
  18  入射面
  19  出射面
  20  画像表示部
  21  表示パネル
  40  画像補正部
  50  記憶部
 100  制御部
  OB  被投影物
  FI  空中映像
   P´ 出力画像
   C1、C2、C3、C4、C5a、C5b,C6  チャート
DESCRIPTION OF SYMBOLS 1 Aerial image display apparatus 10 Reflection type aerial image formation element 11 Optical element 12 Base material 13 Adhesive 14 Reflecting surface 15 Spacer 18 Incident surface 19 Outgoing surface 20 Image display part 21 Display panel 40 Image correction part 50 Storage part 100 Control part OB Projection object FI aerial image P 'output image C1, C2, C3, C4, C5a, C5b, C6 chart

Claims (11)

  1.  画像を表示する画像表示部と、前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、データを記憶する記憶部と、前記画像表示部に入力された画像を前記記憶部に記憶されたデータに基づいて補正する画像補正部とを備えた空中映像表示装置の製造方法において、
     所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、
     前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の第1記録媒体に保持する第1保持工程と、
     前記反射型空中結像素子と前記画像表示部とを所定位置に据え付ける据付工程と、
     前記反射型空中結像素子に対応する前記第1データを前記第1記録媒体から前記記憶部に読み込む第1読込工程と、
     を備える、空中映像表示装置の製造方法。
    An image display unit that displays an image, a reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit, a storage unit that stores data, and an input to the image display unit In the manufacturing method of the aerial video display device comprising an image correction unit that corrects the obtained image based on the data stored in the storage unit,
    A first measurement step of observing an aerial image of a predetermined chart and measuring an occurrence position and amount of a deviation between the chart and the aerial image of the chart;
    A first holding step of holding, on a predetermined first recording medium, first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element;
    An installation step of installing the reflective aerial imaging element and the image display unit at a predetermined position;
    A first reading step of reading the first data corresponding to the reflective aerial imaging element from the first recording medium into the storage unit;
    An aerial image display device manufacturing method comprising:
  2.  前記チャートが格子状に配した複数の線から成る、請求項1に記載の空中映像表示装置の製造方法。 2. The method of manufacturing an aerial image display device according to claim 1, wherein the chart is composed of a plurality of lines arranged in a grid pattern.
  3.  前記チャートが格子状に配列される複数のドットから成る、請求項1に記載の空中映像表示装置の製造方法。 2. The method of manufacturing an aerial image display device according to claim 1, wherein the chart is composed of a plurality of dots arranged in a grid pattern.
  4.  隣接する前記ドットの形状または色が異なる、請求項3に記載の空中映像表示装置の製造方法。 The method for manufacturing an aerial image display device according to claim 3, wherein the adjacent dots have different shapes or colors.
  5.  前記チャートが平行に配される複数の線から成る、請求項1に記載の空中映像表示装置の製造方法。 The method for manufacturing an aerial image display device according to claim 1, wherein the chart is composed of a plurality of lines arranged in parallel.
  6.  所定周期毎に配される線が、隣接する線に対して形状または色が異なる、請求項5に記載の空中映像表示装置の製造方法。 6. The method for manufacturing an aerial image display device according to claim 5, wherein the lines arranged at every predetermined period are different in shape or color from adjacent lines.
  7.  空中映像を観察して輝度ムラの発生位置及び量を測定する第2測定工程と、
     前記輝度ムラの発生位置及び量に基づく第2データを前記反射型空中結像素子と関連付けて所定の第2記録媒体に保持する第2保持工程と、
     前記反射型空中結像素子に対応する前記第2データを前記第2記録媒体から前記記憶部に読み込む第2読込工程と、
     を備える、請求項1~請求項6のいずれかに記載の空中映像表示装置の製造方法。
    A second measurement step of observing the aerial image and measuring the occurrence position and amount of luminance unevenness;
    A second holding step of holding second data based on the occurrence position and amount of the luminance unevenness in a predetermined second recording medium in association with the reflective aerial imaging element;
    A second reading step of reading the second data corresponding to the reflective aerial imaging element from the second recording medium into the storage unit;
    The method for manufacturing an aerial image display device according to any one of claims 1 to 6, comprising:
  8.  前記反射型空中結像素子は、厚み方向に平行な反射面を所定周期で平行に配した光透過性の複数の光学素子を前記厚み方向に並設するとともに、前記反射面が互いに平行になるように前記厚み方向に直交する方向で複数の前記光学素子を側端面の継ぎ目で接合して形成される、請求項1~請求項7のいずれかに記載の空中映像表示装置の製造方法。 The reflective aerial imaging element has a plurality of light-transmitting optical elements arranged in parallel in the thickness direction with reflection surfaces parallel to the thickness direction arranged in parallel at a predetermined period, and the reflection surfaces are parallel to each other. The method for manufacturing an aerial image display device according to any one of claims 1 to 7, wherein a plurality of the optical elements are joined at a joint of side end faces in a direction orthogonal to the thickness direction.
  9.  被投影物に対応する空中映像を結像する反射型空中結像素子の製造方法において、
     所定のチャートの空中映像を観察して前記チャートと前記チャートの空中映像とのずれの発生位置及び量を測定する第1測定工程と、
     前記ずれの発生位置及び量に基づく第1データを前記反射型空中結像素子と関連付けて所定の記録媒体に保持する第1保持工程と、
     を備える、反射型空中結像素子の製造方法。
    In a method for manufacturing a reflective aerial imaging element that forms an aerial image corresponding to a projection object,
    A first measurement step of observing an aerial image of a predetermined chart and measuring an occurrence position and amount of a deviation between the chart and the aerial image of the chart;
    A first holding step of holding, on a predetermined recording medium, first data based on the position and amount of occurrence of the deviation in association with the reflective aerial imaging element;
    A method for manufacturing a reflective aerial imaging element.
  10.  画像を表示する画像表示部と、
     前記画像表示部に表示された画像に対応する空中映像を結像する反射型空中結像素子と、
     所定のチャートと、前記反射型空中結像素子によって結像された前記チャートの空中映像とのずれの発生位置及び量に基づく第1データを記憶する記憶部と、
     前記画像表示部で表示する画像を前記第1データに基づいて補正して出力する画像補正部と、
     を備えた、空中映像表示装置。
    An image display unit for displaying an image;
    A reflective aerial imaging element that forms an aerial image corresponding to the image displayed on the image display unit;
    A storage unit for storing first data based on a predetermined chart and an occurrence position and amount of a deviation between the predetermined image and the aerial image of the chart imaged by the reflective aerial imaging element;
    An image correcting unit that corrects and outputs an image to be displayed on the image display unit based on the first data;
    An aerial video display device comprising:
  11.  被投影物に対応する空中映像を結像する反射型空中結像素子において、予め取得して所定の記録媒体に保持される第1データに関連付けられ、前記第1データが所定のチャートと前記チャートの空中映像とのずれの発生位置及び量に基づく、反射型空中結像素子。 In a reflective aerial imaging element that forms an aerial image corresponding to a projection object, the first data is associated with first data acquired in advance and held on a predetermined recording medium, and the first data is a predetermined chart and chart A reflective aerial imaging element based on the position and amount of deviation from the aerial image.
PCT/JP2017/022186 2016-06-20 2017-06-15 Reflective aerial image forming element, aerial image display device, and manufacturing method for same WO2017221812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016121985 2016-06-20
JP2016-121985 2016-06-20

Publications (1)

Publication Number Publication Date
WO2017221812A1 true WO2017221812A1 (en) 2017-12-28

Family

ID=60783498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022186 WO2017221812A1 (en) 2016-06-20 2017-06-15 Reflective aerial image forming element, aerial image display device, and manufacturing method for same

Country Status (1)

Country Link
WO (1) WO2017221812A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129378A (en) * 2018-01-23 2019-08-01 富士ゼロックス株式会社 Information processing device, information processing system and program
TWI721448B (en) * 2018-06-12 2021-03-11 日商凸版印刷股份有限公司 Aerial display device
CN115086624A (en) * 2021-03-11 2022-09-20 卡西欧计算机株式会社 Projection control device, spatial projection system, and spatial projection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127660A (en) * 1991-07-16 1993-05-25 Sega Enterp Ltd Stereoscopic video playing machine
JP2013178288A (en) * 2010-06-30 2013-09-09 Sharp Corp Video display system
JP2016212417A (en) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 Image formation optical element evaluation method and image formation optical element fabrication method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127660A (en) * 1991-07-16 1993-05-25 Sega Enterp Ltd Stereoscopic video playing machine
JP2013178288A (en) * 2010-06-30 2013-09-09 Sharp Corp Video display system
JP2016212417A (en) * 2015-05-07 2016-12-15 コニカミノルタ株式会社 Image formation optical element evaluation method and image formation optical element fabrication method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019129378A (en) * 2018-01-23 2019-08-01 富士ゼロックス株式会社 Information processing device, information processing system and program
JP7114909B2 (en) 2018-01-23 2022-08-09 富士フイルムビジネスイノベーション株式会社 Information processing device, information processing system and program
TWI721448B (en) * 2018-06-12 2021-03-11 日商凸版印刷股份有限公司 Aerial display device
CN115086624A (en) * 2021-03-11 2022-09-20 卡西欧计算机株式会社 Projection control device, spatial projection system, and spatial projection method

Similar Documents

Publication Publication Date Title
JP4613086B2 (en) Defect inspection equipment
JP4749011B2 (en) Screen and image projection system using the same
WO2017221812A1 (en) Reflective aerial image forming element, aerial image display device, and manufacturing method for same
JP2013195458A (en) Array-type display device
JP6654446B2 (en) Aerial image display device and aerial image display device
JP5282104B2 (en) Optical sheet and liquid crystal display device including the same
JP2019032404A (en) Aerial video display device
WO2019030991A1 (en) Aerial image display device
JP2010153256A (en) Illuminating device
JP2009163245A (en) Optical sheet and display device having the same
JP2014062928A (en) Optical member
JP2018097311A (en) Method for manufacturing optical plate and method for manufacturing aerial image display device
CN102707478B (en) Glass substrate for liquid crystal panel, and liquid crystal panel including the glass substrate
JP2018194699A (en) Display device, and array time display device
JP2018013634A (en) Transmission type screen, and rear surface projection type display device
JP2005031195A (en) Picture display device
JP2017227683A (en) Aerial video display device
JP6308323B1 (en) Display device
JP6700106B2 (en) Method for manufacturing optical element and method for manufacturing reflective aerial imaging element
JP2016519323A (en) Transparent autostereoscopic display
JP2013200495A (en) Array type display device
WO2022059656A1 (en) Optical film and display device
WO2018199252A1 (en) Display device
US20230093069A1 (en) Display device and method for manufacturing optical film
JP7275832B2 (en) Transmissive screen and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP