TWI762639B - Controlled residence cmp polishing method - Google Patents

Controlled residence cmp polishing method Download PDF

Info

Publication number
TWI762639B
TWI762639B TW107116214A TW107116214A TWI762639B TW I762639 B TWI762639 B TW I762639B TW 107116214 A TW107116214 A TW 107116214A TW 107116214 A TW107116214 A TW 107116214A TW I762639 B TWI762639 B TW I762639B
Authority
TW
Taiwan
Prior art keywords
polishing
polishing pad
wafer
grooves
radial feed
Prior art date
Application number
TW107116214A
Other languages
Chinese (zh)
Other versions
TW201905998A (en
Inventor
約翰巫 古葉
東尼寬 崔恩
傑弗瑞詹姆士 漢卓恩
傑弗瑞羅伯特 史塔克
Original Assignee
美商羅門哈斯電子材料Cmp控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商羅門哈斯電子材料Cmp控股公司 filed Critical 美商羅門哈斯電子材料Cmp控股公司
Publication of TW201905998A publication Critical patent/TW201905998A/en
Application granted granted Critical
Publication of TWI762639B publication Critical patent/TWI762639B/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • H01L21/3043Making grooves, e.g. cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/0203Making porous regions on the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Abstract

The invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates. The method includes rotating a polishing pad, the rotating polishing pad having radial feeder grooves in the polishing layer separating the polishing layer into polishing regions. The polishing regions are circular sectors defined by two adjacent radial feeder grooves. The radial feeder grooves extend from a location adjacent the center to a location adjacent the outer edge. Each polishing region includes a series of biased grooves connecting a pair of adjacent radial feeder grooves. Pressing and rotating the wafer against the rotating polishing pad for multiple rotations of the polishing pad adjusts polishing by either increasing or decreasing residence time of the polishing fluid under the wafer.

Description

滯留時間可控之CMP拋光方法CMP polishing method with controllable residence time

本發明係關於化學機械拋光墊的溝槽。更特定言之,本發明係關於用於在化學機械拋光期間提高移除速率、提高整體均勻性及減少缺陷的溝槽設計。The present invention relates to grooves for chemical mechanical polishing pads. More particularly, the present invention relates to trench designs for increasing removal rates, increasing overall uniformity, and reducing defects during chemical mechanical polishing.

製造積體電路及其他電子器件時,可以在半導體晶圓上的表面上沈積及移除導體、半導體及介電材料的多個層。可以使用多種沈積技術沈積導體、半導體及介電材料的薄層。現代晶圓加工中的常見沈積技術包括物理氣相沈積(PVD),也稱為濺射;化學氣相沈積(CVD);電漿增強化學氣相沈積(PECVD)及電化學電鍍等。常見的移除技術包括濕法及乾法各向同性及各向異性刻蝕等等。In the manufacture of integrated circuits and other electronic devices, multiple layers of conductor, semiconductor, and dielectric materials can be deposited and removed from surfaces on semiconductor wafers. Thin layers of conductor, semiconductor, and dielectric materials can be deposited using a variety of deposition techniques. Common deposition techniques in modern wafer processing include Physical Vapor Deposition (PVD), also known as Sputtering; Chemical Vapor Deposition (CVD); Plasma Enhanced Chemical Vapor Deposition (PECVD) and Electrochemical Plating. Common removal techniques include wet and dry isotropic and anisotropic etching, among others.

隨著材料層依次沈積及移除,晶圓的最上表面變得不平坦。由於隨後的半導體加工(例如金屬化)需要晶圓具有平坦的表面,因此晶圓需要加以平坦化。平坦化適用於移除非所期望的表面形貌及表面缺陷,諸如粗糙表面、聚結材料、晶格損壞、刮痕及被污染的層或材料。As layers of material are sequentially deposited and removed, the uppermost surface of the wafer becomes uneven. Wafers need to be planarized because subsequent semiconductor processing, such as metallization, requires the wafer to have a flat surface. Planarization is useful for removing undesired surface topography and surface defects, such as rough surfaces, coalesced material, lattice damage, scratches, and contaminated layers or materials.

化學機械平坦化或化學機械拋光(CMP)為用於平坦化或拋光如半導體晶圓之工件的常見技術。在習知CMP中,晶圓載體或拋光頭安裝在載體總成上。拋光頭固持晶圓且將晶圓定位成與安裝在CMP裝置內部之台板或壓板上之拋光墊的拋光層接觸。載體總成提供晶圓及拋光墊之間的可控壓力。同時,將拋光介質(例如漿液)分配到拋光墊上且吸入晶圓與拋光層之間的間隙中。拋光墊及晶圓典型地相對於彼此旋轉以拋光基板。隨著拋光墊在晶圓下方旋轉,晶圓掃出典型的環形拋光軌道或拋光區域,其中晶圓表面直接面對拋光層。藉由拋光層及拋光介質對所述表面的化學及機械作用,晶圓表面被拋光且平坦化。Chemical mechanical planarization or chemical mechanical polishing (CMP) is a common technique used to planarize or polish workpieces such as semiconductor wafers. In conventional CMP, a wafer carrier or polishing head is mounted on a carrier assembly. The polishing head holds and positions the wafer in contact with the polishing layer of a polishing pad mounted on a platen or platen inside the CMP apparatus. The carrier assembly provides controlled pressure between the wafer and polishing pad. At the same time, a polishing medium, such as a slurry, is dispensed onto the polishing pad and drawn into the gap between the wafer and polishing layer. The polishing pad and wafer are typically rotated relative to each other to polish the substrate. As the polishing pad rotates under the wafer, the wafer sweeps out a typical annular polishing track or polishing area, where the wafer surface is directly facing the polishing layer. The wafer surface is polished and planarized by chemical and mechanical action of the polishing layer and polishing medium on the surface.

Reinhardt等人,美國專利第5,578,362號揭示了使用溝槽向襯墊提供宏觀紋理。特定而言,其揭示了各種圖案、輪廓、溝槽、螺旋形、放射狀、點或其他形狀。Reinhardt中所包括的具體實例為同心圓及與X-Y溝槽疊置的同心圓。由於同心圓形溝槽圖案未提供通向襯墊邊緣的直接流徑,因此同心圓形溝槽已證明為最流行的溝槽圖案。Reinhardt et al., US Patent No. 5,578,362 discloses the use of grooves to provide macrotexture to the pad. In particular, it discloses various patterns, contours, grooves, spirals, radials, dots or other shapes. Specific examples included in Reinhardt are concentric circles and concentric circles overlapping X-Y trenches. Concentric circular grooves have proven to be the most popular groove pattern since they do not provide a direct flow path to the edge of the pad.

Lin等人,在美國專利第6,120,366號圖2中揭示了圓形與徑向饋料槽的組合。此實例說明了將24個徑向饋料槽添加到同心圓形溝槽圖案。此溝槽圖案的缺點在於,由於拋光墊上的著落區域較小,因此其提供的拋光改良有限,漿液使用量大幅增加並且襯墊壽命縮短。Lin et al., US Patent No. 6,120,366 Fig. 2 discloses a combination of circular and radial feed troughs. This example illustrates the addition of 24 radial feed troughs to a concentric circular groove pattern. The disadvantage of this groove pattern is that it provides limited polishing improvement due to the smaller landing area on the polishing pad, greatly increases slurry usage and reduces pad life.

儘管如此,仍然繼續需要具有拋光效能及漿液用量之更好組合的化學機械拋光墊。此外,需要在化學機械拋光期間使移除速率增加、降低漿液用量、改良整體均勻性且減少缺陷的溝槽。Nonetheless, there continues to be a need for chemical mechanical polishing pads with better combinations of polishing performance and slurry dosage. In addition, there is a need for trenches that increase removal rates, reduce slurry usage, improve overall uniformity, and reduce defects during chemical mechanical polishing.

本發明之一個態樣提供一種用於拋光或平坦化半導體、光學及磁性基板中之至少一者之晶圓的方法,所述方法包含以下:旋轉拋光墊,所述旋轉拋光墊具有:具有聚合物基質及厚度的拋光層,所述拋光層包括中心、外邊緣及自所述中心延伸至所述拋光墊之外邊緣的半徑;位於所述拋光層中的徑向進料槽,所述徑向進料槽將所述拋光層分離成拋光區域,所述拋光區域是由兩個相鄰徑向進料槽界定的圓扇區,所述徑向進料槽自鄰近於所述中心的位置至少延伸至鄰近於所述外邊緣的位置;及各拋光區域,各拋光區域包括連接一對相鄰徑向進料槽的一系列偏置溝槽,大多數偏置溝槽向內偏向所述拋光墊的中心或向外偏向所述拋光墊的外邊緣,所述向內偏置凹槽及向外偏置凹槽使拋光液向所述拋光墊的外邊緣移動且移向所述晶圓或遠離所述晶圓取決於向內偏置或向外偏置及所述拋光墊的旋轉方向;將拋光液分配至所述旋轉拋光墊上並且進入所述徑向進料槽及一系列偏置凹槽;及在拋光墊多次旋轉的情況下,使所述晶圓抵壓在所述旋轉拋光墊上旋轉,以便藉由以下選項來調整拋光:i)在拋光墊逆時針旋轉期間,若一系列偏置溝槽向內偏向所述旋轉拋光墊的中心,則延長拋光液在晶圓下的滯留時間,或若一系列偏置溝槽向外偏向所述旋轉拋光墊的外邊緣,則縮短拋光液在晶圓下的滯留時間;或ii)在拋光墊順時針旋轉期間,若一系列偏置溝槽向內偏向所述旋轉拋光墊的中心,則縮短拋光液在晶圓下的滯留時間,或若一系列偏置溝槽向外偏向所述旋轉拋光墊的外邊緣,則延長拋光液在晶圓下的滯留時間。One aspect of the present invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates, the method comprising the following: a spinning polishing pad having: having a polymer A polishing layer of a substrate and thickness, the polishing layer including a center, an outer edge, and a radius extending from the center to the outer edge of the polishing pad; a radial feed slot in the polishing layer, the diameter Separating the polishing layer into a polishing area toward a feed slot, the polishing zone being a circular sector bounded by two adjacent radial feed slots from a location adjacent to the center extending at least to a location adjacent to said outer edge; and each polishing zone, each polishing zone comprising a series of offset grooves connecting a pair of adjacent radial feed troughs, a majority of offset grooves being offset inwardly towards said The center of the polishing pad or outwardly biased toward the outer edge of the polishing pad, the inwardly biased grooves and the outwardly biased grooves move the polishing fluid toward the outer edge of the polishing pad and toward the wafer or away from the wafer depending on the inward or outward bias and the direction of rotation of the polishing pad; the slurry is dispensed onto the rotating polishing pad and into the radial feed slot and a series of offsets and, in the case of multiple rotations of the polishing pad, rotating the wafer against the rotating polishing pad to adjust polishing by the following options: i) During the counterclockwise rotation of the polishing pad, if a A series of offset grooves are offset inwards towards the center of the rotating polishing pad, prolonging the residence time of the polishing solution under the wafer, or shortening if a series of offset grooves are offsetting outwardly towards the outer edge of the rotating polishing pad. The residence time of the polishing solution under the wafer; or ii) during the clockwise rotation of the polishing pad, if a series of offset grooves are deflected inwardly towards the center of the rotating polishing pad, the residence time of the polishing solution under the wafer is shortened , or if a series of offset grooves are deflected outward toward the outer edge of the rotating polishing pad, the residence time of the polishing solution under the wafer is prolonged.

本發明之另一個態樣提供一種用於拋光或平坦化半導體、光學及磁性基板中之至少一者之晶圓的方法,所述方法包含以下:旋轉拋光墊,所述旋轉拋光墊具有:具有聚合物基質及厚度的拋光層,所述拋光層包括中心、外邊緣及自拋光墊中心延伸至外邊緣的半徑;位於所述拋光層中的徑向進料槽,所述徑向進料槽將所述拋光層分成拋光區域,所述拋光區域是由兩個相鄰徑向進料槽、平分所述拋光區域之平分線所界定的圓扇區,所述徑向進料槽自鄰近於所述中心的位置至少延伸至鄰近於所述外邊緣的位置;及各拋光區域,其包括連接一對相鄰徑向進料槽的一系列偏置溝槽,大多數的所述偏置溝槽以與平分線呈20°至85°的角度向內偏向所述拋光墊的中心或以與平分線呈95°至160°的角度向外偏向所述拋光墊的外邊緣,向內與向外偏置溝槽使拋光液向所述拋光墊的外邊緣移動並且移向所述晶圓或遠離所述晶圓取決於向內偏置或向外偏置及所述拋光墊的旋轉方向;將拋光液分配至旋轉拋光墊上並且進入徑向進料槽及一系列偏置溝槽中;及在拋光墊多次旋轉的情況下,使所述晶圓抵壓在所述旋轉拋光墊上旋轉,以便藉由以下選項來調整拋光:i)在拋光墊逆時針旋轉期間,若一系列偏置溝槽向內偏向所述旋轉拋光墊的中心,則延長拋光液在晶圓下的滯留時間,或若一系列偏置溝槽向外偏向所述旋轉拋光墊的外邊緣,則縮短拋光液在晶圓下的滯留時間;或ii)在拋光墊順時針旋轉期間,若一系列偏置溝槽向內偏向所述旋轉拋光墊的中心,則縮短拋光液在晶圓下的滯留時間,或若一系列偏置溝槽向外偏向所述旋轉拋光墊的外邊緣,則延長拋光液在晶圓下的滯留時間。Another aspect of the present invention provides a method for polishing or planarizing a wafer of at least one of semiconductor, optical and magnetic substrates, the method comprising the following: a spinning polishing pad having: having A polishing layer of a polymer matrix and thickness, the polishing layer including a center, an outer edge, and a radius extending from the center of the polishing pad to the outer edge; a radial feed slot in the polishing layer, the radial feed slot The polishing layer is divided into polishing regions, which are circular sectors bounded by two adjacent radial feed troughs, a bisector that bisects the polishing region, the radial feed troughs extending from adjacent to The location of the center extends at least to a location adjacent to the outer edge; and each polishing area includes a series of offset grooves connecting a pair of adjacent radial feed grooves, a majority of the offset grooves The grooves are deflected inwardly toward the center of the polishing pad at an angle of 20° to 85° from the bisector or outwardly toward the outer edge of the polishing pad at an angle of 95° to 160° from the bisector. an outer bias groove moves the polishing fluid toward the outer edge of the polishing pad and toward the wafer or away from the wafer depending on the inward or outward bias and the direction of rotation of the polishing pad; Dispensing the polishing liquid onto the rotating polishing pad and into a radial feed slot and a series of offset grooves; and rotating the wafer against the rotating polishing pad with multiple rotations of the polishing pad, To adjust polishing by the following options: i) prolong the residence time of the polishing solution under the wafer if a series of offset grooves are inwardly biased towards the center of the rotating polishing pad during counterclockwise rotation of the polishing pad, or If the series of offset grooves are deflected outwardly towards the outer edge of the rotating polishing pad, the residence time of the polishing solution under the wafer is shortened; or ii) during clockwise rotation of the polishing pad, if the series of offset grooves If a series of offset grooves are deflected outward to the outer edge of the rotating polishing pad, the residence time of the polishing liquid under the wafer will be shortened, or if the series of offset grooves are outwardly biased to the outer edge of the rotating polishing pad, the polishing liquid will be prolonged under the wafer. residence time.

本發明的溝槽圖案及方法提供了拋光液(諸如含磨料的漿液及無磨料拋光溶液)的可控及均勻分佈。與習知溝槽相比,有效的分佈允許用戶減少漿液流量。此外,互連的溝槽路徑允許拋光碎屑以有效的方式離開襯墊以降低拋光缺陷。最後,溝槽圖案改良了拋光均勻性、晶圓輪廓、模具尺寸均勻性並且能改良邊緣效應。The groove patterns and methods of the present invention provide for controlled and uniform distribution of polishing slurries, such as abrasive-containing slurries and abrasive-free polishing solutions. The efficient distribution allows the user to reduce slurry flow compared to conventional grooves. Additionally, the interconnected trench paths allow polishing debris to exit the pad in an efficient manner to reduce polishing defects. Finally, the groove pattern improves polishing uniformity, wafer profile, die size uniformity and can improve edge effects.

如本文及申請專利範圍中使用的術語「梯形 」係指形成僅具有一對平行邊的四角形或四邊形的互連溝槽。梯形具有兩個平行的底邊及連接底邊的兩條邊。梯形的所有角度合計為360°。The term " trapezoid " as used herein and within the scope of the claims refers to interconnect trenches that form a quadrangle or quadrilateral having only one pair of parallel sides. A trapezoid has two parallel bases and two sides connecting the bases. All angles of the trapezoid add up to 360°.

如本文及申請專利範圍中使用的術語「非等腰梯形 」係指形成具有兩個不等邊或不同長度的邊的梯形的互連溝槽。距襯墊中心更近的邊長度小於距周邊更近的邊。The term " non-isosceles trapezoid " as used herein and within the scope of the claims refers to interconnect trenches that form a trapezoid with two unequal sides or sides of different lengths. Edges closer to the center of the pad are shorter in length than edges closer to the perimeter.

如本文及申請專利範圍中使用的術語「圓扇區 」係指由兩個徑向饋料槽及沿著拋光墊的外邊緣延伸的周邊弧界定之拋光墊的一部分。徑向饋料槽可以具有直的徑向、彎曲的徑向、階梯形的徑向或其他形狀。The term " circular sector " as used herein and in the scope of the claims refers to a portion of a polishing pad bounded by two radial feed troughs and a peripheral arc extending along the outer edge of the polishing pad. The radial feed troughs may have straight radials, curved radials, stepped radials, or other shapes.

如本文及申請專利範圍中使用的術語「拋光液 」係指含磨料的拋光漿液或無磨料的拋光溶液。The term " polishing fluid " as used herein and within the scope of the claims refers to an abrasive-containing polishing slurry or an abrasive-free polishing solution.

如本文使用的術語「偏向角 θ 」係指平分拋光區域的平分線與連接相鄰徑向饋料槽的斜偏置溝槽之間的角度。平分線隨著徑向供料器槽的方向變化而移動,並表示每個偏置溝槽的端到端的平均值。The term " offset angle Θ " as used herein refers to the angle between the bisector that bisects the polishing area and the obliquely offset groove connecting adjacent radial feed troughs. The bisector moves as the direction of the radial feeder slot changes and represents the end-to-end average of each offset slot.

如本文及申請專利範圍中使用的術語「向內偏向角 θ 」係指向內向拋光墊的中心傾斜的偏向角,其當向下向溝槽頂檢視時,從左到右所測量。The term " inward deflection angle θ " as used herein and in the scope of the claims refers to the deflection angle that is tilted inward toward the center of the polishing pad, as measured from left to right when viewed downward toward the top of the trench.

如本文及申請專利範圍中使用的術語「向外偏向角 θ 」係指向外向拋光墊的周邊傾斜的偏向角,其當向下向溝槽頂檢視時,從左到右所測量。The term " outward deflection angle θ " as used herein and in the scope of the claims refers to the deflection angle of the perimeter slope of the outwardly facing polishing pad, as measured from left to right when viewed downward toward the top of the groove.

術語「晶圓 」包含磁性、光學及半導體基板。本說明書中所包含的慣例,諸如晶圓滯留時間,假設拋光液滴落點在逆時針旋轉的情況下位於晶圓的左側且在順時針旋轉的情況下位於晶圓的右側,如頂視圖中所見。The term " wafer " includes magnetic, optical and semiconductor substrates. Conventions contained in this specification, such as wafer residence time, assume that the polishing droplet drop point is on the left side of the wafer with counterclockwise rotation and on the right side of the wafer with clockwise rotation, as in the top view seen.

如本文及所附申請專利範圍中使用的術語「 ( 胺基甲酸酯) 」為由異氰酸酯及含有活性氫基團的化合物之間的反應形成的聚合物,具體包括以下:(a)由(i)異氰酸酯及(ii)多元醇(包括二醇)反應形成的聚胺基甲酸酯;及(b)由(i)異氰酸酯與(ii)多元醇(包括二醇)及(iii)水、胺或水與胺組合的反應所形成的聚(胺基甲酸酯)。本發明的拋光墊有利地為聚合物,但最有利的為聚胺基甲酸酯聚合物。The term " poly ( urethane) " as used herein and in the scope of the appended claims is a polymer formed by the reaction between an isocyanate and a compound containing an active hydrogen group, specifically including the following: (a) (i) polyurethanes formed by the reaction of isocyanates and (ii) polyols (including diols); and (b) from (i) isocyanates and (ii) polyols (including diols) and (iii) water A poly(urethane) formed by the reaction of , amine, or a combination of water and amine. The polishing pads of the present invention are advantageously polymers, but most advantageously polyurethane polymers.

本發明的溝槽圖案提供了多種益處。第一個益處是,大部分偏置溝槽在相同的方向上掃過晶圓。所有偏置溝槽在相同方向上掃過進一步增加益處。在相同的方向上掃過晶圓使溝槽有節律地掃過晶圓且對拋光移除速率提供有益的累積影響。此外,因為偏置溝槽沿相同的方向對準,所以拋光晶圓可以在不振盪載體頭的情況下進行或以小得多的振幅或更慢的振盪速率使其振盪。這允許晶圓在更遠離墊中心、更靠近拋光墊邊緣的固定位置拋光。襯墊在鄰近外邊緣之此等位置處的旋轉速度比中心更快,從而進一步提高移除速率。此外,在使用拋光墊及扣環的情況下,在非振盪模式下進行拋光可以向多個晶圓提供一致的邊緣輪廓且減少缺陷,因磨損減少而提高拋光墊壽命及扣環壽命。關閉振盪也允許使用壓板尺寸減小的製造工具。此對於雙壓板及450 mm尺寸的CMP工具而言特別重要。另外,徑向槽數量、壓板速度與偏向角θ可以組合使用,以調整快速與慢速之間的中心輪廓且提供一致的平坦輪廓。The trench patterns of the present invention provide various benefits. The first benefit is that most of the offset trenches sweep across the wafer in the same direction. All offset trenches are swept in the same direction to further increase the benefit. Sweeping the wafer in the same direction causes the trenches to sweep across the wafer rhythmically and provides a beneficial cumulative effect on the polishing removal rate. Furthermore, because the offset grooves are aligned in the same direction, polishing the wafer can be done without oscillating the carrier head or oscillating it with a much smaller amplitude or slower oscillation rate. This allows the wafer to be polished in a fixed position farther from the center of the pad and closer to the edge of the polishing pad. The liner rotates faster at these locations near the outer edge than the center, further increasing the removal rate. In addition, with polishing pads and retaining rings, polishing in a non-oscillating mode can provide a consistent edge profile to multiple wafers and reduce defects, improving pad life and retaining ring life due to reduced wear. Turning off oscillation also allows the use of manufacturing tools with reduced platen size. This is especially important for dual platen and 450 mm size CMP tools. Additionally, the number of radial slots, platen speed and deflection angle Θ can be used in combination to adjust the center profile between fast and slow speeds and provide a consistent flat profile.

另外,饋料槽與偏置溝槽的組合可促進漿液均勻分佈於整個拋光墊上,且提供漿液在整個晶圓表面上的更佳分佈。由此允許調整整個晶圓上的拋光速率分佈,藉由改變壓板速度或偏向角θ或兩者來改良整體均勻性。此外,亦能夠藉由優化偏向角θ或載體速度或兩者來調整晶圓邊緣輪廓。在高級邏輯及3D NAND中,此對於邊緣排除極低的晶圓邊緣良率而言更為重要。典型地,拋光墊具有至少三個饋料槽,並且可以為3到32個溝槽不等。典型地,晶圓交替越過一個徑向饋料槽與多個偏置溝槽之間並且越過兩個或多個徑向饋料槽及多個偏置溝槽。此均勻的分佈消除了載體環處的積聚並且允許拋光墊以更有效的方式或在漿液流量減少的情況下操作。In addition, the combination of the feed slot and the offset slot can promote uniform distribution of the slurry across the polishing pad and provide better distribution of the slurry across the wafer surface. This allows adjustment of the polishing rate distribution across the wafer, improving overall uniformity by changing platen speed or deflection angle Θ or both. In addition, the wafer edge profile can also be adjusted by optimizing the deflection angle θ or the carrier speed or both. In advanced logic and 3D NAND, this is even more important for edge exclusion with very low wafer edge yields. Typically, polishing pads have at least three feed troughs, and can range from 3 to 32 grooves. Typically, wafers alternate between one radial feed slot and offset slots and across two or more radial feed slots and offset slots. This uniform distribution eliminates build-up at the carrier ring and allows the polishing pad to operate in a more efficient manner or with reduced slurry flow.

本發明的另一個意想不到的特徵為其允許在比常規溝槽更高的下壓力下進行拋光,原因為晶圓表面上的漿液分佈更佳並且減少了晶圓與襯墊之間的過熱及拋光溫度。對於CMP金屬拋光(諸如銅、鉭及鎢拋光)而言,此尤其重要。此等金屬層、介電層、絕緣層及其他材料層皆代表了晶圓組件。本發明的溝槽圖案結合多孔及無孔拋光墊操作。本發明的溝槽圖案特別適用於無孔拋光墊進行精密拋光,例如用於一次性移除單個單原子層的原子級拋光。Another unexpected feature of the present invention is that it allows polishing at higher downforce than conventional trenches due to better slurry distribution on the wafer surface and reduced wafer-pad overheating and polishing temperature. This is especially important for CMP metal polishing such as copper, tantalum and tungsten polishing. These metal layers, dielectric layers, insulating layers and other material layers all represent wafer components. The groove patterns of the present invention operate in conjunction with porous and non-porous polishing pads. The groove pattern of the present invention is particularly suitable for precision polishing of non-porous polishing pads, such as atomic-level polishing for removing a single single atomic layer at a time.

由於向內及向外偏置溝槽引導拋光液離開拋光墊,因此其碎屑拋光移除效率高且缺陷更少。Because the inwardly and outwardly biased grooves guide the polishing fluid away from the polishing pad, its debris polishing removal is efficient and has fewer defects.

參看圖1及1A,本發明的拋光墊10適用於拋光或平坦化半導體、光學及磁性基板中之至少一者。拋光層12具有聚合物基質及厚度14。拋光層12包括中心16、外邊緣18及自中心16延伸到外邊緣18的半徑(r)。有利的是,晶圓的位置沿著半徑r定位,從拋光墊10之中心16接近拋光墊之外邊緣18,接著接近拋光墊10的中心16,以提高晶圓之至少一個組件的移除速率。徑向饋料槽20、22、24、26、28、30、32及34自中心16或自可選的圓形溝槽36開始。徑向饋料槽20、22、24、26、28、30、32及34將拋光層12分成拋光區域40、42、44、46、48、50、52及54。特定而言,兩個相鄰的徑向饋料槽(諸如20及22)與外邊緣18的周邊圓弧19組合而界定拋光區域40。拋光區域40與拋光區域42、44、46、48、50、52及54一起形成圓扇形狀,其中在中心16處的小圓扇區截斷。徑向饋料槽20、22、24、26、28、30、32及34有利地自鄰近中心16的圓形溝槽36至少延伸到或鄰近外邊緣18。1 and 1A, the polishing pad 10 of the present invention is suitable for polishing or planarizing at least one of semiconductor, optical and magnetic substrates. The polishing layer 12 has a polymer matrix and a thickness 14 . The polishing layer 12 includes a center 16 , an outer edge 18 , and a radius (r) extending from the center 16 to the outer edge 18 . Advantageously, the position of the wafer is positioned along the radius r, from the center 16 of the polishing pad 10 to the outer edge 18 of the polishing pad and then to the center 16 of the polishing pad 10 to increase the removal rate of at least one component of the wafer . The radial feed troughs 20 , 22 , 24 , 26 , 28 , 30 , 32 and 34 start from the center 16 or from the optional circular groove 36 . The radial feed troughs 20 , 22 , 24 , 26 , 28 , 30 , 32 and 34 divide the polishing layer 12 into polishing regions 40 , 42 , 44 , 46 , 48 , 50 , 52 and 54 . In particular, two adjacent radial feed troughs, such as 20 and 22 , in combination with the peripheral arc 19 of the outer edge 18 define a polishing area 40 . Polished area 40 together with polished areas 42 , 44 , 46 , 48 , 50 , 52 and 54 form a circular sector shape with a small circular sector truncated at center 16 . The radial feed troughs 20 , 22 , 24 , 26 , 28 , 30 , 32 and 34 advantageously extend from a circular groove 36 adjacent the center 16 at least to or adjacent the outer edge 18 .

參看圖1A及1B,拋光區域40包括一系列堆疊的梯形溝槽區域60、62、64、66及68。拋光區域40代表拋光墊10(圖1)的圓扇區,其中心區域無溝槽。平行的線性溝槽或平行的基底溝槽160、162、164、166、168及170界定了梯形溝槽區域60、62、64、66及68的頂部及底部。徑向饋料槽20的徑向饋料槽區段20a、20b、20c、20d及20e分別界定了梯形溝槽區域60、62、64、66及68的左側。徑向饋料槽22的徑向饋料槽區段22a、22b、22c、22d及22e分別界定梯形溝槽區域60、62、64、66及68的右側。拋光區域40、42、44、46、48、50、52及54(圖1)皆包括與平行基底溝槽隔開的一系列梯形溝槽區域。為了適應圓形拋光墊10的形狀或拋光區域40、42、44、46、48、50、52及54的圓扇形狀,通常切割梯形溝槽區域以適應外邊緣18或圓形溝槽36。Referring to FIGS. 1A and 1B , polishing area 40 includes a series of stacked trapezoidal trench areas 60 , 62 , 64 , 66 and 68 . Polishing area 40 represents a circular sector of polishing pad 10 (FIG. 1), the central area of which is free of grooves. Parallel linear trenches or parallel base trenches 160 , 162 , 164 , 166 , 168 and 170 define the tops and bottoms of trapezoidal trench regions 60 , 62 , 64 , 66 and 68 . The radial feed trough sections 20a, 20b, 20c, 20d, and 20e of radial feed trough 20 define the left side of trapezoidal groove regions 60, 62, 64, 66, and 68, respectively. The radial feed trough sections 22a, 22b, 22c, 22d and 22e of the radial feed trough 22 define the right side of the trapezoidal groove regions 60, 62, 64, 66 and 68, respectively. Polished regions 40, 42, 44, 46, 48, 50, 52, and 54 (FIG. 1) each include a series of trapezoidal trench regions spaced from parallel substrate trenches. To accommodate the shape of circular polishing pad 10 or the circular sector shape of polishing areas 40 , 42 , 44 , 46 , 48 , 50 , 52 and 54 , trapezoidal groove areas are typically cut to accommodate outer edge 18 or circular groove 36 .

梯形溝槽區域60、62、64、66及68皆代表非等腰梯形區域,其中徑向側區段具有不同的長度。由於此溝槽圖案具有朝向中心的向內偏置,因此徑向饋料槽區段20a、20b、20c、20d及20e分別長於徑向22a、22b、22c、22d及22e。除了代表非等腰梯形的每個梯形溝槽區域之外,堆疊的梯形區域的周邊,諸如梯形區域60及62的周邊及梯形區域60、62及64的周邊,也界定了非等腰梯形。鄰近圓形溝槽36的梯形區域70中有一部分被截斷以適應圓形溝槽36。類似地,與外邊緣18鄰近的梯形溝槽區域80、82、84、86、88、90、92、94、96及98中皆有一部分被截斷以適應拋光墊10的外邊緣18的圓形狀。旋轉拋光墊使所用拋光液通過與梯形溝槽區域80、82、84、86、88、90、92、94、96及98相鄰的一系列偏置溝槽的一部分送到拋光墊10的外邊緣18上,從而允許新拋光液在晶圓下流動。The trapezoidal groove regions 60, 62, 64, 66 and 68 all represent non-isosceles trapezoidal regions in which the radial side segments have different lengths. Since this groove pattern has an inward offset towards the center, radial feed trough sections 20a, 20b, 20c, 20d, and 20e are longer than radials 22a, 22b, 22c, 22d, and 22e, respectively. In addition to each trapezoidal groove region representing a non-isosceles trapezoid, the perimeters of the stacked trapezoid regions, such as the perimeters of trapezoidal regions 60 and 62 and the perimeters of trapezoidal regions 60, 62, and 64, also define the non-isosceles trapezoid. A portion of the trapezoidal region 70 adjacent the circular groove 36 is truncated to accommodate the circular groove 36 . Similarly, portions of trapezoidal groove regions 80 , 82 , 84 , 86 , 88 , 90 , 92 , 94 , 96 and 98 adjacent to outer edge 18 are truncated to accommodate the rounded shape of outer edge 18 of polishing pad 10 . Rotating the polishing pad causes the applied polishing liquid to be sent out of the polishing pad 10 through a portion of a series of offset grooves adjacent to the trapezoidal groove regions 80, 82, 84, 86, 88, 90, 92, 94, 96 and 98 edge 18, thereby allowing fresh slurry to flow under the wafer.

參看圖1A,虛線AA藉由將中心16與外邊緣18之周邊弧19的中點連接來平分拋光區域40。間隔的梯形溝槽區域80、82、84、86、88、90、92、94及96的底邊與線AA以角θ相交。為了說明書的目的,角θ為中心位於頂部並且外邊緣位於底部時的右上角,如圖1A及2A所示。對於向內偏置的溝槽而言,角θ宜為20至85°。對於向內偏置的溝槽而言,角θ更宜為30至80°。徑向饋料槽20與梯形溝槽區域60、62、64、66及68以角α1 相交。徑向饋料槽22與梯形溝槽區域60、62、64、66及68以角β1 相交。對於向內偏置的梯形槽區域60、62、64、66及68而言,α1 角小於β1 角。Referring to FIG. 1A , the dashed line AA bisects the polishing area 40 by connecting the center 16 to the midpoint of the peripheral arc 19 of the outer edge 18 . The bases of the spaced trapezoidal trench regions 80, 82, 84, 86, 88, 90, 92, 94 and 96 intersect the line AA at an angle Θ. For the purposes of this description, angle Θ is the upper right corner when the center is at the top and the outer edge is at the bottom, as shown in Figures 1A and 2A. For inwardly offset grooves, the angle θ is preferably 20 to 85°. For inwardly offset grooves, the angle θ is more preferably 30 to 80°. The radial feed trough 20 intersects the trapezoidal groove regions 60 , 62 , 64 , 66 and 68 at an angle α 1 . The radial feed trough 22 intersects the trapezoidal groove regions 60, 62, 64, 66 and 68 at an angle β1. For the inwardly offset trapezoidal groove regions 60, 62, 64, 66, and 68, the α1 angle is smaller than the β1 angle.

參看圖1B,拋光區域60、62、64、66及68為一系列間隔開的非等腰梯形溝槽結構。梯形溝槽結構具有平行的基段160、162、164、166、168及170,其連接兩個相鄰徑向饋料槽20及22而分別形成邊段20a、20b、20c、20d及20e與22a、22b、22c、22d及22e。基段160、162、164、166、168及170與邊段(20a、20b、20c、20d及20e)及(22a、22b、22c、22d及22e)中的每一者以不同的角度相交。一系列非等腰梯形溝槽結構自鄰近外邊緣向拋光墊的中心延伸。一系列梯形結構60、62、64、66及68的周邊亦為梯形。Referring to Figure IB, polishing regions 60, 62, 64, 66, and 68 are a series of spaced-apart non-isosceles trapezoidal trench structures. The trapezoidal groove structure has parallel base sections 160, 162, 164, 166, 168 and 170 which connect two adjacent radial feed troughs 20 and 22 to form side sections 20a, 20b, 20c, 20d and 20e and 22a, 22b, 22c, 22d and 22e. Base segments 160, 162, 164, 166, 168, and 170 intersect each of side segments (20a, 20b, 20c, 20d, and 20e) and (22a, 22b, 22c, 22d, and 22e) at different angles. A series of non-isosceles trapezoidal groove structures extend from adjacent the outer edge toward the center of the polishing pad. The perimeters of the series of trapezoidal structures 60, 62, 64, 66 and 68 are also trapezoidal.

旋轉拋光墊使拋光液通過基段160、162、164、166、168及170以及邊段(20a、20b、20c、20d及20e)及(22a、22b、22c、22d及22e)移向拋光墊的外邊緣。除了向外移動之外,拋光液在拋光墊順時針旋轉的情況下向晶圓移動並且亦在拋光墊逆時針旋轉的情況下遠離晶圓。拋光液向晶圓移動減少了漿液在晶圓下的滯留時間,並且遠離晶圓延長了漿液在晶圓下的滯留時間。舉例而言,向內偏置能夠在壓板逆時針旋轉的情況下延長滯留時間。所有拋光區域宜具有相同的偏置。The polishing pad is rotated to move the polishing liquid through the base sections 160, 162, 164, 166, 168 and 170 and the side sections (20a, 20b, 20c, 20d and 20e) and (22a, 22b, 22c, 22d and 22e) towards the polishing pad the outer edge. In addition to moving outward, the slurry moves toward the wafer with clockwise rotation of the polishing pad and away from the wafer with counter-clockwise rotation of the polishing pad. The movement of the slurry towards the wafer reduces the residence time of the slurry under the wafer and away from the wafer extends the residence time of the slurry under the wafer. For example, the inward bias can extend the residence time with counterclockwise rotation of the platen. All polished areas should have the same offset.

參看圖1C,在旋轉期間,拋光液分佈到旋轉的拋光墊上並進入徑向饋料槽22(22a、22b及22c)及一系列偏置溝槽160、161、162及163。離心力使拋光液通過徑向饋料槽22(22a、22b及22c)以及一系列偏置溝槽160、161、162及163沿箭頭方向移向拋光墊的外邊緣。另外,拋光液藉由溢流出外壁160a、161a、162a及163a而向外溢出,以分別濕潤著落區域60a、61a、62a及63a。接著,拋光液分別流入後續偏置溝槽160及162的內壁161b及160b(其他偏置溝槽看不見,且內壁對於沿著落區域60a及61a的流動而言看不見)。內壁160b及外壁160a處的流向箭頭說明了拋光液流入及流出內向偏置溝槽160的流動。典型地,偏置溝槽160及162與偏置溝槽161及163不對齊。相鄰拋光區域之間的偏置溝槽的此不對齊促成了沿徑向饋料槽22流動以改良漿液分佈。在替代實施例中,可以使相鄰拋光區域的偏置溝槽對齊。將晶圓抵壓在旋轉的拋光墊上旋轉以便旋轉多次以移除晶圓的至少一個組件,其中著落區域60a、61a、62a及63a皆被溢出的拋光液濕潤。Referring to Figure 1C, during rotation, slurry is distributed onto the rotating polishing pad and into radial feed channels 22 (22a, 22b, and 22c) and a series of offset grooves 160, 161, 162, and 163. Centrifugal force moves the slurry through radial feed channels 22 (22a, 22b, and 22c) and a series of offset grooves 160, 161, 162, and 163 toward the outer edge of the polishing pad in the direction of the arrows. In addition, the polishing liquid overflows outward by overflowing the outer walls 160a, 161a, 162a and 163a to wet the landing areas 60a, 61a, 62a and 63a, respectively. Then, the polishing liquid flows into the inner walls 161b and 160b of the subsequent offset grooves 160 and 162, respectively (the other offset grooves are not visible, and the inner walls are not visible for flow along the drop regions 60a and 61a). The flow arrows at the inner wall 160b and the outer wall 160a illustrate the flow of polishing fluid into and out of the inwardly biased groove 160 . Typically, offset trenches 160 and 162 are not aligned with offset trenches 161 and 163 . This misalignment of offset grooves between adjacent polishing areas promotes flow along radial feed channels 22 to improve slurry distribution. In alternative embodiments, the offset grooves of adjacent polishing regions may be aligned. The wafer is rotated against the rotating polishing pad for multiple rotations to remove at least one component of the wafer, wherein the landing areas 60a, 61a, 62a and 63a are all wetted by the overflowing polishing liquid.

參看圖1至圖1C,拋光墊10較佳地在每個拋光區域40、42、44、46、48、50、52及54中包含至少20個向內偏置溝槽,諸如160、162、164、166、168及170。此等向內偏置溝槽代表連接在相鄰徑向饋料槽之間的溝槽段並且其組合在壓板逆時針旋轉的情況下可延長漿液在晶圓基板下的滯留時間。更佳地,拋光墊10在每個拋光區域40、42、44、46、48、50、52及54中包含20至1,000個向內偏置溝槽。最佳地,拋光墊10在每個拋光區域40、42、44、46、48、50、52及54中包含20至500個向內偏置溝槽。1-1C, polishing pad 10 preferably includes at least 20 inwardly offset grooves, such as 160, 162, 164, 166, 168 and 170. These inwardly biased grooves represent groove segments that connect between adjacent radial feed troughs and their combination can extend the residence time of the slurry under the wafer substrate with counterclockwise rotation of the platen. More preferably, polishing pad 10 includes 20 to 1,000 inwardly offset grooves in each polishing area 40 , 42 , 44 , 46 , 48 , 50 , 52 and 54 . Optimally, polishing pad 10 includes 20 to 500 inwardly offset grooves in each polishing area 40 , 42 , 44 , 46 , 48 , 50 , 52 and 54 .

典型地,拋光墊10的向內偏置溝槽(諸如160、162、164、166、168及170)總數為徑向饋料槽20、22、24、26、28、30、32及34(8)總數的至少15倍。舉例而言,拋光墊10上的向內偏置溝槽總數可以為徑向饋料槽20、22、24、26、28、30、32及34(8)總數的20至1,000倍。較佳地,拋光墊10上的向內偏置溝槽總數可以為徑向饋料槽20、22、24、26、28、30、32及34(8)總數的20至500倍。Typically, the total number of inwardly offset grooves (such as 160, 162, 164, 166, 168, and 170) of polishing pad 10 is radial feed grooves 20, 22, 24, 26, 28, 30, 32, and 34 ( 8) At least 15 times the total. For example, the total number of inwardly biased grooves on polishing pad 10 may be 20 to 1,000 times the total number of radial feed troughs 20, 22, 24, 26, 28, 30, 32, and 34(8). Preferably, the total number of inwardly biased grooves on polishing pad 10 may be 20 to 500 times the total number of radial feed troughs 20, 22, 24, 26, 28, 30, 32, and 34(8).

參看圖2及圖2A,本發明的拋光墊210適用於拋光或平坦化半導體、光學及磁性基板中之至少一者。拋光層212具有聚合物基質及厚度214。拋光層212包括中心216、外邊緣218及自中心216延伸到外邊緣218的半徑(r)。有利地,晶圓的的位置沿著半徑r定位,從拋光墊210的中心216接近拋光墊的外邊緣218,接著接近拋光墊210的中心216,以提高晶圓的至少一個組件的移除速率。徑向饋料槽220、222、224、226、228、230、232及234自中心216或自可選的圓形溝槽236開始。徑向饋料槽220、222、224、226、228、230、232及234將拋光層212分離成拋光區域240、242、244、246、248、250、252及254。特定而言,兩個相鄰的徑向饋料槽(諸如220及222)與外邊緣218的周邊圓弧219組合而界定拋光區域240。拋光區域240連同拋光區域242、244、246、248、250、252及254一起具有圓扇形形狀,其中在中心216處的小圓扇區被截斷。徑向饋料槽220、222、224、226、228、230、232及234有利地自鄰近於中心216的圓形溝槽236至少延伸到或鄰近於外邊緣18。2 and 2A, the polishing pad 210 of the present invention is suitable for polishing or planarizing at least one of semiconductor, optical and magnetic substrates. The polishing layer 212 has a polymer matrix and a thickness 214 . The polishing layer 212 includes a center 216 , an outer edge 218 , and a radius (r) extending from the center 216 to the outer edge 218 . Advantageously, the position of the wafer is positioned along the radius r, from the center 216 of the polishing pad 210 to the outer edge 218 of the polishing pad, and then to the center 216 of the polishing pad 210 to increase the removal rate of at least one component of the wafer . Radial feed troughs 220 , 222 , 224 , 226 , 228 , 230 , 232 and 234 start from center 216 or from optional circular groove 236 . Radial feed channels 220 , 222 , 224 , 226 , 228 , 230 , 232 and 234 separate polishing layer 212 into polishing regions 240 , 242 , 244 , 246 , 248 , 250 , 252 and 254 . In particular, two adjacent radial feed troughs (such as 220 and 222 ) define a polishing area 240 in combination with the peripheral arc 219 of the outer edge 218 . The polishing area 240, along with the polishing areas 242, 244, 246, 248, 250, 252, and 254, has a circular sector shape with a small circular sector truncated at the center 216. The radial feed troughs 220 , 222 , 224 , 226 , 228 , 230 , 232 and 234 advantageously extend from a circular groove 236 adjacent the center 216 at least to or adjacent to the outer edge 18 .

參看圖2A及2B,拋光區域240包括一系列堆疊的梯形溝槽區域260、262、264、266及268。拋光區域240代表拋光墊210(圖2)的圓扇區,其中心區域無溝槽。平行的線性溝槽或平行的基底溝槽360、362、364、366、368及370界定了梯形溝槽區域260、262、264、266及268的頂部及底部。徑向饋料槽220的徑向饋料槽區段220a、220b、220c、220d及220e分別界定梯形溝槽區域260、262、264、266及268的左側。徑向饋料槽222的徑向饋料槽區段222a、222b、222c、222d及222e分別界定梯形溝槽區域260、262、264、266及268的右側。拋光區域240、242、244、246、248、250、252及254(圖2)皆包括一系列與平行基底溝槽隔開的梯形溝槽區域。為了適應圓形拋光墊210的形狀或拋光區域240、242、244、246、248、250、252及254的圓扇形形狀,通常切割梯形溝槽區域以適應外邊緣218或圓形溝槽236。2A and 2B, polishing region 240 includes a series of stacked trapezoidal trench regions 260, 262, 264, 266, and 268. Polishing area 240 represents a circular sector of polishing pad 210 (FIG. 2), the central area of which is free of grooves. Parallel linear trenches or parallel base trenches 360 , 362 , 364 , 366 , 368 and 370 define the tops and bottoms of trapezoidal trench regions 260 , 262 , 264 , 266 and 268 . Radial feed slot sections 220a, 220b, 220c, 220d, and 220e of radial feed slot 220 define the left side of trapezoidal slot regions 260, 262, 264, 266, and 268, respectively. Radial feed slot sections 222a, 222b, 222c, 222d, and 222e of radial feed slot 222 define the right side of trapezoidal slot regions 260, 262, 264, 266, and 268, respectively. Polished regions 240, 242, 244, 246, 248, 250, 252, and 254 (FIG. 2) each include a series of trapezoidal trench regions spaced from parallel substrate trenches. To accommodate the shape of circular polishing pad 210 or the circular sector shape of polishing regions 240 , 242 , 244 , 246 , 248 , 250 , 252 and 254 , trapezoidal groove regions are typically cut to accommodate outer edge 218 or circular groove 236 .

梯形溝槽區域260、262、264、266及268皆代表非等腰梯形區域,其中徑向側區段具有不同的長度。由於此溝槽圖案具有向外邊緣218的向外偏置,因此徑向饋料槽區段220a、220b、220c、220d及220e分別長於徑向222a、222b、222c、222d及222e。除了代表非等腰梯形的每個梯形溝槽區域之外,堆疊的梯形區域的周邊,諸如梯形區域260及262的周邊;以及梯形區域260、262及264的周邊,也界定了非等腰梯形。鄰近圓形溝槽236的梯形區域270中有一部分被截斷以適應圓形溝槽236。類似地,與外邊緣218相鄰的梯形溝槽區域280、282、284、286、288、290、292、294及296中皆有一部分被截斷以適應拋光墊210的外邊緣218的圓形形狀。旋轉拋光墊使所用拋光液通過與梯形溝槽區域280、282、284、286、288、290、292、294及296鄰近的一系列偏置溝槽的一部分送往拋光墊210的外邊緣218,以允許新拋光液在晶圓下流動。Trapezoidal groove regions 260, 262, 264, 266, and 268 all represent non-isosceles trapezoidal regions in which the radial side segments have different lengths. Since this groove pattern has an outward offset of the outer edge 218, the radial feed slot segments 220a, 220b, 220c, 220d, and 220e are longer than the radials 222a, 222b, 222c, 222d, and 222e, respectively. In addition to each trapezoidal groove region representing a non-isosceles trapezoid, the perimeters of stacked trapezoidal regions, such as the perimeters of trapezoidal regions 260 and 262; and the perimeters of trapezoidal regions 260, 262, and 264, also define the non-isosceles trapezoid . A portion of the trapezoidal region 270 adjacent to the circular groove 236 is truncated to accommodate the circular groove 236 . Similarly, portions of trapezoidal groove regions 280 , 282 , 284 , 286 , 288 , 290 , 292 , 294 and 296 adjacent to outer edge 218 are truncated to accommodate the rounded shape of outer edge 218 of polishing pad 210 . Rotating the polishing pad directs the applied polishing liquid to the outer edge 218 of the polishing pad 210 through a portion of a series of offset grooves adjacent to the trapezoidal groove regions 280, 282, 284, 286, 288, 290, 292, 294 and 296, to allow the new polishing fluid to flow under the wafer.

參看圖2A,虛線AA藉由將中心216與外邊緣218的周邊弧線219的中點連接來平分拋光區域240。間隔的梯形溝槽區域280、282、284、286、288、290及292的基邊與線AA以角θ相交。為了說明書之目的,角θ為當中心位於頂部並且外部邊緣位於底部時的右上角,如圖1A及2A所示。對於向外偏置溝槽而言,角θ宜為95至160°。對於向外偏置溝槽而言,角θ更宜為100至150°。徑向饋料槽220與梯形溝槽區域260、262、264、266及268以角α2 相交。徑向饋料槽222與梯形溝槽區域260、262、264、266及268以角β2 相交。對於向外偏置的梯形溝槽區域260、262、264、266及268而言,α2 角大於β2 角。Referring to FIG. 2A , dashed line AA bisects polishing area 240 by connecting center 216 with the midpoint of peripheral arc 219 of outer edge 218 . The base edges of the spaced trapezoidal trench regions 280, 282, 284, 286, 288, 290 and 292 intersect the line AA at an angle Θ. For the purpose of description, angle Θ is the upper right corner when the center is at the top and the outer edge is at the bottom, as shown in Figures 1A and 2A. For the outwardly offset grooves, the angle θ is preferably 95 to 160°. For the outwardly offset grooves, the angle θ is more preferably 100 to 150°. The radial feed trough 220 intersects the trapezoidal groove regions 260, 262, 264, 266 and 268 at an angle α2 . The radial feed slot 222 intersects the trapezoidal groove regions 260, 262, 264, 266 and 268 at an angle β2 . For the outwardly biased trapezoidal trench regions 260, 262, 264, 266 and 268, the α2 angle is greater than the β2 angle.

參看圖2B,拋光區域260、262、264、266及268為一系列間隔開的非等腰梯形溝槽結構。梯形溝槽結構具有平行基段360、362、364、366、368及370,其連接兩個相鄰徑向饋料槽220及222以分別形成邊段220a、220b、220c、220d及220e以及222a、222b、222c、222d及222e。基段360、362、364、366、368及370與邊段(220a、220b、220c、220d及220e)及(222a、222b、222c、222d及222e)中的每一者以不同的角度相交。一系列非等腰梯形溝槽結構自鄰近外邊緣向拋光墊的中心延伸。一系列梯形結構260、262、264、266及268的周邊亦為梯形。Referring to Figure 2B, polishing regions 260, 262, 264, 266, and 268 are a series of spaced-apart non-isosceles trapezoidal trench structures. The trapezoidal groove structure has parallel base sections 360, 362, 364, 366, 368 and 370 connecting two adjacent radial feed troughs 220 and 222 to form side sections 220a, 220b, 220c, 220d and 220e and 222a, respectively , 222b, 222c, 222d, and 222e. Base segments 360, 362, 364, 366, 368, and 370 intersect each of side segments (220a, 220b, 220c, 220d, and 220e) and (222a, 222b, 222c, 222d, and 222e) at different angles. A series of non-isosceles trapezoidal groove structures extend from adjacent the outer edge toward the center of the polishing pad. The perimeters of a series of trapezoidal structures 260, 262, 264, 266 and 268 are also trapezoidal.

旋轉拋光墊使拋光液通過基段360、362、364、366、368及370以及邊段(220a、220b、220c、220d及220e)及(222a、222b、222c、222d及222e)移向拋光墊的外邊緣。除了向外移動之外,拋光液在拋光墊順時針旋轉的情況下移向晶圓並且亦在拋光墊逆時針旋轉的情況下遠離晶圓。拋光液向晶圓移動減少了漿液在晶圓下的滯留時間,並且遠離晶圓移動延長了漿液在晶圓下的滯留時間。舉例而言,向外偏置能夠在壓板逆時針旋轉的情況下減少滯留時間。所有的拋光區域宜具有相同的偏置。The polishing pad is rotated to move the polishing liquid through the base sections 360, 362, 364, 366, 368 and 370 and the side sections (220a, 220b, 220c, 220d and 220e) and (222a, 222b, 222c, 222d and 222e) towards the polishing pad the outer edge. In addition to moving outward, the slurry moves toward the wafer with clockwise rotation of the polishing pad and away from the wafer with counter-clockwise rotation of the polishing pad. Movement of the slurry toward the wafer reduces the residence time of the slurry under the wafer, and movement away from the wafer extends the residence time of the slurry under the wafer. For example, the outward bias can reduce residence time with counter-clockwise rotation of the platen. All polished areas should have the same offset.

參看圖2C,在旋轉期間,拋光液分佈到旋轉的拋光墊上並進入徑向饋料槽222(222a、222b及222c)與一系列偏置溝槽360、361、362及163。離心力使拋光液通過徑向饋料槽222(222a、222b及222c)以及一系列偏置溝槽360、361、362及363沿箭頭方向移向拋光墊的外邊緣。另外,拋光液藉由溢流出外壁360a、361a、362a及363a而向外移動,從而分別濕潤著落區域260a、261a、262a及263a。接著,拋光液分別流入後續偏置溝槽360及362的內壁361b及360b(其他偏置溝槽看不見並且對於沿著著落區域60a及61a的流動而言,內壁看不見)。內壁360b及外壁360a處的流向箭頭說明了拋光液流入及流出向外偏置溝槽360的流動。典型地,偏置溝槽360及362不與偏置溝槽361及363對齊。相鄰拋光區域之間的偏置溝槽的此不對齊促成了沿徑向饋料槽222向下流動以改良漿液分佈。在替代實施例中,可以使相鄰拋光區域的偏置溝槽對齊。將晶圓抵壓到旋轉的拋光墊上旋轉以便進行多次旋轉可移除晶圓的至少一個組件,其中著落區域260a、261a、262a及263a皆被溢出的拋光液濕潤。Referring to Figure 2C, during rotation, slurry is distributed onto the rotating polishing pad and into radial feed channels 222 (222a, 222b, and 222c) and a series of offset grooves 360, 361, 362, and 163. Centrifugal force moves the slurry through radial feed channels 222 (222a, 222b, and 222c) and a series of offset grooves 360, 361, 362, and 363 toward the outer edge of the polishing pad in the direction of the arrows. In addition, the polishing liquid moves outward by overflowing the outer walls 360a, 361a, 362a and 363a, thereby moistening the landing areas 260a, 261a, 262a and 263a, respectively. The slurry then flows into the inner walls 361b and 360b of subsequent offset grooves 360 and 362, respectively (the other offset grooves are not visible and the inner walls are not visible for flow along landing areas 60a and 61a). The flow arrows at the inner wall 360b and the outer wall 360a illustrate the flow of slurry into and out of the outwardly biased groove 360 . Typically, offset trenches 360 and 362 are not aligned with offset trenches 361 and 363 . This misalignment of the offset grooves between adjacent polishing areas promotes downward flow along the radial feed slot 222 to improve slurry distribution. In alternative embodiments, the offset grooves of adjacent polishing regions may be aligned. The wafer is rotated against the rotating polishing pad for multiple rotations to remove at least one component of the wafer, wherein the landing areas 260a, 261a, 262a and 263a are all wetted by the overflowing polishing liquid.

參看圖2至圖2C,拋光墊210較佳在每個拋光區域240、242、244、246、248、250、252及254中包含至少20個向外偏置溝槽,諸如260、262、264、266、268及270。此等向外偏置溝槽代表了連接在相鄰徑向饋料槽之間的溝槽區段;並且其組合在壓板逆時針旋轉的情況下減少漿液在晶圓基板下的滯留時間。更佳地,拋光墊210在每個拋光區域240、242、244、246、248、250、252及254中包含20至1,000個向外偏置溝槽。最佳地,拋光墊210在每個拋光區域240、242、244、246、248、250、252及254中包含20至500個向外偏置溝槽。2-2C, polishing pad 210 preferably includes at least 20 outwardly offset grooves, such as 260, 262, 264, in each polishing area 240, 242, 244, 246, 248, 250, 252, and 254 , 266, 268 and 270. These outwardly offset grooves represent groove segments connected between adjacent radial feed grooves; and their combination reduces the residence time of the slurry under the wafer substrate with counterclockwise rotation of the platen. More preferably, polishing pad 210 includes 20 to 1,000 outwardly offset grooves in each polishing area 240, 242, 244, 246, 248, 250, 252, and 254. Optimally, polishing pad 210 includes 20 to 500 outwardly offset grooves in each polishing area 240, 242, 244, 246, 248, 250, 252, and 254.

典型地,拋光墊210的向外偏置溝槽(諸如360、362、364、166、368及370)總數為徑向饋料槽220、222、224、226、228、230、232及234(8)總數的至少15倍。舉例而言,拋光墊210上的向外偏置溝槽總數為徑向饋料槽220、222、224、226、228、230、232及234(8)總數的20至1,000倍。較佳地,拋光墊210上的向外偏置溝槽總數為徑向饋料槽220、222、224、226、228、230、232及234(8)總數的20至500倍。Typically, the total number of outwardly offset grooves (such as 360, 362, 364, 166, 368, and 370) of polishing pad 210 is radial feed grooves 220, 222, 224, 226, 228, 230, 232, and 234 ( 8) At least 15 times the total. For example, the total number of outwardly biased grooves on polishing pad 210 is 20 to 1,000 times the total number of radial feed troughs 220, 222, 224, 226, 228, 230, 232, and 234 (8). Preferably, the total number of outwardly biased grooves on polishing pad 210 is 20 to 500 times the total number of radial feed troughs 220, 222, 224, 226, 228, 230, 232, and 234(8).

參看圖3及3A,漿液流動向量說明拋光墊的離心運動如何引起拋光液通過偏置溝槽3-3及3a-3a向外運動。箭頭說明逆時針壓板旋轉方向,DP表示典型的漿液滴落點。漿液向量在點W處相交,此點表示晶圓下方的漿液流動點。在向內偏置溝槽(圖3)的情況下,Vib 表示拋光液通過向內偏置溝槽3-3的向外速度,且VN 表示垂直於向內偏置溝槽3-3的漿液流速。所得漿液流速VT 或總速度相對於晶圓變慢,從而延長拋光液在晶圓下的滯留時間。在向外偏置溝槽(圖3A)的情況下,Vob 表示拋光液通過向外偏置溝槽3a-3a的向外速度,且VN 表示垂直於向內偏置溝槽3a-3a的漿液流速。所得漿液流速VT 或總速度相對於晶圓變快,從而減少拋光液在晶圓下的滯留時間。在採用此溝槽配置的情況下,壓板速度及偏向角度組合可控制拋光液滯留時間。Referring to Figures 3 and 3A, the slurry flow vector illustrates how centrifugal motion of the polishing pad causes the polishing fluid to move outward through offset grooves 3-3 and 3a-3a. The arrows indicate the counterclockwise platen rotation direction, and DP represents the typical slurry drop point. The slurry vectors intersect at point W, which represents the point of slurry flow below the wafer. In the case of inwardly biased grooves (Fig. 3), V ib represents the outward velocity of the slurry through the inwardly biased grooves 3-3, and VN represents the direction perpendicular to the inwardly biased grooves 3-3 slurry flow rate. The resulting slurry flow rate VT or total velocity is slowed relative to the wafer, thereby extending the residence time of the polishing solution under the wafer. In the case of the outwardly biased trenches (FIG. 3A), Vob represents the outward velocity of the slurry through the outwardly biased trenches 3a-3a, and VN denotes perpendicular to the inwardly biased trenches 3a-3a slurry flow rate. The resulting slurry flow rate VT or total velocity becomes faster relative to the wafer, thereby reducing the residence time of the polishing solution under the wafer. With this groove configuration, the combination of platen speed and deflection angle controls the slurry residence time.

參看圖4,向內偏置拋光墊400具有三個拋光區域402、404及406。徑向饋料槽408、410及412將拋光墊400分成相隔120度之相同尺寸的拋光區域402、404及406。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如100度、100度及160度。在另一個替代實施例中,可以將拋光區域分成三種不同的尺寸,例如100度、120度及140度。隨著拋光墊400旋轉,長偏置溝槽掃過晶圓以提高移除速率。在所述實施例中,徑向饋料槽408、410及412的橫截面宜大於偏置溝槽,從而改良拋光液的分佈。Referring to FIG. 4 , inwardly biased polishing pad 400 has three polishing regions 402 , 404 and 406 . Radial feed slots 408, 410, and 412 divide polishing pad 400 into equal-sized polishing regions 402, 404, and 406 that are 120 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg 100 degrees, 100 degrees and 160 degrees. In another alternative embodiment, the polishing area may be divided into three different sizes, eg, 100 degrees, 120 degrees, and 140 degrees. As polishing pad 400 rotates, the long offset trenches sweep across the wafer to increase removal rates. In the described embodiment, the radial feed grooves 408, 410 and 412 are preferably larger in cross section than the offset grooves to improve the distribution of the polishing liquid.

參看圖4A,向外偏置拋光墊450具有三個拋光區域452、454及456。徑向饋料槽458、460及462將拋光墊450分成相隔120度之相同尺寸的拋光區域452、454及456。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如100度、100度及160度。在另一個替代實施例中,可以將拋光區域分成三種不同的尺寸,例如100度、120度及140度。隨著拋光墊450旋轉,長偏置溝槽掃過晶圓以提高移除速率。在所述實施例中,徑向饋料槽458、460及462的橫截面宜大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 4A , the outwardly biased polishing pad 450 has three polishing regions 452 , 454 and 456 . Radial feed slots 458, 460, and 462 divide polishing pad 450 into equal-sized polishing regions 452, 454, and 456 that are 120 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg 100 degrees, 100 degrees and 160 degrees. In another alternative embodiment, the polishing area may be divided into three different sizes, eg, 100 degrees, 120 degrees, and 140 degrees. As polishing pad 450 rotates, the long offset trenches sweep across the wafer to increase removal rates. In the described embodiment, the radial feed grooves 458, 460, and 462 are preferably larger in cross-section than the offset grooves to improve slurry distribution.

參看圖5,向內偏置拋光墊500具有四個拋光區域502、504、506及508。徑向饋料槽510、512、514及516將拋光墊500分成相隔90度之相同尺寸的拋光區域502、504、506及508。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如80度、100度、80度及100度。在另一替代實施例中,可以將拋光區域分成四種不同的尺寸,例如70度、110度、80度及100度。此外,可以改變拋光區域的順序。隨著拋光墊500旋轉,偏置溝槽掃過晶圓以提高移除速率。在所述實施例中,徑向饋料槽510、512、514及516的橫截面宜大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 5 , an inwardly biased polishing pad 500 has four polishing regions 502 , 504 , 506 and 508 . Radial feed slots 510, 512, 514, and 516 divide polishing pad 500 into equal-sized polishing regions 502, 504, 506, and 508 that are 90 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 80 degrees, 100 degrees, 80 degrees, and 100 degrees. In another alternative embodiment, the polishing area may be divided into four different sizes, eg, 70 degrees, 110 degrees, 80 degrees, and 100 degrees. In addition, the order of polishing areas can be changed. As polishing pad 500 rotates, the offset trenches sweep across the wafer to increase removal rates. In the described embodiment, the radial feed grooves 510, 512, 514 and 516 are preferably larger in cross section than the offset grooves to improve the distribution of the polishing liquid.

參看圖5A,向外偏置拋光墊550具有四個拋光區域552、554、556及558。徑向饋料槽560、562、564及566將拋光墊550分成相隔90度之相同尺寸的拋光區域552、554、556及558。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如80度、100度、80度及100度。在另一替代實施例中,可以將拋光區域分成四種不同的尺寸,例如70度、80度、100度及110度。此外,可以改變拋光區域的順序。隨著拋光墊550旋轉,偏置溝槽掃過晶圓以提高移除速率。在所述實施例中,徑向饋料槽560、562、564及566的橫截面宜大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 5A , an outwardly biased polishing pad 550 has four polishing regions 552 , 554 , 556 and 558 . Radial feed slots 560, 562, 564, and 566 divide polishing pad 550 into equal-sized polishing regions 552, 554, 556, and 558 that are 90 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 80 degrees, 100 degrees, 80 degrees, and 100 degrees. In another alternative embodiment, the polishing area may be divided into four different sizes, eg, 70 degrees, 80 degrees, 100 degrees, and 110 degrees. In addition, the order of polishing areas can be changed. As polishing pad 550 rotates, the offset trenches sweep across the wafer to increase removal rates. In the described embodiment, the radial feed grooves 560, 562, 564, and 566 are preferably larger in cross-section than the offset grooves to improve slurry distribution.

參看圖6,向內偏置拋光墊600具有五個拋光區域602、604、606、608及610。徑向饋料槽612、614、616、618及620將拋光墊600分成相隔72度之相同尺寸的拋光區域602、604、606、608及610。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如60度、90度、60度、90度及60度。在另一替代實施例中,可以將拋光區域分成五種不同尺寸,例如52度、62度、72度、82度及92度。此外,可以改變拋光區域的順序。隨著拋光墊600旋轉,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽612、614、616、618及620的橫截面宜大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 6 , inwardly biased polishing pad 600 has five polishing regions 602 , 604 , 606 , 608 and 610 . Radial feed slots 612, 614, 616, 618, and 620 divide polishing pad 600 into equal-sized polishing regions 602, 604, 606, 608, and 610 that are 72 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 60 degrees, 90 degrees, 60 degrees, 90 degrees, and 60 degrees. In another alternative embodiment, the polishing area may be divided into five different sizes, eg, 52 degrees, 62 degrees, 72 degrees, 82 degrees, and 92 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 600 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 612, 614, 616, 618, and 620 are preferably larger in cross-section than the offset grooves to improve the distribution of the slurry.

參看圖6A,向外偏置拋光墊650具有五個拋光區域652、654、656、658及660。徑向饋料槽662、664、666、668及670將拋光墊650分成相隔72度之相同尺寸的拋光區域652、654、656、658及660。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如60度、90度、60度、90度及60度。在另一替代實施例中,可以將拋光區域分成五種不同尺寸,例如52度、62度、72度、82度及92度。此外,可以改變拋光區域的順序。隨著拋光墊650旋轉,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽662、664、666、668及670的橫截面宜大於偏置溝槽,以改良拋光液的分佈。Referring to FIG. 6A , the outwardly biased polishing pad 650 has five polishing regions 652 , 654 , 656 , 658 and 660 . Radial feed slots 662, 664, 666, 668, and 670 divide polishing pad 650 into equal-sized polishing regions 652, 654, 656, 658, and 660 that are 72 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 60 degrees, 90 degrees, 60 degrees, 90 degrees, and 60 degrees. In another alternative embodiment, the polishing area may be divided into five different sizes, eg, 52 degrees, 62 degrees, 72 degrees, 82 degrees, and 92 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 650 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 662, 664, 666, 668 and 670 are preferably larger in cross section than the offset grooves to improve the distribution of the polishing liquid.

參看圖7,向內偏置拋光墊700具有六個拋光區域702、704、706、708、710及712。徑向饋料槽714、716、718、720、722及724將拋光墊700分成相隔60度之相同尺寸的拋光區域702、704、706、708、710及712。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如50度、70度、50度、70度、50度及70度。在另一替代實施例中,可以將拋光區域分成六種不同的尺寸,例如30度、40度、50度、70度、80度及90度。此外,可以改變拋光區域的順序。隨著拋光墊700旋轉,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽714、716、718、720、722及724的橫截面大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 7 , the inwardly biased polishing pad 700 has six polishing regions 702 , 704 , 706 , 708 , 710 and 712 . Radial feed slots 714, 716, 718, 720, 722, and 724 divide polishing pad 700 into equal-sized polishing regions 702, 704, 706, 708, 710, and 712 that are 60 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 50 degrees, 70 degrees, 50 degrees, 70 degrees, 50 degrees, and 70 degrees. In another alternative embodiment, the polishing area may be divided into six different sizes, eg, 30 degrees, 40 degrees, 50 degrees, 70 degrees, 80 degrees, and 90 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 700 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 714, 716, 718, 720, 722, and 724 are larger in cross-section than the offset grooves to improve slurry distribution.

參看圖7A,向外偏置拋光墊750具有六個拋光區域752、754、756、758、760及762。徑向饋料槽764、766、768、770、772及774將拋光墊750分成相隔60度之相同尺寸的拋光區域752、754、756、758、760及762。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如50度、70度、50度、70度、50度及70度。在另一替代實施例中,可以將拋光區域分成六種不同的尺寸,例如30度、40度、50度、70度、80度及90度。此外,可以改變拋光區域的順序。隨著拋光墊750旋轉,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽764、766、768、770、772及774的橫截面宜大於偏置溝槽,以改良拋光液的分佈。Referring to FIG. 7A , an outwardly biased polishing pad 750 has six polishing regions 752 , 754 , 756 , 758 , 760 and 762 . Radial feed slots 764, 766, 768, 770, 772, and 774 divide polishing pad 750 into equal-sized polishing regions 752, 754, 756, 758, 760, and 762 that are 60 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 50 degrees, 70 degrees, 50 degrees, 70 degrees, 50 degrees, and 70 degrees. In another alternative embodiment, the polishing area may be divided into six different sizes, eg, 30 degrees, 40 degrees, 50 degrees, 70 degrees, 80 degrees, and 90 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 750 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 764, 766, 768, 770, 772 and 774 are preferably larger in cross section than the offset grooves to improve the distribution of the polishing liquid.

參看圖1,向內偏置拋光墊10具有八個拋光區域40、42、44、46、48、50、52及54。徑向饋料槽20、22、24、26、28、30、32及34將拋光墊10分成相隔45度之相同尺寸的拋光區域40、42、44、46、48、50、52及54。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如35度、55度、35度、55度、35度、55度、35度及55度。在另一替代實施例中,可以將拋光區域分成八種不同的尺寸,例如25度、30度、35度、40度、50度、55度、60度及65度。此外,可以改變拋光區域的順序。隨著拋光墊10旋轉,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽20、22、24、26、28、30、32及34的橫截面宜大於偏置溝槽以改良拋光液的分佈。旋轉拋光墊使晶圓交替越過一個徑向饋料槽與兩個徑向饋料槽上。Referring to FIG. 1 , the inwardly biased polishing pad 10 has eight polishing regions 40 , 42 , 44 , 46 , 48 , 50 , 52 and 54 . Radial feed troughs 20, 22, 24, 26, 28, 30, 32, and 34 divide polishing pad 10 into equal-sized polishing regions 40, 42, 44, 46, 48, 50, 52, and 54 spaced 45 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 35 degrees, 55 degrees, 35 degrees, 55 degrees, 35 degrees, 55 degrees, 35 degrees, and 55 degrees. In another alternative embodiment, the polishing area may be divided into eight different sizes, such as 25 degrees, 30 degrees, 35 degrees, 40 degrees, 50 degrees, 55 degrees, 60 degrees, and 65 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 10 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 20, 22, 24, 26, 28, 30, 32 and 34 are preferably larger in cross section than the offset grooves to improve the distribution of the polishing liquid. Rotating the polishing pad alternately passes wafers over one radial feed slot and two radial feed slots.

參看圖2,向外偏置拋光墊210具有八個拋光區域240、242、244、246、248、250、252及254。徑向饋料槽220、222、224、226、228、230、232及234將拋光墊210分成相隔45度的拋光區域240、242、244、246、248、250、252及254。在未示出的一個替代實施例中,可以將拋光區域分成兩種尺寸,例如35度、55度、35度、55度、35度、55度、35度及55度。在另一替代實施例中,可以將拋光區域分成八種不同的尺寸,例如25度、30度、35度、40度、50度、55度、60度及65度。此外,可以改變拋光區域的順序。當拋光墊210旋轉時,偏置溝槽掃過晶圓以提高移除速率,並且額外的徑向饋料槽有助於拋光液分佈。在所述實施例中,徑向饋料槽220、222、224、226、228、230、232及234的橫截面大於偏置溝槽以改良拋光液的分佈。Referring to FIG. 2 , the outwardly biased polishing pad 210 has eight polishing regions 240 , 242 , 244 , 246 , 248 , 250 , 252 and 254 . Radial feed slots 220, 222, 224, 226, 228, 230, 232, and 234 divide polishing pad 210 into polishing regions 240, 242, 244, 246, 248, 250, 252, and 254 that are 45 degrees apart. In an alternative embodiment not shown, the polishing area may be divided into two sizes, eg, 35 degrees, 55 degrees, 35 degrees, 55 degrees, 35 degrees, 55 degrees, 35 degrees, and 55 degrees. In another alternative embodiment, the polishing area may be divided into eight different sizes, such as 25 degrees, 30 degrees, 35 degrees, 40 degrees, 50 degrees, 55 degrees, 60 degrees, and 65 degrees. In addition, the order of polishing areas can be changed. As the polishing pad 210 rotates, the offset grooves sweep across the wafer to increase removal rates, and additional radial feed troughs aid in slurry distribution. In the described embodiment, the radial feed grooves 220, 222, 224, 226, 228, 230, 232, and 234 are larger in cross-section than the offset grooves to improve slurry distribution.

參看圖8及8A,將拋光墊800及850的偏置溝槽810及860彎曲分別可以促進拋光液在溝槽著落區域上的均勻流動。拋光墊800及850具有向外偏置溝槽810及860。隨著拋光墊800及850旋轉,拋光液流出溝槽810及860而向外邊緣812及862流動。在溝槽810及860中,溝槽的向外傾斜隨著其向外行進而減小,這減慢了向外的速度,並有助於拋光液在順時針及逆時針旋轉期間濕潤溝槽810及860之靠近端部的著落區域。Referring to Figures 8 and 8A, bending the offset grooves 810 and 860 of the polishing pads 800 and 850, respectively, can promote uniform flow of the polishing liquid over the groove landing areas. Polishing pads 800 and 850 have outwardly offset trenches 810 and 860 . As the polishing pads 800 and 850 rotate, the polishing fluid flows out of the grooves 810 and 860 to the outer edges 812 and 862 . In grooves 810 and 860, the outward slope of the groove decreases as it travels outward, which slows the outward velocity and helps the slurry wet groove 810 during clockwise and counterclockwise rotation And the landing area near the end of 860.

為了此等配置及為了說明之目的,偏向角θ等於彎曲偏置溝槽相對於由虛線表示之平分線的平均角度。如圖8所示之測量偏向角的一種方法為繪製假想線8-8,該假想線8-8沿著單個彎曲偏置溝槽連接相鄰的徑向饋料槽820及830,接著測量與虛線平分線B8 相交的角度(θ)或偏向角。類似地,在圖8A中,假想線8a-8a沿著單個彎曲偏置溝槽連接相鄰的徑向饋料槽870及872,接著測量與虛線平分線B8a 相交的角度,其等於偏向角θ。重要的是每個彎曲偏置區段的至少大部分具有向內或向外的角度。大部分的偏置溝槽宜具有相同的偏置。此係因為具有向內偏置的溝槽部分與向外偏置的溝槽部分就移除速率而言傾向於彼此抵消。有利的是,所有的偏置段皆具有向內或向外的偏置。For these configurations and for illustrative purposes, the deflection angle Θ is equal to the average angle of the curved offset trenches relative to the bisector represented by the dashed line. One way to measure the deflection angle as shown in Figure 8 is to draw an imaginary line 8-8 connecting adjacent radial feed troughs 820 and 830 along a single curved offset channel, and then measure the The angle (θ) or deflection angle at which the dotted bisector B 8 intersects. Similarly, in Figure 8A, an imaginary line 8a-8a joins adjacent radial feed troughs 870 and 872 along a single curved offset groove, and then measures the angle that intersects the dashed bisector B 8a , which is equal to the deflection angle theta. It is important that at least a majority of each curved offset section has an inward or outward angle. Most of the offset trenches should preferably have the same offset. This is because having inwardly biased trench portions and outwardly biased trench portions tend to cancel each other out in terms of removal rate. Advantageously, all offset segments have an inward or outward offset.

參看圖9,拋光墊900具有彎曲的徑向饋料槽910、912、914及916。饋料槽910、912、914及916逆時針彎曲以便在拋光墊900順時針旋轉的情況下改良流體流動。此形狀加快拋光液的向外流動,以在順時針旋轉期間改良拋光液向外部偏置溝槽920的分佈,並且減慢向外流動,以在逆時針旋轉期間減少拋光液向外部偏置溝槽920的分佈。或者,徑向饋料槽可以順時針方向(未示出)彎曲以獲得相反的影響。此形狀減慢拋光液的向外流動,以在逆時針旋轉期間改良拋光液向外部偏置溝槽920的分佈,並且加快向外流動,以在順時針旋轉期間減少拋光液向外部偏置溝槽920的分佈。9, polishing pad 900 has radial feed channels 910, 912, 914, and 916 that are curved. Feed troughs 910, 912, 914, and 916 are curved counterclockwise to improve fluid flow when polishing pad 900 is rotated clockwise. This shape accelerates the outward flow of the slurry to improve the distribution of slurry to the outer bias groove 920 during clockwise rotation, and slows the outward flow to reduce the slurry to the outer bias groove during counterclockwise rotation Distribution of slots 920. Alternatively, the radial feed trough can be bent in a clockwise direction (not shown) for the opposite effect. This shape slows the outward flow of the slurry to improve the distribution of the slurry to the outer bias grooves 920 during counterclockwise rotation, and accelerates the outward flow to reduce the slurry to the outer bias grooves during clockwise rotation Distribution of slots 920.

測量具有彎曲徑向饋料槽914及916的圖9的偏向角需要繪製徑向虛線Ra及Rb與平分徑向虛線Ra及Rb的假想平分線B9 。此說明與平分線B9 相交的向外偏置溝槽930的偏向角θ。弦Ra1 及Rb1 具有相等的長度並且分別為平行的徑向線Ra及Rb。虛線Ra1 -Rb1 連接弦Ra1 及Rb1 的末端,並且在偏置溝槽930處與平分線B9 相交。溝槽930的偏向角為平分線B9 與溝槽930之間的角度或θ。此實施例在整個拋光區域中沿著每個偏置溝槽具有恆定的θ。Measuring the deflection angle of FIG. 9 with curved radial feed troughs 914 and 916 requires drawing the dashed radial lines Ra and Rb and an imaginary bisector B9 that bisects the dashed radial lines Ra and Rb. This illustrates the deflection angle θ of the outwardly biased trench 930 that intersects the bisector B9. Chords Ra 1 and Rb 1 have equal lengths and are parallel radial lines Ra and Rb, respectively. Dashed line Ra 1 -Rb 1 connects the ends of chords Ra 1 and Rb 1 and intersects bisector B 9 at offset trench 930 . The deflection angle of trench 930 is the angle or θ between bisector B 9 and trench 930 . This embodiment has a constant θ along each offset groove throughout the polishing area.

參看圖10,拋光墊1000包括彎曲之徑向饋料槽1010、1012、1014及1016與向外偏置之彎曲溝槽1020的組合。特定而言,此溝槽圖案包括彎曲的徑向饋料槽1010、1012、1014及1016,以微調或調整拋光墊1000之外邊緣1022附近的拋光液。此外,向外偏置的彎曲溝槽1020用於平衡流至拋光區域1030、1032及1034內之著落區域上的拋光液流動。10, polishing pad 1000 includes a combination of curved radial feed channels 1010, 1012, 1014, and 1016 and curved grooves 1020 that are biased outward. In particular, the groove pattern includes curved radial feed channels 1010 , 1012 , 1014 , and 1016 to fine-tune or adjust the polishing fluid near the outer edge 1022 of the polishing pad 1000 . In addition, the outwardly biased curved grooves 1020 serve to balance the flow of polishing fluid onto the landing areas within the polishing regions 1030 , 1032 and 1034 .

測量具有彎曲徑向饋料槽1014及1016之圖10的偏向角需要繪製徑向虛線Ra及Rb與平分徑向虛線Ra及Rb的假想平分線B10 。此說明了與平分線B10 相交之向外偏置溝槽1040的偏向角θ。弦Ra1 及Rb1 具有相等的長度並且分別為平行的徑向線Ra及Rb。虛線Ra1 -Rb1 連接弦Ra1 及Rb1 的末端並且在偏置溝槽104處與平分線B9 相交。槽1040的偏向角為平分線B10 與連接溝槽1040末端之線之間的角度或θ。此實施例的θ隨著每個偏置溝槽與拋光墊1000的間距增大而增大。Measuring the deflection angle of Figure 10 with curved radial feed troughs 1014 and 1016 requires drawing the radial dashed lines Ra and Rb and an imaginary bisector B10 that bisects the radial dashed lines Ra and Rb. This illustrates the deflection angle θ of the outwardly offset trench 1040 that intersects the bisector B 10 . Chords Ra 1 and Rb 1 have equal lengths and are parallel radial lines Ra and Rb, respectively. Dashed line Ra 1 -Rb 1 connects the ends of chords Ra 1 and Rb 1 and intersects bisector B 9 at offset trench 104 . The deflection angle of the groove 1040 is the angle or θ between the bisector B 10 and the line connecting the ends of the groove 1040 . θ for this embodiment increases as the spacing of each offset trench from the polishing pad 1000 increases.

參看圖11、11A及11B,拋光墊1100包括梯狀徑向饋料槽1110、1112、1114及1116。此形狀減慢拋光液的向外流動,以在順時針旋轉期間改良拋光液向外部偏置溝槽1120、1122及1124的分佈,且加快向外流動,以在逆時針旋轉期間減少拋光液到外部偏置溝槽1120、1122及1124的分佈。或者,徑向饋料槽可以順時針方向(未示出)彎曲以獲得相反的影響。此形狀減慢拋光液的向外流動,以在逆時針旋轉期間改良拋光液向外部偏置溝槽1120、1122及1124的分佈,並且減慢向外流動,以在順時針旋轉期間減少拋光液向外部偏置溝槽1120、1122及1124的分佈。向外彎曲徑向偏置溝槽1120、向內徑向偏置溝槽1122及向內平行徑向偏置溝槽1124皆用於調整拋光液在晶圓下的滯留時間且微調拋光輪廓。另外,可以藉由調節壓板或晶圓旋轉速度來調整邊緣輪廓。舉例而言,增加壓板或晶圓速度能將中心快速拋光變成扁平輪廓。當晶圓在拋光墊的中心與邊緣之間不振盪時,此效應變得明顯得多。11, 11A, and 11B, polishing pad 1100 includes stepped radial feed channels 1110, 1112, 1114, and 1116. This shape slows the outward flow of the slurry to improve the distribution of the slurry to the outer bias grooves 1120, 1122 and 1124 during clockwise rotation, and accelerates the outward flow to reduce the slurry to the outside during counterclockwise rotation Distribution of external bias trenches 1120, 1122, and 1124. Alternatively, the radial feed trough can be bent in a clockwise direction (not shown) for the opposite effect. This shape slows the outward flow of the slurry to improve the distribution of the slurry to the outer bias grooves 1120, 1122 and 1124 during counterclockwise rotation, and slows the outward flow to reduce the slurry during clockwise rotation The distribution of trenches 1120, 1122, and 1124 is biased outward. The outwardly curved radially offset grooves 1120, the inwardly radially offset grooves 1122, and the inwardly parallel radially offset grooves 1124 are all used to adjust the residence time of the polishing solution under the wafer and to fine-tune the polishing profile. In addition, the edge profile can be adjusted by adjusting the platen or wafer rotation speed. For example, increasing the platen or wafer speed can quickly polish the center to a flat profile. This effect becomes much more pronounced when the wafer does not oscillate between the center and edge of the polishing pad.

參看圖11,假想線11-11連接單個偏置溝槽。假想線11-11與徑向饋料槽1114及1116之平分線B11-1 之間的角度表示θ1 或拋光區域之第一部分的偏向角。拋光區域的此部分具有隨每個偏置溝槽與拋光墊中心的間距而減小的偏向角。Referring to Figure 11, phantom lines 11-11 connect a single offset trench. The angle between the imaginary line 11-11 and the bisector B 11-1 of the radial feed troughs 1114 and 1116 represents θ 1 or the deflection angle of the first portion of the polishing area. This portion of the polishing area has an offset angle that decreases with the spacing of each offset groove from the center of the polishing pad.

第二個區域需要繪製徑向線Ra及Rb以及平分徑向線Ra及Rb的B11-2 。徑向弦Ra1 及Rb1 具有相等的長度並且分別為平行的徑向線Ra及Rb。虛線B11-2 表示此等徑向弦的二等分。假想線Ra1 -Rb1 連接Ra1 及Rb1 並且通過偏置溝槽1130與平分線B11-2 的交點。連接偏置溝槽1130末端的線與平分線B11-2 的交點表示偏向角或θ2 。拋光區域的此部分也具有隨每個偏置溝槽與拋光墊中心的間距而減小的偏向角。The second area requires the drawing of radial lines Ra and Rb and B 11-2 that bisects radial lines Ra and Rb. The radial chords Ra 1 and Rb 1 have equal lengths and are parallel radial lines Ra and Rb, respectively. The dashed line B 11-2 represents the bisectors of these radial chords. An imaginary line Ra 1 -Rb 1 connects Ra 1 and Rb 1 and passes through the intersection of offset trench 1130 and bisector B 11-2 . The intersection of the line connecting the ends of the offset trench 1130 and the bisector B 11-2 represents the deflection angle or θ 2 . This portion of the polishing area also has an offset angle that decreases with the spacing of each offset groove from the center of the polishing pad.

參看圖12及12A,拋光墊1200可以分別含有連接徑向饋料槽1210、1220、1230及1240的一系列梯狀偏置溝槽1202及1204。梯狀偏置溝槽1202及1204具有區段1202a及1202b,且1204具有區段1204a及1204b,各被虛線分開,以用於說明的目的。圖12具有向內偏置梯式溝槽1202,其被分成相等的部分:溝槽區段1202a及1202b。在此配置中,漿液首先通過較淺偏置的溝槽區段1202a,接著以增加的速率通過具有較陡斜率的溝槽區段1202b。圖12A具有梯狀偏置溝槽1204,其被分成不相等的部分:溝槽區段1204a及1204b。在此配置中,漿液首先通過較陡偏置的溝槽區段1204a,接著以降低的速率通過具有較淺斜率的溝槽區段1204b。可以使用區段間距及斜率來調整晶圓輪廓及邊緣輪廓。12 and 12A, polishing pad 1200 may contain a series of stepped offset grooves 1202 and 1204 connecting radial feed troughs 1210, 1220, 1230 and 1240, respectively. Stepped offset trenches 1202 and 1204 have sections 1202a and 1202b, and 1204 has sections 1204a and 1204b, each separated by a dashed line for illustration purposes. Figure 12 has an inwardly offset stepped trench 1202 that is divided into equal parts: trench segments 1202a and 1202b. In this configuration, the slurry first passes through the shallower offset trench section 1202a, followed by the trench section 1202b with a steeper slope at an increasing rate. Figure 12A has a stepped offset trench 1204 that is divided into unequal parts: trench segments 1204a and 1204b. In this configuration, the slurry first passes through the steeper offset trench section 1204a, followed by the trench section 1204b with a shallower slope at a reduced rate. Wafer profile and edge profile can be adjusted using segment pitch and slope.

參看圖13,拋光墊1300包括使相鄰梯狀徑向饋料槽1310、1320、1330及1340互連的向外偏置梯狀溝槽1302。梯狀偏置溝槽1302具有區段1302a及1202b,各被虛線分開,以用於說明的目的。徑向饋料槽與梯狀偏置溝槽的階梯位置及階梯斜率均影響拋光移除速率、晶圓輪廓及邊緣輪廓。13, polishing pad 1300 includes outwardly biased stepped grooves 1302 interconnecting adjacent stepped radial feed grooves 1310, 1320, 1330, and 1340. The stepped offset trench 1302 has sections 1302a and 1202b, each separated by a dashed line for illustration purposes. Both the step position and step slope of the radial feed trough and the stepped offset groove affect the polishing removal rate, wafer profile and edge profile.

參看圖14、14A、14B及14C,拋光墊可以包括具有不同間距或不同橫截面積的兩個或更多個溝槽區域。圖14、14A、14C皆包括具有如下三個區域的向內間隔區域:(a)具有第一正常間距的溝槽,(b)間距增大的溝槽及(c)間距等於區域(a)的溝槽。此溝槽間距有效消除中心快速晶圓輪廓。藉由調整每個溝槽區域的寬度及每個溝槽區域內的溝槽密度,可以微調晶圓輪廓。調整溝槽間距對改良晶圓邊緣輪廓有特別的影響。如圖14所示,偏置溝槽可以為平行線性溝槽、平行彎曲溝槽或梯狀溝槽。此等溝槽可以具有相等或不相等的間距。Referring to Figures 14, 14A, 14B, and 14C, the polishing pad may include two or more groove regions having different pitches or different cross-sectional areas. Figures 14, 14A, 14C each include inwardly spaced regions with three regions: (a) trenches with a first normal pitch, (b) trenches with increased pitch and (c) pitch equal to region (a) groove. This trench spacing effectively eliminates the center fast wafer profile. By adjusting the width of each trench region and the trench density within each trench region, the wafer profile can be fine-tuned. Adjusting the trench spacing has a particular effect on improving the wafer edge profile. As shown in FIG. 14, the offset grooves may be parallel linear grooves, parallel curved grooves or stepped grooves. The grooves may have equal or unequal spacing.

參看圖15、15A、15B及15C,拋光墊可以包括具有不同間距或不同橫截面積的兩個或更多個溝槽區域。圖15、15A、15B及15C皆包括具有如下三個區域的向內間隔區域:(A)具有第一增大間距的溝槽,(B)具有正常間距的溝槽及(C)間距等於區域(A)的溝槽。此溝槽間距有效消除中心慢速晶圓輪廓。藉由調整每個溝槽區域的寬度及每個溝槽區域內的溝槽密度,可以微調晶圓輪廓。調整溝槽間距對改良晶圓邊緣輪廓有特別的影響。如圖15所示,偏置溝槽可以為平行線性溝槽、平行彎曲溝槽或梯狀溝槽。此等溝槽可以具有相等或不相等的間距。Referring to Figures 15, 15A, 15B, and 15C, the polishing pad may include two or more groove regions with different pitches or different cross-sectional areas. Figures 15, 15A, 15B and 15C all include inwardly spaced regions with three regions: (A) trenches with a first increased pitch, (B) trenches with normal pitch and (C) equal pitch regions (A) The groove. This trench spacing effectively eliminates the center slow wafer profile. By adjusting the width of each trench region and the trench density within each trench region, the wafer profile can be fine-tuned. Adjusting the trench spacing has a particular effect on improving the wafer edge profile. As shown in FIG. 15, the offset grooves may be parallel linear grooves, parallel curved grooves or stepped grooves. The grooves may have equal or unequal spacing.

10‧‧‧本發明的拋光墊12‧‧‧拋光層16‧‧‧中心18‧‧‧外邊緣19‧‧‧周邊圓弧20‧‧‧徑向進料槽20a‧‧‧徑向進料槽區段20b‧‧‧徑向進料槽區段20c‧‧‧徑向進料槽區段20d‧‧‧徑向進料槽區段20e‧‧‧徑向進料槽區段22‧‧‧徑向進料槽22a‧‧‧徑向進料槽區段22b‧‧‧徑向進料槽區段22c‧‧‧徑向進料槽區段22d‧‧‧徑向進料槽區段22e‧‧‧徑向進料槽區段24‧‧‧徑向進料槽26‧‧‧徑向進料槽28‧‧‧徑向進料槽30‧‧‧徑向進料槽32‧‧‧徑向進料槽34‧‧‧徑向進料槽36‧‧‧圓形溝槽40‧‧‧拋光區域42‧‧‧拋光區域44‧‧‧拋光區域46‧‧‧拋光區域48‧‧‧拋光區域50‧‧‧拋光區域52‧‧‧拋光區域54‧‧‧拋光區域60‧‧‧梯形溝槽區域60a‧‧‧著落區域61a‧‧‧著落區域62‧‧‧梯形溝槽區域62a‧‧‧著落區域63a‧‧‧著落區域64‧‧‧梯形溝槽區域66‧‧‧梯形溝槽區域68‧‧‧梯形溝槽區域70‧‧‧梯形區域80‧‧‧梯形溝槽區域82‧‧‧梯形溝槽區域84‧‧‧梯形溝槽區域86‧‧‧梯形溝槽區域88‧‧‧梯形溝槽區域90‧‧‧梯形溝槽區域92‧‧‧梯形溝槽區域94‧‧‧梯形溝槽區域96‧‧‧梯形溝槽區域98‧‧‧梯形溝槽區域160‧‧‧偏置溝槽160a‧‧‧外壁160b‧‧‧內壁161‧‧‧偏置溝槽161a‧‧‧外壁161b‧‧‧內壁162‧‧‧偏置溝槽162a‧‧‧外壁163‧‧‧偏置溝槽163a‧‧‧外壁164‧‧‧基底溝槽166‧‧‧基底溝槽168‧‧‧基底溝槽170‧‧‧基底溝槽210‧‧‧本發明的拋光墊212‧‧‧拋光層214‧‧‧厚度216‧‧‧中心218‧‧‧外邊緣219‧‧‧周邊圓弧220‧‧‧徑向進料槽220a‧‧‧徑向進料槽區段/邊段220b‧‧‧徑向進料槽區段/邊段220c‧‧‧徑向進料槽區段/邊段220d‧‧‧徑向進料槽區段/邊段220e‧‧‧徑向進料槽區段/邊段222‧‧‧徑向進料槽222a‧‧‧徑向進料槽區段/邊段222b‧‧‧徑向進料槽區段/邊段222c‧‧‧徑向進料槽區段/邊段222d‧‧‧徑向進料槽區段/邊段222e‧‧‧徑向進料槽區段/邊段224‧‧‧徑向進料槽226‧‧‧徑向進料槽228‧‧‧徑向進料槽230‧‧‧徑向進料槽232‧‧‧徑向進料槽234‧‧‧徑向進料槽236‧‧‧圓形溝槽240‧‧‧拋光區域242‧‧‧拋光區域244‧‧‧拋光區域246‧‧‧拋光區域248‧‧‧拋光區域250‧‧‧拋光區域252‧‧‧拋光區域254‧‧‧拋光區域260‧‧‧梯形溝槽區域260a‧‧‧著落區域261a‧‧‧著落區域262‧‧‧梯形溝槽區域262a‧‧‧著落區域263a‧‧‧著落區域264‧‧‧梯形溝槽區域266‧‧‧梯形溝槽區域268‧‧‧梯形溝槽區域270‧‧‧梯形區域280‧‧‧梯形溝槽區域282‧‧‧梯形溝槽區域284‧‧‧梯形溝槽區域286‧‧‧梯形溝槽區域288‧‧‧梯形溝槽區域290‧‧‧梯形溝槽區域292‧‧‧梯形溝槽區域294‧‧‧梯形溝槽區域296‧‧‧梯形溝槽區域360‧‧‧偏置溝槽/基段360a‧‧‧外壁360b‧‧‧內壁361‧‧‧偏置溝槽361a‧‧‧外壁361b‧‧‧內壁362‧‧‧偏置溝槽/基段362a‧‧‧外壁370‧‧‧基段400‧‧‧向內偏置拋光墊402‧‧‧拋光區域404‧‧‧拋光區域406‧‧‧拋光區域408‧‧‧徑向進料槽410‧‧‧徑向進料槽412‧‧‧徑向進料槽450‧‧‧向外偏置拋光墊452‧‧‧拋光區域454‧‧‧拋光區域456‧‧‧拋光區域458‧‧‧徑向進料槽460‧‧‧徑向進料槽462‧‧‧徑向進料槽500‧‧‧向內偏置拋光墊502‧‧‧拋光區域504‧‧‧拋光區域506‧‧‧拋光區域508‧‧‧拋光區域510‧‧‧徑向進料槽512‧‧‧徑向進料槽514‧‧‧徑向進料槽516‧‧‧徑向進料槽550‧‧‧向外偏置拋光墊552‧‧‧拋光區域554‧‧‧拋光區域556‧‧‧拋光區域558‧‧‧拋光區域560‧‧‧徑向進料槽562‧‧‧徑向進料槽564‧‧‧徑向進料槽566‧‧‧徑向進料槽600‧‧‧向內偏置拋光墊602‧‧‧拋光區域604‧‧‧拋光區域606‧‧‧拋光區域608‧‧‧拋光區域610‧‧‧拋光區域612‧‧‧徑向進料槽614‧‧‧徑向進料槽616‧‧‧徑向進料槽618‧‧‧徑向進料槽620‧‧‧徑向進料槽650‧‧‧向外偏置拋光墊652‧‧‧拋光區域654‧‧‧拋光區域656‧‧‧拋光區域658‧‧‧拋光區域660‧‧‧拋光區域662‧‧‧徑向進料槽664‧‧‧徑向進料槽666‧‧‧徑向進料槽668‧‧‧徑向進料槽670‧‧‧徑向進料槽700‧‧‧向內偏置拋光墊702‧‧‧拋光區域704‧‧‧拋光區域706‧‧‧拋光區域708‧‧‧拋光區域710‧‧‧拋光區域712‧‧‧拋光區域714‧‧‧徑向進料槽716‧‧‧徑向進料槽718‧‧‧徑向進料槽720‧‧‧徑向進料槽722‧‧‧徑向進料槽724‧‧‧徑向進料槽750‧‧‧向外偏置拋光墊752‧‧‧拋光區域754‧‧‧拋光區域756‧‧‧拋光區域758‧‧‧拋光區域760‧‧‧拋光區域762‧‧‧拋光區域764‧‧‧徑向進料槽766‧‧‧徑向進料槽768‧‧‧徑向進料槽770‧‧‧徑向進料槽772‧‧‧徑向進料槽774‧‧‧徑向進料槽800‧‧‧拋光墊810‧‧‧偏置溝槽820‧‧‧徑向進料槽830‧‧‧徑向進料槽850‧‧‧拋光墊860‧‧‧偏置溝槽862‧‧‧外邊緣870‧‧‧徑向進料槽872‧‧‧徑向進料槽900‧‧‧拋光墊910‧‧‧徑向進料槽912‧‧‧徑向進料槽914‧‧‧徑向進料槽916‧‧‧徑向進料槽920‧‧‧外部偏置溝槽930‧‧‧偏置溝槽1000‧‧‧拋光墊1010‧‧‧徑向進料槽1012‧‧‧徑向進料槽1014‧‧‧徑向進料槽1016‧‧‧徑向進料槽1020‧‧‧向外偏置彎曲溝槽1022‧‧‧外邊緣1030‧‧‧拋光區域1032‧‧‧拋光區域1034‧‧‧拋光區域1040‧‧‧向外偏置溝槽1100‧‧‧拋光墊1110‧‧‧梯狀徑向進料槽1112‧‧‧梯狀徑向進料槽1114‧‧‧梯狀徑向進料槽1116‧‧‧梯狀徑向進料槽1120‧‧‧外部偏置溝槽1122‧‧‧外部偏置溝槽1124‧‧‧外部偏置溝槽1130‧‧‧偏置溝槽1200‧‧‧拋光墊1202‧‧‧梯狀偏置溝槽1202a‧‧‧區段1202b‧‧‧區段1204‧‧‧梯狀偏置溝槽1204a‧‧‧區段1204b‧‧‧區段1210‧‧‧徑向進料槽1220‧‧‧徑向進料槽1230‧‧‧徑向進料槽1240‧‧‧徑向進料槽1300‧‧‧拋光墊1302‧‧‧向外偏置梯狀溝槽1302a‧‧‧區段1310‧‧‧梯狀徑向進料槽1320‧‧‧梯狀徑向進料槽1330‧‧‧梯狀徑向進料槽1340‧‧‧梯狀徑向進料槽r1‧‧‧半徑r2‧‧‧半徑α1‧‧‧角β1‧‧‧角α2‧‧‧角β2‧‧‧角θ‧‧‧偏向角θ1‧‧‧偏向角θ2‧‧‧偏向角AA‧‧‧虛線VT‧‧‧漿液流速VN‧‧‧漿液流速Vib‧‧‧向外速度Vob‧‧‧向外速度w‧‧‧點DP‧‧‧漿液滴落點8-8‧‧‧假想線8a-8a‧‧‧假想線B8‧‧‧平分線B8a‧‧‧平分線B9‧‧‧平分線B10‧‧‧平分線B11-1‧‧‧平分線B11-2‧‧‧平分線Ra‧‧‧徑向虛線Ra1‧‧‧弦Rb‧‧‧徑向虛線Rb1‧‧‧弦Ra1-Rb1‧‧‧虛線10‧‧‧Polishing pad of the present invention 12‧‧‧Polishing layer 16‧‧‧Center 18‧‧‧Outer edge 19‧‧‧Peripheral arc 20‧‧‧Radial feed groove 20a‧‧‧Radial feed Trough section 20b‧‧‧Radial feed trough section 20c‧‧‧Radial feed trough section 20d‧‧‧Radial feed trough section 20e‧‧‧Radial feed trough section 22‧‧ ‧Radial feed trough 22a‧‧‧Radial feed trough section 22b‧‧‧Radial feed trough section 22c‧‧‧Radial feed trough section 22d‧‧‧Radial feed trough section 22e‧‧‧Radial feed chute 24‧‧‧Radial feed chute26‧‧‧Radial feed chute28‧‧‧Radial feed chute30‧‧‧Radial feed chute32‧‧ ‧Radial feed slot 34‧‧‧Radial feed slot 36‧‧‧Circular groove 40‧‧‧Polishing area 42‧‧‧Polishing area 44‧‧‧Polishing area 46‧‧‧Polishing area 48‧‧ ‧Polishing area 50‧‧‧Polishing area 52‧‧‧Polishing area 54‧‧‧Polishing area 60‧‧‧Trapezoidal groove area 60a‧‧‧Landing area 61a‧‧‧Landing area 62‧‧‧Trapezoidal groove area 62a ‧‧‧Landing area 63a‧‧‧Landing area 64‧‧‧Trapezoidal groove area 66‧‧‧Trapezoidal groove area 68‧‧‧Trapezoidal groove area 70 ‧‧‧Trapezoidal trench area 84‧‧‧Trapezoidal trench area 86‧‧‧Trapezoidal trench area 88‧‧‧Trapezoidal trench area 90‧‧‧Trapezoidal trench area 92‧‧‧Trapezoidal trench area 94‧‧ ‧Trapezoidal groove area 96‧‧‧Trapezoidal groove area 98‧‧‧Trapezoidal groove area 160‧‧‧Offset groove 160a‧‧‧Outer wall 160b‧‧‧Inner wall 161‧‧‧Offset groove 161a‧ ‧‧Outer wall 161b‧‧‧Inner wall 162‧‧‧Offset groove 162a‧‧‧Outer wall 163‧‧‧Offset groove 163a‧‧‧Outer wall 164‧‧‧Substrate groove 166‧‧‧Substrate groove 168 ‧‧‧Substrate groove 170‧‧‧Substrate groove 210‧‧‧Polishing pad 212 of the present invention‧‧‧Polishing layer 214‧‧‧Thickness 216 Arc 220‧‧‧Radial feed chute 220a‧‧‧Radial feed chute section/Side section 220b‧‧‧Radial feed chute section/Side section 220c‧‧‧Radial feed chute section/ Side section 220d‧‧‧Radial feed chute section/Side section 220e‧‧‧Radial feed chute section/Side section 222‧‧‧Radial feed chute 222a‧‧‧Radial feed chute section /Side segment 222b‧‧‧Radial feed chute segment/Side segment 222c‧‧‧Radial feed chute segment/Side segment 222d‧‧‧Radial feed chute segment/Side segment 222e‧‧‧diameter Toward feed chute section/side section 224‧‧‧Radial feed chute 226‧‧‧Radial feed chute 228‧‧‧Radial feed chute 230‧‧‧Radial feed chute 232‧‧‧dia Toward feed chute 234‧‧‧Radial feed chute 23 6‧‧‧Circular grooves 240‧‧‧Polishing area 242‧‧‧Polishing area 244‧‧‧Polishing area 246‧‧‧Polishing area 248‧‧‧Polishing area 250‧‧‧Polishing area252‧‧‧Polishing area 254‧‧‧Polishing area 260‧‧‧Trapezoidal groove area 260a‧‧‧Landing area 261a‧‧‧Landing area 262‧‧‧Trapezoidal groove area 262a‧‧‧Landing area 263a‧‧‧Landing area 264‧‧‧ Trapezoidal trench area 266‧‧‧Trapezoidal trench area 268‧‧‧Trapezoidal trench area 270‧‧‧Trapezoidal trench area 280‧‧‧Trapezoidal trench area 282‧‧‧Trapezoidal trench area 284‧‧‧Trapezoidal trench area 286‧‧‧Trapezoidal trench area288‧‧‧Trapezoidal trench area290‧‧‧Trapezoidal trench area292‧‧‧Trapezoidal trench area294‧‧‧Trapezoidal trench area296‧‧‧Trapezoidal trench area360‧ ‧‧Offset groove/base segment 360a‧‧‧Outer wall 360b‧‧‧Inner wall 361‧‧‧Offset groove 361a‧‧‧Outer wall 361b‧‧‧Inner wall 362‧‧‧Offset groove/base segment 362a‧‧‧Outer wall 370‧‧‧Base section 400‧‧‧Inward offset polishing pad 402‧‧‧Polishing area 404‧‧‧Polishing area 406‧‧‧Polishing area 408‧‧‧Radial feed slot 410‧ ‧‧Radial feed slot 412‧‧‧Radial feed slot 450‧‧‧Outwardly offset polishing pad 452‧‧‧Polishing area 454‧‧‧Polishing area 456‧‧‧Polishing area 458‧‧‧Radial Feed chute 460‧‧‧Radial feed chute 462‧‧‧Radial feed chute 500‧‧‧Inward offset polishing pad 502‧‧‧Polishing area 504‧‧‧Polishing area 506‧‧‧Polishing area 508 ‧‧‧Polishing area 510‧‧‧Radial feed slot 512‧‧‧Radial feed slot 514‧‧‧Radial feed slot 516‧‧‧Radial feed slot 550‧‧‧Outward offset polishing Pad 552‧‧‧Polishing area 554‧‧‧Polishing area 556‧‧‧Polishing area 558‧‧‧Polishing area 560‧‧‧Radial feed slot 562‧‧‧Radial feed slot 564‧‧‧Radial feed slot Feed slot 566‧‧‧Radial feed slot 600‧‧‧Inward offset polishing pad 602‧‧‧Polishing area 604‧‧‧Polishing area 606‧‧‧Polishing area 608‧‧‧Polishing area 610‧‧‧Polishing Area 612‧‧‧Radial feed slot 614‧‧‧Radial feed slot 616‧‧‧Radial feed slot 618‧‧‧Radial feed slot 620‧‧‧Radial feed slot 650‧‧‧ Outwardly offset polishing pad 652‧‧‧Polishing area 654‧‧‧Polishing area 656‧‧‧Polishing area 658‧‧‧Polishing area 660‧‧‧Polishing area 662‧‧‧Radial feed slot 664‧‧‧dia Toward feed chute 666‧‧‧Radial feed chute 668‧‧‧Radial feed chute 670‧‧‧Radial feed chute 700‧‧‧Inward offset polishing pad 702‧‧‧ Polished area 704‧‧‧Polished area 706‧‧‧Polished area 708‧‧‧Polished area 710‧‧‧Polished area 712‧‧‧Polished area 714‧‧‧Radial feed slot 716‧‧‧Radial feed slot 718‧‧‧Radial feed slot 720‧‧‧Radial feed slot 722‧‧‧Radial feed slot 724‧‧‧Radial feed slot 750‧‧‧Outwardly offset polishing pad 752‧‧‧ Polished area 754‧‧‧Polished area 756‧‧‧Polished area 758‧‧‧Polished area 760‧‧‧Polished area 762‧‧‧Polished area 764‧‧‧Radial feed slot 766‧‧‧Radial feed slot 768‧‧‧Radial feed slot 770‧‧‧Radial feed slot 772‧‧‧Radial feed slot 774‧‧‧Radial feed slot 800‧‧‧Polishing pad 810‧‧‧Offset slot 820‧‧‧Radial feed slot 830‧‧‧Radial feed slot 850‧‧‧Polishing pad 860‧‧‧Offset slot 862‧‧‧Outer edge 870‧‧‧Radial feed slot 872‧‧ ‧Radial feed slot 900‧‧‧Polishing pad 910‧‧‧Radial feed slot 912‧‧‧Radial feed slot 914‧‧‧Radial feed slot 916‧‧‧Radial feed slot 920‧ ‧‧External offset groove 930‧‧‧Offset groove 1000‧‧‧Polishing pad 1010‧‧‧Radial feed groove 1012‧‧‧Radial feed groove 1014‧‧‧Radial feed groove 1016‧ ‧‧Radial feed slot 1020‧‧‧Outwardly offset curved groove 1022‧‧‧Outer edge 1030‧‧‧Polishing area 1032‧‧‧Polishing area 1034‧‧‧Polishing area 1040‧‧‧Outwardly offsetting Groove 1100‧‧‧Polishing Pad 1110‧‧‧Trapezoidal Radial Feed Slot 1112‧‧‧Trapezoidal Radial Feed Slot 1114‧‧‧Trapezoidal Radial Feed Slot 1116‧‧‧Trapezoidal Radial Feed Slot Feed trough 1120‧‧‧External offset groove 1122‧‧‧External offset groove 1124‧‧‧External offset groove 1130‧‧‧Offset groove 1200‧‧‧Polishing pad 1202‧‧‧Trapezoidal offset Set groove 1202a‧‧‧Section 1202b‧‧‧Section 1204‧‧‧Trapezoidal offset groove 1204a‧‧‧Section 1204b‧‧‧Section 1210‧‧‧Radial feed slot 1220‧‧‧ Radial Feed Slot 1230‧‧‧Radial Feed Slot 1240‧‧‧Radial Feed Slot 1300‧‧‧Polishing Pad 1302‧‧‧Outwardly Biased Trapezoidal Groove 1302a‧‧‧Section 1310‧‧ ‧Trapezoidal radial feed slot 1320‧‧‧Trapezoidal radial feed slot 1330‧‧‧Trapezoidal radial feed slot 1340‧‧‧Trapezoidal radial feed slot r 1 ‧‧‧Radius r 2 ‧ ‧‧Radius α 1 ‧‧‧Angle β 1 ‧‧‧Angle α 2 ‧‧‧Angle β 2 ‧‧‧Angle θ‧‧‧Deflection angle θ 1 ‧‧‧Deflection angle θ 2 ‧‧‧Deflection angle AA‧‧ ‧Dotted line V T ‧‧‧Slurry flow rate V N ‧‧‧Slurry flow rate V ib ‧‧‧to External speed V ob ‧‧‧Outward speed w‧‧‧Point DP‧‧‧Drop point of slurry 8-8‧‧‧Imaginary line 8a-8a‧‧‧Imaginary line B 8 ‧‧‧bisector B 8a ‧‧ ‧bisector B 9 ‧‧‧bisector B 10 ‧‧‧bisector B 11-1 ‧‧‧bisector B 11-2 ‧‧Radial dashed line Rb 1 ‧‧‧chord Ra 1 -Rb 1 ‧‧‧dashed line

1 為具有八個拋光區域之向內偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置溝槽。 1A 為圖1之向內偏置拋光墊的局部截斷示意性頂視圖。 1B 為圖1A之一系列非等腰梯形溝槽的局部截斷示意性頂視圖,其經旋轉以使梯形邊與圖底部平行。 1C 為圖1之徑向饋料槽與互連之向內偏置溝槽的局部截斷示意圖。 2 為具有八個拋光區域之向外偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置溝槽。 2A 為圖2之向外偏置拋光墊的局部截斷示意性頂視圖。 2B 為圖2A之一系列非等腰梯形溝槽的局部截斷示意性頂視圖,其經旋轉以使梯形邊與圖底部平行。 2C 為圖2之徑向饋料槽與互連之向外偏置溝槽的局部截斷示意圖。 3 示意性描繪內向偏置溝槽如何將拋光液引向拋光墊的外邊緣,以延長拋光液在壓板逆時針旋轉下在晶圓下的滯留時間。 3A 示意性描繪向外偏置溝槽如何將拋光液引向拋光墊的外邊緣,以縮短拋光液在壓板逆時針旋轉下在晶圓下的滯留時間。 4 為具有三個拋光區域之向內偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置溝槽。 4A 為具有三個拋光區域之向外偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置溝槽。 5 為具有四個拋光區域之向內偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置溝槽。 5A 為具有四個拋光區域之向外偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置溝槽。 6 為具有五個拋光區域之向內偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置溝槽。 6A 為具有五個拋光區域之向外偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置溝槽。 7 為具有六個拋光區域之向內偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置溝槽。 7A 為具有六個拋光區域之向外偏置拋光墊的示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置溝槽。 8 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置彎曲溝槽。 8A 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置彎曲溝槽。 9 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰彎曲徑向饋料槽的一系列向外偏置溝槽。 10 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰彎曲徑向饋料槽的一系列向外偏置彎曲溝槽。 11 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰梯狀徑向饋料槽的一系列向外偏置彎曲溝槽。 11A 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰梯狀徑向饋料槽的一系列向內偏置彎曲溝槽。 11B 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰梯狀徑向饋料槽的一系列向內偏置彎曲溝槽。 12 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向內偏置梯狀溝槽。 12A 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰徑向饋料槽的一系列向外偏置梯狀溝槽。 13 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有連接相鄰梯狀徑向饋料槽的一系列向外偏置梯狀溝槽。 14 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有間距增加的一系列向內偏置梯狀溝槽,所述梯狀溝槽位於標準間距的兩個系列向內偏置梯狀溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 14A 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有間距增加的一系列向外偏置彎曲溝槽,所述彎曲溝槽位於標準間距的兩個系列向外偏置彎曲溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 14B 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有間距增加的一系列向內偏置彎曲溝槽,所述彎曲溝槽位於標準間距的兩個系列向內偏置彎曲溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 14C 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有間距增加的一系列向內偏置溝槽,所述彎曲溝槽位於標準間距的兩個系列向內偏置溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 15 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有標準間距的一系列向內偏置梯狀溝槽,所述梯狀溝槽位於間距增加的兩個系列向內偏置梯狀溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 15A 為具有八個拋光區域之向外偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有標準間距的一系列向外偏置彎曲溝槽,所述彎曲溝槽位於間距增加的兩個系列向外偏置彎曲溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 15B 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有標準間距的一系列向內偏置彎曲溝槽,所述彎曲溝槽位於間距增加的兩個系列向內偏置彎曲溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 15C 為具有八個拋光區域之向內偏置拋光墊的一半截斷示意性頂視圖,所述拋光區域各具有標準間距的一系列向內偏置溝槽,所述向內偏置溝槽位於間距增加的兩個系列向內偏置溝槽之間,所有溝槽均連接相鄰徑向饋料槽。 1 is a schematic top view of an inwardly biased polishing pad having eight polishing zones, each having a series of inwardly biased grooves connecting adjacent radial feed troughs. FIG. 1A is a partially cut-away schematic top view of the inwardly biased polishing pad of FIG. 1 . FIG. 1B is a partially cut-away schematic top view of one of the series of non-isosceles trapezoidal grooves of FIG. 1A rotated so that the sides of the trapezoid are parallel to the bottom of the figure. 1C is a partial cutaway schematic view of the radial feed slot and interconnected inwardly biased slot of FIG. 1 . 2 is a schematic top view of an outwardly biased polishing pad having eight polishing zones, each having a series of outwardly biased grooves connecting adjacent radial feed troughs. FIG. 2A is a partially cut-away schematic top view of the outwardly biased polishing pad of FIG. 2 . Figure 2B is a partially cut-away schematic top view of one of the series of non-isosceles trapezoidal grooves of Figure 2A, rotated so that the trapezoid sides are parallel to the bottom of the figure. FIG. 2C is a partial cut-away schematic view of the radial feed trough of FIG. 2 and the interconnected outwardly biased grooves. Figure 3 schematically depicts how the inwardly biased grooves direct the slurry towards the outer edge of the polishing pad to prolong the residence time of the slurry under the wafer with counterclockwise rotation of the platen. Figure 3A schematically depicts how the outwardly biased grooves direct the slurry towards the outer edge of the polishing pad to reduce the residence time of the slurry under the wafer with counterclockwise rotation of the platen. 4 is a schematic top view of an inwardly biased polishing pad having three polishing regions, each having a series of inwardly biased grooves connecting adjacent radial feed troughs. 4A is a schematic top view of an outwardly biased polishing pad having three polishing regions, each having a series of outwardly biased grooves connecting adjacent radial feed troughs. 5 is a schematic top view of an inwardly biased polishing pad having four polishing regions, each having a series of inwardly biased grooves connecting adjacent radial feed troughs. 5A is a schematic top view of an outwardly biased polishing pad having four polishing regions, each having a series of outwardly biased grooves connecting adjacent radial feed troughs. 6 is a schematic top view of an inwardly biased polishing pad having five polishing regions, each having a series of inwardly biased grooves connecting adjacent radial feed troughs. 6A is a schematic top view of an outwardly biased polishing pad having five polishing zones, each having a series of outwardly biased grooves connecting adjacent radial feed troughs. 7 is a schematic top view of an inwardly biased polishing pad having six polishing regions, each having a series of inwardly biased grooves connecting adjacent radial feed troughs. 7A is a schematic top view of an outwardly biased polishing pad having six polishing regions, each having a series of outwardly biased grooves connecting adjacent radial feed troughs. Figure 8 is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing zones, each having a series of outwardly offset curved grooves connecting adjacent radial feed troughs. 8A is a half-cut schematic top view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased curved grooves connecting adjacent radial feed troughs. Figure 9 is a half-cut schematic top view of an outwardly biased polishing pad having eight polishing zones each having a series of outwardly biased grooves connecting adjacent curved radial feed troughs. 10 is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing zones, each having a series of outwardly offset curved grooves connecting adjacent curved radial feed troughs. Figure 11 is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing zones each having a series of outwardly offset curved grooves connecting adjacent stepped radial feed troughs. 11A is a half-cut schematic top view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased curved grooves connecting adjacent stepped radial feed troughs. 11B is a half-cut schematic top view of an inwardly biased polishing pad having eight polishing regions, each having a series of inwardly biased curved grooves connecting adjacent stepped radial feed troughs. Figure 12 is a half-cut schematic top view of an inwardly offset polishing pad having eight polishing zones, each having a series of inwardly offset stepped grooves connecting adjacent radial feed troughs. Figure 12A is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing zones, each having a series of outwardly offset stepped grooves connecting adjacent radial feed troughs. 13 is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing zones each having a series of outwardly offset stepped grooves connecting adjacent stepped radial feed grooves . 14 is a half-cut schematic top view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased stepped grooves of increasing spacing located in Between two series of inwardly offset stepped grooves of standard spacing, all grooves connecting adjacent radial feed troughs. 14A is a half-cut schematic top view of an outwardly offset polishing pad having eight polishing regions each having a series of outwardly offset curved grooves of increasing spacing, the curved grooves being at standard spacing Between two series of outwardly offset curved grooves, all grooves connect adjacent radial feed troughs. 14B is a half-cut schematic top view of an inwardly offset polishing pad having eight polishing regions each having a series of inwardly biased curved grooves of increasing spacing, the curved grooves being at standard spacing Between two series of inwardly offset curved grooves, all grooves connecting adjacent radial feed troughs. 14C is a schematic top half view of an inwardly offset polishing pad having eight polishing regions each having a series of inwardly biased grooves of increasing spacing, the curved grooves being located at standard spacing Between two series of inwardly offset grooves, all grooves connect adjacent radial feed troughs. 15 is a schematic top half view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased stepped grooves of standard spacing, the stepped grooves being located in Between two series of inwardly offset stepped grooves of increasing spacing, all of which connect adjacent radial feed troughs. 15A is a half-cut schematic top view of an outwardly biased polishing pad having eight polishing regions each having a series of outwardly biased curved grooves of standard spacing, the curved grooves being located at increasing spacing Between two series of outwardly offset curved grooves, all grooves connect adjacent radial feed troughs. 15B is a half-cut schematic top view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased curved grooves of standard spacing, the curved grooves being located at increasing spacing Between two series of inwardly offset curved grooves, all grooves connecting adjacent radial feed troughs. 15C is a schematic top half view of an inwardly biased polishing pad having eight polishing regions each having a series of inwardly biased grooves of standard spacing, the inwardly biased grooves located at Between two series of inwardly offset grooves of increasing spacing, all of which connect adjacent radial feed troughs.

10‧‧‧本發明的拋光墊 10‧‧‧Polishing pad of the present invention

12‧‧‧拋光層 12‧‧‧Polishing layer

16‧‧‧中心 16‧‧‧Centre

18‧‧‧外邊緣 18‧‧‧Outer edge

19‧‧‧周邊圓弧 19‧‧‧Circular arc

20‧‧‧徑向進料槽 20‧‧‧Radial feed chute

22‧‧‧徑向進料槽 22‧‧‧Radial feed chute

24‧‧‧徑向進料槽 24‧‧‧Radial feed chute

26‧‧‧徑向進料槽 26‧‧‧Radial feed chute

28‧‧‧徑向進料槽 28‧‧‧Radial feed chute

30‧‧‧徑向進料槽 30‧‧‧Radial feed chute

32‧‧‧徑向進料槽 32‧‧‧Radial feed chute

34‧‧‧徑向進料槽 34‧‧‧Radial feed chute

36‧‧‧圓形溝槽 36‧‧‧Circular groove

40‧‧‧拋光區域 40‧‧‧Polished area

42‧‧‧拋光區域 42‧‧‧Polished area

44‧‧‧拋光區域 44‧‧‧Polished area

46‧‧‧拋光區域 46‧‧‧Polished area

48‧‧‧拋光區域 48‧‧‧Polished area

50‧‧‧拋光區域 50‧‧‧Polished area

52‧‧‧拋光區域 52‧‧‧Polished area

54‧‧‧拋光區域 54‧‧‧Polished area

Claims (8)

一種用於拋光或平坦化半導體、光學及磁性基板中之至少一者之晶圓的方法,所述方法包含以下:旋轉拋光墊,所述旋轉拋光墊具有:具有聚合物基質及厚度的拋光層,所述拋光層包括中心、外邊緣及自所述拋光墊的所述中心延伸至所述外邊緣的半徑;位於所述拋光層中的徑向進料槽,所述徑向進料槽將所述拋光層分成拋光區域,所述拋光區域是由兩個相鄰徑向進料槽界定的圓扇區,大多數的偏置溝槽在晶圓下在相同方向上掃過晶圓,所述徑向進料槽自鄰近於所述中心的位置至少延伸至鄰近於所述外邊緣的位置;及各拋光區域,其包括連接一對相鄰徑向進料槽的一系列偏置溝槽,所述大多數的所述偏置溝槽向內偏向所述拋光墊的所述中心或向外偏向所述拋光墊的所述外邊緣,所述向內與向外偏置溝槽使拋光液向所述拋光墊的所述外邊緣移動並且移向所述晶圓或遠離所述晶圓取決於向內偏置或向外偏置及所述拋光墊的旋轉方向;將拋光液分配至所述旋轉拋光墊上並且進入所述徑向進料槽及所述系列偏置溝槽;及在所述拋光墊多次旋轉的情況下,使所述晶圓抵壓在所述旋轉拋光墊上旋轉,以便藉由以下選項來調整拋光:i)在所述拋光墊逆時針旋轉期間,若所述系列偏置溝槽向內偏向所述旋轉拋光墊的所述中心,則以所述圓扇區中的所述系列偏置溝槽中所述拋光液的向外流動延長所述拋光液在所述晶圓下的滯留時間;或ii)在所述拋光墊順時針旋轉期間,若所述系列偏置溝槽向外偏向所述旋轉拋光墊的所述外邊緣,則以所述圓扇區中的所述系列偏置溝槽中所述拋光液的向外流動延長所述拋光液在所述晶圓下的滯留時間,以及其中,相鄰拋光區域之間的偏置溝槽的不對齊促成所述拋光液沿徑向饋料槽向下流動以改良漿液分佈。 A method for polishing or planarizing a wafer of at least one of semiconductor, optical, and magnetic substrates, the method comprising: a spinning polishing pad having: a polishing layer having a polymer matrix and a thickness , the polishing layer includes a center, an outer edge and a radius extending from the center of the polishing pad to the outer edge; a radial feed slot located in the polishing layer, the radial feed slot will The polishing layer is divided into polishing areas, which are circular sectors bounded by two adjacent radial feed grooves, and most of the offset grooves sweep across the wafer in the same direction under the wafer, so said radial feed troughs extending from a location adjacent said center to at least a location adjacent said outer edge; and each polishing zone comprising a series of offset grooves connecting a pair of adjacent radial feed troughs , the majority of the offset grooves are biased inward toward the center of the polishing pad or outwardly toward the outer edge of the polishing pad, the inward and outward bias grooves allow polishing Fluid moves toward the outer edge of the polishing pad and toward or away from the wafer depending on the inward or outward bias and the direction of rotation of the polishing pad; dispensing the polishing fluid to on the rotating polishing pad and into the radial feed slot and the series of offset grooves; and rotating the wafer against the rotating polishing pad with multiple rotations of the polishing pad , to adjust polishing by the following options: i) During counterclockwise rotation of the polishing pad, if the series of offset grooves are inwardly biased towards the center of the rotating polishing pad, the circular sector The outward flow of the slurry in the series of offset grooves in the series extends the residence time of the slurry under the wafer; or ii) during clockwise rotation of the polishing pad, if the series Offset grooves are deflected outward toward the outer edge of the rotating polishing pad, extending the flow of the slurry in the circular sector by the outward flow of the slurry in the series of offset grooves The residence time under the wafer, and wherein the misalignment of the offset grooves between adjacent polishing regions promotes the flow of the polishing liquid down the radial feed trough to improve slurry distribution. 如申請專利範圍第1項所述的方法,其中所述晶圓的位置沿著所述半徑定位,自所述拋光墊的所述中心接近所述拋光墊的所述外邊緣,接著接近所述拋光墊的所述中心,以提高所述晶圓中之至少一種組件的移除速率。 The method of claim 1, wherein the wafer is positioned along the radius, approaching the outer edge of the polishing pad from the center of the polishing pad, and then approaching the polishing the center of the pad to increase the removal rate of at least one component in the wafer. 如申請專利範圍第1項所述的方法,其中旋轉所述拋光墊使所用拋光液通過所述系列偏置溝槽的一部分傳送至所述拋光墊的所述外邊緣,以允許新拋光液在所述晶圓下流動。 The method of claim 1, wherein rotating the polishing pad causes used polishing fluid to pass through a portion of the series of offset grooves to the outer edge of the polishing pad to allow fresh polishing fluid flow under the wafer. 如申請專利範圍第1項所述的方法,其中所述系列偏置溝槽呈現為延長所述拋光液在所述晶圓下之滯留時間的平行溝槽。 The method of claim 1 , wherein the series of offset trenches appear as parallel trenches extending the residence time of the polishing solution under the wafer. 一種用於拋光或平坦化半導體、光學及磁性基板中之至少一者之晶圓的方法,所述方法包含以下:旋轉拋光墊,所述旋轉拋光墊具有:具有聚合物基質及厚度的拋光層,所述拋光層包括中心、外邊緣及自所述拋光墊的所述中心延伸至所述外邊緣的半徑;位於所述拋光層中的徑向進料槽,所述徑向進料槽將所述拋光層分成拋光區域,所述拋光區域是由兩個相鄰徑向進料槽、平分所述拋光區域之平分線所界定的圓扇區,大多數的偏置溝槽在晶圓下在相同方向上掃過晶圓,所述徑向進料槽自鄰近於所述中心的位置至少延伸至鄰近於所述外邊緣的位置;及各拋光區域,其包括連接一對相鄰徑向進料槽的一系列偏置溝槽,所述大多數的偏置溝槽以與所述平分線呈20°至85°的角度向內偏向所述拋光墊的所述中心或以與所述平分線呈95°至160°的角度向外偏向所述拋光墊的所述外邊緣,所述向內與向外偏置溝槽使拋光液向所述拋光墊的所述外邊緣移動並且移向所述晶圓或遠離所述晶圓取決於向內偏置或向外偏置及所述拋光墊的旋轉方向;將拋光液分配至所述旋轉拋光墊上並且進入所述徑向進料槽及所述系列偏置溝槽;及在所述拋光墊多次旋轉的情況下,使所述晶圓抵壓在所述旋轉拋光墊上旋 轉,以便藉由以下選項來調整拋光:i)在所述拋光墊逆時針旋轉期間,若所述系列偏置溝槽向內偏向所述旋轉拋光墊的所述中心,則以所述圓扇區中的所述系列偏置溝槽中所述拋光液的向外流動延長所述拋光液在所述晶圓下的滯留時間;或ii)在所述拋光墊順時針旋轉期間,若所述系列偏置溝槽向外偏向所述旋轉拋光墊的所述外邊緣,則以所述圓扇區中的所述系列偏置溝槽中所述拋光液的向外流動延長所述拋光液在所述晶圓下的滯留時間,以及其中,相鄰拋光區域之間的偏置溝槽的不對齊促成所述拋光液沿徑向請料槽向下流動以改良漿液分佈。 A method for polishing or planarizing a wafer of at least one of semiconductor, optical, and magnetic substrates, the method comprising: a spinning polishing pad having: a polishing layer having a polymer matrix and a thickness , the polishing layer includes a center, an outer edge and a radius extending from the center of the polishing pad to the outer edge; a radial feed slot located in the polishing layer, the radial feed slot will The polishing layer is divided into polishing areas, which are circular sectors bounded by two adjacent radial feed grooves, a bisector that bisects the polishing area, with most of the offset grooves under the wafer sweeping the wafer in the same direction, the radial feed slot extending from a location adjacent to the center at least to a location adjacent to the outer edge; and each polishing area comprising connecting a pair of adjacent radial a series of offset grooves of the feed chute, the majority of the offset grooves being offset inwardly towards the center of the polishing pad at an angle of 20° to 85° from the bisector or at an angle from the bisector The bisector is biased outwardly toward the outer edge of the polishing pad at an angle of 95° to 160°, and the inward and outward biasing grooves move the polishing fluid toward and away from the outer edge of the polishing pad. toward the wafer or away from the wafer depending on the inward or outward bias and the direction of rotation of the polishing pad; dispensing slurry onto the rotating polishing pad and into the radial feed chute and the series of offset grooves; and in the case of multiple rotations of the polishing pad, causing the wafer to be rotated against the rotating polishing pad rotation to adjust polishing by the following options: i) During counterclockwise rotation of the polishing pad, if the series of offset grooves are inwardly biased towards the center of the rotating polishing pad, the circular sector The outward flow of the slurry in the series of offset grooves in the zone prolongs the residence time of the slurry under the wafer; or ii) during clockwise rotation of the polishing pad, if the A series of offset grooves are deflected outwardly towards the outer edge of the rotating polishing pad, then the polishing liquid is extended in the circular sector by the outward flow of the polishing liquid in the series of offset grooves in the circular sector. The residence time under the wafer, and wherein the misalignment of the offset grooves between adjacent polishing regions, promotes the flow of the polishing liquid down the radial feeder grooves to improve slurry distribution. 如申請專利範圍第5項所述的方法,其中所述晶圓的位置沿著所述半徑定位,自所述拋光墊的所述中心接近所述拋光墊的所述外邊緣,接著接近所述拋光墊的所述中心,以提高所述晶圓中之至少一種組件的移除速率。 The method of claim 5, wherein the wafer is positioned along the radius, approaching the outer edge of the polishing pad from the center of the polishing pad, and then approaching the polishing the center of the pad to increase the removal rate of at least one component in the wafer. 如申請專利範圍第5項所述的方法,其中旋轉所述拋光墊使所用拋光液通過所述系列偏置溝槽的一部分傳送至所述拋光墊的所述外邊緣,以允許新拋光液在所述晶圓下流動。 5. The method of claim 5, wherein rotating the polishing pad causes used polishing fluid to pass through a portion of the series of offset grooves to the outer edge of the polishing pad to allow fresh polishing fluid to settle in flow under the wafer. 如申請專利範圍第5項所述的方法,其中所述系列偏置溝槽呈現為延長所述拋光液在所述晶圓下之滯留時間的平行溝槽。The method of claim 5, wherein the series of offset trenches appear as parallel trenches extending the residence time of the polishing solution under the wafer.
TW107116214A 2017-06-14 2018-05-13 Controlled residence cmp polishing method TWI762639B (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201715623204A 2017-06-14 2017-06-14
US15/623204 2017-06-14
US201715624943A 2017-06-16 2017-06-16
US15/624943 2017-06-16
US15/725936 2017-10-05
US15/725,936 US10861702B2 (en) 2017-06-14 2017-10-05 Controlled residence CMP polishing method

Publications (2)

Publication Number Publication Date
TW201905998A TW201905998A (en) 2019-02-01
TWI762639B true TWI762639B (en) 2022-05-01

Family

ID=64457733

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116214A TWI762639B (en) 2017-06-14 2018-05-13 Controlled residence cmp polishing method

Country Status (8)

Country Link
US (1) US10861702B2 (en)
JP (1) JP7181009B2 (en)
KR (1) KR20180136374A (en)
CN (1) CN109079586B (en)
DE (1) DE102018004619A1 (en)
FR (1) FR3067628B1 (en)
SG (1) SG10201804562RA (en)
TW (1) TWI762639B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210116759A (en) 2020-03-13 2021-09-28 삼성전자주식회사 CMP pad and chemical mechanical polishing apparatus having the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918872A (en) * 1984-05-14 1990-04-24 Kanebo Limited Surface grinding apparatus
US5690540A (en) * 1996-02-23 1997-11-25 Micron Technology, Inc. Spiral grooved polishing pad for chemical-mechanical planarization of semiconductor wafers

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4037367A (en) 1975-12-22 1977-07-26 Kruse James A Grinding tool
US4450652A (en) * 1981-09-04 1984-05-29 Monsanto Company Temperature control for wafer polishing
US5076024A (en) 1990-08-24 1991-12-31 Intelmatec Corporation Disk polisher assembly
US5212910A (en) 1991-07-09 1993-05-25 Intel Corporation Composite polishing pad for semiconductor process
US5527215A (en) 1992-01-10 1996-06-18 Schlegel Corporation Foam buffing pad having a finishing surface with a splash reducing configuration
US5243790A (en) 1992-06-25 1993-09-14 Abrasifs Vega, Inc. Abrasive member
MY114512A (en) 1992-08-19 2002-11-30 Rodel Inc Polymeric substrate with polymeric microelements
US6135856A (en) * 1996-01-19 2000-10-24 Micron Technology, Inc. Apparatus and method for semiconductor planarization
US5778481A (en) 1996-02-15 1998-07-14 International Business Machines Corporation Silicon wafer cleaning and polishing pads
US5888121A (en) 1997-09-23 1999-03-30 Lsi Logic Corporation Controlling groove dimensions for enhanced slurry flow
GB2345255B (en) * 1998-12-29 2000-12-27 United Microelectronics Corp Chemical-Mechanical Polishing Pad
US6749714B1 (en) 1999-03-30 2004-06-15 Nikon Corporation Polishing body, polisher, polishing method, and method for producing semiconductor device
US6220942B1 (en) 1999-04-02 2001-04-24 Applied Materials, Inc. CMP platen with patterned surface
JP2001071256A (en) 1999-08-31 2001-03-21 Shinozaki Seisakusho:Kk Method and device for grooving polishing pad, and polishing pad
EP1602444B1 (en) * 2000-01-31 2008-03-12 Shin-Etsu Handotai Company Limited Polishing method
TW479000B (en) 2000-02-24 2002-03-11 United Microelectronics Corp Polish pad for polishing semiconductor wafer
US6749485B1 (en) 2000-05-27 2004-06-15 Rodel Holdings, Inc. Hydrolytically stable grooved polishing pads for chemical mechanical planarization
US6656019B1 (en) 2000-06-29 2003-12-02 International Business Machines Corporation Grooved polishing pads and methods of use
US8062098B2 (en) * 2000-11-17 2011-11-22 Duescher Wayne O High speed flat lapping platen
JP4087581B2 (en) 2001-06-06 2008-05-21 株式会社荏原製作所 Polishing equipment
US7169014B2 (en) * 2002-07-18 2007-01-30 Micron Technology, Inc. Apparatuses for controlling the temperature of polishing pads used in planarizing micro-device workpieces
US7377840B2 (en) 2004-07-21 2008-05-27 Neopad Technologies Corporation Methods for producing in-situ grooves in chemical mechanical planarization (CMP) pads, and novel CMP pad designs
US6783436B1 (en) 2003-04-29 2004-08-31 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad with optimized grooves and method of forming same
US6918824B2 (en) 2003-09-25 2005-07-19 Novellus Systems, Inc. Uniform fluid distribution and exhaust system for a chemical-mechanical planarization device
US7125318B2 (en) * 2003-11-13 2006-10-24 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Polishing pad having a groove arrangement for reducing slurry consumption
US6843711B1 (en) 2003-12-11 2005-01-18 Rohm And Haas Electronic Materials Cmp Holdings, Inc Chemical mechanical polishing pad having a process-dependent groove configuration
US6955587B2 (en) 2004-01-30 2005-10-18 Rohm And Haas Electronic Materials Cmp Holdings, Inc Grooved polishing pad and method
JP2005262341A (en) 2004-03-16 2005-09-29 Noritake Super Abrasive:Kk Cmp pad conditioner
US7329174B2 (en) * 2004-05-20 2008-02-12 Jsr Corporation Method of manufacturing chemical mechanical polishing pad
JP2007081322A (en) 2005-09-16 2007-03-29 Jsr Corp Method for manufacturing chemical-mechanical polishing pad
KR100568258B1 (en) * 2004-07-01 2006-04-07 삼성전자주식회사 Polishing pad for chemical mechanical polishing and apparatus using the same
USD559066S1 (en) 2004-10-26 2008-01-08 Jsr Corporation Polishing pad
US7169029B2 (en) 2004-12-16 2007-01-30 3M Innovative Properties Company Resilient structured sanding article
JP3769581B1 (en) 2005-05-18 2006-04-26 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
KR101279819B1 (en) 2005-04-12 2013-06-28 롬 앤드 하스 일렉트로닉 머티리얼스 씨엠피 홀딩스 인코포레이티드 Radial-biased polishing pad
US7534162B2 (en) 2005-09-06 2009-05-19 Freescale Semiconductor, Inc. Grooved platen with channels or pathway to ambient air
KR20070070094A (en) * 2005-12-28 2007-07-03 제이에스알 가부시끼가이샤 Chemical mechanical polishing pad and chemical mechanical polishing method
US20080220702A1 (en) 2006-07-03 2008-09-11 Sang Fang Chemical Industry Co., Ltd. Polishing pad having surface texture
JP4909706B2 (en) 2006-10-24 2012-04-04 東洋ゴム工業株式会社 Polishing pad
US20090137187A1 (en) 2007-11-21 2009-05-28 Chien-Min Sung Diagnostic Methods During CMP Pad Dressing and Associated Systems
US9180570B2 (en) 2008-03-14 2015-11-10 Nexplanar Corporation Grooved CMP pad
TWI360459B (en) * 2008-04-11 2012-03-21 Bestac Advanced Material Co Ltd A polishing pad having groove structure for avoidi
KR101232787B1 (en) 2010-08-18 2013-02-13 주식회사 엘지화학 Polishing-Pad for polishing system
US9211628B2 (en) 2011-01-26 2015-12-15 Nexplanar Corporation Polishing pad with concentric or approximately concentric polygon groove pattern
TWI492818B (en) * 2011-07-12 2015-07-21 Iv Technologies Co Ltd Polishing pad, polishing method and polishing system
US8920219B2 (en) 2011-07-15 2014-12-30 Nexplanar Corporation Polishing pad with alignment aperture
CN103782372A (en) 2011-09-15 2014-05-07 东丽株式会社 Polishing pad
US9067298B2 (en) * 2011-11-29 2015-06-30 Nexplanar Corporation Polishing pad with grooved foundation layer and polishing surface layer
KR102148050B1 (en) 2012-11-06 2020-10-14 캐보트 마이크로일렉트로닉스 코포레이션 Polishing pad with offset concentric grooving pattern and method for polishing a substrate therewith
US9649742B2 (en) * 2013-01-22 2017-05-16 Nexplanar Corporation Polishing pad having polishing surface with continuous protrusions
US9415479B2 (en) * 2013-02-08 2016-08-16 Taiwan Semiconductor Manufacturing Co., Ltd. Conductive chemical mechanical planarization polishing pad
TWM459065U (en) 2013-04-29 2013-08-11 Iv Technologies Co Ltd Polishing pad and polishing system
TWM475334U (en) 2013-06-07 2014-04-01 Iv Technologies Co Ltd Polishing pad
TWI599447B (en) 2013-10-18 2017-09-21 卡博特微電子公司 Cmp polishing pad having edge exclusion region of offset concentric groove pattern
JP6197580B2 (en) * 2013-10-29 2017-09-20 株式会社Sumco Double-side polishing machine for carrier plate and workpiece
TWI549781B (en) * 2015-08-07 2016-09-21 智勝科技股份有限公司 Polishing pad, polishing system and polishing method
CN106564004B (en) * 2016-11-17 2018-10-19 湖北鼎龙控股股份有限公司 A kind of polishing pad

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918872A (en) * 1984-05-14 1990-04-24 Kanebo Limited Surface grinding apparatus
US5690540A (en) * 1996-02-23 1997-11-25 Micron Technology, Inc. Spiral grooved polishing pad for chemical-mechanical planarization of semiconductor wafers

Also Published As

Publication number Publication date
JP7181009B2 (en) 2022-11-30
KR20180136374A (en) 2018-12-24
CN109079586B (en) 2021-05-14
TW201905998A (en) 2019-02-01
JP2019030956A (en) 2019-02-28
US20180366332A1 (en) 2018-12-20
FR3067628A1 (en) 2018-12-21
SG10201804562RA (en) 2019-01-30
US10861702B2 (en) 2020-12-08
DE102018004619A1 (en) 2018-12-20
FR3067628B1 (en) 2022-04-01
CN109079586A (en) 2018-12-25

Similar Documents

Publication Publication Date Title
TWI774770B (en) Trapezoidal cmp groove pattern
US8062103B2 (en) High-rate groove pattern
CN109079649B (en) Bias pulse CMP trench pattern
KR101601281B1 (en) High-rate polishing method
TWI775852B (en) High-rate cmp polishing method
TWI798222B (en) Uniform cmp polishing method
TWI762639B (en) Controlled residence cmp polishing method
CN112959212A (en) Chemical mechanical polishing pad with optimized grooves and application thereof