TWI762718B - Resistive memory device including a reference cell and method of controlling a reference cell - Google Patents

Resistive memory device including a reference cell and method of controlling a reference cell Download PDF

Info

Publication number
TWI762718B
TWI762718B TW107132306A TW107132306A TWI762718B TW I762718 B TWI762718 B TW I762718B TW 107132306 A TW107132306 A TW 107132306A TW 107132306 A TW107132306 A TW 107132306A TW I762718 B TWI762718 B TW I762718B
Authority
TW
Taiwan
Prior art keywords
resistance
read
current
cell
memory cells
Prior art date
Application number
TW107132306A
Other languages
Chinese (zh)
Other versions
TW201933353A (en
Inventor
表錫洙
鄭鉉澤
黃素熙
宋泰中
Original Assignee
南韓商三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南韓商三星電子股份有限公司 filed Critical 南韓商三星電子股份有限公司
Publication of TW201933353A publication Critical patent/TW201933353A/en
Application granted granted Critical
Publication of TWI762718B publication Critical patent/TWI762718B/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

A method of controlling a reference cell in a resistive memory to identify values stored in a plurality of memory cells is provided. The method includes writing a first value to the plurality of memory cells, providing, to the reference cell, monotonically increasing or monotonically decreasing reference currents. The method includes reading the plurality of memory cells as each of the reference currents is provided to the reference cell, and determining a read reference current based on an aggregation of results of the reading.

Description

包含參考單元的電阻式記憶體裝置及控制參考單元的方法Resistive memory device including reference cell and method of controlling reference cell

本發明概念涉及一種電阻式記憶體裝置,且更具體地說,涉及一種包含參考單元的電阻式記憶體裝置以及控制參考單元的方法。The inventive concept relates to a resistive memory device, and more particularly, to a resistive memory device including a reference cell and a method of controlling the reference cell.

電阻式記憶體裝置可在包含可變電阻元件的記憶單元中儲存資料。為了檢測儲存在電阻式記憶體裝置的記憶單元中的資料,可例如向記憶單元提供讀取電流。可檢測因記憶單元的讀取電流和可變電阻元件而產生的電壓。Resistive memory devices store data in memory cells that include variable resistive elements. To detect data stored in memory cells of a resistive memory device, a read current may be supplied to the memory cells, for example. The voltage generated by the read current of the memory cell and the variable resistance element can be detected.

在儲存某些值的記憶單元中,可變電阻元件的電阻可具有分佈,所述分佈可根據製程電壓溫度(process voltage temperature;PVT)和類似物而變化。為了精確讀取儲存在記憶單元中的值,精確並即時地設定可用於區分電阻的分佈的閾值電阻可具重要性,所述電阻的分佈分別對應於不同的值。In memory cells that store certain values, the resistance of the variable resistive element may have a distribution that may vary according to process voltage temperature (PVT) and the like. In order to accurately read the values stored in the memory cells, it may be important to accurately and instantaneously set threshold resistances that can be used to differentiate the distribution of resistances, which respectively correspond to different values.

本發明概念提供一種電阻式記憶體裝置,且更具體地說,提供一種能夠通過控制參考單元來精確讀取儲存在記憶單元中的值的電阻式記憶體裝置以及一種控制參考單元的方法。The present inventive concept provides a resistive memory device, and more particularly, a resistive memory device capable of accurately reading a value stored in a memory cell by controlling a reference cell, and a method of controlling a reference cell.

根據本發明概念的一方面,提供了一種控制包含於電阻式記憶體中的參考單元以識別儲存在多個記憶單元中的值的方法。所述方法包含:將第一值寫入至多個記憶單元;向參考單元提供單調遞增或單調遞減的參考電流;在將參考電流中的每一個提供給參考單元時讀取多個記憶單元;以及基於讀取結果來確定讀取參考電流。According to one aspect of the present inventive concept, a method of controlling a reference cell included in a resistive memory to identify a value stored in a plurality of memory cells is provided. The method includes: writing a first value to a plurality of memory cells; providing a monotonically increasing or monotonically decreasing reference current to a reference cell; reading the plurality of memory cells while each of the reference currents is provided to the reference cell; and The read reference current is determined based on the read result.

根據本發明概念的另一方面,提供了一種控制電阻式記憶體中的參考單元以識別儲存在多個記憶單元中的值的方法。所述方法包含:將第一值寫入至多個記憶單元;設置連接至參考單元的參考電阻器的單調遞增電阻或單調遞減電阻,且參考電流通過所述參考電阻器;在參考電阻器的電阻中的每一個下讀取多個記憶單元;以及基於讀取結果來確定讀取參考電阻。According to another aspect of the present inventive concept, a method of controlling a reference cell in a resistive memory to identify a value stored in a plurality of memory cells is provided. The method includes: writing a first value to a plurality of memory cells; setting a monotonically increasing resistance or a monotonically decreasing resistance of a reference resistor connected to a reference cell, and passing a reference current through the reference resistor; reading a plurality of memory cells under each of the ; and determining a read reference resistance based on the read results.

根據本發明概念的另一方面,提供了一種被配置成接收參考調節信號的電阻式記憶體裝置。電阻式記憶體裝置包含單元陣列,所述單元陣列包含記憶單元和參考單元。記憶單元連接至對應的第一源極線和對應的第一位元線,且參考單元連接至第二源極線和第二位元線。電阻式記憶體裝置包含電流源電路,所述電流源電路配置來將讀取電流和可變參考電流經由第一源極線或第二源極線分別提供給記憶單元和參考單元。電阻式記憶體裝置包含:放大電路,配置成檢測連接至記憶單元的第一源極線與連接至參考單元的第二源極線之間的電壓;以及控制電路,配置成控制電流源電路,以便可響應於參考調節信號在不考慮讀取電流的情況下調節參考電流。According to another aspect of the present inventive concept, a resistive memory device configured to receive a reference adjustment signal is provided. A resistive memory device includes an array of cells that includes memory cells and reference cells. The memory cells are connected to the corresponding first source lines and the corresponding first bit lines, and the reference cells are connected to the second source lines and the second bit lines. The resistive memory device includes a current source circuit configured to provide a read current and a variable reference current to a memory cell and a reference cell, respectively, via a first source line or a second source line. The resistive memory device includes: an amplification circuit configured to detect a voltage between a first source line connected to the memory cell and a second source line connected to a reference cell; and a control circuit configured to control the current source circuit, So that the reference current can be adjusted without regard to the read current in response to the reference adjustment signal.

應注意,關於一個實施例描述的本發明概念的方面可併入於不同實施例(雖然不關於其進行具體地描述)中。也就是說,所有實施例和/或任何實施例的特徵可以任何方式和/或組合進行組合。在下文闡述的說明書中詳細解釋本發明概念的這些和其它目標和/或方面。It should be noted that aspects of the inventive concepts described with respect to one embodiment may be incorporated into different embodiments (though not specifically described with respect thereto). That is, all embodiments and/or features of any embodiment may be combined in any manner and/or combination. These and other objects and/or aspects of the inventive concept are explained in detail in the specification set forth below.

圖1是示出根據示例實施例的記憶體裝置100和控制器200的框圖,且圖2是繪示根據示例實施例的圖1的記憶體裝置100與控制器200之間的通信的實例的時序圖。1 is a block diagram illustrating a memory device 100 and a controller 200 according to example embodiments, and FIG. 2 is a diagram illustrating an example of communication between the memory device 100 and the controller 200 of FIG. 1 according to example embodiments timing diagram.

參看圖1,記憶體裝置100可與控制器200通信。記憶體裝置100可從控制器200接收諸如寫入命令、讀取命令的命令CMD和/或位址ADDR,且可從控制器200接收資料DATA(即寫入資料)和/或將資料DATA(即讀取資料)發送至控制器200。此外,如圖1中所示出,記憶體裝置100可從控制器200接收參考調節信號ADJ。儘管在圖1中分別地示出命令CMD、位址ADDR、資料DATA以及參考調節信號ADJ,但在一些實施例中,可經由同一通道發送命令CMD、位址ADDR、資料DATA和/或參考調節信號ADJ中的至少兩個。如圖1中所示出,記憶體裝置100可包含單元陣列110、電流源電路120、參考電阻器電路130、放大電路140、控制電路150和/或非揮發性記憶體(non-volatile memory;NVM)160。如本文中所使用,術語“和/或”包含相關聯的所列專案中的一個或一個以上的任何組合和所有組合。當在元件列表之前時,諸如“中的至少一個”等表述修飾元件的整個列表而不是修飾列表的個別元件。Referring to FIG. 1 , the memory device 100 may communicate with the controller 200 . The memory device 100 may receive a command CMD, such as a write command, a read command, and/or an address ADDR, from the controller 200, and may receive data DATA (ie, write data) and/or transfer data (ie, write data) from the controller 200. That is, read data) is sent to the controller 200 . Furthermore, as shown in FIG. 1 , the memory device 100 may receive the reference adjustment signal ADJ from the controller 200 . Although command CMD, address ADDR, data DATA, and reference adjustment signal ADJ are shown separately in FIG. 1, in some embodiments, command CMD, address ADDR, data DATA, and/or reference adjustment may be sent via the same channel at least two of the signals ADJ. As shown in FIG. 1, the memory device 100 may include a cell array 110, a current source circuit 120, a reference resistor circuit 130, an amplification circuit 140, a control circuit 150, and/or a non-volatile memory; NVM) 160. As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items. When preceding a list of elements, expressions such as "at least one of" and the like refer to the entire list of modified elements rather than the individual elements of the modified list.

單元陣列110可包含多個記憶單元M。記憶單元M可包含可變電阻元件(例如在圖3中示出的磁性隧道結(magnetic tunnel junction;MTJ))。可變電阻元件可具有對應於儲存在記憶單元M中的值的電阻。因此,記憶體裝置100可被稱為電阻式記憶體裝置、電阻式隨機存取記憶體(resistive random access memory;RRAM)(或ReRAM)等等。舉例來說,作為非限制性實例,記憶體裝置100可包含具有諸如相變隨機存取記憶體(phase change random access memory;PRAM)或鐵電隨機存取記憶體(ferroelectric random access memory;FRAM)的結構的單元陣列110,或包含具有磁性隨機存取記憶體(magnetic random access memory;MRAM)結構的單元陣列,所述磁性隨機存取記憶體結構例如自旋轉移力矩-磁性隨機存取記憶體(spin transfer torque-magnetic random access memory;STT-MRAM)、自旋轉移力矩磁化切換RAM(spin transfer torque magnetization switching RAM;Spin-RAM)以及自旋動量轉移RAM(spin momentum transfer RAM;SMT-RAM)。如將參考圖3所描述,將主要參考MRAM來描述示例實施例,但應注意示例實施例並不限於此。The cell array 110 may include a plurality of memory cells M. The memory cell M may include a variable resistance element (eg, a magnetic tunnel junction (MTJ) shown in FIG. 3 ). The variable resistance element may have a resistance corresponding to the value stored in the memory cell M. FIG. Accordingly, the memory device 100 may be referred to as a resistive memory device, a resistive random access memory (RRAM) (or ReRAM), or the like. For example, by way of non-limiting example, the memory device 100 may include devices such as phase change random access memory (PRAM) or ferroelectric random access memory (FRAM) A cell array 110 of a structure, or including a cell array having a magnetic random access memory (MRAM) structure, such as a spin transfer torque-magnetic random access memory (spin transfer torque-magnetic random access memory; STT-MRAM), spin transfer torque magnetization switching RAM (Spin-RAM) and spin momentum transfer RAM (spin momentum transfer RAM; SMT-RAM) . As will be described with reference to FIG. 3, example embodiments will be described primarily with reference to MRAM, although it should be noted that example embodiments are not so limited.

單元陣列110可包含參考單元R,所述參考單元R用以識別儲存在記憶單元M中的值。舉例來說,如圖1中所示出,單元陣列110可包含通常連接至字元線WLi的多個記憶單元M和參考單元R,且因此,通常連接至字元線WLi的多個記憶單元M和參考單元R可被啟動的字元線WLi同時選擇。儘管圖1中僅示出一個參考單元R,但在一些實施例中,單元陣列110可包含連接至字元線WLi的兩個以上參考單元。Cell array 110 may include reference cells R for identifying values stored in memory cells M. FIG. For example, as shown in FIG. 1, cell array 110 may include a plurality of memory cells M and reference cells R that are typically connected to word line WLi, and thus, a plurality of memory cells that are typically connected to word line WLi M and reference cell R can be simultaneously selected by the activated word line WLi. Although only one reference cell R is shown in FIG. 1, in some embodiments, cell array 110 may include more than two reference cells connected to word line WLi.

電流源電路120可向單元陣列110提供讀取電流I_RD和參考電流I_REF。舉例來說,電流源電路120可向記憶單元M提供讀取電流I_RD,並向參考單元R提供參考電流I_REF。電流源電路120還可響應於從控制電路150接收的電流控制信號CC來調節參考電流I_REF。將參考圖6來描述電流源電路120的實例。The current source circuit 120 may provide the read current I_RD and the reference current I_REF to the cell array 110 . For example, the current source circuit 120 may provide the read current I_RD to the memory cell M and the reference current I_REF to the reference cell R. The current source circuit 120 may also adjust the reference current I_REF in response to the current control signal CC received from the control circuit 150 . An example of the current source circuit 120 will be described with reference to FIG. 6 .

參考電阻器電路130可提供電阻器,參考電流I_REF通過所述電阻器。舉例來說,參考電阻器電路130可提供在第一節點N1與第二節點N2之間具有參考電阻R_REF的電阻器。此外,參考電阻器電路130可根據從控制電路150接收的電阻控制信號RC來調節參考電阻R_REF。參考電阻器電路130的電阻器可具有特性,所述特性不同于形成於單元陣列110中的一個或多個電阻器的特性。在一些實施例中,參考電阻器電路130的電阻器可具有更好的特性,例如比形成於單元陣列110中的電阻器中的一個或多個對製程電壓溫度(PVT)變化更加敏感。將參考圖7A和圖7B來描述參考電阻器電路130的實例。將理解,儘管術語“第一”、“第二”、“第三”等在本文中可以用於描述各種元件,但這些元件不應受這些術語的限制;實際上,這些術語僅用於將一個元件與另一元件區分開來。因此,下文討論的第一元件可被命名為第二元件,而不脫離本發明概念的範圍。The reference resistor circuit 130 may provide resistors through which the reference current I_REF passes. For example, the reference resistor circuit 130 may provide a resistor with a reference resistance R_REF between the first node N1 and the second node N2. In addition, the reference resistor circuit 130 may adjust the reference resistance R_REF according to the resistance control signal RC received from the control circuit 150 . The resistors of the reference resistor circuit 130 may have characteristics that are different from the characteristics of one or more resistors formed in the cell array 110 . In some embodiments, the resistors of the reference resistor circuit 130 may have better characteristics, such as being more sensitive to process voltage temperature (PVT) variations than one or more of the resistors formed in the cell array 110 . An example of the reference resistor circuit 130 will be described with reference to FIGS. 7A and 7B . It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, these elements should not be limited by these terms; One element is distinguished from another element. Thus, a first element discussed below could be termed a second element without departing from the scope of the inventive concept.

放大電路140可接收讀取電壓V_RD和參考電壓V_REF,且可基於讀取電壓V_RD和參考電壓V_REF來識別儲存在記憶單元M中的值。舉例來說,通過比較讀取電壓V_RD與參考電壓V_REF,放大電路140可輸出對應於儲存在記憶單元M中的值的信號。讀取電壓V_RD可包含因讀取電流I_RD通過包含於記憶單元M中的可變電阻元件而引起的電壓降,所述讀取電流由電流源電路120提供。除包含因記憶單元M引起的電壓降以外,讀取電壓V_RD可更包含因讀取電流I_RD通過的路徑的寄生電阻(例如在圖5A中示出的行解碼器170a、源極線SLj以及位元線BLj)而產生的電壓降。The amplification circuit 140 may receive the read voltage V_RD and the reference voltage V_REF, and may identify the value stored in the memory cell M based on the read voltage V_RD and the reference voltage V_REF. For example, by comparing the read voltage V_RD with the reference voltage V_REF, the amplifying circuit 140 can output a signal corresponding to the value stored in the memory cell M. The read voltage V_RD may include the voltage drop caused by the read current I_RD provided by the current source circuit 120 through the variable resistance element included in the memory cell M. FIG. In addition to including the voltage drop due to the memory cell M, the read voltage V_RD may further include the parasitic resistance of the path through which the read current I_RD passes (eg, the row decoder 170a, the source line SLj, and the bit line shown in FIG. 5A ). The voltage drop caused by the element line BLj).

類似於讀取電壓V_RD,參考電壓V_REF可不僅包含由電流源電路120提供的參考電流I_REF通過參考單元R時產生的電壓降,還包含由參考電流I_REF通過的路徑的寄生電阻(例如在圖5A中示出的行解碼器170a、短源極線SSL以及短位元線SBL)而產生的電壓降。此外,參考電壓V_REF可更包含因由參考電阻器電路130提供的參考電阻R_REF而產生的電壓降。因此,通過控制參考電流I_REF和參考電阻器電路130的參考電阻R_REF,可調節參考電壓V_REF,且還可調節用於識別儲存在記憶單元M中的值的參考。在一些實施例中,參考電阻器的參考電阻可以是單調遞增或單調遞減的。具體地說,參考電阻可以是在多個讀取迴圈或寫入迴圈期間反復升高的單調遞增電阻。在一些實施例中,參考電阻可以是在多個讀取迴圈或寫入迴圈期間反復降低的單調遞減電阻。此單調遞增或遞減參考電阻可以是例如階梯序列電阻或線性斜坡形序列電阻。Similar to the read voltage V_RD, the reference voltage V_REF may include not only the voltage drop generated when the reference current I_REF provided by the current source circuit 120 passes through the reference cell R, but also the parasitic resistance of the path passed by the reference current I_REF (eg, in FIG. 5A ). Row decoder 170a, short source line SSL, and short bit line SBL) shown in . In addition, the reference voltage V_REF may further include a voltage drop due to the reference resistor R_REF provided by the reference resistor circuit 130 . Therefore, by controlling the reference current I_REF and the reference resistance R_REF of the reference resistor circuit 130, the reference voltage V_REF can be adjusted, and the reference for identifying the value stored in the memory cell M can also be adjusted. In some embodiments, the reference resistance of the reference resistor may be monotonically increasing or monotonically decreasing. Specifically, the reference resistance may be a monotonically increasing resistance that repeatedly increases during multiple read or write cycles. In some embodiments, the reference resistance may be a monotonically decreasing resistance that decreases repeatedly during multiple read loops or write loops. This monotonically increasing or decreasing reference resistance can be, for example, a ladder sequence resistance or a linear ramp-shaped sequence resistance.

如參考圖5A和後續圖所描述,在一些實施例中,參考單元R可以是不包含諸如可變電阻元件的電阻器元件的短路單元。因此,由於參考電阻器電路130的特性,參考電壓V_REF可能對PVT變化不敏感。如將參考圖8和後續圖所描述,當精確確定參考電壓V_REF時,可提高記憶體裝置100的操作可靠性。As described with reference to FIG. 5A and subsequent figures, in some embodiments, the reference cell R may be a short-circuit cell that does not include a resistor element such as a variable resistance element. Therefore, due to the characteristics of the reference resistor circuit 130, the reference voltage V_REF may be insensitive to PVT changes. As will be described with reference to FIG. 8 and subsequent figures, when the reference voltage V_REF is accurately determined, the operational reliability of the memory device 100 can be improved.

控制電路150可通過使用電流控制信號CC和電阻器控制信號RC來分別控制電流源電路120和參考電阻器電路130,和/或存取NVM 160。在一些實施例中,控制電路150可回應於從控制器200接收的參考調節信號ADJ來產生電流控制信號CC和電阻器控制信號RC。舉例來說,控制電路150可基於參考調節信號ADJ來增大或減小參考電流I_REF並增大或減小參考電阻器電路130的參考電阻R_REF。因此,可回應於由控制器200提供的參考調節信號ADJ來調節參考電壓V_REF。The control circuit 150 may control the current source circuit 120 and the reference resistor circuit 130 and/or access the NVM 160 by using the current control signal CC and the resistor control signal RC, respectively. In some embodiments, the control circuit 150 may generate the current control signal CC and the resistor control signal RC in response to the reference adjustment signal ADJ received from the controller 200 . For example, the control circuit 150 may increase or decrease the reference current I_REF and increase or decrease the reference resistance R_REF of the reference resistor circuit 130 based on the reference adjustment signal ADJ. Therefore, the reference voltage V_REF may be adjusted in response to the reference adjustment signal ADJ provided by the controller 200 .

在一些實施例中,為了調節參考電壓V_REF,可固定參考電流I_REF或參考電阻器電路130的參考電阻R_REF中的一個。舉例來說,當參考電流I_REF固定時,控制電路150可不產生電流控制信號CC,並根據參考調節信號ADJ通過使用電阻器控制信號RC來調節參考電阻電路130的參考電阻R_REF。另一方面,當參考電阻器電路130的參考電阻R_REF固定時,控制電路150可不產生電阻器控制信號RC,並可根據參考調節信號ADJ通過使用電流控制信號CC來調節參考電流I_REF。In some embodiments, in order to adjust the reference voltage V_REF, one of the reference current I_REF or the reference resistance R_REF of the reference resistor circuit 130 may be fixed. For example, when the reference current I_REF is fixed, the control circuit 150 may not generate the current control signal CC, and adjust the reference resistance R_REF of the reference resistance circuit 130 by using the resistor control signal RC according to the reference adjustment signal ADJ. On the other hand, when the reference resistance R_REF of the reference resistor circuit 130 is fixed, the control circuit 150 may not generate the resistor control signal RC, and may adjust the reference current I_REF by using the current control signal CC according to the reference adjustment signal ADJ.

NVM 160可儲存有關參考電壓V_REF的資料。舉例來說,NVM 160可儲存有關讀取參考電流的資料和有關讀取參考電阻器的資料,所述讀取參考電流是用以從記憶單元M讀取資料的參考電流,所述讀取參考電阻器是用以從記憶單元M讀取資料的參考電阻器。舉例來說,可將對應於讀取參考電流的控制資料寫入至電阻式記憶體。在一些實施例中,控制電路150可回應於從控制器200接收的命令參考電壓V_REF的設置的命令CMD(或設置命令)來將有關參考電壓V_REF的資料寫入至NVM 160,並回應於控制資料的讀取操作的命令CMD(或讀取命令)來根據儲存在NVM 160中的資料以產生電流控制信號CC和電阻控制信號RC。在一些實施例中,可省略NVM 160。舉例來說,包含於單元陣列110中的記憶單元M中的至少一些可儲存有關參考電壓V_REF的資料,並通過控制電路150來存取。The NVM 160 may store data about the reference voltage V_REF. For example, NVM 160 may store data about a read reference current, which is a reference current used to read data from memory cell M, and data about a read reference resistor, the read reference The resistor is a reference resistor for reading data from the memory cell M. For example, control data corresponding to the read reference current can be written to resistive memory. In some embodiments, the control circuit 150 may write data about the reference voltage V_REF to the NVM 160 in response to a command CMD (or a set command) received from the controller 200 that commands the setting of the reference voltage V_REF, and in response to the control The command CMD (or read command) of the data read operation generates the current control signal CC and the resistance control signal RC according to the data stored in the NVM 160 . In some embodiments, NVM 160 may be omitted. For example, at least some of the memory cells M included in the cell array 110 may store data about the reference voltage V_REF and be accessed by the control circuit 150 .

控制器200可包含參考微調器210。參考微調器210可通過使用參考調節信號ADJ來調節記憶體裝置100的參考電壓V_REF。基於根據經調節的參考電壓V_REF從記憶單元M讀取資料的結果,參考微調器210可說明確定參考電壓V_REF,所述參考電壓可以是將用以從記憶單元M讀取資料的讀取參考電壓。Controller 200 may include reference trimmer 210 . The reference trimmer 210 may adjust the reference voltage V_REF of the memory device 100 by using the reference adjustment signal ADJ. Based on the results of reading data from the memory cell M according to the adjusted reference voltage V_REF, the reference trimmer 210 may illustrate the determination of the reference voltage V_REF, which may be the read reference voltage that will be used to read data from the memory cell M .

在一些實施例中,參考調節信號ADJ可以與讀取命令READ同步。也就是說,參考調節信號ADJ可與讀取命令READ在時間上重疊同時發生,或在讀取命令READ之前或跟隨所述讀取命令發生,以待提供給記憶體裝置100。例如,如圖2中所示出,控制器200可通過使用命令CMD、位址ADDR以及參考調節信號ADJ在時間t1處開始向記憶體裝置100提供讀取命令READ、第一位址A1以及第一選項OP1。記憶體裝置100的控制電路150可根據第一選項OP1產生電流控制信號CC和電阻控制信號RC,且因此可確定參考電流I_REF和參考電阻器電路130的參考電阻R_REF。根據讀取命令READ,可選擇對應於第一位址A1的記憶單元M和參考單元R。此外,通過根據記憶單元M的讀取電壓V_RD和根據參考電阻器電路130的參考電阻R_REF的參考電壓V_REF,可識別儲存在記憶單元M中的值。可經由資料DATA將所識別的值作為第一輸出OUT1提供給控制器200。類似地,在時間t2處,記憶體裝置100可回應於控制器200的讀取命令READ、第二位址A2以及第二選項OP2向控制器200提供第二輸出OUT2。在一些實施例中,不同於圖2中所繪示,參考調節信號ADJ可與排他性命令同步並被提供給記憶體裝置100,所述排他性命令是不同於讀取命令READ的命令。In some embodiments, the reference adjustment signal ADJ may be synchronized with the read command READ. That is, the reference adjustment signal ADJ may occur simultaneously with the read command READ overlapping in time, or before or following the read command READ, to be provided to the memory device 100 . For example, as shown in FIG. 2, the controller 200 may start providing the memory device 100 with the read command READ, the first address A1, and the first address A1 at time t1 by using the command CMD, the address ADDR, and the reference adjustment signal ADJ One option OP1. The control circuit 150 of the memory device 100 may generate the current control signal CC and the resistance control signal RC according to the first option OP1 , and thus may determine the reference current I_REF and the reference resistance R_REF of the reference resistor circuit 130 . According to the read command READ, the memory cell M and the reference cell R corresponding to the first address A1 can be selected. In addition, the value stored in the memory cell M can be identified by the read voltage V_RD of the memory cell M and the reference voltage V_REF according to the reference resistance R_REF of the reference resistor circuit 130 . The identified value may be provided to the controller 200 as the first output OUT1 via the data DATA. Similarly, at time t2, the memory device 100 may provide the second output OUT2 to the controller 200 in response to the controller 200's read command READ, the second address A2, and the second option OP2. In some embodiments, other than that depicted in FIG. 2, the reference adjustment signal ADJ may be synchronized with an exclusive command and provided to the memory device 100, which is a command other than the read command READ.

在一些實施例中,根據單調遞增或單調遞減的參考電壓,參考微調器210可從預定值已寫入的多個記憶單元中讀取資料並基於讀取結果來確定讀取參考電壓。具體地說,參考電壓可以是在多個讀取迴圈或寫入迴圈期間反復升高的單調遞增電壓。在一些實施例中,參考電壓可以是在多個讀取迴圈或寫入迴圈期間反復降低的單調遞減電壓。此單調遞增或遞減參考電壓可以是例如階梯序列電壓或線性斜坡形序列電壓。In some embodiments, according to the monotonically increasing or monotonically decreasing reference voltage, the reference trimmer 210 may read data from a plurality of memory cells to which predetermined values have been written and determine the read reference voltage based on the read result. Specifically, the reference voltage may be a monotonically increasing voltage that repeatedly increases during multiple read or write cycles. In some embodiments, the reference voltage may be a monotonically decreasing voltage that decreases repeatedly during multiple read loops or write loops. This monotonically increasing or decreasing reference voltage may be, for example, a staircase sequence voltage or a linear ramp-shaped sequence voltage.

如上文所描述,通過控制參考單元R,可誘發記憶單元M的精確閾值電阻,如將隨後描述,並可精確讀取儲存在記憶單元M中的值。此外,由於精確閾值電阻經即時檢測,所以可提供記憶體裝置100的提高的生產率,且根據記憶體裝置100的操作環境,可提供自我調整校準。As described above, by controlling the reference cell R, a precise threshold resistance of the memory cell M can be induced, as will be described later, and the value stored in the memory cell M can be accurately read. In addition, increased productivity of the memory device 100 may be provided since the precise threshold resistance is detected in real time, and self-adjusting calibration may be provided according to the operating environment of the memory device 100 .

圖3是繪示根據示例實施例的圖1的記憶單元M的實例的圖,且圖4是示出由根據一些示例實施例的圖3中示出的記憶單元M提供的電阻的分佈的曲線圖。現在參看圖3,示出了包含磁性隧道結(MTJ)元件的記憶單元M',所述磁性隧道結元件作為可變電阻元件。圖4繪示用於MTJ元件的電阻的分佈,所述MTJ元件配置為圖3的可變電阻元件。3 is a diagram illustrating an example of the memory cell M of FIG. 1 according to example embodiments, and FIG. 4 is a graph illustrating the distribution of resistance provided by the memory cell M shown in FIG. 3 according to some example embodiments picture. Referring now to FIG. 3, a memory cell M' is shown containing a magnetic tunnel junction (MTJ) element as a variable resistance element. FIG. 4 shows the distribution of resistance for the MTJ element configured as the variable resistance element of FIG. 3 .

如圖3中所繪示,記憶單元M'可包含串聯連接在位元線BLj與源極線SLj之間的可變電阻元件(MTJ元件)和單元電晶體CT。在一些實施例中,如圖3中所繪示,可變電阻元件(MTJ元件)和單元電晶體CT可在位元線BLj與源極線SLj之間按可變電阻元件(MTJ元件)和單元電晶體CT的順序連接。在一些實施例中,不同於圖3中所繪示,可變電阻元件(MTJ元件)和單元電晶體CT可在位元線BLj與源極線SLj之間按單元電晶體CT和可變電阻元件(MTJ元件)的順序連接。As shown in FIG. 3, the memory cell M' may include a variable resistance element (MTJ element) and a cell transistor CT connected in series between the bit line BLj and the source line SLj. In some embodiments, as shown in FIG. 3 , the variable resistance element (MTJ element) and the cell transistor CT may be arranged between the bit line BLj and the source line SLj as a variable resistance element (MTJ element) and Sequential connection of cell transistors CT. In some embodiments, different from that shown in FIG. 3 , the variable resistance element (MTJ element) and the cell transistor CT may be arranged between the bit line BLj and the source line SLj as the cell transistor CT and the variable resistance Sequential connection of elements (MTJ elements).

可變電阻元件(MTJ元件)可包含自由層FL和釘紮層PL,以及自由層FL與釘紮層PL之間的勢壘層BL。如在圖3中用箭頭標記的,雖然釘紮層PL的磁化方向可以是固定的,但自由層FL可具有與釘紮層PL的磁化方向相同或相反的磁化。當釘紮層PL和自由層FL具有同一磁化方向時,可將可變電阻元件(MTJ元件)稱為處於並聯狀態P。另一方面,當釘紮層PL和自由層FL具有彼此不同的磁化方向時,可將可變電阻元件(MTJ元件)稱為處於反並聯狀態AP。在一些實施例中,可變電阻元件(MTJ元件)可更包含反鐵磁層,以使釘紮層PL可具有固定磁化方向。The variable resistance element (MTJ element) may include a free layer FL and a pinning layer PL, and a barrier layer BL between the free layer FL and the pinning layer PL. As marked with arrows in FIG. 3 , although the magnetization direction of the pinned layer PL may be fixed, the free layer FL may have the same or opposite magnetization to that of the pinned layer PL. When the pinned layer PL and the free layer FL have the same magnetization direction, the variable resistance element (MTJ element) may be said to be in a parallel state P. On the other hand, when the pinned layer PL and the free layer FL have different magnetization directions from each other, the variable resistance element (MTJ element) can be said to be in an anti-parallel state AP. In some embodiments, the variable resistance element (MTJ element) may further include an antiferromagnetic layer, so that the pinning layer PL may have a fixed magnetization direction.

可具有處於並聯狀態P的低電阻RP 的可變電阻元件(MTJ元件)可具有處於反並聯狀態AP的高電阻RAP 。在說明書中,假定當可變電阻元件(MTJ元件)具有低電阻RP 時,記憶單元M'儲存'0',且當可變電阻元件(MTJ元件)具有高電阻RAP 時,記憶單元M'儲存'1'。此外,在說明書中,對應於'0'的電阻RP 可被稱為並聯電阻RP ,且對應於'1'的電阻RAP 可被稱為反並聯電阻RAP 。然而,本文所描述的各種實施例也可適用於相反的儲存情形。A variable resistance element (MTJ element) that may have a low resistance R P in a parallel state P may have a high resistance R AP in an anti-parallel state AP . In the specification, it is assumed that when the variable resistance element (MTJ element) has a low resistance R P , the memory cell M' stores '0', and when the variable resistance element (MTJ element) has a high resistance R AP , the memory cell M''Save'1'. Also, in the specification, the resistance R P corresponding to '0' may be referred to as a parallel resistance R P , and the resistance R AP corresponding to '1' may be referred to as an anti-parallel resistance R AP . However, the various embodiments described herein are also applicable to the opposite storage situation.

參看圖4,可變電阻元件MTJ的電阻可具有分佈。舉例來說,如圖4中所繪示,儲存'0'的記憶單元之間可存在並聯電阻RP 分佈(或第一分佈),且儲存'1'的記憶單元之間可存在反並聯電阻RAP 分佈(或第二分佈)。在一些實施例中,如圖4中所繪示,反並聯電阻RAP 分佈可為劣化的,也就是說相較于並聯電阻RP 分佈而具有更高方差。換句話說,並聯電阻RP 分佈的更高部分的一些值可接近于反並聯電阻RAP 分佈的下部部分中的值。此外,如在圖4中用虛線標記的,由於各種原因,可變電阻元件(MTJ元件)的電阻的分佈可為劣化的。因此,用於區分並聯電阻RP 分佈與反並聯電阻RAP 分佈的閾值電阻RTH 的範圍可被縮小,且確定精確的閾值電阻RTH 可具重要性。如將在稍後參考圖8至圖13所描述,根據示例實施例,可通過控制參考單元R來估計可變電阻元件MTJ的電阻的分佈,且可基於所估計分佈來確定閾值電阻RTHReferring to FIG. 4, the resistance of the variable resistance element MTJ may have a distribution. For example, as shown in FIG. 4 , there may be a parallel resistance RP distribution (or first distribution) between memory cells storing '0', and an anti-parallel resistance may exist between memory cells storing '1' R AP distribution (or second distribution). In some embodiments, as depicted in FIG. 4 , the anti-parallel resistance R AP distribution may be degraded, that is, have a higher variance than the parallel resistance R P distribution. In other words, some values in the higher portion of the shunt resistance R P distribution may be close to values in the lower portion of the anti-parallel resistance R AP distribution. Furthermore, as marked with a dotted line in FIG. 4 , the distribution of the resistance of the variable resistance element (MTJ element) may be degraded for various reasons. Therefore, the range of threshold resistances R TH used to distinguish the parallel resistance R P distribution from the anti-parallel resistance R AP distribution may be narrowed, and it may be important to determine an accurate threshold resistance R TH . As will be described later with reference to FIGS. 8 to 13 , according to example embodiments, the distribution of the resistance of the variable resistance element MTJ may be estimated by controlling the reference unit R, and the threshold resistance R TH may be determined based on the estimated distribution.

再次參看圖3,單元電晶體CT可包含連接至字元線WLi的閘極、分別連接至源極線SLi和可變電阻元件(MTJ元件)的源極和汲極。根據施加於字元線WLi的信號,單元電晶體CT可將可變電阻元件(MTJ元件)與源極線SLj電連接或隔開。例如,在寫入操作中,可打開單元電晶體CT以將'0'寫入至記憶單元M',且從位元線BLj流動至源極線SLj的電流可通過可變電阻元件(MTJ元件)和單元電晶體CT。為了將'1'寫入至記憶單元M',可打開單元電晶體CT,且從源極線SLj流動至位元線BLj的電流可通過單元電晶體CT和可變電阻元件(MTJ元件)。在讀取操作中,可打開單元電晶體CT,且從位元線BLj流動至源極線SLj的電流或從源極線SLj流動至位元線BLj的電流(即讀取電流I_RD)可通過單元電晶體CT和可變電阻元件(MTJ元件)。在本文所描述的各種實施例中,假定讀取電流I_RD從源極線SLj流動至位元線BLj。Referring again to FIG. 3 , the cell transistor CT may include a gate connected to the word line WLi, source and drain connected to the source line SLi and a variable resistance element (MTJ element), respectively. The cell transistor CT may electrically connect or separate the variable resistance element (MTJ element) from the source line SLj according to the signal applied to the word line WLi. For example, in a write operation, the cell transistor CT may be turned on to write '0' to the memory cell M', and the current flowing from the bit line BLj to the source line SLj may pass through the variable resistance element (MTJ element ) and unit transistor CT. To write '1' to memory cell M', cell transistor CT may be turned on, and current flowing from source line SLj to bit line BLj may pass through cell transistor CT and the variable resistance element (MTJ element). In a read operation, the cell transistor CT may be turned on, and the current flowing from the bit line BLj to the source line SLj or the current flowing from the source line SLj to the bit line BLj (ie, the read current I_RD) may pass through Unit transistor CT and variable resistance element (MTJ element). In the various embodiments described herein, it is assumed that read current I_RD flows from source line SLj to bit line BLj.

圖5A和圖5B是繪示根據示例實施例的圖1的記憶體裝置100的實例的框圖。現在參看圖5A和圖5B,圖5A和圖5B分別繪示讀取操作期間的記憶體裝置100a和記憶體裝置100b。在記憶體裝置100a和記憶體裝置100b中,可將參考電阻器電路130a和參考電阻器電路130b互不相同地佈置。下文中,將參考圖1來描述圖5A和圖5B。在圖5A和圖5B的描述中,為簡潔起見,省略了與圖1的描述相重複的描述。5A and 5B are block diagrams illustrating an example of the memory device 100 of FIG. 1 according to example embodiments. Referring now to FIGS. 5A and 5B, FIGS. 5A and 5B illustrate memory device 100a and memory device 100b, respectively, during a read operation. In the memory device 100a and the memory device 100b, the reference resistor circuit 130a and the reference resistor circuit 130b may be arranged differently from each other. Hereinafter, FIGS. 5A and 5B will be described with reference to FIG. 1 . In the descriptions of FIGS. 5A and 5B , the overlapping descriptions with those of FIG. 1 are omitted for the sake of brevity.

參看圖5A,記憶體裝置100a可包含單元陣列110a、電流源電路120a、參考電阻器電路130a、放大電路140a以及行解碼器170a。單元陣列110a可包含共同連接至字元線WLi的記憶單元M和參考單元R。每一個記憶單元M可連接至位元線BLj和源極線SLj,參考單元R可連接至短位元線SBL和短源極線SSL。位元線BLj、源極線SLj、短位元線SBL以及短源極線SSL可延伸至行解碼器170a並連接至所述行解碼器170a。5A, the memory device 100a may include a cell array 110a, a current source circuit 120a, a reference resistor circuit 130a, an amplification circuit 140a, and a row decoder 170a. The cell array 110a may include memory cells M and reference cells R that are commonly connected to word line WLi. Each memory cell M can be connected to a bit line BLj and a source line SLj, and a reference cell R can be connected to a short bit line SBL and a short source line SSL. Bit line BLj, source line SLj, short bit line SBL, and short source line SSL may extend to and connect to row decoder 170a.

記憶單元M可包含串聯連接在位元線BLj與源極線SLj之間的可變電阻元件(MTJ元件)和單元電晶體CT,而參考單元R可包含連接至短位元線SBL和短源極線SSL的單元電晶體CT。因此,參考單元R的單元電晶體CT、短位元線SBL以及短源極線SSL可電短路或電斷開。不包含電阻元件的參考單元R可被稱為短路單元。為了補償因連接至記憶單元M的位元線BLj和源極線SLj引起的電壓降,如圖5A中所繪示,可將連接至短位元線SBL和短源極線SSL的參考單元R佈置為在單元陣列110a中。如圖5A中所繪示,參考單元R可以是短路單元。因此,可將因記憶單元M的可變電阻元件(MTJ元件)引起的電壓降與因佈置在單元陣列110a外的參考電阻器電路130a引起的電壓降進行比較。不受單元陣列110的空間限制和結構限制,佈置在單元陣列110a外的參考電阻器電路130a可提供具有寬可變範圍且可對PVT及類似物不敏感的參考電阻R_REF,以便可更精確地調節參考電壓V_REF。Memory cell M may include a variable resistance element (MTJ element) and cell transistor CT connected in series between bit line BLj and source line SLj, while reference cell R may include a short source connected to short bit line SBL and a short source The unit transistor CT of the pole line SSL. Therefore, the cell transistor CT, the short bit line SBL, and the short source line SSL of the reference cell R may be electrically short-circuited or electrically disconnected. A reference cell R that does not include a resistance element may be referred to as a short-circuit cell. In order to compensate for the voltage drop due to the bit line BLj and the source line SLj connected to the memory cell M, as shown in FIG. 5A, the reference cell R connected to the short bit line SBL and the short source line SSL can be arranged in the cell array 110a. As shown in FIG. 5A, the reference cell R may be a short-circuit cell. Therefore, the voltage drop due to the variable resistance element (MTJ element) of the memory cell M can be compared with the voltage drop due to the reference resistor circuit 130a arranged outside the cell array 110a. Not limited by the space and structure of the cell array 110, the reference resistor circuit 130a arranged outside the cell array 110a can provide a reference resistance R_REF with a wide variable range and insensitive to PVT and the like, so that a more accurate Adjust the reference voltage V_REF.

行解碼器170a可根據行位址COL來在位元線BLj、源極線SLj、短位元線SBL以及短源極線SSL上進行路由。行位址COL可由從圖1的控制器200接收的位址ADDR來產生。行解碼器170a可根據行位址COL來選擇記憶單元和參考單元中的至少一些,所述記憶單元和參考單元根據單元陣列110a中的被啟動字元線WLi被選擇。舉例來說,如圖5A中所繪示,行解碼器170a可將記憶單元M的位元線BLj連接至負電源電壓源VSS,並將源極線SLj連接至電流源電路120a。此外,行解碼器170a可將參考單元R的短位元線SBL連接至參考電阻器電路130a,並將短源極線SSL連接至電流源電路120a。因此,讀取電流I_RD可通過源極線SLj、記憶單元M以及位元線BLj並朝著負電源電壓源VSS流動。參考電流I_REF可通過短源極線SSL、參考單元R、短位元線SBL以及參考電阻器電路130a,並朝著負電源電壓源VSS流動。Row decoder 170a may route on bit line BLj, source line SLj, short bit line SBL, and short source line SSL according to the row address COL. The row address COL may be generated from the address ADDR received from the controller 200 of FIG. 1 . The row decoder 170a may select at least some of the memory cells and reference cells selected according to the enabled word line WLi in the cell array 110a according to the row address COL. For example, as shown in FIG. 5A, row decoder 170a may connect bit line BLj of memory cell M to negative supply voltage source VSS and connect source line SLj to current source circuit 120a. In addition, the row decoder 170a may connect the short bit line SBL of the reference cell R to the reference resistor circuit 130a and connect the short source line SSL to the current source circuit 120a. Therefore, the read current I_RD can flow through the source line SLj, the memory cell M, and the bit line BLj and toward the negative power supply voltage source VSS. The reference current I_REF may flow through the short source line SSL, the reference cell R, the short bit line SBL, and the reference resistor circuit 130a and toward the negative supply voltage source VSS.

放大電路140a可連接至節點,讀取電流I_RD和參考電流I_REF從電流源電路120a通過所述節點分別輸出。放大電路140a可根據節點處的讀取電壓V_RD和參考電壓V_REF來產生輸出信號Q。可通過記憶單元M中的可變電阻元件(MTJ元件)的電阻和讀取電流I_RD來確定讀取電壓V_RD,同時可通過參考電阻R_REF和參考電流I_REF來確定參考電壓V_REF。當讀取電壓V_RD高於參考電壓V_REF時(也就是說,當記憶單元M的可變電阻元件(MTJ元件)的電阻大於閾值電阻RTH 時),放大電路140a可產生對應於'1'的輸出信號Q。當讀取電壓V_RD低於參考電壓V_REF時(也就是說,當記憶單元M的可變電阻元件(MTJ元件)的電阻小於閾值電阻RTH 時),放大電路140a可產生對應於'0'的輸出信號Q。The amplifying circuit 140a may be connected to a node through which the read current I_RD and the reference current I_REF are respectively output from the current source circuit 120a. The amplifying circuit 140a may generate the output signal Q according to the read voltage V_RD at the node and the reference voltage V_REF. The read voltage V_RD can be determined by the resistance of the variable resistance element (MTJ element) in the memory cell M and the read current I_RD, while the reference voltage V_REF can be determined by the reference resistance R_REF and the reference current I_REF. When the read voltage V_RD is higher than the reference voltage V_REF (that is, when the resistance of the variable resistance element (MTJ element) of the memory cell M is greater than the threshold resistance R TH ), the amplifying circuit 140 a may generate a value corresponding to '1' output signal Q. When the read voltage V_RD is lower than the reference voltage V_REF (that is, when the resistance of the variable resistance element (MTJ element) of the memory cell M is smaller than the threshold resistance R TH ), the amplifying circuit 140a may generate a voltage corresponding to '0' output signal Q.

參看圖5B,記憶體裝置100b可包含單元陣列110b、電流源電路120b、參考電阻器電路130b、放大電路140b以及行解碼器170bf。相較於圖5A的記憶體裝置100a,圖5B的記憶體裝置100b可以任選地更包含佈置在行解碼器170b與電流源電路120b之間的參考電阻器電路130b。因此,參考電流I_REF可通過參考電阻器電路130b、短源極線SSL、參考單元R以及短位元線SBL,並朝著負電源電壓源VSS流動。下文中,將主要參考類似圖5A的記憶體裝置100a的情形來描述示例實施例,其中參考電阻器電路130a佈置在參考單元R與負電源電壓源VSS之間,但示例實施例並不限於此。5B, the memory device 100b may include a cell array 110b, a current source circuit 120b, a reference resistor circuit 130b, an amplification circuit 140b, and a row decoder 170bf. Compared to the memory device 100a of FIG. 5A, the memory device 100b of FIG. 5B may optionally further include a reference resistor circuit 130b disposed between the row decoder 170b and the current source circuit 120b. Therefore, the reference current I_REF may flow through the reference resistor circuit 130b, the short source line SSL, the reference cell R, and the short bit line SBL, and flow toward the negative power supply voltage source VSS. Hereinafter, example embodiments will be mainly described with reference to a situation like the memory device 100a of FIG. 5A in which the reference resistor circuit 130a is arranged between the reference cell R and the negative power supply voltage source VSS, but example embodiments are not limited thereto .

圖6是繪示根據一些示例實施例的圖1的電流源電路120的電路圖。如上文參考圖1所描述,在圖6中示出的電流源電路120'可產生讀取電流I_RD和參考電流I_REF,且當n是正整數時,電流源電路120'可根據控制電路150’的電流控制信號CC[1:n]來調節參考電流I_REF。FIG. 6 is a circuit diagram illustrating the current source circuit 120 of FIG. 1 according to some example embodiments. As described above with reference to FIG. 1 , the current source circuit 120 ′ shown in FIG. 6 may generate the read current I_RD and the reference current I_REF, and when n is a positive integer, the current source circuit 120 ′ may The current control signals CC[1:n] are used to adjust the reference current I_REF.

參看圖6,電流源電路120'可包含多個電晶體P0、電晶體P1、電晶體P2至電晶體Pn、電晶體Pr,所述多個電晶體具有共同連接至正電源電壓VDD的源極。多個電晶體P0、電晶體P1、電晶體P2至電晶體Pn、電晶體Pr可以是PMOS電晶體並形成電流鏡。因此,根據流動通過電晶體P0的電流I_0和多個電晶體P0、電晶體P1、電晶體P2至電晶體Pn、電晶體Pr的相應尺寸,可確定正從正電源電壓VDD提取的電流的幅值。在一些實施例中,電晶體P0和電晶體Pr可具有相同尺寸。因此,讀取電流I_RD可具有的幅值大體上等同於電流I_0的幅值。Referring to FIG. 6, the current source circuit 120' may include a plurality of transistors P0, P1, P2 to Pn, Pr, the plurality of transistors having sources commonly connected to the positive supply voltage VDD . The plurality of transistors P0, P1, P2 to Pn, and Pr may be PMOS transistors and form a current mirror. Thus, the magnitude of the current being drawn from the positive supply voltage VDD can be determined based on the current I_0 flowing through transistor P0 and the respective sizes of the plurality of transistors P0, P1, P2 to Pn, Pr value. In some embodiments, transistor P0 and transistor Pr may have the same size. Therefore, the read current I_RD may have a magnitude that is substantially equal to the magnitude of the current I_0.

產生參考電流I_REF的n個電晶體P1、電晶體P2至電晶體Pn可分別並串聯地連接至通過電流控制信號CC[1:n]控制的n個電晶體PS1、電晶體PS2至電晶體PSn。電流控制信號CC[1:n]可分別施加於n個電晶體PS1、電晶體PS2至電晶體PSn的閘極,並因此可通過電流控制信號CC[1:n]來確定參考電流I_REF的幅值。例如,當回應於低準位的第一電流控制信號CC[1]而打開電晶體PS1時,通過電晶體P1的電流可包含在參考電流I_REF中。當回應于高準位的第一電流控制信號CC[1]而關閉電晶體PS1時,通過電晶體P1的電流可排除在參考電流I_REF外。n個電晶體P1、電晶體P2至電晶體Pn在一些實施例中可具有相同尺寸,且在一些實施例中可具有不同尺寸。The n transistors P1 , P2 to Pn that generate the reference current I_REF may be respectively connected in series to the n transistors PS1 , PS2 to PSn controlled by the current control signal CC[1:n] . The current control signals CC[1:n] can be applied to the gates of n transistors PS1, PS2 to PSn, respectively, and thus the magnitude of the reference current I_REF can be determined by the current control signals CC[1:n] value. For example, when the transistor PS1 is turned on in response to the first current control signal CC[1] at a low level, the current through the transistor P1 may be included in the reference current I_REF. When the transistor PS1 is turned off in response to the high-level first current control signal CC[1], the current through the transistor P1 can be excluded from the reference current I_REF. The n transistors P1 , P2 through Pn may have the same size in some embodiments, and may have different sizes in some embodiments.

圖7A和圖7B是繪示根據示例實施例的圖1的參考電阻器電路130的電路圖。如參考圖1所描述的,圖7A和圖7B的參考電阻器電路130a'和參考電阻器電路130a''可分別提供電阻器,參考電流I_REF通過所述電阻器,且當m是正整數時,可響應於控制電路150a'和控制電路150a''的電阻器控制信號RC[1:m]來調節電阻器的電阻,所述電阻是參考電阻R_REF。如參考圖5A所描述,圖7A的參考電阻器電路130a'和和圖7B的參考電阻器電路130a''可分別在短源極線SSL與負電源電壓源VSS之間提供具有參考電阻R_REF的電阻器。下文中,在圖7A和圖7B的描述中,將不給出重複描述。7A and 7B are circuit diagrams illustrating the reference resistor circuit 130 of FIG. 1 according to example embodiments. As described with reference to FIG. 1, the reference resistor circuit 130a' and the reference resistor circuit 130a'' of FIGS. 7A and 7B, respectively, may provide resistors through which the reference current I_REF passes, and when m is a positive integer, The resistance of the resistor, which is the reference resistance R_REF, may be adjusted in response to the control circuit 150a' and the resistor control signal RC[1:m] of the control circuit 150a". As described with reference to FIG. 5A , the reference resistor circuit 130a ′ of FIG. 7A and the reference resistor circuit 130a ″ of FIG. 7B may provide a reference resistor R_REF between the short source line SSL and the negative supply voltage source VSS, respectively Resistor. Hereinafter, in the descriptions of FIGS. 7A and 7B , repeated descriptions will not be given.

參看圖7A,在短源極線SSL與負電源電壓源VSS之間的參考電阻器電路130a'可包含多個電阻器R1a、電阻器R2a至電阻器Rma,以及分別串聯連接至多個電阻器R1a、電阻器R2a至電阻器Rma的多個電晶體N1a、電晶體N2a至電晶體Nma。可將電阻器控制信號RC[1:m]施加於多個電晶體N1a、電晶體N2a至電晶體Nma的閘極,並因此可通過電阻器控制信號RC[1:m]來確定參考電阻R_REF。舉例來說,當回應于高準位的第一電阻器控制信號RC[1]而打開電晶體N1a時,可通過第一電阻器R1a來確定參考電阻R_REF;當回應於低準位的第一電阻器控制RC[1]而關閉電晶體N1a時,可在不考慮第一電阻器R1a的情況下確定參考電阻R_REF。因此,可通過等效電路來確定參考電阻器電路130a'的參考電阻R_REF,通過並聯連接由電阻器控制信號RC[1:m]從多個電阻器R1a、電阻器R2a至電阻器Rma之中選擇的電阻器來製造所述等效電路。Referring to FIG. 7A, the reference resistor circuit 130a' between the short source line SSL and the negative supply voltage source VSS may include a plurality of resistors R1a, R2a to Rma, and are respectively connected in series to the plurality of resistors R1a , a plurality of transistors N1a from resistors R2a to Rma, transistors N2a to transistors Nma. Resistor control signals RC[1:m] may be applied to the gates of the plurality of transistors N1a, N2a to Nma, and thus the reference resistance R_REF may be determined by the resistor control signals RC[1:m] . For example, when the transistor N1a is turned on in response to the high-level first resistor control signal RC[1], the reference resistance R_REF can be determined by the first resistor R1a; when the transistor N1a is turned on in response to the low-level first resistor R1a; When the resistor controls RC[1] to turn off the transistor N1a, the reference resistance R_REF can be determined without considering the first resistor R1a. Therefore, the reference resistance R_REF of the reference resistor circuit 130a' can be determined by an equivalent circuit from among the plurality of resistors R1a, R2a and Rma by the resistor control signal RC[1:m] by connecting in parallel selected resistors to make the equivalent circuit.

參看圖7B,參考電阻器電路130a''可包含在短源極線SSL與負電源電壓源VSS之間串聯連接的多個電阻器R1b、電阻器R2b至電阻器Rmb,以及分別並聯連接至多個電阻器R1b、電阻器R2b至電阻器Rmb的多個電晶體N1b、電晶體N2b至電晶體Nmb。可將電阻器控制信號RC[1:m]施加於多個電晶體N1b、電晶體N2b至電晶體Nmb的閘極,並因此可通過電阻器控制信號RC[1:m]來確定參考電阻R_REF。例如,當回應於低準位的第一電阻器控制信號RC[1]而關閉電晶體N1b時,參考電阻R_REF包含第一電阻器R1b的電阻;當回應于高準位的第一電阻器控制信號RC[1]而打開電晶體N1b時,參考電阻R_REF在電晶體N1b的導通電阻近于0時可不包含第一電阻器R1b的電阻。因此,可通過等效電路來確定參考電阻器電路130a''的參考電阻R_REF,通過串聯連接由電阻器控制信號RC[1:m]從多個電阻器R1b、電阻器R2b至電阻器Rmb選擇的電阻器來製造所述等效電路。7B, the reference resistor circuit 130a" may include a plurality of resistors R1b, R2b to Rmb connected in series between the short source line SSL and the negative supply voltage source VSS, and connected in parallel to the plurality of resistors, respectively. A plurality of transistors N1b, transistor N2b to transistor Nmb of resistor R1b, resistor R2b to resistor Rmb. Resistor control signals RC[1:m] may be applied to the gates of the plurality of transistors N1b, N2b to Nmb, and thus the reference resistance R_REF may be determined by the resistor control signals RC[1:m] . For example, when the transistor N1b is turned off in response to the first resistor control signal RC[1] of a low level, the reference resistor R_REF includes the resistance of the first resistor R1b; When the transistor N1b is turned on by the signal RC[1], the reference resistor R_REF may not include the resistance of the first resistor R1b when the on-resistance of the transistor N1b is close to 0. Therefore, the reference resistance R_REF of the reference resistor circuit 130a ″ can be determined by an equivalent circuit, selected by the resistor control signal RC[1:m] from the plurality of resistors R1b, R2b to Rmb by series connection resistors to make the equivalent circuit.

圖8是繪示根據示例實施例的控制參考單元的方法的流程圖。如圖8中所示出,控制參考單元的方法可包含多個操作S200、操作S400、操作S600以及操作S800。在一些實施例中,為了控制包含在圖1的記憶體裝置100中的參考單元R,可通過包含參考微調器210的控制器200來執行參考圖8描述的方法。下文中,將參考圖1來描述圖8。FIG. 8 is a flowchart illustrating a method of controlling a reference cell according to an example embodiment. As shown in FIG. 8 , the method of controlling a reference unit may include a plurality of operations S200, S400, S600, and S800. In some embodiments, in order to control the reference cell R included in the memory device 100 of FIG. 1 , the method described with reference to FIG. 8 may be performed by the controller 200 including the reference trimmer 210 . Hereinafter, FIG. 8 will be described with reference to FIG. 1 .

在操作S200中,可進行將相同的值寫入至多個記憶單元的操作。舉例來說,可進行將'0'或'1'寫入至多個記憶單元的操作。根據寫入至多個記憶單元的值,在以下操作S400中,可確定控制參考電壓的方法。稍後將參考圖9A描述將'0'寫入至多個記憶單元的實例,且稍後將參考圖9B描述將'1'寫入至多個記憶單元的實例。In operation S200, an operation of writing the same value to a plurality of memory cells may be performed. For example, writing '0' or '1' to multiple memory cells may be performed. According to the values written to the plurality of memory cells, in the following operation S400, a method of controlling the reference voltage may be determined. An example of writing '0' to a plurality of memory cells will be described later with reference to FIG. 9A , and an example of writing '1' to a plurality of memory cells will be described later with reference to FIG. 9B .

在操作S400中,可進行生成單調遞增的參考電壓或單調遞減的參考電壓的操作。舉例來說,在操作S200中,當將對應於可變電阻元件的並聯電阻RP 的'0'寫入至多個記憶單元時,可產生從最小參考電壓單調遞增的參考電壓。另一方面,在操作S200中,當將對應於可變電阻元件的反並聯電阻RAP 的'1'寫入至多個記憶單元時,可產生從最大參考電壓單調遞減的參考電壓。In operation S400, an operation of generating a monotonically increasing reference voltage or a monotonically decreasing reference voltage may be performed. For example, in operation S200 , when '0' corresponding to the parallel resistance RP of the variable resistance element is written into the plurality of memory cells, a reference voltage monotonically increasing from the minimum reference voltage may be generated. On the other hand, in operation S200, when '1' corresponding to the anti-parallel resistance R AP of the variable resistance element is written into the plurality of memory cells, a reference voltage monotonically decreasing from the maximum reference voltage may be generated.

在操作S600中,可進行在參考電壓中的每一個下從多個記憶單元讀取資料的操作。舉例來說,可進行在單調遞增的相應參考電壓下從多個記憶單元讀取資料的操作,或可進行在單調遞減的相應參考電壓下從多個記憶單元讀取資料的操作。將參考圖9A和圖9B描述操作S200至操作S600的實例。In operation S600, an operation of reading data from a plurality of memory cells at each of the reference voltages may be performed. For example, an operation of reading data from a plurality of memory cells under monotonically increasing corresponding reference voltages may be performed, or an operation of reading data from a plurality of memory cells under monotonically decreasing corresponding reference voltages may be performed. Examples of operations S200 to S600 will be described with reference to FIGS. 9A and 9B .

在操作S800中,可進行基於讀取結果來確定讀取參考電壓的操作。在一些實施例中,根據在單調遞增參考電壓或單調遞減參考電流中的每一個下從被寫入'0'的多個記憶單元讀取資料的結果,可估計可變電阻元件的並聯電阻RP 分佈(或第一分佈)。在一些實施例中,根據在單調遞減參考電壓或單調遞增參考電流中的每一個下從被寫入'1'的多個記憶單元讀取資料的結果,可估計反並聯電阻RAP 分佈(或第二分佈)。基於所估計分佈中的至少一個,可確定閾值電阻RTH ,可根據所述閾值電阻RTH 確定讀取參考電壓。將參考圖10至圖13來描述操作S800的實例。In operation S800, an operation of determining a read reference voltage based on the read result may be performed. In some embodiments, the parallel resistance R of the variable resistive element can be estimated from the results of reading data from multiple memory cells written with '0' at each of a monotonically increasing reference voltage or a monotonically decreasing reference current P distribution (or first distribution). In some embodiments, the anti-parallel resistance R AP distribution (or second distribution). Based on at least one of the estimated distributions, a threshold resistance R TH may be determined, from which a read reference voltage may be determined. An example of operation S800 will be described with reference to FIGS. 10 to 13 .

圖9A和圖9B是繪示根據示例實施例的圖8的操作S200至操作S600的實例的流程圖。如上文參考圖8所描述,在圖9A的操作S200a和圖9B的操作S200b中,可進行將相同的值寫入至多個記憶單元的操作。在操作S400a和操作S400b中,可進行產生單調遞減或遞增的參考電壓的操作。在操作S600a和操作S600b中,可進行在參考電壓中的每一個下從多個記憶單元讀取資料的操作。下文中,將參考圖1和繪示可變電阻元件的電阻的分佈的圖4來描述圖9A和圖9B,且在圖9A和圖9B的描述當中,將省略重複描述。FIGS. 9A and 9B are flowcharts illustrating examples of operations S200 to S600 of FIG. 8 , according to example embodiments. As described above with reference to FIG. 8 , in operation S200a of FIG. 9A and operation S200b of FIG. 9B , an operation of writing the same value to a plurality of memory cells may be performed. In operations S400a and S400b, an operation of generating a monotonically decreasing or increasing reference voltage may be performed. In operations S600a and S600b, an operation of reading data from a plurality of memory cells at each of the reference voltages may be performed. Hereinafter, FIGS. 9A and 9B will be described with reference to FIG. 1 and FIG. 4 illustrating the distribution of the resistance of the variable resistance element, and among the descriptions of FIGS. 9A and 9B , repeated descriptions will be omitted.

參看圖9A,在操作S200a中,可進行將'0'寫入至多個記憶單元的操作。例如,控制器200可將命令寫入的命令CMD、對應於多個記憶單元的位址ADDR以及包含'0'的資料DATA發送至記憶體裝置100。因此,多個記憶單元可具有與圖4的並聯電阻RP 分佈類似分佈的電阻。在一些實施例中,在單元陣列110中,可將'0'寫入至連接至同一個字元線WLi的多個記憶單元。Referring to FIG. 9A, in operation S200a, an operation of writing '0' to a plurality of memory cells may be performed. For example, the controller 200 may send the command CMD for command writing, the addresses ADDR corresponding to the plurality of memory cells, and the data DATA including '0' to the memory device 100 . Thus, multiple memory cells may have resistances distributed similarly to the parallel resistance R P distribution of FIG. 4 . In some embodiments, in the cell array 110, '0' may be written to multiple memory cells connected to the same word line WLi.

操作S400a可包含操作S420a和操作S440a。在操作S420a中,可進行設置最小參考電流和最小參考電阻的操作。舉例來說,控制器200可將對應於最小參考電流和最小參考電阻的參考調節信號ADJ發送至記憶體裝置100。記憶體裝置100的控制電路150可通過回應於參考調節信號ADJ產生電流控制信號CC和電阻器控制信號RC來將參考電流I_REF和參考電阻R_REF分別設置為最小值。因此,由參考電流I_REF和參考電阻R_REF確定的參考電壓V_REF可分別具有最小值,且對應於參考電壓V_REF的閾值電阻RTH 可低於並聯電阻RP 分佈的平均數。Operation S400a may include operation S420a and operation S440a. In operation S420a, an operation of setting a minimum reference current and a minimum reference resistance may be performed. For example, the controller 200 may send the reference adjustment signal ADJ corresponding to the minimum reference current and the minimum reference resistance to the memory device 100 . The control circuit 150 of the memory device 100 may set the reference current I_REF and the reference resistance R_REF to the minimum values by generating the current control signal CC and the resistor control signal RC in response to the reference adjustment signal ADJ, respectively. Therefore, the reference voltage V_REF determined by the reference current I_REF and the reference resistance R_REF may respectively have minimum values, and the threshold resistance R TH corresponding to the reference voltage V_REF may be lower than the average of the parallel resistance R P distribution.

在一些實施例中,可不將參考電流I_REF和參考電阻R_REF設置為最小值。舉例來說,基於並聯電阻RP 分佈中的變化,可為對應於閾值電阻RTH 的參考電壓V_REF設置任意參考電流I_REF和任意參考電阻R_REF,所述閾值電阻低於並聯電阻RP 分佈的平均數。如圖9A中所繪示,在一些實施例中,在操作S420a之後,可進行操作S620a。In some embodiments, the reference current I_REF and the reference resistance R_REF may not be set to a minimum value. For example, an arbitrary reference current I_REF and an arbitrary reference resistance R_REF may be set for a reference voltage V_REF corresponding to a threshold resistance R TH that is lower than the average of the distribution of parallel resistances R P based on changes in the distribution of parallel resistances R TH number. As shown in FIG. 9A, in some embodiments, after operation S420a, operation S620a may be performed.

在操作S620a中,可進行從多個記憶單元讀取資料的操作。舉例來說,控制器200可將命令讀取操作的命令CMD和對應於多個記憶單元的位址ADDR發送至記憶體裝置100。在一些實施例中,如上文參考圖2所描述,用於讀取操作的命令CMD和位址ADDR可與參考調節信號ADJ同步並被發送至記憶體裝置100,所述參考調節信號ADJ用於設置操作S420a中的最小參考電流和最小參考電阻。記憶體裝置100可將資料DATA發送至控制器200,所述資料DATA包含通過使用視已被設置的最小參考電流和最小參考電阻而定的最小參考電壓從被寫入'0'的記憶單元讀取資料的結果。In operation S620a, an operation of reading data from a plurality of memory units may be performed. For example, the controller 200 may send a command CMD commanding a read operation and addresses ADDR corresponding to the plurality of memory cells to the memory device 100 . In some embodiments, as described above with reference to FIG. 2 , the command CMD and address ADDR for the read operation may be synchronized and sent to the memory device 100 with a reference adjustment signal ADJ used for The minimum reference current and minimum reference resistance in operation S420a are set. The memory device 100 may send data DATA to the controller 200, the data DATA including reading from a memory cell written to '0' by using a minimum reference voltage depending on the minimum reference current and minimum reference resistance that have been set The result of taking the data.

在操作S640a中,基於包含在讀取結果中的'0'的數目,可進行確定是否再次進行多個記憶單元的讀取操作的操作。舉例來說,如圖9A中所繪示,控制器200的參考微調器210可將包含在從記憶體裝置100接收的資料DATA中的'0'的數目與預設值'X'(X>0)相比較,所述'0'的數目是從記憶單元中所儲存的值讀取為'0'的記憶單元的數目。當'0'的數目等於或大於'X'時,可停止設置參考電流和參考電阻以及從多個記憶單元讀取資料的操作,且否則,可在操作S640a之後進行操作S440a。換句話說,可重複設置參考電流I_REF和參考電阻R_REF的操作以及從多個記憶單元讀取資料的操作,直至從被寫入'0'的多個記憶單元中特定數目的記憶單元讀取到'0'。在一些實施例中,'X'可等於被寫入'0'的記憶單元的數目,且在一些實施例中,'X'可以是被寫入'0'的記憶單元的數目的一半。In operation S640a, based on the number of '0' included in the read result, an operation of determining whether to perform the read operation of the plurality of memory cells again may be performed. For example, as shown in FIG. 9A , the reference trimmer 210 of the controller 200 may compare the number of '0' included in the data DATA received from the memory device 100 with the default value 'X' (X> 0) In comparison, the number of '0' is the number of memory cells that are read as '0' from the value stored in the memory cell. When the number of '0' is equal to or greater than 'X', the operations of setting the reference current and the reference resistance and reading data from the plurality of memory cells may be stopped, and otherwise, operation S440a may be performed after operation S640a. In other words, the operation of setting the reference current I_REF and the reference resistance R_REF and the operation of reading data from a plurality of memory cells can be repeated until a certain number of memory cells are read from the plurality of memory cells in which '0' is written. '0'. In some embodiments, 'X' may be equal to the number of memory cells written with '0', and in some embodiments, 'X' may be half the number of memory cells written with '0'.

在操作S440a中,可進行設置遞增參考電流和/或遞增參考電阻的操作。例如,控制器200可將對應於遞增參考電流和/或遞增參考電阻的參考調節信號ADJ發送至記憶體裝置100,且記憶體裝置100的控制電路150可通過回應於參考調節信號ADJ產生電流控制信號CC和/或電阻器控制信號RC,以設置遞增參考電流I_REF和遞增參考電阻R_REF。因此,參考電壓V_REF也可遞增,且對應於參考電壓V_REF的閾值電阻RTH 可從圖4的並聯電阻RP 分佈中遷移至曲線圖的右方。In operation S440a, an operation of setting an incrementing reference current and/or incrementing a reference resistance may be performed. For example, the controller 200 may send the reference adjustment signal ADJ corresponding to the increasing reference current and/or the increasing reference resistance to the memory device 100, and the control circuit 150 of the memory device 100 may generate current control by responding to the reference adjustment signal ADJ Signal CC and/or resistor control signal RC to set incremental reference current I_REF and incremental reference resistance R_REF. Therefore, the reference voltage V_REF can also be incremented, and the threshold resistance R TH corresponding to the reference voltage V_REF can be shifted from the parallel resistance RP distribution of FIG. 4 to the right of the graph.

當重複操作S440a和操作S600a時,根據逐漸遞增的參考電壓V_REF,閾值電阻RTH 可從並聯電阻RP 分佈中遷移至圖4的曲線圖的右方。因此,由於閾值電阻RTH 從左方遷移至並聯電阻RP 分佈的右方,所以可估計並聯電阻RP 分佈。在操作S600a後,將參考圖10至圖13在之後描述估計分佈並根據所估計分佈確定讀取參考電壓的操作,諸如圖8的操作S800的實例中的操作。When operations S440a and S600a are repeated, the threshold resistance R TH may be shifted from the parallel resistance R P distribution to the right of the graph of FIG. 4 according to the gradually increasing reference voltage V_REF. Therefore, since the threshold resistance R TH migrates from the left to the right of the parallel resistance R P distribution, the parallel resistance R P distribution can be estimated. After operation S600a, the operation of estimating the distribution and determining the read reference voltage according to the estimated distribution will be described later with reference to FIGS. 10 to 13, such as the operation in the example of operation S800 of FIG.

參看圖9B,在操作S200b中,可進行將'1'寫入至多個記憶單元的操作。因此,多個記憶單元可具有與圖4的反並聯電阻RAP 分佈類似分佈的電阻。Referring to FIG. 9B, in operation S200b, an operation of writing '1' to a plurality of memory cells may be performed. Thus, the plurality of memory cells may have resistance distributions similar to the anti-parallel resistance R AP distribution of FIG. 4 .

操作S400b可包含操作S420b和操作S440b。在操作S420b中,可進行設置最大參考電流和最大參考電阻的操作。舉例來說,控制器200可將對應於最大參考電流和最大參考電阻的參考調節信號ADJ發送至記憶體裝置100和記憶體裝置100的控制電路150。控制電路150可通過回應於參考調節信號ADJ產生電流控制信號CC和參考控制信號RC來分別設置參考電流I_REF和參考電阻R_REF的最大值。因此,由參考電流I_REF和參考電阻R_REF確定的參考電壓V_REF可具有最大值,且對應於參考電壓V_REF的閾值電阻RTH 可高於反並聯電阻RAP 分佈的平均數。Operation S400b may include operation S420b and operation S440b. In operation S420b, an operation of setting a maximum reference current and a maximum reference resistance may be performed. For example, the controller 200 may send the reference adjustment signal ADJ corresponding to the maximum reference current and the maximum reference resistance to the memory device 100 and the control circuit 150 of the memory device 100 . The control circuit 150 can set the maximum value of the reference current I_REF and the reference resistance R_REF by generating the current control signal CC and the reference control signal RC in response to the reference adjustment signal ADJ, respectively. Therefore, the reference voltage V_REF determined by the reference current I_REF and the reference resistance R_REF may have a maximum value, and the threshold resistance R TH corresponding to the reference voltage V_REF may be higher than the average of the distribution of the anti-parallel resistance R AP .

在一些實施例中,可不將參考電流I_REF和參考電阻R_REF設置為最大值。舉例來說,基於反並聯電阻RAP 分佈中的變化,可為對應於閾值電阻RTH 的參考電壓V_REF設置參考電流I_REF和參考電阻R_REF,所述閾值電阻高於反並聯電阻RAP 分佈可具有的平均值。如圖9B中所繪示,可在操作S420b之後進行操作S620b。In some embodiments, the reference current I_REF and the reference resistance R_REF may not be set to the maximum value. For example, based on changes in the anti-parallel resistance R AP distribution, the reference current I_REF and the reference resistance R_REF may be set for the reference voltage V_REF corresponding to the threshold resistance R TH , which is higher than the anti-parallel resistance R AP distribution may have average of. As shown in FIG. 9B, operation S620b may be performed after operation S420b.

在操作S620b中,可進行從多個記憶單元讀取資料的操作。因此,記憶體裝置100可將資料DATA發送至控制器200,所述資料DATA包含通過使用視最大參考電流和最大參考電阻而定的最大參考電壓從被寫入'1'的記憶單元讀取資料的結果。In operation S620b, an operation of reading data from a plurality of memory units may be performed. Therefore, the memory device 100 can send data DATA to the controller 200, the data DATA including reading data from the memory cell written to '1' by using the maximum reference voltage depending on the maximum reference current and the maximum reference resistance the result of.

在操作S640b中,基於包含在讀取結果中的'1'的數目,可進行確定是否再次進行多個記憶單元上的讀取操作的操作。舉例來說,如圖9B中所繪示,控制器200的參考微調器210可將包含在從記憶體裝置100接收的資料DATA中的'1'的數目與預設值'Y'(Y>0)相比較,所述'1'的數目是從記憶單元中所儲存的值讀取為'1'的記憶單元的數目。當'1'的數目等於或大於'Y'時,可停止設置參考電流和參考電阻的操作以及從多個記憶單元讀取資料的操作,或否則可在操作S640b之後進行操作S440b。換句話說,可重複設置參考電流I_REF和參考電阻R_REF的操作以及從多個記憶單元讀取資料的操作,直至從被寫入'1'的多個記憶單元中預設數目的記憶單元讀取到'1'。在一些實施例中,'Y'可等於被寫入'1'的記憶單元的數目,且在一些實施例中,'Y'可以是被寫入'1'的記憶單元的數目的一半。In operation S640b, based on the number of '1' included in the read result, an operation of determining whether to perform the read operation on the plurality of memory cells again may be performed. For example, as shown in FIG. 9B , the reference trimmer 210 of the controller 200 may compare the number of '1' included in the data DATA received from the memory device 100 with the default value 'Y' (Y> 0) In contrast, the number of '1' is the number of memory cells that are read as '1' from the value stored in the memory cell. When the number of '1' is equal to or greater than 'Y', the operation of setting the reference current and the reference resistance and the operation of reading data from the plurality of memory cells may be stopped, or otherwise, operation S440b may be performed after operation S640b. In other words, the operation of setting the reference current I_REF and the reference resistance R_REF and the operation of reading data from a plurality of memory cells can be repeated until a preset number of memory cells are read from the plurality of memory cells in which '1' is written to '1'. In some embodiments, 'Y' may be equal to the number of memory cells written with '1', and in some embodiments, 'Y' may be half the number of memory cells written with '1'.

在操作S440b中,可進行設置遞減參考電流和/或遞減參考電阻的操作。因此,參考電壓V_REF也可遞增,且對應於參考電壓V_REF的閾值電阻RTH 可從圖4的並聯電阻RP 分佈中遷移至曲線圖的右方。In operation S440b, an operation of setting a decreasing reference current and/or decreasing a reference resistance may be performed. Therefore, the reference voltage V_REF can also be incremented, and the threshold resistance R TH corresponding to the reference voltage V_REF can be shifted from the parallel resistance RP distribution of FIG. 4 to the right of the graph.

當重複操作S440b和操作S600b時,根據逐漸遞減的參考電壓V_REF,閾值電阻RTH 可從反並聯電阻RAP 分佈遷移至左方。因此,類似於圖9A的實施例,由於閾值電阻RTH 從右方遷移至反並聯電阻RAP 分佈的左方,所以可估計反並聯電阻RAP 分佈。When operations S440b and S600b are repeated, the threshold resistance R TH may be shifted from the anti-parallel resistance R AP distribution to the left according to the gradually decreasing reference voltage V_REF. Thus, similar to the embodiment of FIG. 9A , the anti-parallel resistance R AP distribution can be estimated as the threshold resistance R TH migrates from the right to the left of the anti-parallel resistance R AP distribution.

圖10是繪示根據一些示例實施例的圖8的操作S800的實例的流程圖,且圖11是繪示根據一些示例實施例的通過圖10的操作S800a來確定閾值電阻的操作的實例的曲線圖。詳細地說,可在以下操作之後進行圖10的操作S800a:如上文參考圖9A所描述,製備從被寫入'0'的多個記憶單元推導出的閾值電阻RTH ;以及如上文參考圖9B所描述,製備從被寫入'1'的多個記憶單元推導出的閾值電阻RTH 。如上文參考圖8所描述,在圖10的操作S800a中,可進行基於來自在參考電壓中的每一個下的讀取操作的結果來確定讀取參考電壓的操作。10 is a flowchart illustrating an example of operation S800 of FIG. 8 according to some example embodiments, and FIG. 11 is a graph illustrating an example of an operation of determining a threshold resistance through operation S800a of FIG. 10 according to some example embodiments picture. In detail, operation S800a of FIG. 10 may be performed after the following operations: preparing the threshold resistance R TH derived from the plurality of memory cells written with '0' as described above with reference to FIG. 9A ; and as described above with reference to FIG. 9A ; As described in 9B, the threshold resistance R TH derived from the plurality of memory cells written with '1' is prepared. As described above with reference to FIG. 8, in operation S800a of FIG. 10, an operation of determining a read reference voltage based on a result from a read operation at each of the reference voltages may be performed.

在操作S820a中,可進行估計並聯電阻RP 分佈和反並聯電阻RAP 分佈的操作。舉例來說,可將從圖9A的實施例推導出的閾值電阻RTH 估計為並聯電阻RP 分佈的平均數RP '。在一些實施例中,當被寫入'0'並從中讀取'0'的記憶單元的數目相對更大時,可識別是否從記憶單元中的至少一半讀取了'0'(也就是說,當圖9中的'X'是被寫入'0'的記憶單元的數目的一半時)。在這種情況下,可將閾值電阻RTH 估計為並聯電阻RP 分佈的平均值。在一些實施例中,當被寫入'0'並從中讀取'0'的記憶單元的數目相對更小時,可識別是否從所有記憶單元讀取了'0'(也就是說,當圖9中的'X'等於被寫入'0'的記憶單元的數目時)。在這種情況下,可將閾值電阻RTH 估計為並聯電阻RP 分佈的平均數。類似地,可將從圖9B的實施例推導出的閾值電阻RTH 估計為反並聯電阻RAP 分佈的平均數RAP '。在一些實施例中,當被寫入'1'並從中讀取'1'的記憶單元的數目相對更大時,圖9B中的'Y'是被寫入'1'的記憶單元的數目的一半。在一些其它實施例中,當被寫入'1'並從中讀取'1'的記憶單元的數目相對更小時,圖9B中的'Y'可等於被寫入'1'的記憶單元的數目。因此,如圖11中所繪示,通過操作S820a,可通過並聯電阻RP 的平均數RP '和反並聯電阻RAP 的平均值RAP '來估計並聯電阻RP 分佈的方位和反並聯電阻RAP 分佈的方位。如上文所描述,通過估計平均數可即時估計電阻的分佈。In operation S820a, an operation of estimating the distribution of the parallel resistance R P and the distribution of the anti-parallel resistance R AP may be performed. For example, the threshold resistance R TH derived from the embodiment of FIG. 9A can be estimated as the mean R P ′ of the distribution of parallel resistances R P . In some embodiments, when the number of memory cells to which '0's are written and from which '0's are read is relatively larger, it can be identified whether a '0' has been read from at least half of the memory cells (that is, , when 'X' in Figure 9 is half the number of memory cells that are written with '0'). In this case, the threshold resistance R TH can be estimated as the average value of the distribution of parallel resistances R P . 9 'X' in equals the number of memory cells that are written to '0'). In this case, the threshold resistance R TH can be estimated as the average of the distribution of parallel resistances R P . Similarly, the threshold resistance R TH derived from the embodiment of FIG. 9B can be estimated as the mean R AP ′ of the distribution of anti-parallel resistances R AP . In some embodiments, 'Y' in FIG. 9B is the number of memory cells to which '1' is written when the number of memory cells to which '1' is written and from which '1' is read is relatively larger half. In some other embodiments, 'Y' in FIG. 9B may be equal to the number of memory cells to which '1' is written when the number of memory cells to which '1' is written and from which '1' is read is relatively smaller . Therefore, as shown in FIG. 11 , by operating S820a , the azimuth and anti-parallel connection of the parallel resistance RP distribution can be estimated by the average number R P ′ of the parallel resistance RP and the average value R AP of the anti-parallel resistance R AP The orientation of the resistance R AP distribution. As described above, the distribution of resistance can be estimated instantaneously by estimating the mean.

在操作S840a中,可進行根據並聯電阻RP 分佈和反並聯電阻RAP 分佈來計算閾值電阻RTH 的操作。在一些實施例中,可將基於所估計分佈的標準差的偏移量應用於平均數,且可根據將偏移量應用於平均數的結果來計算閾值電阻RTH 。可通過測試可變電阻元件(例如圖3的MTJ)來預推導標準差。由於將標準差應用於所估計平均值,所以可更精確地確定閾值電阻RTH 。舉例來說,如圖11中所繪示,當與單元的數目相關的值a和b大於0時,可使與標準差σP 成比例的偏移量a·σP 與並聯電阻RP 的平均數RP '相加。此外,可從反並聯電阻RAP 的平均數RAP '中減去與標準差σAP 成比例的偏移量b·σAP 。因此,可通過具有作為因數的值RP ' + a·σP 、值RAP ' - b·σAP 的函數f 來計算閾值電阻RTH ,所述值RP ' + a·σP 、值RAP ' - b·σAP 通過將標準差σA 、標準差σAP 分別應用於平均數RP '、平均數RAP '來產生。在一些實施例中,可基於如下所寫的[等式1]來計算用於從記憶單元讀取資料的閾值電阻RTH 。讀取參考電流可基於第一電阻與第二電阻的中值。可通過將基於第一分佈的標準差的第一標準電阻與第一分佈的平均數相加來產生第一電阻。可通過從第二分佈的平均數減去基於第二分佈的標準差的第二標準電阻來產生第二電阻。

Figure 02_image002
[等式1]In operation S840a, an operation of calculating the threshold resistance R TH according to the distribution of the parallel resistance R P and the distribution of the anti-parallel resistance R AP may be performed. In some embodiments, an offset based on the standard deviation of the estimated distribution can be applied to the mean, and the threshold resistance R TH can be calculated from the result of applying the offset to the mean. The standard deviation can be pre-derived by testing a variable resistive element such as the MTJ of Figure 3. Since the standard deviation is applied to the estimated mean, the threshold resistance R TH can be determined more accurately. For example, as shown in FIG. 11 , when the values a and b related to the number of cells are greater than 0, the offset a·σ P , which is proportional to the standard deviation σ P , can be made proportional to the difference between the parallel resistance R P The averages R P ' are added. In addition, an offset b·σ AP proportional to the standard deviation σ AP can be subtracted from the mean R AP ′ of the anti-parallel resistances R AP . Therefore, the threshold resistance R TH can be calculated by a function f having as a factor the value R P ′ + a·σ P , the value R AP ′ − b·σ AP , the value R P ′ + a·σ P , the value R AP ' - b·σ AP is generated by applying standard deviation σ A , standard deviation σ AP to mean R P ' and mean R AP ', respectively. In some embodiments, the threshold resistance R TH for reading data from a memory cell may be calculated based on [Equation 1] as written below. The read reference current may be based on the median value of the first resistance and the second resistance. The first resistance may be generated by adding the first standard resistance based on the standard deviation of the first distribution to the mean of the first distribution. The second resistance may be generated by subtracting a second standard resistance based on the standard deviation of the second distribution from the mean of the second distribution.
Figure 02_image002
[Equation 1]

在操作S860a中,可進行確定讀取參考電流和/或讀取參考電阻的操作。舉例來說,參考微調器210可計算對應於操作S840a中所計算的閾值電阻RTH 的參考電壓V_REF(即讀取參考電壓),且可將對應於參考電壓V_REF的參考電流I_REF和參考電阻R_REF確定為讀取參考電流和讀取參考電阻。可將關於已確定的讀取參考電流和讀取參考電阻的資訊或資料發送至記憶體裝置100的控制電路150。控制電路150可將關於NVM 160中的讀取參考電流和讀取參考電阻的資料儲存為關於讀取參考電壓的資料。In operation S860a, an operation of determining a read reference current and/or a read reference resistance may be performed. For example, the reference trimmer 210 may calculate the reference voltage V_REF (ie, the read reference voltage) corresponding to the threshold resistance R TH calculated in operation S840a, and may combine the reference current I_REF corresponding to the reference voltage V_REF with the reference resistance R_REF Determined to read reference current and read reference resistance. Information or data about the determined read reference current and read reference resistance may be sent to the control circuit 150 of the memory device 100 . The control circuit 150 may store data about the read reference current and read reference resistance in the NVM 160 as data about the read reference voltage.

圖12是繪示根據示例實施例的圖8的操作S800的流程圖,且圖13是繪示通過圖12的操作S800b來確定閾值電阻的操作的實例的曲線圖。詳細地說,相較於圖10的操作S800a,圖12的操作S800b可使用根據被寫入'0'的多個記憶單元來確定的閾值電阻RTH ,如上文參考圖9A所描述。如上文參考圖8所描述,在圖12的操作S800b中,可進行基於在參考電壓中的每一個下的讀取操作的結果來確定讀取參考電壓的操作。下文中,在圖12的描述當中,將省略與圖10的描述相重複的描述。12 is a flowchart illustrating operation S800 of FIG. 8 according to an example embodiment, and FIG. 13 is a graph illustrating an example of an operation of determining a threshold resistance through operation S800b of FIG. 12 . In detail, compared to operation S800a of FIG. 10 , operation S800b of FIG. 12 may use a threshold resistance R TH determined according to a plurality of memory cells written with '0', as described above with reference to FIG. 9A . As described above with reference to FIG. 8 , in operation S800b of FIG. 12 , an operation of determining a read reference voltage based on a result of the read operation at each of the reference voltages may be performed. Hereinafter, among the descriptions of FIG. 12 , descriptions overlapping those of FIG. 10 will be omitted.

在操作S820b中,可進行估計並聯電阻RP 分佈的操作。類似於圖10的操作S820a,可將從圖9A的實例推導出的閾值電阻RTH 估計為並聯電阻分佈RP 的平均數RP '。因此,如圖13中所繪示,可通過平均數RP '來估計並聯電阻分佈RP 的方位。在一些實施例中,由於可變電阻元件的特徵,反並聯電阻RAP 分佈與並聯電阻RP 分佈相比可為劣化的,並因此可使用並聯電阻RP 分佈。In operation S820b, an operation of estimating the distribution of the parallel resistance R P may be performed. Similar to operation S820a of FIG. 10 , the threshold resistance R TH derived from the example of FIG. 9A may be estimated as the mean R P ′ of the parallel resistance distribution R P . Therefore, as depicted in FIG. 13, the orientation of the parallel resistance distribution RP can be estimated by the mean RP '. In some embodiments, due to the characteristics of variable resistance elements, the anti-parallel resistance R AP distribution may be degraded compared to the parallel resistance R P distribution, and thus the parallel resistance R P distribution may be used.

在操作S840b中,可進行根據並聯電阻RP 分佈計算閾值電阻RTH 的操作。在一些實施例中,可將基於所估計分佈的標準差的偏移量應用於平均數,且可根據將偏移量應用於平均數的結果來計算閾值電阻RTH 。舉例來說,如圖13中所繪示,當c大於0時,可使與標準差σP 成比例的偏移量c·σP 與並聯電阻RP 的平均數RP '相加。因此,可通過具有作為因數的值RP ' + c·σP 的函數g來計算閾值電阻RTH ,所述值RP ' + c·σP 通過將標準差σP 應用於平均數RP '來產生。在一些實施例中,可基於如下所寫的[等式2]來計算用以從記憶單元讀取資料的閾值電阻RTH

Figure 02_image004
[等式2]In operation S840b, an operation of calculating the threshold resistance R TH according to the distribution of the parallel resistance R P may be performed. In some embodiments, an offset based on the standard deviation of the estimated distribution can be applied to the mean, and the threshold resistance R TH can be calculated from the result of applying the offset to the mean. For example, as shown in FIG. 13 , when c is greater than 0, an offset c·σ P proportional to the standard deviation σ P may be added to the mean R P ′ of the parallel resistances R P . Thus, the threshold resistance R TH can be calculated by a function g with the value R P+ c·σ P as a factor by applying the standard deviation σ P to the mean R P ' to produce. In some embodiments, the threshold resistance R TH used to read data from the memory cell may be calculated based on [Equation 2] as written below.
Figure 02_image004
[Equation 2]

在操作S860b中,可進行確定讀取參考電流和/或讀取參考電阻的操作。舉例來說,參考微調器210可確定對應於操作S840b中所計算的閾值電阻RTH 的參考電壓V_REF(即讀取參考電壓),且可將對應於參考電壓V_REF的參考電流I_REF和參考電阻R_REF確定為讀取參考電流和讀取參考電阻。可將關於所確定的讀取參考電流和讀取參考電阻的資訊或資料發送至記憶體裝置100的控制電路150,且控制電路150可將關於NVM 160中的讀取參考電流和讀取參考電阻的資料儲存為關於讀取參考電壓的資料。In operation S860b, an operation of determining a read reference current and/or a read reference resistance may be performed. For example, the reference trimmer 210 may determine the reference voltage V_REF (ie, the read reference voltage) corresponding to the threshold resistance R TH calculated in operation S840b, and may combine the reference current I_REF corresponding to the reference voltage V_REF with the reference resistance R_REF Determined to read reference current and read reference resistance. Information or data about the determined read reference current and read reference resistance may be sent to control circuit 150 of memory device 100 , and control circuit 150 may send information or data about the read reference current and read reference resistance in NVM 160 The data is stored as data on the read reference voltage.

圖14是根據示例實施例的記憶體裝置300的框圖。如圖14中所示出,記憶體裝置300可包含放大電路340、控制電路350、非揮發性記憶體360以及參考微調器370。儘管未在圖14中示出,但圖14的記憶體裝置300可以像圖1的記憶體裝置100一樣包含單元陣列、電流源電路和/或參考電阻電路。下文中,在圖14的描述當中,將省略與圖1的描述相重複的描述。FIG. 14 is a block diagram of a memory device 300 according to an example embodiment. As shown in FIG. 14 , the memory device 300 may include an amplification circuit 340 , a control circuit 350 , a non-volatile memory 360 , and a reference trimmer 370 . Although not shown in FIG. 14 , the memory device 300 of FIG. 14 may include a cell array, a current source circuit, and/or a reference resistor circuit like the memory device 100 of FIG. 1 . Hereinafter, among the descriptions of FIG. 14 , descriptions overlapping those of FIG. 1 will be omitted.

相較於圖1的記憶體裝置100,圖14的記憶體裝置300可接收校準信號CAL並更包含參考微調器370。因此,記憶體裝置300可回應於校準信號CAL來獨立推導精確的參考電壓,且包含記憶體裝置300的系統可通過將校準信號CAL提供給記憶體裝置300來維持記憶體裝置300的操作可靠性。Compared to the memory device 100 of FIG. 1 , the memory device 300 of FIG. 14 can receive the calibration signal CAL and further includes a reference trimmer 370 . Therefore, the memory device 300 can independently derive an accurate reference voltage in response to the calibration signal CAL, and a system including the memory device 300 can maintain the operational reliability of the memory device 300 by providing the calibration signal CAL to the memory device 300 .

參考微調器370可回應於接收到的校準信號CAL來將相同的值寫入至單元陣列的多個記憶單元,並將信號發送至控制電路350,用於產生單調遞增或單調遞減的參考電壓。參考微調器370可從放大電路340接收信號,所述信號對應於在參考電壓中的每一個下來自多個記憶單元的值,並可基於讀取結果來確定讀取參考電壓。參考微調器370可將關於讀取參考電壓的資料提供給控制電路350,且控制電路350可儲存關於NVM 360中的讀取參考電壓的資料。然後,當記憶體裝置300接收到讀取命令時,控制電路350可控制參考電流I_REF和/或參考電阻R_REF,以便基於關於儲存在NVM 360中的讀取參考電壓的資料來產生參考電壓。The reference trimmer 370 may write the same value to a plurality of memory cells of the cell array in response to the received calibration signal CAL, and send the signal to the control circuit 350 for generating a monotonically increasing or monotonically decreasing reference voltage. The reference trimmer 370 may receive signals from the amplification circuit 340 corresponding to the values from the plurality of memory cells at each of the reference voltages, and may determine the read reference voltages based on the read results. Reference trimmer 370 may provide data about the read reference voltage to control circuit 350 , and control circuit 350 may store data about the read reference voltage in NVM 360 . Then, when the memory device 300 receives a read command, the control circuit 350 may control the reference current I_REF and/or the reference resistor R_REF to generate a reference voltage based on data about the read reference voltage stored in the NVM 360 .

圖15是示出根據示例實施例的包含記憶體裝置的系統單晶片(system on chip;SOC)400的框圖。SOC 400可指代積體電路,在所述積體電路中計算系統或其它電子系統的元件是集成的。舉例來說,作為SOC 400,應用程式處理器(AP)可包含用於處理器和其它功能的元件。如圖15中所示出,系統單晶片400可包含核心410、數位信號處理器(digital signal processor;DSP)420、圖形處理單元(graphic processing unit;GPU)430、嵌入式記憶體440、通信介面450以及記憶體介面460。系統單晶片400的元件可經由匯流排470彼此通信。15 is a block diagram illustrating a system on chip (SOC) 400 including a memory device, according to an example embodiment. SOC 400 may refer to an integrated circuit in which elements of a computing system or other electronic system are integrated. For example, as SOC 400, an application processor (AP) may include elements for the processor and other functions. As shown in FIG. 15 , the SoC 400 may include a core 410 , a digital signal processor (DSP) 420 , a graphics processing unit (GPU) 430 , an embedded memory 440 , and a communication interface 450 and memory interface 460. The elements of SoC 400 may communicate with each other via bus bar 470 .

核心410可處理命令並控制包含在系統單晶片400中的元件的操作。舉例來說,核心410可通過處理一連串命令來驅動作業系統並執行作業系統中的應用程式。DSP 420可處理數位信號以產生有用的資料,所述數位信號例如由通信介面450提供的數位信號。GPU 430可通過使用由嵌入式記憶體440或記憶體介面460提供的圖像資料來產生用於通過顯示裝置輸出的圖像的資料,並還可對圖像資料進行編碼。The core 410 may process commands and control the operation of elements included in the system-on-chip 400 . For example, the core 410 may drive the operating system and execute applications in the operating system by processing a series of commands. DSP 420 may process digital signals, such as those provided by communication interface 450, to generate useful data. The GPU 430 may generate data for images output through the display device by using the image data provided by the embedded memory 440 or the memory interface 460, and may also encode the image data.

嵌入式記憶體440可儲存對核心410、DSP 420以及GPU 430的操作而言必需的資料。嵌入式記憶體440可包含根據示例實施例的電阻式記憶體,且因此,嵌入式記憶體440可提供由精確的參考電壓帶來的高可靠性。Embedded memory 440 may store data necessary for the operation of core 410 , DSP 420 and GPU 430 . The embedded memory 440 may include a resistive memory according to example embodiments, and thus, the embedded memory 440 may provide high reliability brought about by an accurate reference voltage.

通信介面450可提供用於通信網路或一對一通信的介面。記憶體介面460可提供用於SOC 400的外部記憶體、快閃記憶體和類似物的介面,所述外部記憶體例如動態隨機存取記憶體(dynamic random access memory;DRAM)。Communication interface 450 may provide an interface for a communication network or one-to-one communication. Memory interface 460 may provide an interface for external memory, flash memory, and the like of SOC 400, such as dynamic random access memory (DRAM).

儘管已經參考本發明概念的實施例具體地展示並描述了本發明概念,但應理解,在不脫離所附權利要求書的精神和範圍的情況下可以在其中進行形式和細節上的各種變化。Although the inventive concept has been particularly shown and described with reference to embodiments of the inventive concept, it will be understood that various changes in form and details may be made therein without departing from the spirit and scope of the appended claims.

100、100a、100b、300‧‧‧記憶體裝置110、110a、110b‧‧‧單元陣列120、120'、120a、120b‧‧‧電流源電路130、130a、130a'、130a''、130b‧‧‧參考電阻器電路140、140a、140b、340‧‧‧放大電路150、150'、150a'、150a''、350‧‧‧控制電路160、360‧‧‧非揮發性記憶體170a、170b‧‧‧行解碼器200‧‧‧控制器210、370‧‧‧參考微調器400‧‧‧系統單晶片410‧‧‧核心420‧‧‧數位信號處理器430‧‧‧圖形處理單元440‧‧‧嵌入式記憶體450‧‧‧通信介面460‧‧‧記憶體介面470‧‧‧匯流排A1‧‧‧第一位址A2‧‧‧第二位址ADDR‧‧‧位址ADJ‧‧‧參考調節信號a·σP、b·σAP、c·σP‧‧‧偏移量BL‧‧‧勢壘層BLj‧‧‧位元線CAL‧‧‧校準信號CC、CC[1:n]‧‧‧電流控制信號CC[1]‧‧‧第一電流控制信號CMD‧‧‧命令COL‧‧‧行位址CT‧‧‧單元電晶體DATA‧‧‧資料FL‧‧‧自由層f、g‧‧‧函數I_0‧‧‧電流I_RD‧‧‧讀取電流I_REF‧‧‧參考電流M、M'‧‧‧記憶單元MTJ‧‧‧磁性隧道結N1‧‧‧第一節點N1a、N1b、N2a、N2b、Nma、Nmb、P0、P1、P2、Pn、Pr、PS1、PS2、PSn‧‧‧電晶體N2‧‧‧第二節點OP1‧‧‧第一選項OP2‧‧‧第二選項OUT1‧‧‧第一輸出OUT2‧‧‧第二輸出PL‧‧‧釘紮層Q‧‧‧輸出信號R‧‧‧參考單元R1a、R1b、R2a、R2b、Rma、Rmb‧‧‧電阻器RAP‧‧‧反並聯電阻RAP'‧‧‧反並聯電阻的平均值RC‧‧‧電阻器控制信號RC[1]‧‧‧第一電阻器控制信號RC[1:m]‧‧‧電阻器控制信號READ‧‧‧讀取命令RP‧‧‧並聯電阻RP'‧‧‧並聯電阻的平均數R_REF‧‧‧參考電阻RTH‧‧‧閾值電阻S200、S200a、S200b、S400、S400a、S400b、S420a、S420b、S440a、S440b、S600、S600a、S600b、S620a、S620b、S640a、S640b、S800、S800a、S800b、S820a、S820b、S840a、S840b、S860a、S860b‧‧‧操作SBL‧‧‧短位元線SLj‧‧‧源極線SSL‧‧‧短源極線t1、t2‧‧‧時間VDD‧‧‧正電源電壓V_RD‧‧‧讀取電壓V_REF‧‧‧參考電壓VSS‧‧‧負電源電壓源WLi‧‧‧字元線100, 100a, 100b, 300‧‧‧Memory device 110, 110a, 110b‧‧‧Cell array 120, 120', 120a, 120b‧‧‧Current source circuit 130, 130a, 130a', 130a'', 130b‧ ‧‧Reference resistor circuit 140, 140a, 140b, 340‧‧‧Amplifying circuit 150, 150', 150a', 150a'', 350‧‧‧Control circuit 160, 360‧‧‧Non-volatile memory 170a, 170b ‧‧‧Line Decoder 200‧‧‧Controller 210, 370‧‧‧Reference Trimmer 400‧‧‧SoC 410‧‧‧Core 420‧‧‧Digital Signal Processor 430‧‧‧Graphic Processing Unit 440‧ ‧‧Embedded Memory 450‧‧‧Communication Interface 460‧‧‧Memory Interface 470‧‧‧Bus A1‧‧‧First Address A2‧‧‧Second Address ADDR‧‧‧Address ADJ‧‧ ‧Reference adjustment signals a σ P , b σ AP , c σ P ‧‧‧Offset BL‧‧‧Barrier layer BLj‧‧‧Bit line CAL‧‧‧Calibration signals CC, CC[1: n]‧‧‧current control signal CC[1]‧‧‧first current control signal CMD‧‧‧command COL‧‧‧row address CT‧‧‧unit transistor DATA‧‧‧data FL‧‧‧free layer f, g‧‧‧function I_0‧‧‧current I_RD‧‧‧reading current I_REF‧‧‧reference current M, M'‧‧‧memory cell MTJ‧‧‧magnetic tunnel junction N1‧‧‧first node N1a, N1b, N2a, N2b, Nma, Nmb, P0, P1, P2, Pn, Pr, PS1, PS2, PSn‧‧‧Transistor N2‧‧‧Second Node OP1‧‧‧First Option OP2‧‧‧Second Option OUT1‧‧‧First output OUT2‧‧‧Second output PL‧‧‧Pining layer Q‧‧‧Output signal R‧‧‧Reference cell R1a, R1b, R2a, R2b, Rma, Rmb‧‧‧Resistor R AP ‧‧‧Anti-parallel resistance R AP '‧‧‧Average value of anti-parallel resistance RC‧‧‧Resistor control signal RC[1]‧‧‧First resistor control signal RC[1:m]‧‧‧ Resistor control signal READ‧‧‧read command R P ‧‧‧parallel resistance R P '‧‧‧average number of parallel resistance R_REF‧‧‧reference resistance R TH ‧‧‧threshold resistance S200, S200a, S200b, S400, S400a, S400b, S420a, S420b, S440a, S440b, S600, S600a, S600b, S620a, S620b, S640a, S640b, S800, S800a, S800b, S820a, S820b, S840a, S840b, S860a, S8 ‧Operating SBL‧‧‧Short Bit Line SLj‧‧‧Source Line SSL‧‧‧Short Source Line t1, t2‧‧Time VDD‧‧‧Positive Supply Voltage V_RD‧‧‧Reading Voltage V_REF‧‧‧ Reference Voltage VSS‧‧‧Negative Power Supply Voltage Source WLi‧‧‧Word Line

從以下結合附圖進行的詳細描述中將更清楚地理解本發明概念的實施例,在附圖中: 圖1是示出根據示例實施例的記憶體裝置和控制器的框圖。 圖2是示出根據示例實施例的圖1的記憶體裝置與控制器之間的通信的實例的時序圖。 圖3是示出根據示例實施例的在圖1中示出的記憶單元的實例的簡圖。 圖4是繪示由根據示例實施例的在圖3中示出的記憶單元提供的電阻的分佈的曲線圖。 圖5A和圖5B是繪示根據示例實施例的圖1的記憶體裝置的實例的框圖。 圖6是繪示根據示例實施例的在圖1中示出的電流源電路的實例的電路圖。 圖7A和圖7B是繪示根據示例實施例的在圖1中示出的參考電阻器電路的實例的電路圖。 圖8是繪示根據示例實施例的控制參考單元的方法的流程圖。 圖9A和圖9B是繪示根據示例實施例的在圖8中繪示的操作S200至操作S600的實例的流程圖。 圖10是繪示根據示例實施例的在圖8中繪示的操作S800的實例的流程圖。 圖11是繪示根據示例實施例的通過在圖10中繪示的操作S800a來確定閾值電阻的操作的實例的曲線圖。 圖12是繪示根據示例實施例的在圖8中繪示的操作S800b的實例的流程圖。 圖13是繪示根據示例實施例的通過在圖12中繪示的操作S800b來確定閾值電阻的操作的實例的曲線圖。 圖14是繪示根據示例實施例的記憶體裝置的框圖。 圖15是繪示根據示例實施例的包含記憶體裝置的系統單晶片的框圖。Embodiments of the inventive concept will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which: FIG. 1 is a block diagram illustrating a memory device and a controller according to example embodiments. 2 is a timing diagram illustrating an example of communication between the memory device of FIG. 1 and a controller, according to an example embodiment. FIG. 3 is a diagram illustrating an example of the memory cell shown in FIG. 1 according to an example embodiment. FIG. 4 is a graph illustrating the distribution of resistance provided by the memory cell shown in FIG. 3 according to an example embodiment. 5A and 5B are block diagrams illustrating examples of the memory device of FIG. 1 according to example embodiments. FIG. 6 is a circuit diagram illustrating an example of the current source circuit shown in FIG. 1 according to an example embodiment. 7A and 7B are circuit diagrams illustrating examples of the reference resistor circuit shown in FIG. 1, according to example embodiments. FIG. 8 is a flowchart illustrating a method of controlling a reference cell according to an example embodiment. FIGS. 9A and 9B are flowcharts illustrating examples of operations S200 to S600 illustrated in FIG. 8 , according to example embodiments. FIG. 10 is a flowchart illustrating an example of operation S800 illustrated in FIG. 8 according to an example embodiment. FIG. 11 is a graph illustrating an example of an operation of determining a threshold resistance through operation S800a illustrated in FIG. 10 , according to example embodiments. FIG. 12 is a flowchart illustrating an example of operation S800b illustrated in FIG. 8 according to an example embodiment. FIG. 13 is a graph illustrating an example of an operation of determining a threshold resistance through operation S800b illustrated in FIG. 12 , according to example embodiments. 14 is a block diagram illustrating a memory device according to an example embodiment. 15 is a block diagram illustrating a system-on-chip including a memory device, according to an example embodiment.

100‧‧‧記憶體裝置 100‧‧‧Memory Devices

110‧‧‧單元陣列 110‧‧‧Cell Array

120‧‧‧電流源電路 120‧‧‧Current Source Circuit

130‧‧‧參考電阻器電路 130‧‧‧Reference Resistor Circuit

140‧‧‧放大電路 140‧‧‧Amplifying Circuit

150‧‧‧控制電路 150‧‧‧Control circuit

160‧‧‧非揮發性記憶體 160‧‧‧Non-volatile memory

200‧‧‧控制器 200‧‧‧Controller

210‧‧‧參考微調器 210‧‧‧Reference trimmer

ADDR‧‧‧位址 ADDR‧‧‧address

ADJ‧‧‧參考調節信號 ADJ‧‧‧reference adjustment signal

CC‧‧‧電流控制信號 CC‧‧‧Current Control Signal

CMD‧‧‧命令 CMD‧‧‧command

DATA‧‧‧資料 DATA‧‧‧Data

I_RD‧‧‧讀取電流 I_RD‧‧‧Read Current

I_REF‧‧‧參考電流 I_REF‧‧‧reference current

M‧‧‧記憶單元 M‧‧‧memory unit

N1‧‧‧第一節點 N1‧‧‧First Node

N2‧‧‧第二節點 N2‧‧‧Second Node

R‧‧‧參考單元 R‧‧‧Reference Unit

RC‧‧‧電阻器控制信號 RC‧‧‧resistor control signal

V_RD‧‧‧讀取電壓 V_RD‧‧‧read voltage

V_REF‧‧‧參考電壓 V_REF‧‧‧reference voltage

WLi‧‧‧字元線 WLi‧‧‧ word line

Claims (10)

一種控制電阻式記憶體中的參考單元以識別儲存在多個記憶單元中的值的方法,所述方法包括:將第一值寫入至所述多個記憶單元;向所述參考單元提供單調遞增或單調遞減的參考電流,其中所述參考單元是短路單元;在所述參考電流單調遞增或單調遞減的同時,反復讀取寫為所述第一值的所述多個記憶單元;以及基於所述反復讀取的結果來確定讀取參考電流。 A method of controlling a reference cell in a resistive memory to identify a value stored in a plurality of memory cells, the method comprising: writing a first value to the plurality of memory cells; providing monotonicity to the reference cell an increasing or monotonically decreasing reference current, wherein the reference cell is a short-circuit cell; while the reference current is monotonically increasing or monotonically decreasing, repeatedly reading the plurality of memory cells written as the first value; and based on The result of the repeated reading is used to determine the reading reference current. 如申請專利範圍第1項所述的方法,更包括:設置與所述參考單元相關聯的參考電阻器的參考電阻,其中所述參考電阻中的一些對應於通過所述參考電阻器的所述參考電流中的一些,以及其中所述參考電阻單調遞增或單調遞減;以及針對所述參考電流的每一個及所述參考電阻器中對應的所述參考電阻,基於從所述多個記憶單元讀取資料的結果的集合來確定讀取參考電阻。 The method of claim 1 , further comprising: setting reference resistances of reference resistors associated with the reference cell, wherein some of the reference resistances correspond to the some of the reference currents, and wherein the reference resistances monotonically increase or decrease monotonically; and for each of the reference currents and the reference resistances corresponding to the reference resistors, based on reading from the plurality of memory cells A collection of the results of the data is taken to determine the read reference resistance. 如申請專利範圍第1項所述的方法,其中確定所述讀取參考電流包括:基於從所述反復讀取的所述結果中所述第一值的數目來估計對應於寫入至所述多個記憶單元的所述第一值的電阻的第一分佈。 The method of claim 1, wherein determining the read reference current comprises: estimating, based on the number of the first values from the results of the repeated reads, corresponding to writing to the A first distribution of resistances of the first values of the plurality of memory cells. 如申請專利範圍第3項所述的方法, 其中所述第一值和不同於所述第一值的第二值分別對應於所述多個記憶單元的低電阻和高電阻,其中提供所述參考電流包括提供單調遞增參考電流,以及其中估計所述第一分佈包括:當讀取的所述第一值的所述數目等於或大於所述第一值的成功讀取操作的第一閾值數目時,基於對應於參考電流的閾值電阻來估計作為所述第一分佈的平均數的所述閾值電阻。 As the method described in item 3 of the scope of the application, wherein the first value and a second value different from the first value correspond to low resistance and high resistance, respectively, of the plurality of memory cells, wherein providing the reference current includes providing a monotonically increasing reference current, and wherein estimating The first distribution includes estimating based on a threshold resistance corresponding to a reference current when the number of the first values read is equal to or greater than a first threshold number of successful read operations of the first value the threshold resistance as the mean of the first distribution. 如申請專利範圍第4項所述的方法,更包括:將所述第二值寫入至所述多個記憶單元,其中提供所述參考電流更包括提供單調遞減參考電流,其中確定所述讀取參考電流更包括:基於所述讀取的所述結果中讀取的所述第二值的數目來估計對應於寫入至所述多個記憶單元的所述第二值的電阻的第二分佈,以及其中估計所述第二分佈包括:當讀取的所述第二值的所述數目等於或大於所述第二值的成功讀取操作的第二閾值數目時,基於對應於參考電流的所述閾值電阻來估計作為所述第二分佈的平均數的所述閾值電阻。 The method of claim 4, further comprising: writing the second value to the plurality of memory cells, wherein providing the reference current further comprises providing a monotonically decreasing reference current, wherein determining the read Taking the reference current further comprises: estimating a second resistance corresponding to the second value written to the plurality of memory cells based on the number of the second value read in the result of the reading distribution, and wherein estimating the second distribution comprises: when the number of the second values read is equal to or greater than a second threshold number of successful read operations of the second value, based on a reference current corresponding to to estimate the threshold resistance as the mean of the second distribution. 如申請專利範圍第5項所述的方法,其中確定所述讀取參考電流包括:基於第一電阻與第二電阻的中值來確定所述讀取參考電流,其中通過使基於所述第一分佈的標準差的第一標準電阻與所述第一分佈的所述平均數相加來產生所述第一電阻,以及 其中通過從所述第二分佈的所述平均數減去基於所述第二分佈的標準差的第二標準電阻來產生所述第二電阻。 The method of claim 5, wherein determining the read reference current comprises: determining the read reference current based on a median value of a first resistance and a second resistance, wherein the read reference current is determined based on the first resistance adding a first standard resistance of the standard deviation of the distribution and the mean of the first distribution to generate the first resistance, and wherein the second resistance is generated by subtracting a second standard resistance based on the standard deviation of the second distribution from the mean of the second distribution. 如申請專利範圍第4項所述的方法,其中確定所述讀取參考電流更包括:基於具有所述第一分佈的平均數作為因數的預定義函數來計算所述讀取參考電流。 The method of claim 4, wherein determining the read reference current further comprises: calculating the read reference current based on a predefined function having an average of the first distribution as a factor. 如申請專利範圍第1項所述的方法,更包括:將對應於所述讀取參考電流的控制資料寫入至所述電阻式記憶體。 The method of claim 1, further comprising: writing control data corresponding to the read reference current to the resistive memory. 一種控制電阻式記憶體中的參考單元以識別儲存在多個記憶單元中的值的方法,所述方法包括:將第一值寫入至所述多個記憶單元;設置與通過參考電流的參考電阻器的單調遞增或單調遞減電阻,其中所述參考電流通過所述參考單元且所述參考單元為短路單元;在所述參考電阻器的電阻單調遞增或單調遞減電阻的同時,反復讀取寫為所述第一值的所述多個記憶單元;以及基於所述反復讀取的結果的集合來確定讀取參考電阻。 A method of controlling a reference cell in a resistive memory to identify a value stored in a plurality of memory cells, the method comprising: writing a first value to the plurality of memory cells; setting a reference to passing a reference current Monotonically increasing or monotonically decreasing resistance of a resistor, wherein the reference current passes through the reference unit and the reference unit is a short-circuit unit; while the resistance of the reference resistor is monotonically increasing or monotonically decreasing, read and write repeatedly the plurality of memory cells being the first value; and determining a read reference resistance based on a set of results of the repeated reads. 一種被配置成接收參考調節信號的電阻式記憶體裝置,所述電阻式記憶體裝置包括:單元陣列,包括記憶單元及參考單元,其中所述記憶單元連接至對應的第一源極線及對應的第一位元線,以及其中所述參考 單元連接至第二源極線及第二位元線;電流源電路,被配置成響應於讀取命令以將讀取電流及可變的參考電流經由所述第一源極線或所述第二源極線分別提供給所述記憶單元及所述參考單元;放大電路,被配置成檢測連接至所述記憶單元的所述第一源極線與連接至所述參考單元的所述第二源極線之間的電壓;以及控制電路,被配置成控制所述電流源電路,以便可響應於所述參考調節信號在不考慮所述讀取電流的情況下調節所述參考電流,其中所述參考單元包括:第一電晶體,連接至所述第二源極線及所述第二位元線,且具有連接至字元線的閘極,所述字元線連接至所述記憶單元中的至少一個,其中所述第一電晶體被配置成回應於所述字元線被啟動而電性連接所述第二源極線及所述第二位元線,其中所述記憶單元中的一個記憶單元包括磁性隧道結(MTJ)元件及第二電晶體,所述第二電晶體串聯於連接至所述記憶單元的所述第一源極線中對應的第三源極線與連接至所述記憶單元的所述第一位元線中對應的第三位元線,以及其中所述第二電晶體具有連接至與所述參考單元相同的字元線的閘極。 A resistive memory device configured to receive a reference conditioning signal, the resistive memory device comprising: a cell array including memory cells and reference cells, wherein the memory cells are connected to corresponding first source lines and corresponding the first element line of , and the reference in which a cell is connected to a second source line and a second bit line; a current source circuit configured to pass a read current and a variable reference current through the first source line or the first source line in response to a read command Two source lines are respectively provided to the memory cell and the reference cell; an amplification circuit is configured to detect the first source line connected to the memory cell and the second source line connected to the reference cell a voltage between source lines; and a control circuit configured to control the current source circuit such that the reference current can be adjusted in response to the reference adjustment signal regardless of the read current, wherein the The reference unit includes: a first transistor connected to the second source line and the second bit line, and having a gate connected to a word line connected to the memory cell at least one of wherein the first transistor is configured to electrically connect the second source line and the second bit line in response to the word line being activated, wherein the memory cell in One of the memory cells includes a magnetic tunnel junction (MTJ) element and a second transistor connected in series with a corresponding third source line of the first source lines connected to the memory cell and connected to to a corresponding third one of the first bit lines of the memory cell, and wherein the second transistor has a gate connected to the same word line as the reference cell.
TW107132306A 2017-09-15 2018-09-13 Resistive memory device including a reference cell and method of controlling a reference cell TWI762718B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
??10-2017-0118843 2017-09-15
KR10-2017-0118843 2017-09-15
KR20170118843 2017-09-15
KR10-2018-0020006 2018-02-20
??10-2018-0020006 2018-02-20
KR1020180020006A KR102414183B1 (en) 2017-09-15 2018-02-20 Resistive memory device including reference cell and method for controlling reference cell

Publications (2)

Publication Number Publication Date
TW201933353A TW201933353A (en) 2019-08-16
TWI762718B true TWI762718B (en) 2022-05-01

Family

ID=65907784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107132306A TWI762718B (en) 2017-09-15 2018-09-13 Resistive memory device including a reference cell and method of controlling a reference cell

Country Status (3)

Country Link
JP (1) JP7288292B2 (en)
KR (1) KR102414183B1 (en)
TW (1) TWI762718B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574862B1 (en) * 2018-03-15 2019-09-11 株式会社東芝 Memory device
US11164619B2 (en) * 2019-08-19 2021-11-02 Micron Technology, Inc. Distribution-following access operations for a memory device
US11910723B2 (en) * 2019-10-31 2024-02-20 Taiwan Semiconductor Manufacturing Company, Ltd. Memory device with electrically parallel source lines
CN113284537A (en) 2020-01-31 2021-08-20 台湾积体电路制造股份有限公司 Hybrid self-tracking reference circuit for RRAM cells

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586776B2 (en) * 2006-12-13 2009-09-08 Samsung Electronics Co., Ltd. Nonvolatile memory devices having multi-filament variable resistivity memory cells therein
US20120147664A1 (en) * 2010-12-08 2012-06-14 Hynix Semiconductor Inc. Non-volatile memory device and method for controlling the same
US20130051122A1 (en) * 2011-08-25 2013-02-28 Sony Corporation Variable-resistance memory device and driving method thereof
US20170169075A1 (en) * 2014-02-28 2017-06-15 Agency For Science, Technology And Research Testing apparatuses, hierarchical priority encoders, methods for controlling a testing apparatus, and methods for controlling a hierarchical priority encoder

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894030B2 (en) * 2002-04-17 2007-03-14 ソニー株式会社 Memory device using resistance change memory element and method of determining reference resistance value of the memory device
JP2005050424A (en) * 2003-07-28 2005-02-24 Renesas Technology Corp Change in resistance type storage device
JP5676842B2 (en) * 2008-05-30 2015-02-25 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device
US7929334B2 (en) * 2009-01-29 2011-04-19 Qualcomm Incorporated In-situ resistance measurement for magnetic random access memory (MRAM)
JP5390551B2 (en) * 2011-03-02 2014-01-15 株式会社東芝 Semiconductor memory device and test method thereof
JP2012209004A (en) * 2011-03-30 2012-10-25 Toshiba Corp Semiconductor memory device
KR102354350B1 (en) * 2015-05-18 2022-01-21 삼성전자주식회사 Memory device and memory system including the same
JP6674616B2 (en) * 2015-06-10 2020-04-01 パナソニック株式会社 Semiconductor device, method for reading semiconductor device, and IC card mounting semiconductor device
KR102358564B1 (en) * 2015-09-02 2022-02-04 삼성전자주식회사 Semiconductor memory device having shorted variable resistor element of memory cell
JP2017107620A (en) * 2015-12-07 2017-06-15 ルネサスエレクトロニクス株式会社 Semiconductor device and nonvolatile memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586776B2 (en) * 2006-12-13 2009-09-08 Samsung Electronics Co., Ltd. Nonvolatile memory devices having multi-filament variable resistivity memory cells therein
TWI463492B (en) * 2006-12-13 2014-12-01 Samsung Electronics Co Ltd Resistive memory device
US20120147664A1 (en) * 2010-12-08 2012-06-14 Hynix Semiconductor Inc. Non-volatile memory device and method for controlling the same
US20130051122A1 (en) * 2011-08-25 2013-02-28 Sony Corporation Variable-resistance memory device and driving method thereof
US20170169075A1 (en) * 2014-02-28 2017-06-15 Agency For Science, Technology And Research Testing apparatuses, hierarchical priority encoders, methods for controlling a testing apparatus, and methods for controlling a hierarchical priority encoder

Also Published As

Publication number Publication date
TW201933353A (en) 2019-08-16
KR20190031107A (en) 2019-03-25
JP7288292B2 (en) 2023-06-07
KR102414183B1 (en) 2022-06-29
JP2019053811A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
CN109509492B (en) Resistive memory device including reference cell and method of controlling reference cell
TWI762718B (en) Resistive memory device including a reference cell and method of controlling a reference cell
US10510393B2 (en) Resistive memory device including reference cell and operating method thereof
KR102426729B1 (en) Nonvolatile memory device and operating method of nonvolatile memory device
JP5701722B2 (en) Magnetic memory device, reference cell programming method and verification method therefor
US8400824B2 (en) Non-volatile memory device and method for controlling the same
TWI813274B (en) Resistive memory device including reference cell and operating method thereof
US10157655B2 (en) Memory device
KR102011138B1 (en) Current generator for nonvolatile memory device and driving current calibrating method using the same
US9070466B2 (en) Mismatch error reduction method and system for STT MRAM
US10109367B2 (en) Magnetic memory device and method for operating the same
US10777255B2 (en) Control signal generator for sense amplifier and memory device including the control signal generator
US20160078915A1 (en) Resistance change memory
US9019746B2 (en) Resistive memory device and method for driving the same
US8861263B2 (en) Semiconductor memory device
JP2018163713A (en) Memory device and control method thereof
TWI684990B (en) Memory device and its control method
JP7190844B2 (en) Resistive memory device including reference cells and method of operating same
TWI623939B (en) Memory device and control method thereof
JP2018156700A (en) Nonvolatile semiconductor memory device
TWI733230B (en) Magnetic tunnel junction read circuit, magnetic tunnel junction read device, and magnetic tunnel junction read operating method
TW201533739A (en) Magnetoresistive memory device
US20240062795A1 (en) Memory device configured to generate read current based on size of memory cell and value of read current actually applied to memory cell
KR20190110007A (en) Control signal generator for sense amplifier and memory device including the same