TWI778239B - Visualization of three-dimensional semiconductor structures - Google Patents

Visualization of three-dimensional semiconductor structures Download PDF

Info

Publication number
TWI778239B
TWI778239B TW108107196A TW108107196A TWI778239B TW I778239 B TWI778239 B TW I778239B TW 108107196 A TW108107196 A TW 108107196A TW 108107196 A TW108107196 A TW 108107196A TW I778239 B TWI778239 B TW I778239B
Authority
TW
Taiwan
Prior art keywords
image
model
semiconductor structure
semiconductor
shape
Prior art date
Application number
TW108107196A
Other languages
Chinese (zh)
Other versions
TW201945691A (en
Inventor
安隆 J 羅斯伯格
強納森 伊羅瑞塔
陶德斯 G 佐拉
安東尼歐 吉里紐
徐寅
徐凱文
約翰 漢琪
阿比 岡德
安德烈 維德曼
列泉 李
浩山姆 舟艾柏
Original Assignee
美商克萊譚克公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/283,690 external-priority patent/US10794839B2/en
Application filed by 美商克萊譚克公司 filed Critical 美商克萊譚克公司
Publication of TW201945691A publication Critical patent/TW201945691A/en
Application granted granted Critical
Publication of TWI778239B publication Critical patent/TWI778239B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/0886Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate including transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Pathology (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Image Generation (AREA)
  • Processing Or Creating Images (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor metrology tool inspects an area of a semiconductor wafer. The inspected area includes a plurality of instances of a 3D semiconductor structure arranged periodically in at least one dimension. A computer system generates a model of a respective instance of the 3D semiconductor structure based on measurements collected during the inspection. The computer system renders an image of the model that shows a 3D shape of the model and provides the image to a device for display.

Description

三維半導體結構的視覺化Visualization of 3D Semiconductor Structures

本發明係關於半導體度量,且更明確言之係關於產生展示半導體結構之三維(3D)性質之視覺化。 The present invention relates to semiconductor metrology, and more specifically to generating visualizations that demonstrate the three-dimensional (3D) properties of semiconductor structures.

可使用各種類型之度量(諸如不同類型之光學度量及小角度x射線散射(SAXS))特性化三維半導體結構。然而,所得量測之不充分視覺化可引起資料被忽視或未被充分理解。此資料對於對一半導體製程進行除錯,提高程序之良率及可靠性或預測一半導體裝置之效能可為重要的。不充分視覺化亦使得與參考資料(諸如來自臨界尺寸掃描電子顯微術(CD-SEM)及透射電子顯微術(TEM)之資料)之比較變困難。 Three-dimensional semiconductor structures can be characterized using various types of metrics, such as different types of optical metrics and small angle x-ray scattering (SAXS). However, insufficient visualization of the resulting measurements can cause data to be overlooked or not fully understood. This information can be important for debugging a semiconductor process, improving the yield and reliability of the process, or predicting the performance of a semiconductor device. Inadequate visualization also makes comparisons with reference data such as data from critical dimension scanning electron microscopy (CD-SEM) and transmission electron microscopy (TEM) difficult.

因此,需要用於視覺化3D半導體結構之改良技術。此等結構之實例包含(但不限於)3D記憶體(例如,3D快閃記憶體)中之記憶體孔、finFET及DRAM單元。 Therefore, there is a need for improved techniques for visualizing 3D semiconductor structures. Examples of such structures include, but are not limited to, memory holes, finFETs, and DRAM cells in 3D memory (eg, 3D flash memory).

在一些實施例中,一種半導體結構視覺化之方法包含:在一半導體度量工具中,檢測一半導體晶圓之一區域。該半導體晶圓可包含半導體邏輯電路或半導體記憶體電路之至少一者。該經檢測區域包含在至 少一維度上週期性地配置之一3D半導體結構之複數個例項。該方法亦包含:在包括一或多個處理器及儲存藉由該一或多個處理器執行之指令之記憶體之一電腦系統中,基於該檢測產生該3D半導體結構之一各自例項之一模型。該方法進一步包含:在該電腦系統中呈現展示該模型之一3D形狀之該模型之一影像及將該影像提供至一裝置以用於顯示。 In some embodiments, a method of visualizing a semiconductor structure includes inspecting an area of a semiconductor wafer in a semiconductor metrology tool. The semiconductor wafer may include at least one of semiconductor logic circuits or semiconductor memory circuits. The detected area is contained in to A plurality of instances of a 3D semiconductor structure are periodically arranged in one less dimension. The method also includes, in a computer system including one or more processors and memory storing instructions executed by the one or more processors, generating a respective instance of one of the 3D semiconductor structures based on the detection a model. The method further includes rendering, in the computer system, an image of the model showing a 3D shape of the model and providing the image to a device for display.

在一些實施例中,一種半導體檢測系統包含一半導體度量工具及具有一或多個處理器及儲存藉由該一或多個處理器執行之一或多個程式之記憶體之一電腦系統。該一或多個程式包含用於執行以上方法之全部或一部分之指令。在一些實施例中,一種非暫時性電腦可讀儲存媒體儲存經組態以藉由一電腦系統執行之一或多個程式。該一或多個程式包含用於執行以上方法之全部或一部分之指令。 In some embodiments, a semiconductor inspection system includes a semiconductor metrology tool and a computer system having one or more processors and memory storing one or more programs executed by the one or more processors. The one or more programs contain instructions for performing all or a portion of the above methods. In some embodiments, a non-transitory computer-readable storage medium stores one or more programs configured to be executed by a computer system. The one or more programs contain instructions for performing all or a portion of the above methods.

100:圖表 100: Charts

110:圖表 110: Charts

200:方法 200: Method

202:步驟/檢測步驟 202: step/detection step

204:步驟 204: Steps

206:步驟 206: Steps

208:步驟 208: Steps

210:步驟 210: Steps

212:步驟 212: Steps

214:步驟 214: Steps

216:步驟 216: Steps

218:步驟 218: Steps

220:步驟 220: Steps

222:步驟 222: Steps

224:步驟 224: Steps

226:使用者輸入 226: User input

300:影像 300: Video

302-1至302-7:記憶體孔 302-1 to 302-7: Memory holes

304:經模型化切片/切片 304: Modeled slice/slice

350:影像 350: Video

352-1:通道 352-1: Channel

352-2:通道 352-2: Channel

352-4:間隙 352-4: Clearance

400A:影像 400A: Video

400B:新影像/影像 400B: New Image/Image

400C:新影像/影像 400C: New Image/Image

400D:新影像/影像 400D: New Image/Image

402:頂表面 402: Top surface

404:前側表面 404: Front Side Surface

406:底表面 406: Bottom surface

500:影像 500: Video

502:頂表面 502: Top surface

504:前側表面 504: Front Side Surface

506:彎曲部 506: Bend

550:影像 550: Video

552:頂表面 552: Top Surface

554:前側表面 554: Front Side Surface

600:影像 600: Video

602:側視圖 602: Side View

604:箭頭 604: Arrow

606-1至606-6:橫截面 606-1 to 606-6: Cross Sections

700:影像 700: Video

702-1至702-5:橫截面 702-1 to 702-5: Cross Sections

704-1:輪廓線 704-1: Outline

704-2:輪廓線 704-2: Outline

720:影像 720: Video

722-1至722-5:橫截面 722-1 to 722-5: Cross Sections

724-1:輪廓線 724-1: Outline

724-2:輪廓線 724-2: Outline

740:影像 740: Video

742-1至742-4:橫截面 742-1 to 742-4: Cross Sections

744-1:輪廓線 744-1: Outline

744-2:輪廓線 744-2: Outline

800:影像 800: Video

802:經模型化體積/體積 802: Modeled volume/volume

804-1:記憶體孔 804-1: Memory hole

804-2:記憶體孔 804-2: Memory hole

804-3:記憶體孔 804-3: Memory hole

810:影像 810: Video

900:影像 900: Video

902:底表面 902: Bottom surface

904:使用者可選橫截面 904: User selectable cross section

1000:半導體檢測系統 1000: Semiconductor Inspection System

1002:處理器 1002: Processor

1004:通信匯流排 1004: Communication Bus

1006:使用者介面 1006: User Interface

1008:顯示器 1008: Display

1010:記憶體 1010: Memory

1012:作業系統 1012: Operating Systems

1014:模型產生模組 1014: Model Generation Module

1016:模型更新模組 1016: Model update mod

1018:影像呈現模組 1018: Image presentation module

1020:影像傳輸模組 1020: Image transmission module

1022:資料庫 1022: Database

1030:網路 1030: Internet

1032:半導體度量工具/度量工具 1032: Semiconductor Metrology Tools / Metrology Tools

為更好地理解各項所描述實施例,應結合以下圖式參考下文實施方式。 For a better understanding of the various described embodiments, reference should be made to the following description in conjunction with the following drawings.

圖1A展示顯示一記憶體孔之沿著其深度之CD輪廓之變動之一圖表。 1A shows a graph showing the variation of the CD profile of a memory hole along its depth.

圖1B展示顯示一記憶體孔之沿著其深度之傾斜度之一圖表。 FIG. 1B shows a graph showing the slope of a memory hole along its depth.

圖2展示根據一些實施例之半導體結構視覺化之一方法之一流程圖。 2 shows a flowchart of one method of visualizing semiconductor structures in accordance with some embodiments.

圖3A展示根據一些實施例之一影像,該影像係具有複數個記憶體孔之一3D半導體記憶體裝置之一經模型化切片之一等角投影。 3A shows an image of an isometric projection of a modeled slice of a 3D semiconductor memory device having a plurality of memory holes, according to some embodiments.

圖3B展示根據一些實施例之一影像,該影像係兩個finFET 之經模型化部分之一等角投影。 3B shows an image of two finFETs according to some embodiments An isometric projection of the modeled part.

圖4A至圖4D展示根據一些實施例之自不同視角呈現之一經模型化記憶體孔之影像。 4A-4D show images of a modeled memory hole presented from different perspectives, according to some embodiments.

圖5A及圖5B展示根據一些實施例之影像,該等影像係各自經模型化記憶體孔之透視圖。 5A and 5B show images, which are perspective views of each modeled memory hole, according to some embodiments.

圖6展示根據一些實施例之一影像,該影像包含一經模型化記憶體孔之一透視圖連同在各種深度處之模型之橫截面。 6 shows an image including a perspective view of a modeled memory hole along with cross-sections of the model at various depths, according to some embodiments.

圖7A至圖7C展示根據一些實施例之各自經模型化記憶體孔之架構視圖。 7A-7C show architectural views of respective modeled memory holes in accordance with some embodiments.

圖8A及圖8B展示根據一些實施例之在具有記憶體孔之一半導體中之一經模型化體積之不透明及半透明影像。 8A and 8B show opaque and translucent images of a modeled volume in a semiconductor with memory holes, according to some embodiments.

圖9展示根據一些實施例之一影像,該影像包含一經模型化記憶體孔之一底表面及一使用者可選橫截面。 9 shows an image including a bottom surface of a modeled memory hole and a user-selectable cross-section, according to some embodiments.

圖10係根據一些實施例之一半導體檢測系統之一方塊圖。 10 is a block diagram of a semiconductor inspection system in accordance with some embodiments.

貫穿圖式及說明書,相同元件符號係指對應部分。 Throughout the drawings and the description, the same reference numerals refer to corresponding parts.

現將詳細參考各項實施例,其等之實例係在附圖中進行繪示。在以下詳細描述中,闡述許多具體細節以提供對各項所描述實施例之一透徹理解。然而,一般技術者將明白,可在不具有此等具體細節之情況下實踐各項所描述實施例。在其他例項中,未詳細描述熟知方法、程序、組件、電路及網路以免不必要地模糊實施例之態樣。 Reference will now be made in detail to the various embodiments, examples of which are illustrated in the accompanying drawings. In the following detailed description, numerous specific details are set forth to provide a thorough understanding of one of the various described embodiments. However, it will be apparent to those of ordinary skill that the various described embodiments may be practiced without these specific details. In other instances, well-known methods, procedures, components, circuits, and networks have not been described in detail so as not to unnecessarily obscure aspects of the embodiments.

圖1A展示顯示一記憶體孔之沿著其深度之臨界尺寸(CD)輪廓(例如,直徑)之變動之一圖表100。該記憶體孔垂直延伸穿過一個三 維(3D)半導體記憶體結構(例如,3D快閃記憶體),其中垂直方向(在其他圖中,z軸)對應於深度。該CD輪廓係以奈米(nm)為單位進行量測。圖表100對應於記憶體孔之一垂直橫截面。 1A shows a graph 100 showing the variation of the critical dimension (CD) profile (eg, diameter) of a memory hole along its depth. The memory hole extends vertically through a three A three-dimensional (3D) semiconductor memory structure (eg, 3D flash memory), where the vertical direction (in other figures, the z-axis) corresponds to depth. The CD profile is measured in nanometers (nm). Diagram 100 corresponds to a vertical cross-section of a memory hole.

圖1B展示一記憶體孔之沿著其深度之傾斜度之一圖表110。理想上該傾斜度應為零,使得該圖表展示一筆直垂直線。然而,實際上,在任何給定深度處之該記憶體孔可具有相對於在其表面處之該孔之一偏移。以奈米為單位量測之此偏移係傾斜度。可藉由量測在記憶體孔之表面上之一指定點(例如,記憶體孔之中心、記憶體孔圓周上之一特定點等)與該深度處之一對應點之間的偏移來判定在一給定深度處之傾斜度。 FIG. 1B shows a graph 110 of the slope of a memory hole along its depth. Ideally the slope should be zero so that the chart shows a straight vertical line. In practice, however, the memory hole at any given depth may have an offset relative to one of the holes at its surface. This offset, measured in nanometers, is the slope. It can be determined by measuring the offset between a specified point on the surface of the memory hole (eg, the center of the memory hole, a specified point on the circumference of the memory hole, etc.) and a corresponding point at the depth Determines the slope at a given depth.

各展示一參數沿著一單個維度之變動之圖表100及110之低維度限制圖表傳達之資訊。圖表100及110之各者僅提供記憶體孔之形狀之一有限指示。現將描述藉由提供記憶體孔或另一半導體結構之3D形狀之一感知(sense)來解決此問題之更穩健視覺化方法。 Graphs 100 and 110, each showing the variation of a parameter along a single dimension, limit the information conveyed by the low-dimensional graphs. Each of graphs 100 and 110 provides only a limited indication of the shape of memory holes. A more robust visualization method to address this problem by providing a sense of the 3D shape of a memory hole or another semiconductor structure will now be described.

圖2展示根據一些實施例之半導體結構視覺化之一方法200之一流程圖。方法200產生展示3D形狀且因此避免圖表100及110(圖1A及圖1B)之缺點之影像。方法200係參考給出展示半導體結構之3D形狀之影像之實例之圖3A至圖8進行描述。(技術上,該等影像展示半導體結構之模型,其中該等模型係基於半導體度量之結果產生,如下文所描述)。方法200中之步驟可經組合或分解。 FIG. 2 shows a flowchart of a method 200 of semiconductor structure visualization in accordance with some embodiments. Method 200 produces images that show 3D shapes and thus avoid the disadvantages of graphs 100 and 110 (FIGS. 1A and 1B). The method 200 is described with reference to FIGS. 3A-8 , which give examples of images showing the 3D shape of a semiconductor structure. (Technically, the images show models of semiconductor structures, where the models are generated based on the results of semiconductor metrics, as described below). The steps in method 200 may be combined or broken down.

在方法200中,使用一半導體度量工具(例如,度量工具1032,圖10)檢測(202)一半導體晶圓之一區域。該半導體晶圓包含半導體邏輯電路或半導體記憶體電路之至少一者。該電路可僅部分在該檢測時製造。經檢測之該區域包含在至少一維度上(例如,在僅一個維度上或在兩 個維度上)週期性地配置之一3D半導體結構之複數個例項。可執行(204)光學度量或小角度x射線散射(SAXS)以檢測區域。可執行之光學度量技術之實例包含光譜橢圓偏光量測、單波長橢圓偏光量測、光束輪廓橢圓偏光量測、光束輪廓反射量測、單波長反射量測、角度解析反射量測、光譜反射量測、散射量測及拉曼(Raman)光譜學。可執行之SAXS技術之實例包含透射SAXS、反射SAXS及掠入射SAXS。 In method 200, an area of a semiconductor wafer is inspected (202) using a semiconductor metrology tool (eg, metrology tool 1032, Figure 10). The semiconductor wafer includes at least one of semiconductor logic circuits or semiconductor memory circuits. The circuit may only be partially fabricated at the time of the detection. The detected region is included in at least one dimension (eg, in only one dimension or in two dimensions). A plurality of instances of a 3D semiconductor structure are periodically arranged in one dimension. Optical metrology or small angle x-ray scattering (SAXS) may be performed (204) to detect the region. Examples of optical metrology techniques that can be performed include spectral ellipsometry, single wavelength ellipsometry, beam profile ellipsometry, beam profile reflectometry, single wavelength reflectometry, angle-resolved reflectometry, spectral reflectance measurement, scatterometry and Raman spectroscopy. Examples of SAXS techniques that can be performed include transmissive SAXS, reflective SAXS, and grazing incidence SAXS.

在一些實施例中,3D半導體結構係一3D記憶體(例如,3D快閃記憶體)中之一記憶體孔、一鰭式場效電晶體(finFET)或其之部分,或一動態隨機存取記憶體(DRAM)單元或其之部分。可在一記憶體孔係空的(例如,在蝕刻之後但在填充之前)、經填充或在蝕刻與完成填充之間的某一中間步驟時檢測該記憶體孔。同樣地,其他結構可在其等製程中之各種步驟進行檢測。經檢測區域因此可包含(206)一3D記憶體中之記憶體孔之一週期性配置、finFET之一週期性配置或一DRAM單元陣列。替代性地,可檢測其他3D半導體結構。 In some embodiments, the 3D semiconductor structure is a memory hole in a 3D memory (eg, 3D flash memory), a fin field effect transistor (finFET) or portion thereof, or a dynamic random access Memory (DRAM) cells or portions thereof. A memory hole can be inspected when it is empty (eg, after etching but before filling), when it is filled, or at some intermediate step between etching and completing filling. Likewise, other structures can be tested at various steps in their processes. The detected area may thus include (206) a periodic configuration of memory holes in a 3D memory, a periodic configuration of finFETs, or an array of DRAM cells. Alternatively, other 3D semiconductor structures can be inspected.

在與度量工具通信地耦合之一電腦系統(例如,半導體檢測系統1000之電腦系統,圖10)中執行在步驟202、204及/或206之後之步驟(即,步驟208等等)。 Steps following steps 202, 204, and/or 206 (ie, steps 208, etc.) are performed in a computer system (eg, the computer system of semiconductor inspection system 1000, Figure 10) communicatively coupled to the metrology tool.

基於在檢測步驟202期間收集之量測,產生(208)3D半導體結構之一各自例項之一模型。在一些實施例中,根據步驟206,該各自例項係或包含一各自記憶體孔、一各自finFET或其之部分,或一各自DRAM單元或其之部分。 Based on the measurements collected during inspection step 202, a model of a respective instance of one of the 3D semiconductor structures is generated (208). In some embodiments, according to step 206, the respective instance is either a respective memory hole, a respective finFET or a portion thereof, or a respective DRAM cell or a portion thereof.

在一些實施例中,為產生此模型,獲得(210)具有經參數化尺寸之3D半導體結構之一幾何模型(即,一經參數化幾何模型)。該幾何模 型亦可包含關於材料性質之資訊,且因此為一經參數化幾何/材料模型。該經參數化幾何模型(例如,幾何/材料模型)通常係在檢測步驟202之前提前形成。使用(212)在檢測步驟202期間收集之量測以判定經參數化尺寸之值。此判定可藉由對幾何模型(例如,幾何/材料模型)之參數執行迴歸來進行。例如,此判定可使用一機器學習模型進行,該機器學習模型使用訓練量測組(實際及/或經模擬)訓練,已針對該等訓練量測組判定用於經參數化幾何模型(例如,幾何/材料模型)之對應參數值。 In some embodiments, to generate this model, a geometric model (ie, a parameterized geometric model) of a 3D semiconductor structure with parameterized dimensions is obtained (210). the geometric model A model can also contain information about material properties and is therefore a parametric geometry/material model. The parameterized geometric model (eg, a geometry/material model) is typically formed in advance prior to the detection step 202 . The measurements collected during the detection step 202 are used (212) to determine the value of the parameterized dimension. This determination can be made by performing regression on the parameters of a geometric model (eg, a geometric/material model). For example, this determination can be made using a machine learning model trained using a training set of measurements (actual and/or simulated) for which a determination has been made for a parameterized geometric model (eg, The corresponding parameter value of the geometry/material model).

在一些其他實施例中,為產生此模型,獲得(214)用於3D半導體結構之不同例項之量測組(實際及/或經模擬)。各組係標記有尺寸之各自值。使用該組及在檢測步驟202期間收集之量測執行機器學習以判定(216)用於各自例項之尺寸之值。並未使用3D半導體結構之一經參數化幾何模型。 In some other embodiments, to generate this model, a set of measurements (actual and/or simulated) are obtained (214) for different instances of the 3D semiconductor structure. Each group is marked with its own value for the dimension. Machine learning is performed using the set and the measurements collected during the detection step 202 to determine (216) the value of the size for the respective instance. One of the parametric geometric models of the 3D semiconductor structure was not used.

呈現(218)展示模型之一3D形狀之模型之一影像。該影像可展示模型之一部分3D形狀,例如,此係因為一或多個表面及/或側經遮蔽或不存在,及/或因為影像包含有限數目個橫截面。替代性地,影像可(例如)使用擴增實境或虛擬實境(AR/VR)或全像術展示模型之完整3D形狀。模型及影像可經體素化,使得其等係使用體素(體積元素,其等係像素之3D等效物)建立。將影像提供(224)至一裝置以用於顯示。在一項實例中,將影像提供至執行步驟208至224之電腦系統之一顯示螢幕(例如,顯示器1008,圖10)。在另一實例中,將影像傳輸至一不同電子裝置(例如,具有一顯示器之一用戶端電腦或行動電子裝置、一AR/VR觀看器、一3D立體觀看器、一全像顯示系統等)以用於顯示。在又另一實例中,將影像傳輸至一3D列印機,該3D列印機可另外製造具有模型之形狀之一物件, 藉此顯示模型之3D形狀。 An image of a model showing a 3D shape of a model is presented (218). The image may show a portion of the 3D shape of the model, eg, because one or more surfaces and/or sides are obscured or absent, and/or because the image includes a limited number of cross-sections. Alternatively, the imagery may show the full 3D shape of the model, eg, using augmented or virtual reality (AR/VR) or holography. Models and images can be voxelized such that their equivalence is built using voxels (volume elements, the 3D equivalents of which are pixels). The image is provided (224) to a device for display. In one example, the image is provided to one of the display screens of the computer system performing steps 208-224 (eg, display 1008, Figure 10). In another example, the image is transmitted to a different electronic device (eg, a client computer or mobile electronic device with a display, an AR/VR viewer, a 3D stereoscopic viewer, a holographic display system, etc.) for display. In yet another example, the image is transmitted to a 3D printer that can additionally manufacture an object having the shape of the model, This displays the 3D shape of the model.

在一些實施例中,影像包含(220)用於二維(2D)顯示之一投影。例如,該投影可為展示模型之多個側之一軸測投影(例如,一等角投影、二等角投影或不等角投影)。投影之維度因此可共用一共同標度或具有不同標度。在投影將以2D顯示時,其展示模型之一3D形狀(但根據一些實施例並非整個3D形狀,因為一些側及/或表面可能會被可見側及/或表面遮蔽)。 In some embodiments, the image includes (220) a projection for two-dimensional (2D) display. For example, the projection may be an axonometric projection (eg, an isometric, bi-contoured, or unequal) projection of the sides of the display model. The dimensions of the projections can therefore share a common scale or have different scales. When the projection is to be displayed in 2D, it shows one of the 3D shapes of the model (but not the entire 3D shape according to some embodiments, as some sides and/or surfaces may be obscured by visible sides and/or surfaces).

圖3A展示根據一些實施例之一影像300,該影像300係具有複數個記憶體孔302-1至302-7之一3D半導體記憶體裝置(例如,一3D快閃記憶體)之一經模型化切片304之一等角投影。切片304可包括記憶體孔302垂直延伸穿過之多個層(例如,一系列交替氧化物(SiO2)及氮化物(Si3N4)層)。影像300僅展示記憶體孔302-1、302-4及302-7之2D頂表面,但展示記憶體孔302-2、302-3、302-5及302-6之剖視圖。記憶體孔302-3及302-6之剖視圖展示其等後半部相對於已將其等切片所通過之平面之3D形狀。影像300因此係步驟220之影像之一實例。可使用輪廓線(如在圖3A中)、陰影、著色或用於3D物件之2D投影之其他適當圖形技術來展示記憶體孔302-3及302-6之3D形狀。影像300因此係步驟220之影像之一實例。 3A shows an image 300 of a modeled one of a 3D semiconductor memory device (eg, a 3D flash memory) having a plurality of memory holes 302-1 through 302-7, according to some embodiments An isometric projection of one of the slices 304 . Slice 304 may include multiple layers (eg, a series of alternating oxide (SiO 2 ) and nitride (Si 3 N 4 ) layers) through which memory holes 302 extend vertically. Image 300 shows only the 2D top surfaces of memory holes 302-1, 302-4, and 302-7, but shows cross-sectional views of memory holes 302-2, 302-3, 302-5, and 302-6. The cross-sectional views of memory holes 302-3 and 302-6 show the 3D shape of their iso-back half relative to the plane through which they have been iso-sliced. Image 300 is thus an instance of the image of step 220 . The 3D shapes of memory holes 302-3 and 302-6 may be displayed using outlines (as in Figure 3A), shading, shading, or other suitable graphics techniques for 2D projection of 3D objects. Image 300 is thus an instance of the image of step 220 .

圖3B展示根據一些實施例之一影像350,該影像350係兩個finFET之經模型化部分之一等角投影。第一finFET具有一通道352-1且第二finFET具有一通道352-2。通道352係藉由隔離兩個finFET之一間隙352-4分離。關於圖3A之記憶體孔302-3及302-6,此等結構之3D形狀可使用輪廓線(如在圖3B中)、陰影、著色或其他適當圖形技術來展示。影像350係步驟220之影像之另一實例。 3B shows an image 350 that is an isometric projection of a modeled portion of two finFETs, according to some embodiments. The first finFET has a channel 352-1 and the second finFET has a channel 352-2. Channels 352 are separated by a gap 352-4 that separates one of the two finFETs. With respect to the memory holes 302-3 and 302-6 of Figure 3A, the 3D shape of these structures may be shown using outlines (as in Figure 3B), shading, shading, or other suitable graphics techniques. Image 350 is another example of the image of step 220 .

如影像300及350展示,步驟218及224之影像可展示一半導體結構或其之部分之多個例項(例如,記憶體孔302或通道352之多個例項)之3D形狀。 As shown in images 300 and 350, the images of steps 218 and 224 may show the 3D shape of instances of a semiconductor structure or portion thereof (eg, instances of memory holes 302 or channels 352).

在一些實施例中,可回應於使用者輸入226改變影像之視角。圖4A展示根據一些實施例之自一第一視角呈現之一經模型化記憶體孔之一影像400A。自該第一視角,影像400A展示該記憶體孔之頂表面402及前側表面404。使用輪廓線(或陰影、著色等)展示記憶體孔之一3D形狀:影像400A展示前側表面404之3D曲率。記憶體孔之底表面406及後側表面在此視角中被遮蔽。回應於接收指定視角改變之使用者輸入226,執行方法200之電腦系統自該經改變視角呈現(218)一新影像400B、400C或400D且將新影像400B、400C或400D提供(224)至使用者之裝置以用於顯示。(替代性地,該新影像可能已在使用者輸入226被接收之前呈現及儲存,且回應於使用者輸入226而提供)。可反覆執行此程序以容許使用者自多個視角觀看記憶體孔(例如,依次觀看影像400B、400C及/或400D)。例如,使用者可沿著指定方向旋轉記憶體孔之視圖。影像400B係展示前側表面404之3D曲率但並未展示頂表面402、底表面406或後側表面之一側視圖。影像400C係僅展示底表面406之一仰視圖。影像400D係僅展示頂表面402之一俯視圖。影像400C及400D並非步驟218之影像之實例,因為其等並未展示一3D形狀,但若其等經略微旋轉以展示一側表面或一側表面之部分,則其等將展示一3D形狀。 In some embodiments, the viewing angle of the image may be changed in response to user input 226 . 4A shows an image 400A of a modeled memory hole presented from a first perspective, according to some embodiments. From the first perspective, image 400A shows the top surface 402 and front side surface 404 of the memory hole. Using outlines (or shading, shading, etc.) to show a 3D shape of a memory hole: Image 400A shows the 3D curvature of front side surface 404 . The bottom surface 406 and backside surface of the memory hole are shadowed in this view. In response to receiving user input 226 specifying a change in viewing angle, the computer system performing method 200 presents (218) a new image 400B, 400C or 400D from the changed viewing angle and provides (224) the new image 400B, 400C or 400D for use device for display. (Alternatively, the new image may have been presented and stored before user input 226 was received, and provided in response to user input 226). This process can be repeated to allow the user to view the memory holes from multiple perspectives (eg, viewing images 400B, 400C, and/or 400D in sequence). For example, the user can rotate the view of the memory hole in a specified direction. Image 400B shows the 3D curvature of front side surface 404 but does not show a side view of top surface 402, bottom surface 406, or one of the back side surfaces. Image 400C shows only a bottom view of bottom surface 406 . Image 400D shows only a top view of top surface 402 . Images 400C and 400D are not examples of the images of step 218 because they do not show a 3D shape, but if they were rotated slightly to show a side surface or part of a side surface, they would show a 3D shape.

在一些實施例中,可回應於使用者輸入226改變模型自身(例如,使得標記有「使用者輸入226」之箭頭返回指向步驟208而非步驟218),來代替改變呈現影像之視角,例如,使用者輸入226可指定各自例 項之模型之一或多個尺寸(例如,距離)或角度之變化。回應於使用者輸入226更新模型,使得模型不再對應於在步驟202之檢測期間收集之量測。接著呈現經更新模型之一影像並將該影像發送至使用者之裝置以用於顯示。此修改容許使用者探究半導體結構在達到一故障點之前(例如,在相鄰導電結構短路之前)具有多少餘量。經更新模型之影像可經註記以指示模型之(若干)更新(例如,以指示尺寸變化、一或多個角度之變化等)。註記可經使用者驅動(例如,指示根據使用者輸入226之經指定距離或角度)。 In some embodiments, the model itself may be changed in response to user input 226 (eg, so that the arrow labeled "User Input 226" returns to step 208 instead of step 218), instead of changing the perspective from which the image is presented, eg, User input 226 may specify individual instances A change in one or more dimensions (eg, distances) or angles of a model of an item. The model is updated in response to user input 226 so that the model no longer corresponds to the measurements collected during the detection of step 202 . An image of the updated model is then presented and sent to the user's device for display. This modification allows the user to explore how much headroom a semiconductor structure has before reaching a point of failure (eg, before an adjacent conductive structure is shorted). The image of the updated model may be annotated to indicate update(s) of the model (eg, to indicate a change in size, a change in one or more angles, etc.). The annotation may be user-driven (eg, indicating a specified distance or angle based on user input 226).

圖5A展示根據一些實施例之一影像500,該影像500係一經模型化記憶體孔之一透視圖。如同影像400A(圖4A),影像500展示該記憶體孔之一頂表面502及一前側表面504之3D曲率。但影像500亦展示傾斜度,而影像400A之記憶體孔無傾斜度(即,傾斜度實質上為零,使得記憶體孔在垂直方向上實質上筆直的)。影像500中之記憶體孔之一頂部分以一斜角向下傾斜,直至記憶體孔之一中間部分中之一彎曲部506(其中記憶體孔朝向垂直面彎曲)。記憶體孔之一底部分向下延伸而無顯著傾斜。若傾斜度係定義為相對於頂表面之一偏移(如針對圖1B所論述),則彎曲部506下面之底部分之傾斜度係實質上恆定的。 5A shows an image 500 that is a perspective view of a modeled memory hole, according to some embodiments. Like image 400A (FIG. 4A), image 500 shows the 3D curvature of a top surface 502 and a front side surface 504 of the memory hole. But image 500 also shows a slope, whereas the memory holes of image 400A have no slope (ie, the slope is substantially zero, so that the memory holes are substantially straight in the vertical direction). A top portion of the memory hole in image 500 slopes downward at an oblique angle until a bend 506 in a middle portion of the memory hole (where the memory hole is curved toward the vertical plane). A bottom portion of the memory hole extends downward without significant inclination. If the slope is defined as an offset relative to the top surface (as discussed with respect to Figure IB), then the slope of the bottom portion below the bend 506 is substantially constant.

圖5B展示根據一些實施例之一影像550,該影像500係一不同經模型化記憶體孔之一透視圖。如同影像400A(圖4A)及影像500(圖5A),影像550展示該記憶體孔之一頂表面552及一前側表面554之3D曲率。影像550展示頂表面552係橢圓形的。前側表面554之形狀暗示記憶體孔在其向下延伸時保持此橢圓形狀。 5B shows an image 550, which is a perspective view of a different modeled memory hole, according to some embodiments. Like image 400A (FIG. 4A) and image 500 (FIG. 5A), image 550 shows the 3D curvature of a top surface 552 and a front side surface 554 of the memory hole. Image 550 shows that top surface 552 is elliptical. The shape of the front side surface 554 implies that the memory holes maintain this elliptical shape as they extend downward.

在其中3D半導體結構之各自例項係一各自記憶體孔之一些 實施例中,影像展示針對該各自記憶體孔之多個橫截面(例如,水平橫截面)之該記憶體孔之橢圓形狀。影像亦可針對多個橫截面展示各自記憶體孔之螺旋度及/或記憶體孔之傾斜度。螺旋度指示橢圓形狀之定向變化且可定義為橢圓之長(或等效地,短)軸相對於頂表面之一旋轉度(例如,如以度或弧度為單位進行量測)。例如,圖6展示根據一些實施例之一影像600,該影像600包含一經模型化記憶體孔之一透視圖(此處,一側視圖602)連同在各種深度處之該記憶體孔之橫截面606-1至606-6。側視圖602與各自橫截面606之間的箭頭604指示針對各自橫截面606之深度。橫截面606展示記憶體孔在各種深度處之尺寸(例如,CD)及橢圓形狀。橫截面606亦展示記憶體孔在各種深度處之螺旋度:橫截面606之橢圓隨著深度增加而旋轉。雖然圖6中之記憶體孔具有實質上零之傾斜度,但橫截面606亦可(例如)藉由在其等周圍矩形內具有變化之位置以證明相對於頂表面之偏移而展示傾斜度(若其存在)。 In which the respective instances of the 3D semiconductor structures are some of the respective memory holes In an embodiment, the images show the elliptical shape of the memory hole for a plurality of cross-sections (eg, horizontal cross-sections) of the respective memory hole. The images may also show the helicity of the respective memory holes and/or the inclination of the memory holes for multiple cross-sections. Helicity indicates a change in orientation of the shape of an ellipse and can be defined as a degree of rotation (eg, as measured in degrees or radians) of the long (or equivalently, short) axis of the ellipse relative to the top surface. For example, FIG. 6 shows an image 600 including a perspective view (here, side view 602 ) of a modeled memory hole along with cross-sections of the memory hole at various depths, according to some embodiments. 606-1 to 606-6. Arrows 604 between the side view 602 and the respective cross-sections 606 indicate the depths for the respective cross-sections 606 . Cross-section 606 shows the size (eg, CD) and oval shape of the memory holes at various depths. Cross-section 606 also shows the helicity of the memory holes at various depths: the ellipse of cross-section 606 rotates with increasing depth. Although the memory holes in FIG. 6 have a slope of substantially zero, the cross-section 606 may also exhibit slope, for example, by having varying positions within its surrounding rectangle to demonstrate offset relative to the top surface (if it exists).

在一些實施例中,影像突顯或以其他方式指示與針對多個橫截面之一橢圓形狀之偏差。例如,一特定橫截面606可能並非精確橢圓形的。可突顯(例如,用一特定色彩、陰影或填充圖案展示)偏離一橢圓(例如,落在該橢圓外或無法到達該橢圓之邊緣)之橫截面之部分。更一般而言,影像可突顯或以其他方式指示3D形狀或其之一部分(例如,一橫截面)與一標稱形狀之偏差。一記憶體孔及橢圓僅為一各自結構及標稱形狀(可針對其顯示此偏差)之一實例。其他實例係可行的。 In some embodiments, the image highlights or otherwise indicates a deviation from an elliptical shape for a plurality of cross-sections. For example, a particular cross-section 606 may not be exactly elliptical. Portions of a cross-section that deviate from an ellipse (eg, fall outside the ellipse or cannot reach the edges of the ellipse) can be highlighted (eg, shown with a particular color, shading, or fill pattern). More generally, an image may highlight or otherwise indicate a deviation of a 3D shape or a portion thereof (eg, a cross-section) from a nominal shape. A memory hole and ellipse are just one example of a respective structure and nominal shape for which this deviation can be shown. Other examples are possible.

在一些實施例中,可展示橫截面,使得其等看似沿著一軸(例如,對應於深度之z軸)配置,其中該軸看似以一傾斜度(例如,以一斜角)與頁面相交。在此配置中,橫截面可部分重疊(例如,其中各自橫截面 部分遮蔽連續橫截面)。 In some embodiments, the cross-sections may be shown such that they appear to be arranged along an axis (eg, the z-axis corresponding to depth), where the axis appears to be at an inclination (eg, at an oblique angle) to the page intersect. In this configuration, the cross-sections may partially overlap (eg, where the respective cross-sections Partially shaded continuous cross section).

在一些實施例中,影像包含模型之一架構視圖,其中藉由輪廓線連接多個橫截面(例如,該等輪廓線與各橫截面之圓周上之對應點相交)。該架構視圖展示模型之3D形狀(但並非整個3D形狀,由於有限數目個橫截面及輪廓線),但將以2D顯示。圖7A至圖7C展示根據一些實施例之經模型化記憶體孔之架構視圖之影像700、720及740。 In some embodiments, the image includes an architectural view of the model in which the cross-sections are connected by contour lines (eg, the contour lines intersect corresponding points on the circumference of each cross-section). This architectural view shows the 3D shape of the model (but not the entire 3D shape, due to the limited number of cross-sections and contours), but will be displayed in 2D. 7A-7C show images 700, 720, and 740 of architectural views of modeled memory holes, according to some embodiments.

在影像700中,橫截面702-1至702-5係藉由輪廓線704-1及704-2連接。橫截面702係橢圓形的,如藉由針對橫截面702之橢圓之長軸及短軸所展示。如藉由其橢圓率(例如,長軸與短軸之長度比)量化之記憶體孔之橢圓形狀隨深度變化保持恆定,記憶體孔CD且因此其尺寸亦如此。記憶體孔並非螺旋形的:橫截面702之橢圓並不隨深度變化而旋轉。然而,記憶體孔確實具有隨深度變化而改變之傾斜度(如藉由輪廓線704-1及704-2之曲率展示)。 In image 700, cross sections 702-1 to 702-5 are connected by contour lines 704-1 and 704-2. Cross-section 702 is elliptical, as shown by the major and minor axes of the ellipse for cross-section 702 . If the elliptical shape of a memory hole, as quantified by its ellipticity (eg, the ratio of the length of the major axis to the minor axis), remains constant as a function of depth, so does the memory hole CD and thus its size. Memory holes are not helical: the ellipse of cross-section 702 does not rotate with depth. However, memory holes do have a slope that varies with depth (as shown by the curvature of contour lines 704-1 and 704-2).

在影像720中,橫截面722-1至722-5係藉由輪廓線724-1及724-2連接。橢圓形狀且因此橢圓率隨深度變化而改變,其中短軸在長度上增加且變為長軸。記憶體孔之尺寸且因此其CD隨深度變化而顯著改變。然而,橢圓並不旋轉,從而指示不具有螺旋度。 In image 720, cross-sections 722-1 to 722-5 are connected by contour lines 724-1 and 724-2. The elliptical shape, and thus ellipticity, changes with depth, with the minor axis increasing in length and becoming the major axis. The size of a memory hole, and thus its CD, varies significantly with depth. However, the ellipse does not rotate, indicating no helicity.

在影像740中,橫截面742-1至742-4係藉由輪廓線744-1及744-2連接。雖然橫截面742之橢圓率及CD保持恆定,但記憶體孔展示螺旋度:橫截面742之橢圓隨著增加深度而旋轉。可見橢圓之軸旋轉。 In image 740, cross-sections 742-1 to 742-4 are connected by contour lines 744-1 and 744-2. While the ellipticity and CD of the cross-section 742 remain constant, the memory holes exhibit helicity: the ellipse of the cross-section 742 rotates with increasing depth. The axis of the visible ellipse rotates.

多個橫截面之使用可因此提供關於3D形狀之廣泛資訊,如圖6及圖7A至圖7C所展示。 The use of multiple cross-sections can thus provide extensive information about the 3D shape, as shown in Figures 6 and 7A-7C.

圖8A及圖8B展示根據一些實施例之一半導體中之一經模 型化體積802之影像800及810。體積802包含可為記憶體孔之一週期性2D配置之部分之記憶體孔804-1、804-2及804-3。在影像800中,體積802經展示為不透明的。影像800展示記憶體孔804-1之頂表面、記憶體孔804-2之頂表面之一部分及記憶體孔804-3之頂表面之一部分連同記憶體孔804-3之一橫截面垂直輪廓。在影像810中,體積802係半透明的且全部三個記憶體孔804-1、804-2及804-3之3D形狀係可見的。因此,影像800及810兩者展示至少一半導體結構(如在步驟208中模型化)之至少一部分3D形狀,但影像810比影像800展示顯著更多3D資訊。 8A and 8B show a die in a semiconductor according to some embodiments Images 800 and 810 of volume 802 are modeled. Volume 802 includes memory holes 804-1, 804-2, and 804-3, which may be part of a periodic 2D configuration of memory holes. In image 800, volume 802 is shown as opaque. Image 800 shows the top surface of memory hole 804-1, a portion of the top surface of memory hole 804-2, and a portion of the top surface of memory hole 804-3 along with a cross-sectional vertical profile of memory hole 804-3. In image 810, volume 802 is translucent and the 3D shapes of all three memory holes 804-1, 804-2, and 804-3 are visible. Thus, both images 800 and 810 show at least a portion of the 3D shape of at least one semiconductor structure (as modeled in step 208), but image 810 shows significantly more 3D information than image 800.

在一些實施例中,影像包含3D半導體結構之經模型化各自例項之一頂表面或一底表面之至少一者且亦包含3D半導體結構之經模型化各自例項之介於該頂表面與該底表面之間的一使用者可選橫截面(例如,垂直於垂直z軸之一水平橫截面)。例如,圖9展示根據一些實施例之包含一經模型化記憶體孔之一底表面902及一使用者可選橫截面904之一影像900。使用者可選橫截面904可為半透明的。使用者可選橫截面904之垂直位置可基於使用者輸入226而改變(例如,回應於指定一新垂直位置之使用者輸入226,執行方法200之電腦重複步驟218及220以呈現及提供其中使用者可選橫截面904在該最新指定垂直位置中之一新影像)。藉由提供多個橫截面(即,頂表面及/或底表面及使用者可選橫截面),影像展示模型之3D形狀(但並未整個3D形狀,由於有限數目個橫截面及輪廓線),但影像可用於2D顯示。在一些實施例中,影像包含多個使用者可選橫截面,其等之一或多個(例如,所有)可為半透明的。 In some embodiments, the image includes at least one of a top surface or a bottom surface of the modeled respective instances of the 3D semiconductor structure and also includes between the top surface and the modeled respective instances of the 3D semiconductor structure A user-selectable cross-section between the bottom surfaces (eg, a horizontal cross-section perpendicular to the vertical z-axis). For example, FIG. 9 shows an image 900 including a bottom surface 902 of a modeled memory hole and a user-selectable cross-section 904 in accordance with some embodiments. User selectable cross section 904 may be translucent. The vertical position of the user-selectable cross-section 904 can be changed based on the user input 226 (eg, in response to the user input 226 specifying a new vertical position, the computer executing the method 200 repeats steps 218 and 220 to present and provide for use therein or a new image of the optional cross-section 904 in the last specified vertical position). By providing multiple cross-sections (ie, top and/or bottom surfaces and user-selectable cross-sections), the image shows the 3D shape of the model (but not the entire 3D shape, due to the limited number of cross-sections and contours) , but the imagery can be used for 2D display. In some embodiments, the image includes a plurality of user-selectable cross-sections, one or more (eg, all) of which may be translucent.

在一些實施例中,影像係或包含(222)一AR/VR影像或一3D立體影像。在步驟224中影像提供所至之裝置因此可為一AR/VR觀看裝 置(例如,AR/VR護目鏡;AR眼鏡)或一3D立體觀看器。 In some embodiments, the imagery either includes (222) an AR/VR image or a 3D stereoscopic image. The device to which the image is provided in step 224 can thus be an AR/VR viewing device device (eg, AR/VR goggles; AR glasses) or a 3D stereoscopic viewer.

例如,AR/VR影像係自一第一視角呈現之模型之一第一AR/VR影像。方法200進一步包含,在將該第一AR/VR影像發送至AR/VR觀看裝置以用於顯示之後,接收請求視角之一改變之使用者輸入226。回應於該使用者輸入,重複步驟222,使得自一第二視角呈現模型之一第二AR/VR影像。每步驟224將該第二AR/VR影像發送至AR/VR觀看裝置以用於顯示。以此方式,使用者可在AR/VR中有效地圍繞影像移動。 For example, the AR/VR image is a first AR/VR image of a model presented from a first perspective. The method 200 further includes, after sending the first AR/VR imagery to the AR/VR viewing device for display, receiving 226 user input requesting a change in viewing angle. In response to the user input, step 222 is repeated to render a second AR/VR image of the model from a second perspective. Each step 224 sends the second AR/VR imagery to the AR/VR viewing device for display. In this way, the user can effectively move around the image in AR/VR.

在另一實例中,AR/VR影像係具有對應於如基於在步驟202之檢測期間收集之量測判定之模型之一參數之值之一外觀的模型之一第一AR/VR影像。方法200進一步包含,在將該第一AR/VR影像發送至AR/VR觀看裝置以用於顯示之後,接收請求該參數之該等值之一改變之使用者輸入226。回應於該使用者輸入,改變用於模型之參數之值且每步驟222呈現具有對應於該等改變值之一外觀之模型之一第二AR/VR影像。每步驟224將該第二AR/VR影像發送至AR/VR觀看裝置以用於顯示。以此方式,使用者可探究半導體結構之3D形狀之潛在變動(例如,探究半導體結構在達到一故障點之前具有多少餘量)。 In another example, the AR/VR image has a first AR/VR image of the model that corresponds to an appearance as one of the values of a parameter of the model determined based on measurements collected during the detection of step 202 . The method 200 further includes, after sending the first AR/VR imagery to the AR/VR viewing device for display, receiving 226 user input requesting a change in one of the values of the parameter. In response to the user input, the values of the parameters for the model are changed and a second AR/VR image of the model is presented per step 222 having an appearance corresponding to the changed values. Each step 224 sends the second AR/VR imagery to the AR/VR viewing device for display. In this way, the user can explore potential variations in the 3D shape of the semiconductor structure (eg, how much margin the semiconductor structure has before reaching a point of failure).

在一些實施例中,根據方法200所產生之一影像展示(例如,突顯)與其根據步驟218之模型之3D形狀相關聯之不確定性。例如,在CD中存在不確定性之程度上,相關模型化半導體結構例項之側處之一不確定性區域(例如,沿著一記憶體孔之壁)可以不同於相關模型化半導體結構例項之其餘部分之一色彩、陰影或填充圖案展示,從而指示該等側之精確位置中之不確定性。模糊(例如,邊緣之模糊)或點可用於指示不確定 性。可展示一動畫,其中展示3D形狀根據不確定性在一可能性範圍內改變(例如,邊緣之位置改變)。其他實例係可行的。 In some embodiments, an image generated according to method 200 shows (eg, highlights) the uncertainty associated with its 3D shape of the model according to step 218 . For example, to the extent that there is uncertainty in CD, a region of uncertainty at the side of the associated modeled semiconductor structure instance (eg, along the walls of a memory hole) may differ from the associated modeled semiconductor structure instance A color, shading, or fill pattern display of the remainder of the item to indicate uncertainty in the precise location of those sides. Blur (for example, blurring of edges) or dots can be used to indicate uncertainty sex. An animation can be shown in which the 3D shape is shown changing within a range of possibilities according to the uncertainty (eg, the position of the edge changes). Other examples are possible.

上文所描述之指標(諸如傾斜度、橢圓率、與一標稱形狀(例如,一橢圓形狀)之偏差及螺旋度)僅為可在使用方法200產生之一影像中展示之指標之實例。亦可或替代性地展示其他指標(例如,衍生指標、使用一傅立葉變換產生之指標等)。 The metrics described above, such as tilt, ellipticity, deviation from a nominal shape (eg, an elliptical shape), and helicity are merely examples of metrics that may be shown in an image generated using method 200 . Other indices (eg, derived indices, indices generated using a Fourier transform, etc.) may also or alternatively be displayed.

在一些實施例中,根據方法200產生之一影像包含連續地展示3D形狀之連續部分之一動畫。例如,該動畫可連續地展示連續橫截面(諸如增加或減小深度之橫截面)。在另一實例中,動畫展示3D形狀之旋轉,其中連續部分旋轉進出視野。 In some embodiments, generating an image according to method 200 includes continuously displaying an animation of successive portions of the 3D shape. For example, the animation may continuously show successive cross-sections (such as cross-sections of increasing or decreasing depth). In another example, the animation shows the rotation of a 3D shape, with successive sections rotating in and out of view.

在一些實施例中,用於模型之資料可覆疊在模型之影像上,使得在步驟224中提供至一使用者之裝置之影像包含經覆疊資料。該資料可包含指定用於模型之一或多個參數/指標之值之數字。資料可包含指定電場或應變之向量。其他實例係可行的。 In some embodiments, the data for the model may be overlaid on the image of the model, such that the image provided to a user's device in step 224 includes the overlaid data. This data may contain numbers that specify the values used for one or more parameters/indicators of the model. The data can contain vectors specifying electric fields or strains. Other examples are possible.

圖3A至圖8中所展示之影像僅為可用於方法200中之3D視覺化技術之實例。其他實例係可行的。在一些實施例中,藉由方法200產生之影像係用於預測一半導體裝置之效能。在一些實施例中,藉由方法200產生之影像係用於與參考影像(例如,CD-SEM或TEM影像)進行比較。在一些實施例中,藉由方法200產生之影像係用於識別程序或設計變化。 The images shown in FIGS. 3A-8 are merely examples of 3D visualization techniques that may be used in method 200 . Other examples are possible. In some embodiments, the images generated by method 200 are used to predict the performance of a semiconductor device. In some embodiments, images generated by method 200 are used for comparison with reference images (eg, CD-SEM or TEM images). In some embodiments, the images generated by method 200 are used to identify program or design changes.

圖10係根據一些實施例之一半導體檢測系統1000之一方塊圖。半導體檢測系統1000包含一半導體度量工具1032及具有一或多個處理器1002(例如,CPU及/或GPU)、選用使用者介面1006、記憶體1010及 互連此等組件之一或多個通信匯流排1004之一電腦系統。該電腦系統可透過一或多個網路1030與度量工具1032通信地耦合。電腦系統可進一步包含用於與度量工具1032及/或遠端電腦系統通信之一或多個網路介面(有線及/或無線,未展示)。在一些實施例中,度量工具1032執行光學度量及/或SAXS。 10 is a block diagram of a semiconductor inspection system 1000 in accordance with some embodiments. Semiconductor inspection system 1000 includes a semiconductor metrology tool 1032 and has one or more processors 1002 (eg, CPU and/or GPU), optional user interface 1006, memory 1010, and A computer system that interconnects one or more of these components with a communication bus 1004. The computer system may be communicatively coupled to the metrology tool 1032 through one or more networks 1030 . The computer system may further include one or more network interfaces (wired and/or wireless, not shown) for communicating with the metrology tool 1032 and/or the remote computer system. In some embodiments, metrology tool 1032 performs optical metrology and/or SAXS.

使用者介面1006可包含一顯示器1008及/或一或多個輸入裝置(例如,一鍵盤、滑鼠、顯示器1008之觸敏表面等)。顯示器1008可顯示根據一些實施例之方法200之影像。 User interface 1006 may include a display 1008 and/or one or more input devices (eg, a keyboard, mouse, touch-sensitive surface of display 1008, etc.). Display 1008 may display an image of method 200 in accordance with some embodiments.

記憶體1010包含揮發性及/或非揮發性記憶體。記憶體1010(例如,記憶體1010內之非揮發性記憶體)包含一非暫時性電腦可讀儲存媒體。記憶體1010視需要包含與處理器1002遠距離定位之一或多個儲存裝置及/或可移除地插入至電腦系統中之一非暫時性電腦可讀儲存媒體。在一些實施例中,記憶體1010(例如,記憶體1010之非暫時性電腦可讀儲存媒體)儲存以下模組及資料或其等之一子集或超集:包含用於處置各種基本系統服務及用於執行硬體相依任務之程序之一作業系統1012、一模型產生模組1014、一模型更新模組1016、一影像呈現模組1018、一影像傳輸模組1020及自度量工具1032收集之量測之一資料庫1022。 Memory 1010 includes volatile and/or non-volatile memory. Memory 1010 (eg, non-volatile memory within memory 1010) includes a non-transitory computer-readable storage medium. The memory 1010 optionally includes one or more storage devices remotely located from the processor 1002 and/or a non-transitory computer-readable storage medium removably insertable into the computer system. In some embodiments, memory 1010 (eg, a non-transitory computer-readable storage medium of memory 1010 ) stores the following modules and data, or a subset or superset thereof, including those used to handle various basic system services and an operating system 1012 , a model generation module 1014 , a model update module 1016 , an image rendering module 1018 , an image transmission module 1020 , and a self-metric tool 1032 , and programs for performing hardware-dependent tasks A database 1022 of measurements.

記憶體1010(例如,記憶體1010之非暫時性電腦可讀儲存媒體)因此包含用於結合度量工具1032執行方法200(圖2)之指令。儲存於記憶體1010中之模組之各者對應於用於執行本文中所描述之一或多個功能之一指令集。分離模組不需要實施為分離軟體程式。模組及模組之各種子集可經組合或以其他方式重新配置。在一些實施例中,記憶體1010儲存上文所識別之模組及/或資料結構之一子集或超集。 Memory 1010 (eg, the non-transitory computer-readable storage medium of memory 1010 ) thus includes instructions for performing method 200 ( FIG. 2 ) in conjunction with metrology tool 1032 . Each of the modules stored in memory 1010 corresponds to a set of instructions for performing one or more functions described herein. Split modules need not be implemented as split software programs. Modules and various subsets of modules may be combined or otherwise reconfigured. In some embodiments, memory 1010 stores a subset or superset of the modules and/or data structures identified above.

圖10更多地旨在作為可存在於一半導體檢測系統中之各種特徵之一功能描述而非作為一結構示意圖。例如,半導體檢測系統1000中之電腦系統之功能性可劃分在多個裝置之間。儲存於記憶體1010中之模組之一部分可替代性地儲存於透過一或多個網路與半導體檢測系統1000之電腦系統通信地耦合之一或多個其他電腦系統中。 Figure 10 is intended more as a functional description of the various features that may be present in a semiconductor inspection system rather than as a structural schematic. For example, the functionality of the computer system in semiconductor inspection system 1000 may be divided among multiple devices. A portion of the modules stored in memory 1010 may alternatively be stored in one or more other computer systems communicatively coupled to the computer system of semiconductor inspection system 1000 through one or more networks.

出於闡釋目的,已參考特定實施例描述先前描述。然而,上文闡釋性論述並不意欲為詳盡的或將發明申請專利範圍之範疇限於所揭示之精確形式。鑑於以上教示,許多修改及變動係可行的。選取該等實施例以便最佳闡釋作為發明申請專利範圍及其等實際應用之基礎之原理,以藉此使熟習此項技術者能夠最佳使用具有如適用於所預期之特定用途之各種修改之實施例。 For purposes of illustration, the preceding description has been described with reference to specific embodiments. However, the illustrative discussions above are not intended to be exhaustive or to limit the scope of the patentable scope of the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teachings. These embodiments were chosen in order to best illustrate the principles underlying the scope of the invention and its practical application, to thereby enable those skilled in the art to best utilize the invention with various modifications as are suitable for the particular use contemplated. Example.

200‧‧‧方法 200‧‧‧Method

202‧‧‧步驟/檢測步驟 202‧‧‧Steps/Detection Steps

204‧‧‧步驟 204‧‧‧Steps

206‧‧‧步驟 206‧‧‧Steps

208‧‧‧步驟 208‧‧‧Steps

210‧‧‧步驟 210‧‧‧Steps

212‧‧‧步驟 212‧‧‧Steps

214‧‧‧步驟 214‧‧‧Steps

216‧‧‧步驟 216‧‧‧Steps

218‧‧‧步驟 218‧‧‧Steps

220‧‧‧步驟 220‧‧‧Steps

222‧‧‧步驟 222‧‧‧Steps

224‧‧‧步驟 224‧‧‧Steps

226‧‧‧使用者輸入 226‧‧‧User input

Claims (42)

一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體結構之一各自例項之一模型;呈現(rendering)展示該模型之一3D形狀之該模型之一影像,該影像包括:該3D半導體結構之該各自例項之一頂表面或一底表面之至少一者,及該3D半導體結構之該各自例項之介於該頂表面與該底表面之間的一使用者可選半透明橫截面;及將該影像提供至一裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on A model of a respective instance of the 3D semiconductor structure is generated by inspection of an area of a semiconductor wafer comprising a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic configuration by a semiconductor metrology tool; presenting (rendering) an image of the model showing a 3D shape of the model, the image comprising: at least one of a top surface or a bottom surface of the respective instance of the 3D semiconductor structure, and the 3D semiconductor structure a user-selectable translucent cross-section between the top surface and the bottom surface of each instance; and providing the image to a device for display. 如請求項1之電腦可讀儲存媒體,其中該影像包括將在兩個維度上顯示之該模型之一投影。 The computer-readable storage medium of claim 1, wherein the image includes a projection of the model to be displayed in two dimensions. 如請求項1之電腦可讀儲存媒體,其中該影像展示針對該模型中之該3D形狀之不確定性。 The computer-readable storage medium of claim 1, wherein the image shows uncertainty for the 3D shape in the model. 如請求項1之電腦可讀儲存媒體,其中該影像指示該3D形狀或該3D 形狀之一橫截面與一標稱形狀之偏差。 The computer-readable storage medium of claim 1, wherein the image indicates the 3D shape or the 3D The deviation of a cross-section of a shape from a nominal shape. 如請求項1之電腦可讀儲存媒體,其中該影像包括連續地(successively)展示該3D形狀之連續部分之一動畫(animation)。 The computer-readable storage medium of claim 1, wherein the image comprises an animation that successively displays successive portions of the 3D shape. 如請求項1之電腦可讀儲存媒體,其中:該影像係一3D立體影像;且提供該影像包括將該影像發送至一3D立體觀看器。 The computer-readable storage medium of claim 1, wherein: the image is a 3D stereoscopic image; and providing the image includes sending the image to a 3D stereoscopic viewer. 如請求項1之電腦可讀儲存媒體,其中:該3D半導體結構之該複數個例項包括一3D記憶體中之記憶體孔之一週期性配置;且該3D半導體結構之該各自例項包括一各自記憶體孔(memory hole)。 The computer-readable storage medium of claim 1, wherein: the plurality of instances of the 3D semiconductor structure include a periodic arrangement of memory holes in a 3D memory; and the respective instances of the 3D semiconductor structure include A respective memory hole. 如請求項7之電腦可讀儲存媒體,其中該影像展示針對該各自記憶體孔之多個橫截面之該各自記憶體孔之一橢圓形狀。 The computer-readable storage medium of claim 7, wherein the image shows an elliptical shape of the respective memory holes for a plurality of cross-sections of the respective memory holes. 如請求項8之電腦可讀儲存媒體,其中該影像展示針對該多個橫截面之該各自記憶體孔之螺旋度(helicity),其中該螺旋度指示該橢圓形狀之定向之變化。 The computer-readable storage medium of claim 8, wherein the image shows a helicity of the respective memory holes for the plurality of cross-sections, wherein the helicity is indicative of a change in orientation of the elliptical shape. 如請求項7之電腦可讀儲存媒體,其中該影像指示與針對該多個橫截面之一橢圓形狀之偏差。 The computer-readable storage medium of claim 7, wherein the image indicates a deviation from an elliptical shape for the plurality of cross-sections. 如請求項7之電腦可讀儲存媒體,其中該影像展示該各自記憶體孔之傾斜度(tilt)。 The computer-readable storage medium of claim 7, wherein the image shows the tilt of the respective memory holes. 如請求項1之電腦可讀儲存媒體,其中:該3D半導體結構之該複數個例項包括finFET之一週期性配置;且該3D半導體結構之該各自例項包括一各自finFET或一各自finFET之一部分。 The computer-readable storage medium of claim 1, wherein: the plurality of instances of the 3D semiconductor structure include a periodic configuration of finFETs; and the respective instances of the 3D semiconductor structure include a respective finFET or a respective finFET part. 如請求項1之電腦可讀儲存媒體,其中:該3D半導體結構之該複數個例項包括一DRAM單元陣列;且該3D半導體結構之該各自例項包括一各自DRAM單元或一各自DRAM單元之一部分。 The computer-readable storage medium of claim 1, wherein: the plurality of instances of the 3D semiconductor structure include an array of DRAM cells; and the respective instances of the 3D semiconductor structure include a respective DRAM cell or a respective DRAM cell part. 如請求項1之電腦可讀儲存媒體,其中產生該3D半導體結構之該各自例項之該模型包括:獲得具有經參數化(parameterized)尺寸之該3D半導體結構之一幾何模型;及使用在該檢測期間收集之量測以判定該等經參數化尺寸之值。 The computer-readable storage medium of claim 1, wherein generating the model of the respective instances of the 3D semiconductor structure comprises: obtaining a geometric model of the 3D semiconductor structure having parameterized dimensions; and using the model in the Measurements collected during inspection to determine the value of these parameterized dimensions. 如請求項1之電腦可讀儲存媒體,其中產生該3D半導體結構之該各自例項之該模型包括:獲得用於該3D半導體結構之不同例項之量測組,該等組經標記有尺 寸之各自值;及使用該等組及在該檢測期間收集之量測執行機器學習以判定用於該各自例項之該等尺寸之值,其中該產生係在未使用該3D半導體結構之一經參數化幾何模型之情況下執行。 The computer-readable storage medium of claim 1, wherein generating the model of the respective instances of the 3D semiconductor structure comprises: obtaining sets of measurements for the different instances of the 3D semiconductor structure, the sets marked with rulers and performing machine learning using the sets and measurements collected during the inspection to determine the values of the dimensions for the respective instance, wherein the generation is performed without using one of the 3D semiconductor structures. Executed in the case of a parametric geometric model. 如請求項1之電腦可讀儲存媒體,其中檢測該半導體晶圓之該區域包括執行選自由以下各者組成之群組之一光學度量技術:光譜橢圓偏光量測、單波長橢圓偏光量測、光束輪廓橢圓偏光量測、光束輪廓反射量測、單波長反射量測、角度解析反射量測、光譜反射量測、散射量測及拉曼光譜學(Raman spectroscopy)。 The computer-readable storage medium of claim 1, wherein inspecting the region of the semiconductor wafer comprises performing an optical metrology technique selected from the group consisting of: spectral ellipsometry, single-wavelength ellipsometry, Beam profile ellipsometry measurement, beam profile reflection measurement, single wavelength reflection measurement, angle-resolved reflection measurement, spectral reflection measurement, scattering measurement and Raman spectroscopy. 如請求項1之電腦可讀儲存媒體,其中檢測該半導體晶圓之該區域包括執行小角度x射線散射。 The computer-readable storage medium of claim 1, wherein detecting the region of the semiconductor wafer includes performing small angle x-ray scattering. 一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體結構之一各自例項之一模型;自一第一視角(perspective)呈現展示該模型之一3D形狀之該模型之一第一擴增實境或虛擬實境(AR/VR)影像; 將該第一AR/VR影像提供至一AR/VR觀看裝置以用於顯示;在將該第一AR/VR影像提供至該AR/VR觀看裝置以用於顯示之後,接收請求視角之一改變之使用者輸入;回應於該使用者輸入,自一第二視角呈現該模型之一第二AR/VR影像;及將該第二AR/VR影像提供至該AR/VR觀看裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on A model of a respective instance of the 3D semiconductor structure is generated by inspection of an area of a semiconductor wafer comprising a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic arrangement by a semiconductor metrology tool; a first perspective presenting a first augmented reality or virtual reality (AR/VR) image of the model showing a 3D shape of the model; providing the first AR/VR image to an AR/VR viewing device for display; after providing the first AR/VR image to the AR/VR viewing device for display, receiving a request for a change in viewing angle user input; in response to the user input, presenting a second AR/VR image of the model from a second perspective; and providing the second AR/VR image to the AR/VR viewing device for display . 一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體結構之一各自例項之一模型;呈現該模型之一第一擴增實境或虛擬實境(AR/VR)影像,其展示具有對應於如基於在該檢測期間收集之量測所判定之該模型之一參數之值之一外觀的該模型之一3D形狀;將該第一AR/VR影像提供至一AR/VR觀看裝置以用於顯示;在將該第一AR/VR影像提供至該AR/VR觀看裝置以用於顯示之後,接收請求該參數之該等值之一改變之使用者輸入;回應於該使用者輸入,改變用於該模型之該參數之該等值;呈現具有對應於該等改變值之一外觀之該模型之一第二AR/VR影像;及將該第二AR/VR影像提供至該AR/VR觀看裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on A model of a respective instance of the 3D semiconductor structure is generated by inspection of an area of a semiconductor wafer comprising a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic configuration by a semiconductor metrology tool; presenting A first augmented reality or virtual reality (AR/VR) image of the model displayed with an appearance corresponding to a value of a parameter of the model as determined based on measurements collected during the detection a 3D shape of the model; providing the first AR/VR imagery to an AR/VR viewing device for display; after providing the first AR/VR imagery to the AR/VR viewing device for display , receive user input requesting a change in one of the values of the parameter; in response to the user input, change the value of the parameter for the model; present the parameter with an appearance corresponding to one of the changed values a second AR/VR image of one of the models; and providing the second AR/VR image to the AR/VR viewing device for display. 一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對在一個三維(3D)半導體記憶體中包含記憶體孔之一週期性配置之一半導體晶圓之一區域之檢測,產生一各自記憶體孔之一模型;呈現展示該模型之一3D形狀之該模型之一影像,其中該影像展示針對該各自記憶體孔之多個橫截面之該各自記憶體孔之一橢圓形狀,及展示針對該多個橫截面之該各自記憶體孔之螺旋度,其中該螺旋度指示該橢圓形狀之定向之變化;及將該影像提供至一裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on A model of a respective memory hole is generated by inspection of an area of a semiconductor wafer including a periodic arrangement of memory holes in a three-dimensional (3D) semiconductor memory by a semiconductor metrology tool; presentation showing the an image of the model of a 3D shape of the model, wherein the image shows an elliptical shape of the respective memory hole for a plurality of cross-sections of the respective memory hole, and shows the respective memory for the plurality of cross-sections helicity of a body pore, wherein the helicity is indicative of a change in orientation of the elliptical shape; and providing the image to a device for display. 一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體結構之一各自例項之一模型,其包括:獲得用於該3D半導體結構之不同例項之量測組,該等組經標記有尺寸之各自值;及使用該等組及在該檢測期間收集之量測執行機器學習以判定用於該各自例項之該等尺寸之值, 其中該產生係在未使用該3D半導體結構之一經參數化幾何模型之情況下執行;呈現展示該模型之一3D形狀之該模型之一影像;及將該影像提供至一裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on A model of a respective instance of the 3D semiconductor structure is generated by inspection of a region of a semiconductor wafer comprising a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic configuration by a semiconductor metrology tool, which Including: obtaining sets of measurements for different instances of the 3D semiconductor structure, the sets being labeled with respective values of dimensions; and performing machine learning using the sets and measurements collected during the inspection to determine the the values of those dimensions of that respective instance, wherein the generating is performed without using a parametric geometric model of the 3D semiconductor structure; rendering an image of the model showing a 3D shape of the model; and providing the image to a device for display. 一種半導體結構視覺化之方法,其包括:在一半導體度量工具中:在包括半導體邏輯電路或半導體記憶體電路之至少一者之一半導體晶圓上,檢測該半導體晶圓之包含在至少一維度上週期性地配置之一個三維(3D)半導體結構之複數個例項之一區域;及在包括一或多個處理器及儲存藉由該一或多個處理器執行之指令之記憶體之一電腦系統中:基於該檢測產生該3D半導體結構之一各自例項之一模型;呈現展示該模型之一3D形狀之該模型之一擴增實境或虛擬實境(AR/VR)影像;及將該AR/VR影像提供至一AR/VR觀看裝置以用於顯示。 A method of visualizing a semiconductor structure, comprising: in a semiconductor metrology tool: on a semiconductor wafer comprising at least one of a semiconductor logic circuit or a semiconductor memory circuit, inspecting the semiconductor wafer for inclusion in at least one dimension a region on a plurality of instances of a three-dimensional (3D) semiconductor structure that is periodically arranged; and on a memory that includes one or more processors and stores instructions executed by the one or more processors In the computer system: generating a model of each instance of the 3D semiconductor structure based on the detection; presenting an augmented reality or virtual reality (AR/VR) image of the model showing a 3D shape of the model; and The AR/VR imagery is provided to an AR/VR viewing device for display. 如請求項22之方法,其中該AR/VR影像係自一第一視角呈現之該模型之一第一AR/VR影像,該方法進一步包括,在將該第一AR/VR影像發送至該AR/VR觀看裝置以用於顯示之後:接收請求視角之一改變之使用者輸入;回應於該使用者輸入,自一第二視角呈現該模型之一第二AR/VR影像;及 將該第二AR/VR影像發送至該AR/VR觀看裝置以用於顯示。 The method of claim 22, wherein the AR/VR image is a first AR/VR image of the model presented from a first perspective, the method further comprising, after sending the first AR/VR image to the AR /VR viewing device for display after: receiving user input requesting a change in perspective; in response to the user input, presenting a second AR/VR image of the model from a second perspective; and The second AR/VR imagery is sent to the AR/VR viewing device for display. 如請求項22之方法,其中該AR/VR影像係具有對應於如基於在該檢測期間收集之量測所判定之該模型之一參數之值之一外觀的該模型之一第一AR/VR影像,該方法進一步包括,在將該第一AR/VR影像發送至該AR/VR觀看裝置以用於顯示之後:接收請求該參數之該等值之一改變之使用者輸入;回應於該使用者輸入,作出(make)用於該模型之該參數之該等值之該改變;呈現具有對應於該改變之一外觀之該模型之一第二AR/VR影像;及將該第二AR/VR影像發送至該AR/VR觀看裝置以用於顯示。 The method of claim 22, wherein the AR/VR image has a first AR/VR of the model corresponding to an appearance as determined based on a value of a parameter of the model based on measurements collected during the detection image, the method further comprising, after sending the first AR/VR image to the AR/VR viewing device for display: receiving user input requesting a change in one of the values of the parameter; responsive to the using input, make the change in the values of the parameter for the model; present a second AR/VR image of the model with an appearance corresponding to the change; and the second AR/VR image VR images are sent to the AR/VR viewing device for display. 如請求項22之方法,其中該AR/VR影像展示針對該模型中之該3D形狀之不確定性。 The method of claim 22, wherein the AR/VR imagery exhibits uncertainty for the 3D shape in the model. 如請求項22之方法,其中該AR/VR影像指示該3D形狀或該3D形狀之一橫截面與一標稱形狀之偏差。 The method of claim 22, wherein the AR/VR imagery indicates the 3D shape or a deviation of a cross-section of the 3D shape from a nominal shape. 如請求項22之方法,其中該AR/VR影像包括連續地展示該3D形狀之連續部分之該3D形狀之一動畫。 The method of claim 22, wherein the AR/VR imagery includes an animation of the 3D shape continuously showing successive portions of the 3D shape. 如請求項27之方法,其中該動畫展示該3D形狀之旋轉(rotation)。 The method of claim 27, wherein the animation shows a rotation of the 3D shape. 如請求項22之方法,其中該呈現包括將用於該模型之資料覆疊(overlay)於該AR/VR影像上。 The method of claim 22, wherein the presenting includes overlaying data for the model on the AR/VR imagery. 如請求項22之方法,其中:該3D半導體結構之該複數個例項包括一3D記憶體中之記憶體孔之一週期性配置;且該3D半導體結構之該各自例項包括一各自記憶體孔。 The method of claim 22, wherein: the plurality of instances of the 3D semiconductor structure include a periodic arrangement of memory holes in a 3D memory; and the respective instances of the 3D semiconductor structure include a respective memory hole. 如請求項30之方法,其中該AR/VR影像展示該各自記憶體孔之一橢圓形狀。 The method of claim 30, wherein the AR/VR image shows an elliptical shape of the respective memory holes. 如請求項31之方法,其中該AR/VR影像展示針對該橢圓形狀之螺旋度,其中該螺旋度指示該橢圓形狀之定向之變化。 The method of claim 31, wherein the AR/VR imagery exhibits helicity for the elliptical shape, wherein the helicity is indicative of a change in orientation of the elliptical shape. 如請求項30之方法,其中該AR/VR影像指示與針對該各自記憶體孔之一橢圓形狀之偏差。 The method of claim 30, wherein the AR/VR imagery indicates a deviation from an elliptical shape for the respective memory holes. 如請求項30之方法,其中該AR/VR影像展示該各自記憶體孔之傾斜度。 The method of claim 30, wherein the AR/VR image shows the slope of the respective memory holes. 如請求項22之方法,其中:該3D半導體結構之該複數個例項包括finFET之一週期性配置;且該3D半導體結構之該各自例項包括一各自finFET或一各自finFET之 一部分。 The method of claim 22, wherein: the plurality of instances of the 3D semiconductor structure include a periodic configuration of finFETs; and the respective instances of the 3D semiconductor structure include a respective finFET or a respective finFET part. 如請求項22之方法,其中:該3D半導體結構之該複數個例項包括一DRAM單元陣列;且該3D半導體結構之該各自例項包括一各自DRAM單元或一各自DRAM單元之一部分。 The method of claim 22, wherein: the plurality of instances of the 3D semiconductor structure include an array of DRAM cells; and the respective instances of the 3D semiconductor structure include a respective DRAM cell or a portion of a respective DRAM cell. 如請求項22之方法,其中產生該3D半導體結構之該各自例項之該模型包括:獲得具有經參數化尺寸之該3D半導體結構之一幾何模型;及使用在該檢測期間收集之量測以判定該等經參數化尺寸之值。 The method of claim 22, wherein generating the model of the respective instance of the 3D semiconductor structure comprises: obtaining a geometric model of the 3D semiconductor structure with parameterized dimensions; and using measurements collected during the inspection to Determine the values of these parameterized dimensions. 如請求項22之方法,其中產生該3D半導體結構之該各自例項之該模型包括:獲得用於該3D半導體結構之不同例項之量測組,該等組經標記有尺寸之各自值;及使用該等組及在該檢測期間收集之量測執行機器學習以判定用於該各自例項之該等尺寸之值,其中該產生係在未使用該3D半導體結構之一經參數化幾何模型之情況下執行。 The method of claim 22, wherein generating the model of the respective instances of the 3D semiconductor structure comprises: obtaining sets of measurements for different instances of the 3D semiconductor structure, the sets being marked with respective values of dimensions; and performing machine learning using the sets and measurements collected during the inspection to determine the values of the dimensions for the respective instance, wherein the generation is performed without using a parameterized geometric model of the 3D semiconductor structure Executed under the circumstances. 如請求項22之方法,其中檢測該半導體晶圓之該區域包括執行選自由以下各者組成之群組之一光學度量技術:光譜橢圓偏光量測、單波長橢 圓偏光量測、光束輪廓橢圓偏光量測、光束輪廓反射量測、單波長反射量測、角度解析反射量測、光譜反射量測、散射量測及拉曼光譜學。 The method of claim 22, wherein inspecting the region of the semiconductor wafer comprises performing an optical metrology technique selected from the group consisting of: spectral ellipsometry, single wavelength ellipsometry Circular polarization measurement, beam profile elliptical polarization measurement, beam profile reflection measurement, single wavelength reflection measurement, angle-analytic reflection measurement, spectral reflection measurement, scattering measurement and Raman spectroscopy. 如請求項22之方法,其中檢測該半導體晶圓之該區域包括執行小角度x射線散射。 The method of claim 22, wherein inspecting the region of the semiconductor wafer includes performing small angle x-ray scattering. 一種半導體檢測系統,其包括:一半導體度量工具;一或多個處理器;及記憶體,其儲存藉由該一或多個處理器執行之一或多個程式,該一或多個程式包括用於執行以下操作之指令:基於藉由該半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體結構之一各自例項之一模型;呈現展示該模型之一3D形狀之該模型之一擴增實境或虛擬實境(AR/VR)影像;及將該AR/VR影像提供至一AR/VR觀看裝置以用於顯示。 A semiconductor inspection system comprising: a semiconductor metrology tool; one or more processors; and memory storing one or more programs executed by the one or more processors, the one or more programs including Instructions for performing the following operations: based on inspection by the semiconductor metrology tool of an area of a semiconductor wafer containing a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic configuration, generating an indication of the 3D semiconductor structure; a model of each instance; presenting an augmented reality or virtual reality (AR/VR) image of the model showing a 3D shape of the model; and providing the AR/VR image to an AR/VR viewing device for display. 一種非暫時性電腦可讀儲存媒體,其儲存用於藉由一電腦系統之一或多個處理器執行之一或多個程式,該一或多個程式包含用於執行以下操作之指令:基於藉由一半導體度量工具對包含週期性配置之一個三維(3D)半導體結構之複數個例項之一半導體晶圓之一區域之檢測,產生該3D半導體 結構之一各自例項之一模型;呈現展示該模型之一3D形狀之該模型之一擴增實境或虛擬實境(AR/VR)影像;及將該AR/VR影像提供至一AR/VR觀看裝置以用於顯示。 A non-transitory computer-readable storage medium storing one or more programs for execution by one or more processors of a computer system, the one or more programs including instructions for performing the following operations: based on The 3D semiconductor is produced by the inspection of a region of a semiconductor wafer containing a plurality of instances of a three-dimensional (3D) semiconductor structure in a periodic configuration by a semiconductor metrology tool a model of each instance of a structure; presenting an augmented reality or virtual reality (AR/VR) image of the model showing a 3D shape of the model; and providing the AR/VR image to an AR/VR image VR viewing device for display.
TW108107196A 2018-03-05 2019-03-05 Visualization of three-dimensional semiconductor structures TWI778239B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201862638721P 2018-03-05 2018-03-05
US62/638,721 2018-03-05
US16/283,690 2019-02-22
US16/283,690 US10794839B2 (en) 2019-02-22 2019-02-22 Visualization of three-dimensional semiconductor structures

Publications (2)

Publication Number Publication Date
TW201945691A TW201945691A (en) 2019-12-01
TWI778239B true TWI778239B (en) 2022-09-21

Family

ID=67846809

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108107196A TWI778239B (en) 2018-03-05 2019-03-05 Visualization of three-dimensional semiconductor structures

Country Status (5)

Country Link
JP (2) JP7189959B2 (en)
KR (1) KR102468979B1 (en)
CN (1) CN111837226B (en)
TW (1) TWI778239B (en)
WO (1) WO2019173170A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11610297B2 (en) * 2019-12-02 2023-03-21 Kla Corporation Tomography based semiconductor measurements using simplified models
CN112384749B (en) 2020-03-13 2022-08-19 长江存储科技有限责任公司 System and method for semiconductor chip hole geometry metrology
US11798828B2 (en) 2020-09-04 2023-10-24 Kla Corporation Binning-enhanced defect detection method for three-dimensional wafer structures
CN113539877B (en) * 2021-07-22 2023-10-17 长鑫存储技术有限公司 Measuring device and measuring method for semiconductor structure
KR102554169B1 (en) * 2021-10-06 2023-07-12 (주)구일엔지니어링 Inspection method for via-hole of the wafer
US20230196189A1 (en) * 2021-12-20 2023-06-22 Carl Zeiss Smt Gmbh Measurement method and apparatus for semiconductor features with increased throughput

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249809A1 (en) * 2003-01-25 2004-12-09 Purdue Research Foundation Methods, systems, and data structures for performing searches on three dimensional objects
US20150300965A1 (en) * 2014-04-21 2015-10-22 Kla-Tencor Corporation Scatterometry-Based Imaging and Critical Dimension Metrology
TW201546925A (en) * 2014-05-09 2015-12-16 Kla Tencor Corp Signal response metrology for scatterometry based overlay measurements
US20170167862A1 (en) * 2015-12-11 2017-06-15 Kla-Tencor Corporation X-Ray Scatterometry Metrology For High Aspect Ratio Structures
TW201727250A (en) * 2015-08-31 2017-08-01 克萊譚克公司 Model-based metrology using images

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08298092A (en) * 1995-04-26 1996-11-12 Hitachi Ltd Analyzing method for scanning electron microscope
JP3749107B2 (en) * 1999-11-05 2006-02-22 ファブソリューション株式会社 Semiconductor device inspection equipment
JP2004214382A (en) 2002-12-27 2004-07-29 Olympus Corp Film layer display method
JP3959355B2 (en) * 2003-01-17 2007-08-15 株式会社日立ハイテクノロジーズ Measuring method of three-dimensional shape of fine pattern
JP4500653B2 (en) * 2003-11-25 2010-07-14 株式会社日立ハイテクノロジーズ Sample observation method and apparatus
JP4695857B2 (en) * 2004-08-25 2011-06-08 株式会社日立ハイテクノロジーズ Semiconductor inspection method and semiconductor inspection apparatus
JP4262690B2 (en) 2005-03-16 2009-05-13 株式会社日立ハイテクノロジーズ Shape measuring apparatus and shape measuring method
US8599301B2 (en) * 2006-04-17 2013-12-03 Omnivision Technologies, Inc. Arrayed imaging systems having improved alignment and associated methods
US8485038B2 (en) * 2007-12-18 2013-07-16 General Electric Company System and method for augmented reality inspection and data visualization
US20090296073A1 (en) 2008-05-28 2009-12-03 Lam Research Corporation Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
KR101670458B1 (en) * 2010-06-25 2016-10-28 삼성전자주식회사 Method of measuring an overlay of an object
JP2013200180A (en) 2012-03-23 2013-10-03 Toshiba Corp Pattern shape measurement instrument and pattern shape measurement method
JP2014130077A (en) * 2012-12-28 2014-07-10 Hitachi High-Technologies Corp Pattern shape evaluation method, semiconductor device manufacturing method, and pattern shape evaluation device
US8832620B1 (en) * 2013-03-14 2014-09-09 Coventor, Inc. Rule checks in 3-D virtual fabrication environment
CN105814489B (en) * 2013-09-09 2017-10-27 Asml荷兰有限公司 Method and apparatus for calculating the electromagnetic scattering property of structure and the reconstruct of approximate construction
US9396443B2 (en) * 2013-12-05 2016-07-19 Tokyo Electron Limited System and method for learning and/or optimizing manufacturing processes
US9553033B2 (en) * 2014-01-15 2017-01-24 Kla-Tencor Corporation Semiconductor device models including re-usable sub-structures
US10096144B2 (en) * 2014-07-17 2018-10-09 Crayola, Llc Customized augmented reality animation generator
KR102076527B1 (en) * 2014-08-27 2020-04-02 삼성전자주식회사 A radiographic imaging apparatus and a method for controlling the same
JP2016115851A (en) 2014-12-16 2016-06-23 株式会社東芝 Semiconductor inspection apparatus, semiconductor inspection method and semiconductor inspection program
US10012599B2 (en) * 2015-04-03 2018-07-03 Kla-Tencor Corp. Optical die to database inspection
CN108475351B (en) * 2015-12-31 2022-10-04 科磊股份有限公司 For training based on model for machine learning system and computer implemented method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040249809A1 (en) * 2003-01-25 2004-12-09 Purdue Research Foundation Methods, systems, and data structures for performing searches on three dimensional objects
US20150300965A1 (en) * 2014-04-21 2015-10-22 Kla-Tencor Corporation Scatterometry-Based Imaging and Critical Dimension Metrology
TW201546925A (en) * 2014-05-09 2015-12-16 Kla Tencor Corp Signal response metrology for scatterometry based overlay measurements
TW201727250A (en) * 2015-08-31 2017-08-01 克萊譚克公司 Model-based metrology using images
US20170167862A1 (en) * 2015-12-11 2017-06-15 Kla-Tencor Corporation X-Ray Scatterometry Metrology For High Aspect Ratio Structures

Also Published As

Publication number Publication date
JP7553533B2 (en) 2024-09-18
KR20200118905A (en) 2020-10-16
CN111837226A (en) 2020-10-27
JP7189959B2 (en) 2022-12-14
KR102468979B1 (en) 2022-11-18
TW201945691A (en) 2019-12-01
JP2023025174A (en) 2023-02-21
WO2019173170A1 (en) 2019-09-12
JP2021516448A (en) 2021-07-01
CN111837226B (en) 2024-03-08

Similar Documents

Publication Publication Date Title
TWI778239B (en) Visualization of three-dimensional semiconductor structures
US11099137B2 (en) Visualization of three-dimensional semiconductor structures
US9916684B2 (en) Generating portable three-dimensional print-preview renderings of three-dimensional models
US9972120B2 (en) Systems and methods for geometrically mapping two-dimensional images to three-dimensional surfaces
US20120183204A1 (en) 3d modeling and rendering from 2d images
US10198851B2 (en) Rendering system and method
US20130112407A1 (en) Obtaining Data From An Earth Model Using Functional Descriptors
JP5734070B2 (en) Development drawing generation apparatus and development drawing generation method
CN105264566A (en) Modeling device, three-dimensional model generation device, modeling method, program, and layout simulator
JP2005308553A (en) Three-dimensional image measuring device and method
Lai et al. Surface roughness of rock faces through the curvature of triangulated meshes
Silvestre et al. High-resolution digital 3D models of Algar do Penico Chamber: limitations, challenges, and potential
Khokhlov et al. Multi-scale stereo-photogrammetry system for fractographic analysis using scanning electron microscopy
TWI482227B (en) Structure model description and use for scattermetry-based semiconductor manufacturing process metrology
JP5624457B2 (en) Three-dimensional data processing apparatus, method and program
Duran et al. Digital modeling of world's first known length reference unit: The Nippur cubit rod
CN111325825A (en) Method for determining the illumination effect of a volume data set
US20170061682A1 (en) Rendering method and apparatus
US20110235933A1 (en) Method for Reconstructing Surfaces of Specular Object from Sparse Reflection Correspondences
US20070201737A1 (en) System And Method For Vascular Visualization Using Planar Reformation Of Vascular Central Axis Surface With Biconvex Slab
US10643341B2 (en) Replicated dot maps for simplified depth computation using machine learning
Olsen et al. Hinged, pseudo-grid triangulation method for long, near-linear cliff analyses
JPWO2019173170A5 (en)
JP2018040181A (en) Civil engineering structure finished shape evaluation system, finished shape evaluation method and program
US20110074777A1 (en) Method For Displaying Intersections And Expansions of Three Dimensional Volumes

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent