TWI768801B - 半導體結構及其製作方法 - Google Patents

半導體結構及其製作方法 Download PDF

Info

Publication number
TWI768801B
TWI768801B TW110111719A TW110111719A TWI768801B TW I768801 B TWI768801 B TW I768801B TW 110111719 A TW110111719 A TW 110111719A TW 110111719 A TW110111719 A TW 110111719A TW I768801 B TWI768801 B TW I768801B
Authority
TW
Taiwan
Prior art keywords
layer
bonding
semiconductor
bonding layer
ceramic substrate
Prior art date
Application number
TW110111719A
Other languages
English (en)
Other versions
TW202240846A (zh
Inventor
楊 杜
林永豐
林琮翔
周鈺傑
周政道
盧奕均
陳俊旭
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW110111719A priority Critical patent/TWI768801B/zh
Application granted granted Critical
Publication of TWI768801B publication Critical patent/TWI768801B/zh
Publication of TW202240846A publication Critical patent/TW202240846A/zh

Links

Images

Landscapes

  • Photovoltaic Devices (AREA)
  • Bipolar Transistors (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Ceramic Products (AREA)

Abstract

一種半導體結構,包括陶瓷基底、第一鍵合層、第二鍵合層、空腔、及半導體層。其中,陶瓷基底包括位於其表面的孔洞。第一鍵合層設置於陶瓷基底的表面之上,且第二鍵合層鍵合至第一鍵合層。空腔設置於孔洞的上方且被第一鍵合層及第二鍵合層圍封。半導體層延伸跨越空腔的上方且沿著第二鍵合層的表面而設置。

Description

半導體結構及其製作方法
本揭露係關於一種半導體結構,特別是關於一種包括陶瓷基板的半導體結構及其製作方法。
隨著5G通訊及電動車產業的發展,對於高頻率、高功率半導體元件的需求也日益成長,這些高頻率、高功率半導體元件可例如是高頻電晶體、高功率場效電晶體、或高電子遷移率電晶體(high electron mobility transistor,HEMT)。高頻率、高功率半導體元件一般係採用半導體化合物,例如氮化鎵、碳化矽等III-V族半導體化合物,其具備高頻率、耐高壓、低導通電阻等特性。此外,由於為了提昇散熱效果,一般會以陶瓷基板作為上述半導體元件的承載基板。
然而,由於陶瓷基板通常是經由燒結製程而形成,因此其表面和內部會分佈孔洞和孔隙,且部分孔洞和孔隙的直徑可能會大於10μm。由於陶瓷基板會被用來承載其他的疊層,因此需要平坦且完整的表面。倘若表面存在孔洞,將會造成陶瓷基板上方的疊層產生破裂或缺陷。一般而言,可以在陶瓷基板的表面形成填充層,以消除直徑較小(≦10μm)的孔洞,但是對於直徑較大(>大於10μm)的孔洞,則仍無法透過沉積製程而消除。
因此,有必要提供一種改良的半導體結構及其製作方法,以解決先 前技術中存在的缺失。
有鑑於此,本揭露係提供一種半導體結構及其製作方法,以解決先前技術所面臨的技術問題。
根據本揭露一實施例,係揭露一種半導體結構,包括陶瓷基底、第一鍵合層、第二鍵合層、空腔、及半導體層。其中,陶瓷基底包括位於其表面的孔洞。第一鍵合層設置於陶瓷基底的表面之上,且第二鍵合層鍵合至第一鍵合層。空腔設置於孔洞的上方且被第一鍵合層及第二鍵合層圍封。半導體層延伸跨越空腔的上方且沿著第二鍵合層的表面而設置。
根據本揭露另一實施例,係揭露一種半導體結構的製作方法,包括下列步驟。提供一第一晶圓結構,其中第一晶圓結構包括陶瓷基底及第一鍵合層,陶瓷基底包括位於其表面的孔洞,且第一鍵合層係設置於陶瓷基底的表面,且部分的第一鍵合層會填入孔洞。提供第二晶圓結構,其中第二晶圓結構包括半導體層及設置於半導體層表面的第二鍵合層。鍵合第一晶圓結構和第二晶圓結構,使第一鍵合層和第二鍵合層圍封空腔,其中空腔係重疊於孔洞。
根據本揭露實施例,藉由在陶瓷基底的孔洞中和表面上形成第一鍵合層,並利用晶圓鍵合,便可以將第二鍵合層和半導體層完整轉移至陶瓷基底之上。因此,可使得半導體層完整延伸跨越位於陶瓷基底表面的各孔洞,而不會發生截斷或破裂之情形。
100:第一晶圓結構
102:陶瓷基底
104:孔洞
104a:第一孔洞
104b:第二孔洞
104c:第三孔洞
105:上表面
106:孔隙
107:下表面
112:第一填充層
114:第二填充層
116:第一鍵合層
120:凹陷
120a:第一凹陷
120b:第二凹陷
121a:邊緣
121b:邊緣
122:空腔
122a:第一空腔
122b:第二空腔
130:第一鍵合面
200:第二晶圓結構
202:第二基底
202a:半導體層
202b:載體層
205:上表面
207:下表面
216:第二鍵合層
230:第二鍵合面
240:摻雜層
300:半導體結構
304:暴露面
330:鍵合面
400:半導體結構
402:緩衝層
404:半導體疊層
406:元件層
500:製作方法
D1:第一深度
D2:第二深度
D3:第三深度
L1:距離
L2:距離
S502:步驟
S504:步驟
S506:步驟
T1:第一厚度
T2:第二厚度
T3:第三厚度
W1:第一寬度
W2:第二寬度
W3:第三寬度
W4:第四寬度
W5:第五寬度
為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字 說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。
第1圖是本揭露一實施例的提供包括孔洞的第一晶圓結構的剖面示意圖。
第2圖是本揭露一實施例的半導體裝置的剖面示意圖。
第3圖是本揭露一實施例對第一鍵合層施予平坦化製程後的剖面示意圖。
第4圖是本揭露一實施例的提供第二晶圓結構後的剖面示意圖。
第5圖是本揭露一實施例鍵合第一鍵合層和第二鍵合層之後的剖面示意圖。
第6圖是本揭露一實施例施行分離製程後的剖面示意圖。
第7圖是本揭露一實施例施行形成元件層之後的剖面示意圖。
第8圖是本揭露一實施例的半導體結構的製作方法流程圖。
本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與佈置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。
本揭露中針對「第一部件形成在第二部件上或上方」的敘述,其可以是指「第一部件與第二部件直接接觸」,也可以是指「第一部件與第二部件之間另存在有其他部件」,致使第一部件與第二部件並不直接接觸。此外,本揭露中的各種實施例可能使用重複的元件符號和/或文字註記。使用這些重複的元件符號與文字註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。
另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」、「在...之上」、「低」、「高」、「下方」、「上方」、「之下」、「之上」、「底」、「頂」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個部件或特徵與另一 個(或多個)部件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在製作過程中、使用中以及操作時的可能擺向。舉例而言,當半導體裝置被旋轉180度時,原先設置於其他部件「上方」的某部件便會變成設置於其他部件「下方」。因此,隨著半導體裝置的擺向的改變(旋轉90度或其它角度),用以描述其擺向的空間相關敘述亦應透過對應的方式予以解釋。
雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。
本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。
本揭露中所提及的「耦接」、「耦合」、「電連接」一詞包含任何直接及間接的電氣連接手段。舉例而言,若文中描述第一部件耦接於第二部件,則代表第一部件可直接電氣連接於第二部件,或透過其他裝置或連接手段間接地電氣連接至該第二部件。
雖然下文係藉由具體實施例以描述本揭露,然而本揭露的原理亦可 應用至其他的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中具有通常知識者的知識範圍。
第1圖是本揭露一實施例的提供包括孔洞的第一晶圓結構的剖面示意圖。第8圖是本揭露一實施例的半導體結構的製作方法流程圖。根據本揭露一實施例,可以施行製作方法500的步驟S502,以提供第一晶圓結構,第一晶圓結構包括陶瓷基底及設置於陶瓷基底表面的第一鍵合層,陶瓷基底包括位於其表面的孔洞,且部分的第一鍵合層會填入孔洞。根據本揭露一實施例,步驟S502可以包括多個步驟,例如第1圖至第3圖所示的步驟。如第1圖所示,在步驟S502的初始階段,可以提供第一晶圓結構100,其中,第一晶圓結構100可以是整片晶圓,也可以是經過劈裂後的晶圓。第一晶圓結構100可以包括陶瓷基底102,或是進一步包括固接於陶瓷基底102的下表面107的載體基底(圖未示)。根據本揭露的實施例,陶瓷基底102的組成可以包括多孔性的單晶或多晶陶瓷材料,例如氧化鋁(Al2O3)、氮化鋁(AlN)、氮化鎵(GaN)、氮化鋁鎵(AlGaN)、碳化矽(SiC)、或其他陶瓷材料。由於陶瓷基底102的組成包括多孔性材料,因此陶瓷基底102的上表面105和內部可分別包括至少一孔洞104或至少一孔隙106,例如是位於表面105的數十個或數百個以上的孔洞,以及位於陶瓷基底102的內部的數十個或數百個以上的孔隙,且陶瓷基底102的各孔洞104和各孔隙106的最長內徑可為1μm至20μm。根據本揭露的一實施例,陶瓷基底102的表面105可以至少包括第一孔洞104a、第二孔洞104b、及第三孔洞104c,而陶瓷基底102的內部可以至少包括孔隙106。第一孔洞104a、第二孔洞104b、及第三孔洞104c可以分別具有相同或不同的深度和寬度,舉例而言,第一孔洞104a可以具有第一深度D1和第一寬度W1,第二孔洞104b可以具有第二深度D2和第二寬度W2,第三孔洞104c可以具有第三深度D3和第三寬度W3。其中,孔洞深度由深至淺為第二深度D2、第一深度D1、第三深 度D3,孔洞寬度由寬至窄為第一寬度W1、第二寬度W2、第三寬度W3。根據本揭露一實施例,至少一孔洞的深度及/或寬度為10μm至30μm,舉例而言,第一孔洞104a的第一深度D1和第一寬度W1可以均大於10μm,且第二孔洞104b的第二深度D2和第二寬度W2可以均大於10μm。然而,第三孔洞104c的第三深度D3和第三寬度W3則均小於10μm。
根據本揭露的實施例,陶瓷基底102係為高機械強度基底,例如是機械強度高於單晶矽基底的陶瓷基底,且陶瓷基底102之上表面105不易經由研磨製程而被移除或平坦化。此外,陶瓷基底102的上表面105或孔洞104a~104c內壁可包括可選擇的塗布材料(圖未示),例如氧化鋁(Al2O3)、氧化釔(Y2O3)、或二氧化鋯(ZrO2),以改變陶瓷基底102的表面特性,但不限定於此。
第2圖是本揭露一實施例在陶瓷基底的孔洞內設置第一鍵合層後的剖面示意圖。在完成第1圖所示之步驟後,可繼續步驟S502,以形成第一鍵合層116於陶瓷基底102的上表面105之上,且部分的第一鍵合層116可以被填入於孔洞104。根據本揭露一實施例,第一鍵合層116之材質包括適用於晶圓鍵合的材料,且其材質相異於陶瓷基底102,例如是氧化矽或氮化矽等含矽介電材料,但不限定於此。第一鍵合層116的厚度T1為0.5μm至5μm,且厚度T1會小於第一孔洞104a和第二孔洞104b的深度D1、D2。此外,第一鍵合層116可以是單層結構或是多層結構,例如是由第一填充層112和第二填充層114所構成的雙層堆疊結構。根據本揭露一實施例,第一填充層112和第二填充層114可以具有相同之材質,例如氧化矽,且第一填充層112可以經由填隙能力較佳的沉積製程而形成,例如流體化學氣相沈積(flowable chemical vapor deposition,FCVD)製程或旋轉塗佈製程。舉例而言,形成第一填充層112之步驟可以包括先利用流體化學氣相沈積(flowable chemical vapor deposition,FCVD)製程或旋轉塗佈製程,以將具有流動性之前驅物填入孔洞104,其中前驅物可以是呈現液態之矽氧烷化物,但不以此 為限。接著,可以進一步將前驅物轉化成固態的第一填充層112。相較之下,針對形成第二填充層114之步驟,可以選自任何能使第二填充層114完整覆蓋住第一填充層112的沉積製程,而不限於填隙能力較佳的沉積製程,例如是低壓化學氣相沈積製程(low pressure chemical vapor deposition,LPCVD)、電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程、或原子層沉積(atomic layer deposition,ALD)製程,但不限定於此。由於第一鍵合層116不僅延伸分布於上表面105之上,還會填入於孔洞104之中,因此可以增進第一鍵合層116和陶瓷基底102之間的附著性。
藉由形成第一鍵合層116,可以使得第一鍵合層116填滿尺寸較小的孔洞104,例如第三孔洞104c。然而,對於尺寸較大的孔洞104,例如第一孔洞104a和第二孔洞104b,由於其深度及/或寬度會大於10μm,因此無法被厚度小於5μm的第一鍵合層116填滿,而使得第一鍵合層116的表面會包括至少一凹陷120,例如第一凹陷120a和第二凹陷120b。其中,第一凹陷120a和第二凹陷120b會分別位於第一孔洞104a和第二孔洞104b的正上方,且第一凹陷120a和第二凹陷120b各自的最底端仍會低於陶瓷基底102的上表面105。根據本揭露一實施例,倘若要將第一孔洞104a和第二孔洞104b填滿,則可能會過度增加第一鍵合層116的厚度T1,此作法不但會大幅增加沉積形成第一鍵合層116的時間,也會大幅增加第一鍵合層116的表面起伏程度。
第3圖是本揭露一實施例對第一鍵合層施予平坦化製程後的剖面示意圖。如第3圖所示,在完成第2圖所示的步驟後,仍繼續步驟S502,對第一鍵合層116施行平坦化製程,以形成平坦的第一鍵合面130。其中,在後續將第一鍵合面130鍵合至其他結構的表面的過程中,平坦的第一鍵合面130有利於更堅固的接合。經由上述的平坦化製程,第一鍵合層116的厚度T2會變薄,而降低至0.45μm至4.5μm,且厚度T2會小於平坦化製程前的厚度T1。此外,雖然上述平坦化製 程可以降低第一鍵合層116的凹陷120的深度,但仍無法完全去除全部的凹陷120。根據本揭露一實施例,當完成上述的平坦化製程之後,第一凹陷120a和第二凹陷120b仍存在於第一鍵合層116中,第一凹陷120a可以具有第四深度D4和第四寬度W4,第二凹陷120b可以具有第五深度D5和第五寬度W5,其中第四深度D4和第五深度D5均大於厚度T2,且第四寬度W4和第五寬度W5會分別小於第一寬度W1和第二寬度W2。
第4圖是本揭露一實施例的提供第二晶圓結構後的剖面示意圖。根據本揭露一實施例,在完成步驟S502之後,可以施行步驟S504,以提供第二晶圓結構,第二晶圓結構包括半導體層及設置於半導體層表面的第二鍵合層。根據本揭露一實施例,步驟S504可以包括多個子步驟,例如是包括第4圖所示之步驟。此外,步驟S504的施行時點不限於在步驟S502之後,其也可以是在步驟S502之前,或是和步驟S502併行。
如第4圖所示,在步驟S504的初始階段,可以提供第二晶圓結構200,其中,第二晶圓結構200可以是整片晶圓,也可以是經過劈裂後的晶圓。根據本揭露一實施例,第一晶圓結構200可以包括第二基底202,且第二基底202包括半導體層202a和位於半導體層202a下方的載體層202b。對於第二基底202為單石基底的情形,半導體層202a和載體層202b可以共構成單石結構(或稱單晶結構)。根據本揭露一實施例,上述的單石基底可以是單晶矽基底或是單晶III-V族半導體化合物基底,但不限定於此。根據本揭露一實施例,半導體層202a和載體層202b亦可以分別對應至不同的晶型或組成,端視實際需求。根據本揭露一實施例,第二晶圓結構200可以進一步包括固接於第二基底202的下表面207的載體基底(圖未示),以用以增加第二晶圓結構200的整體機械強度。
接著,可以在第二基底202的上表面205形成保護層(圖未示),例如氧化矽層、氮化矽層、氮氧化矽層、或氧氮化矽層。之後,可以在保護層的保護 下,施行離子佈植製程,以將含氫離子(例如H+、H2 +、或H3 +)及/或含氦離子(He+)注入至第二基底202之中的預定位置,而於第二基底202之中形成包括單峰的摻質濃度分布。其中,摻質濃度波峰所對應的深度可以被視為摻雜層240的主要存在區域。其中,以摻雜層240作為分界,位於摻雜層240上方之第二基底202即為半導體層202a,而位於摻雜層240下方之第二基底202即為載體層202b。根據本揭露一實施例,摻雜層240的摻質(例如氫)濃度可以為1×1020atoms/cm3至1×1021atoms/cm3,且摻雜層240和第二基底202的上表面205之間的距離L1可為50nm至800nm,端視實際需求。在形成摻雜層240之後,可以移除位於上表面205的保護層(圖未示),以暴露出上表面205。
藉由對第二基底202的局部區域佈植高濃度的氫或氦,可以破壞第二基底202的被摻雜區的結晶結構,且形成包含氣體的微小空隙。換言之,摻雜層240可以用以降低半導體層202a和載體層202b之間的附著性。因此,當後續對第二基底202施行熱處理時,存在於摻雜層240中的氣體便會膨脹,使得半導體層202a和載體層202b可沿著摻雜層240所構成的平面而彼此分離。
接著,仍如第4圖所示,可以經由施行適當的沉積製程,例如低壓化學氣相沈積製程(low pressure chemical vapor deposition,LPCVD)、電漿輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程、或原子層沉積(atomic layer deposition,ALD)製程,以形成第二鍵合層216於第二基底202的上表面205之上。根據本揭露一實施例,第二鍵合層216可以是單層結構或是多層結構,其材質包括適用於晶圓鍵合的材質,且相異於第二基底202之材質,例如是氧化矽或氮化矽等含矽介電材料,但不限定於此。根據本揭露一實施例,在形成第二鍵合層216的過程中,其製程溫度可低於摻雜層240中的氣體快速逸失或快速膨脹的溫度。舉例而言,形成第二鍵合層216的製程溫度可低於350℃,但不限定於此。在沉積形成第二鍵合層216之後,可以進一步對第二鍵合層216施行平 坦化製程,以形成平坦的第二鍵合面230。因此,在後續將第二鍵合面230鍵合至其他結構的表面的過程中,平坦的第二鍵合面230有利於更堅固的接合。經由上述的平坦化製程,第二鍵合層216的厚度T3會變薄,而降低至0.45μm至4.5μm。
在完成第4圖所示的製程步驟之後,可以施行步驟S506,以鍵合第一晶圓結構和第二晶圓結構,使第一鍵合層和第二鍵合層圍封空腔,且空腔重疊陶瓷基底的孔洞,而形成類似如第5圖所示之結構。第5圖是本揭露一實施例鍵合第一鍵合層和第二鍵合層之後的剖面示意圖。如第5圖所示,可以將第一晶圓結構100和第二晶圓結構200以面對面的方式貼合,並在適當的溫度(例如常溫)和適當的壓力下,使第一晶圓結構100鍵合至第二晶圓結構200,而形成鍵合結構300,而使第一鍵合層116及第二鍵合層216圍封第一空腔122a及第二空腔122b。根據本揭露一實施例,透過鍵合製程,可以使得第一晶圓結構100的第一鍵合面130和第二晶圓結構200的第二鍵合面230產生共價鍵結(例如Si-O-Si),而構成鍵合面330(或稱為接觸面),且空腔122a、122b各自的部分邊緣121a、121b可切齊鍵合面330。根據本揭露一實施例,在施行鍵合製程之前,可以分別對第一鍵合面130和第二鍵合面230進行電漿處理製程或臭氧處理製程,以增加表面的親水性。此外,當第一鍵合面130和第二鍵合面230的粗糙度(例如:均方根粗糙度,Rq)低於10埃時,例如5埃,可以增加兩者之間的接合強度。又,透過進行加熱處理或加壓處理,亦可以增加接合強度。
在完成第5圖所示的製程步驟之後,可以對鍵合結構300施行分離製程,以將載體層202b分離於半導體層202a。根據本揭露一實施例,在將載體層202b分離於半導體層202a的過程中,可以在400℃以上且低於700℃的溫度範圍下對第二基底202進行熱處理,以膨脹摻雜層402中的氣體,而在摻雜層402中產生裂縫。之後,可以施予適當的外力,以沿著摻雜層402所構成的平面劈開第二基底202,而形成如第6圖所示之結構。
第6圖是本揭露一實施例施行分離製程後的剖面示意圖。如第6圖所示,在施行上述的分離製程之後,可以讓半導體層202a和第二鍵合層216完整的被轉移至第一鍵合層116之上,而不會在其中產生不連續的截斷區域。換言之,半導體層202a和第二鍵合層216可以完整覆蓋住陶瓷基底105的表面,並完整的延伸橫跨下方的各孔洞104和各空腔122的正上方。根據本揭露一實施例,半導體層202a會直接接觸第二鍵合層216,且順向性沿著第二鍵合層216的表面而設置。根據本揭露一實施例,為了進一步降低半導體層202a的暴露面304的表面缺陷或增加平坦度,可以進一步對半導體層202a的暴露面304進行研磨製程或雷射處理製程。此外,半導體層202a的暴露面304和上表面205之間的距離L2可略小於原本的距離L1,而為50nm至800nm。
第7圖是本揭露一實施例施行形成元件層之後的剖面示意圖。如第7圖所示,在完成第6圖所示的結構之後,可以在半導體層202a上依序堆疊其他的層,例如緩衝層402、半導體疊層404、及元件層406,而形成半導體結構400。其中,緩衝層402可包括複數個III-V族半導體子層,在一些實施例中,緩衝層402的材料可包含氮化鋁、氮化鎵(GaN)、氮化鎵鋁(AlxGa1-xN,其中0<x<1)、其它合適的材料、或前述之組合。半導體疊層404可包括複數個半導體子層,例如是複數個III-V族半導體子層,各III-V族半導體子層的組成包括氮化鎵(GaN)、磷化銦(InP)、砷化鋁(AlAs)、砷化鎵(GaAs)、氮化鋁鎵(AlGaN)、氮化銦鋁鎵(InAlGaN)或氮化銦鎵(InGaN)、氮化鋁(AlN)、磷化鎵銦(GaInP)、砷化鋁鎵(AlGaAs)、砷化鋁銦(InAlAs)、砷化鎵銦(InGaAs),但不限定於此。元件層406內可以設置高壓電晶體元件,例如包括閘極電極、源/汲極電極、插塞、內連線、介電層、或鈍化層等部件或層,且元件層406內的部分部件或層可延伸至半導體疊層402內。
根據上述實施例,藉由在陶瓷基底的孔洞中和表面上形成第一鍵合層,並利用晶圓鍵合,便可以將第二鍵合層和半導體層完整轉移至陶瓷基底之 上。因此,可使得半導體層完整延伸跨越位於陶瓷基底表面的各孔洞,而不會在半導體層中或在半導體層上的各堆疊層中產生截斷或破裂之情形。
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
102:陶瓷基底
104:孔洞
104a:第一孔洞
104b:第二孔洞
104c:第三孔洞
106:孔隙
107:下表面
112:第一填充層
114:第二填充層
116:第一鍵合層
122:空腔
122a:第一空腔
122b:第二空腔
130:第一鍵合面
202a:半導體層
205:上表面
216:第二鍵合層
230:第二鍵合面
304:暴露面
300:半導體結構
330:鍵合面
L2:距離
T2:厚度
T3:厚度

Claims (20)

  1. 一種半導體結構,包括:一陶瓷基底,包括一表面及位於該表面的至少一孔洞;一第一鍵合層,設置於該陶瓷基底的該表面之上;一第二鍵合層,鍵合至該第一鍵合層;至少一空腔,設置於該至少一孔洞的上方,且被該第一鍵合層及該第二鍵合層圍封;以及一半導體層,延伸跨越該至少一空腔的上方,且沿著該第二鍵合層的表面而設置。
  2. 如請求項1所述的半導體結構,其中該至少一孔洞的深度和寬度的至少其中之一為10μm至30μm。
  3. 如請求項1所述的半導體結構,其中該至少一孔洞的深度大於該第一鍵合層的厚度。
  4. 如請求項1所述的半導體結構,其中該第一鍵合層之材質相異於該陶瓷基底之材質。
  5. 如請求項1所述的半導體結構,其中該第一鍵合層及該第二鍵合層之材質包括含矽介電材料。
  6. 如請求項1所述的半導體結構,其中該第一鍵合層包括一第一填充層和一第二填充層,該第二填充層係填入該至少一孔洞,且該第二填充層係 設置於該第一填充層之上。
  7. 如請求項1所述的半導體結構,其中:該第一鍵合層和該第二鍵合層之間存在一接觸面;以及該至少一空腔的至少一邊緣切齊該接觸面。
  8. 如請求項1所述的半導體結構,其中該第二鍵合層係覆蓋該陶瓷基底的該表面,且延伸跨越該至少一孔洞及該至少一空腔。
  9. 如請求項1所述的半導體結構,其中該半導體層係直接接觸該第二鍵合層,且順向性沿著該第二鍵合層的該表面而設置。
  10. 如請求項1所述的半導體結構,另包括一元件層,該元件層係設置於該半導體層之上且包括至少一電極、一互連結構、及至少一介電層。
  11. 一種半導體結構的製作方法,包括:提供一第一晶圓結構,其中該第一晶圓結構包括:一陶瓷基底,包括一表面及位於該表面的至少一孔洞;以及一第一鍵合層,設置於該陶瓷基底的該表面,且部分的該第一鍵合層會填入該至少一孔洞;提供一第二晶圓結構,其中該第二晶圓結構包括:一半導體層,包括一表面;以及一第二鍵合層,設置於該半導體層的該表面;以及鍵合該第一晶圓結構和該第二晶圓結構,使該第一鍵合層和該第二鍵合層圍 封至少一空腔,其中該至少一空腔係重疊該至少一孔洞。
  12. 如請求項11所述的半導體結構的製作方法,其中:該至少一孔洞的深度和寬度的至少其中之一為10μm至30μm;以及該第一鍵合層及該第二鍵合層之材質包括含矽介電材料。
  13. 如請求項11所述的半導體結構的製作方法,其中形成該第一晶圓結構的步驟包括:提供該陶瓷基底;以及沉積該第一鍵合層於該陶瓷基底的該表面。
  14. 如請求項13所述的半導體結構的製作方法,其中沉積該第一鍵合層於該陶瓷基底的該表面之步驟包括:沉積一第一填充層於該至少一孔洞中;以及沉積一第二填充層於該第一填充層之上及該至少一孔洞中,其中該第二填充層的表面包括至少一凹陷。
  15. 如請求項11所述的半導體結構的製作方法,其中在鍵合該第一晶圓結構和該第二晶圓結構之前,另包括:施行一平坦化製程,以分別平坦化該第一鍵合層之表面及該第二鍵合層之表面;以及在施行該平坦化製程之後,對該第一鍵合層之表面及該第二鍵合層之表面施行電漿處理製程。
  16. 如請求項11所述的半導體結構的製作方法,其中:在鍵合該第一晶圓結構和該第二晶圓結構之前,該第二晶圓結構另包括一載體層,該載體層和該半導體層構成一單晶結構;在鍵合該第一晶圓結構和該第二晶圓結構之前,另包括施行一摻雜製程,以於該載體層和該半導體層之間形成一摻雜層;以及在鍵合該第一晶圓結構和該第二晶圓結構之後,另包括沿著該摻雜面分離該載體層及該半導體層,以暴露出該摻雜層。
  17. 如請求項16所述的半導體結構的製作方法,其中在暴露出該摻雜面之後,該半導體層係延伸跨越該至少一空腔的正上方。
  18. 如請求項11所述的半導體結構的製作方法,其中在鍵合該第一晶圓結構和該第二晶圓結構之後,該第二鍵合層係覆蓋該陶瓷基底的該表面,且延伸跨越該至少一空腔。
  19. 如請求項11所述的半導體結構的製作方法,其中該半導體層包括該表面及與該表面相對設置的另一表面,且在鍵合該第一鍵合層和該第二鍵合層之後,另包括平坦化該半導體層的該另一表面。
  20. 如請求項19所述的半導體結構的製作方法,其中在平坦化該半導體層的該另一表面之後,另包括在該另一表面之上形成一元件層,該元件層包括至少一電極、一互連結構、及至少一介電層。
TW110111719A 2021-03-31 2021-03-31 半導體結構及其製作方法 TWI768801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110111719A TWI768801B (zh) 2021-03-31 2021-03-31 半導體結構及其製作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110111719A TWI768801B (zh) 2021-03-31 2021-03-31 半導體結構及其製作方法

Publications (2)

Publication Number Publication Date
TWI768801B true TWI768801B (zh) 2022-06-21
TW202240846A TW202240846A (zh) 2022-10-16

Family

ID=83103973

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110111719A TWI768801B (zh) 2021-03-31 2021-03-31 半導體結構及其製作方法

Country Status (1)

Country Link
TW (1) TWI768801B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157235A1 (en) * 2004-06-04 2008-07-03 Rogers John A Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US20080160757A1 (en) * 2006-12-27 2008-07-03 Dongbu Hitek Co., Ltd. Semiconductor device fabricating method
TW200941578A (en) * 2007-10-22 2009-10-01 Applied Materials Inc Methods for forming a silicon oxide layer over a substrate
TW201203320A (en) * 2010-04-06 2012-01-16 Kovio Inc Epitaxial structures, methods of forming the same, and devices including the same
US20160148858A1 (en) * 2014-11-26 2016-05-26 Kookmin University Industry Academy Cooperation Foundation Method of forming through-hole in silicon substrate, method of forming electrical connection element penetrating silicon substrate and semiconductor device manufactured thereby
TW202030891A (zh) * 2019-02-01 2020-08-16 柯文政 凹槽型圖案化基板結構、具高散熱能力的半導體元件、及利用該凹槽型圖案化基板結構製作該具高散熱能力的半導體元件之方法
TW202036900A (zh) * 2019-03-25 2020-10-01 世界先進積體電路股份有限公司 半導體結構、高電子遷移率電晶體及半導體結構的製造方法
CN112352310A (zh) * 2019-01-16 2021-02-09 富士电机株式会社 半导体装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157235A1 (en) * 2004-06-04 2008-07-03 Rogers John A Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics
US20080160757A1 (en) * 2006-12-27 2008-07-03 Dongbu Hitek Co., Ltd. Semiconductor device fabricating method
TW200941578A (en) * 2007-10-22 2009-10-01 Applied Materials Inc Methods for forming a silicon oxide layer over a substrate
TW201203320A (en) * 2010-04-06 2012-01-16 Kovio Inc Epitaxial structures, methods of forming the same, and devices including the same
US20160148858A1 (en) * 2014-11-26 2016-05-26 Kookmin University Industry Academy Cooperation Foundation Method of forming through-hole in silicon substrate, method of forming electrical connection element penetrating silicon substrate and semiconductor device manufactured thereby
CN112352310A (zh) * 2019-01-16 2021-02-09 富士电机株式会社 半导体装置
TW202030891A (zh) * 2019-02-01 2020-08-16 柯文政 凹槽型圖案化基板結構、具高散熱能力的半導體元件、及利用該凹槽型圖案化基板結構製作該具高散熱能力的半導體元件之方法
TW202036900A (zh) * 2019-03-25 2020-10-01 世界先進積體電路股份有限公司 半導體結構、高電子遷移率電晶體及半導體結構的製造方法

Also Published As

Publication number Publication date
TW202240846A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
JP7105239B2 (ja) パワーデバイス用の窒化ガリウムエピタキシャル構造
CN109844184B (zh) 用于功率应用和射频应用的工程化衬底结构
JP7190244B2 (ja) 加工基板に集積されているrfデバイス
US9685513B2 (en) Semiconductor structure or device integrated with diamond
US8487316B2 (en) Method of manufacturing an integrated semiconductor substrate structure with device areas for definition of GaN-based devices and CMOS devices
JP7324197B2 (ja) 加工基板構造物を使用して実現された電力デバイスおよびrfデバイス
US7368332B2 (en) SOI substrate manufacturing method
CN106611739B (zh) 衬底及其制造方法
JP2008547203A (ja) 加工基板上へのシリコンCMOS及びAlGaN/GaN広帯域増幅器を集積する新規方法
US20110248283A1 (en) Via structure of a semiconductor device and method for fabricating the same
JP7314134B2 (ja) 加工基板上の集積デバイスのためのシステムおよび方法
JP2009501434A (ja) 電力用途へのウェハーボンディングを介して得られた多層基板
US8304322B2 (en) Methods of filling isolation trenches for semiconductor devices and resulting structures
US10438792B2 (en) Methods for integration of elemental and compound semiconductors on a ceramic substrate
US10312378B2 (en) Lateral gallium nitride JFET with controlled doping profile
JP7118069B2 (ja) 縦型パワーデバイスのための方法およびシステム
TWI768801B (zh) 半導體結構及其製作方法
US10354924B2 (en) Semiconductor memory device and method of manufacturing the same
US12027413B2 (en) Semiconductor structure and method of fabricating the same
CN115172311A (zh) 半导体结构及其制作方法
WO2024049625A1 (en) Methods for forming semiconductor devices with isolation structures
TW202320129A (zh) 形成半導體裝置的方法
CN118248646A (zh) 半导体器件及其制作方法
KR20240067808A (ko) 그룹3족 질화물 반도체 템플릿의 제조 방법
CN118099078A (zh) 一种半导体器件及其制备方法