JP3769581B1 - Polishing pad and manufacturing method thereof - Google Patents

Polishing pad and manufacturing method thereof Download PDF

Info

Publication number
JP3769581B1
JP3769581B1 JP2005145599A JP2005145599A JP3769581B1 JP 3769581 B1 JP3769581 B1 JP 3769581B1 JP 2005145599 A JP2005145599 A JP 2005145599A JP 2005145599 A JP2005145599 A JP 2005145599A JP 3769581 B1 JP3769581 B1 JP 3769581B1
Authority
JP
Japan
Prior art keywords
polishing
groove
polishing pad
manufacturing
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005145599A
Other languages
Japanese (ja)
Other versions
JP2006320998A (en
Inventor
毅 木村
良之 中井
公浩 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005145599A priority Critical patent/JP3769581B1/en
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to KR1020077026752A priority patent/KR101214687B1/en
Priority to CN200680017013.3A priority patent/CN101175603B/en
Priority to US11/912,092 priority patent/US20090075568A1/en
Priority to PCT/JP2006/303454 priority patent/WO2006123463A1/en
Priority to TW095106611A priority patent/TWI371340B/en
Priority to MYPI20060858A priority patent/MY141334A/en
Application granted granted Critical
Publication of JP3769581B1 publication Critical patent/JP3769581B1/en
Publication of JP2006320998A publication Critical patent/JP2006320998A/en
Priority to US13/615,065 priority patent/US8517798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/26Lapping pads for working plane surfaces characterised by the shape of the lapping pad surface, e.g. grooved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • B24D3/32Resins or natural or synthetic macromolecular compounds for porous or cellular structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/303752Process
    • Y10T409/303808Process including infeeding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/304536Milling including means to infeed work to cutter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/02Other than completely through work thickness
    • Y10T83/0304Grooving

Abstract

【課題】研磨レートの適正値維持、被研磨体における研磨後の面内均一性の向上に特に有効であり、半導体ウエハ等のケミカルメカニカルポリッシングなどの生産上においてきわめて有効な研磨パッドおよびその製造方法を提供する。
【解決手段】研磨面内に溝1を有する発泡ポリウレタンから形成される研磨パッドであって、該溝の側面11および底面12から成る溝1の加工面が表面粗さ(Ra)10以下を有する研磨パッドおよび溝加工刃の送り速度と送り量とを段階的に変化させて研磨面に同心円状の断面形状が矩形である溝を形成する工程を含む研磨パッドの製造方法。
【選択図】図1
A polishing pad that is particularly effective in maintaining an appropriate value of a polishing rate and improving in-plane uniformity after polishing of an object to be polished, and extremely effective in production of chemical mechanical polishing such as a semiconductor wafer, and a method for manufacturing the same I will provide a.
A polishing pad formed of polyurethane foam having a groove 1 in a polishing surface, wherein a processed surface of the groove 1 including a side surface 11 and a bottom surface 12 of the groove has a surface roughness (Ra) of 10 or less. A method for manufacturing a polishing pad, comprising a step of forming a groove having a concentric cross-sectional shape of a rectangle on a polishing surface by stepwise changing a feed rate and a feed amount of a polishing pad and a groove processing blade.
[Selection] Figure 1

Description

本発明は、被研磨体の研磨に使用する研磨パッドおよびその製造方法に関するものであり、特に半導体デバイスの製造工程においてCMP(化学的機械研磨またはケミカルメカニカルポリッシング)により層間絶縁膜等の平坦化処理などを行う時に用いる研磨パッド、およびこの研磨パッドの製造方法に関するものである。   The present invention relates to a polishing pad used for polishing an object to be polished and a method for manufacturing the same, and in particular, in a semiconductor device manufacturing process, planarization treatment of an interlayer insulating film or the like by CMP (chemical mechanical polishing or chemical mechanical polishing). The present invention relates to a polishing pad used when performing the above, and a method of manufacturing the polishing pad.

近年の半導体集積回路の微細化および高集積化は急速に進化し、微細に加工することが必要になってきており、またデバイスが複雑な構造になって立体化するようになってきている。微細化は、半導体装置の製造工程における微細加工技術の進歩、特に、光を利用して回路パターンをウエハ面上に塗布された感光性有機膜(フォトレジスト)に転写する技術であるリソグラフィー工程における高解像力化により達成されてきた。具体的には、リソグラフィー工程において、短波長化された光源を用いて露光する技術が開発されている。また、デバイス構造の高低差をできるだけ低減することで、焦点深度の不足を補い、微細なパターンの焦点ずれを引き起こさず確実に解像させる方法が検討されている。   In recent years, miniaturization and high integration of semiconductor integrated circuits have rapidly evolved, and it has become necessary to perform fine processing, and devices have become complicated structures and become three-dimensional. Miniaturization is an advance in microfabrication technology in the manufacturing process of a semiconductor device, particularly in a lithography process that is a technique for transferring a circuit pattern to a photosensitive organic film (photoresist) coated on a wafer surface using light. It has been achieved by increasing the resolution. Specifically, a technique for performing exposure using a light source having a shorter wavelength in a lithography process has been developed. In addition, a method is being studied in which the difference in height of the device structure is reduced as much as possible to compensate for the lack of depth of focus and to reliably resolve a fine pattern without causing a defocus.

そこで、デバイス構造の高低差を平坦化する方法として、最近では、シリコンウエハの鏡面加工を応用したCMP法が採用されており、この装置は、回転する研磨プレート回転軸に支承され表面に研磨パッドが接着された研磨プレートと、ダイヤモンド粉などを金属板に電着などで形成した、研磨パッドの表面を目立てするためのドレッサと、層間絶縁膜などの被研磨層が形成された被研磨体(以下、ウエハと称する)をウエハバッキングフィルムにより保持するキャリアと、研磨スラリを研磨パッド上に供給する研磨スラリ供給ノズルを有する研磨スラリ供給装置とから概ね構成されている。   Therefore, as a method for flattening the difference in height of the device structure, a CMP method that applies mirror processing of a silicon wafer has been recently adopted. This apparatus is supported by a rotating polishing plate rotating shaft and has a polishing pad on the surface. A polishing plate to which a surface of the polishing pad is made conspicuous, and a polishing object layer (such as an interlayer insulating film) formed with diamond powder or the like formed by electrodeposition on a metal plate. (Hereinafter, referred to as a wafer) by a wafer backing film and a polishing slurry supply device having a polishing slurry supply nozzle for supplying the polishing slurry onto the polishing pad.

その1方法として、研磨パッドをドレッサによりドレッシング(研削)した後に、研磨プレート回転軸およびキャリア回転軸を回転させ、研磨スラリ供給ノズルから研磨パッドの中央部に研磨スラリを供給しながら、研磨圧力調整機構によりウエハを研磨パッド上に押圧させてウエハを研磨する方法がある。このようなCMP法では、ウエハの絶縁膜などの被研磨層にマイクロスクラッチの発生や研磨レートのばらつきや研磨量のウエハ面内でのバラツキが大きいことが問題となっている。   As one method, after dressing (grinding) the polishing pad with a dresser, the polishing pressure is adjusted while rotating the polishing plate rotation shaft and the carrier rotation shaft and supplying the polishing slurry from the polishing slurry supply nozzle to the center of the polishing pad. There is a method of polishing a wafer by pressing the wafer onto a polishing pad by a mechanism. In such a CMP method, there is a problem that microscratches are generated in a layer to be polished such as an insulating film of the wafer, a polishing rate varies, and a polishing amount varies widely within the wafer surface.

マイクロスクラッチの発生を抑制するためには、研磨パッドのドレッシング時に発生する研磨パッドの削りクズやドレッサのダイヤモンド、層間膜、ウエハの破片クズや研磨済みの研磨スラリなど(以降、これらを総称して不純物とも表記する)を研磨パッド外へ排出する必要がある。このような従来のCMP装置においては、研磨作業中に研磨スラリを研磨パッドの中央部に間断なく十分に流し出し、不純物をこの研磨スラリにより研磨パッド外へ除去あるいは押し流すという対策をとっている。このようにドレッシングによりパッド表面に目立て層を形成し、研磨スラリを供給してウエハの研磨を行う時、研磨スラリは研磨パッドの回転による遠心力およびウエハを研磨パッドに押し付けることにより押し出され、殆どが研磨に直接寄与することなく研磨パッド外に排出されてしまうため、高価な研磨スラリを余分に消費してしまうことになる。   In order to suppress the occurrence of micro-scratch, polishing pad scraping scraps, dresser diamonds, interlayer films, wafer debris and polished polishing slurries generated during dressing of the polishing pad (hereinafter collectively referred to as these) (Also referred to as impurities) must be discharged out of the polishing pad. In such a conventional CMP apparatus, measures are taken such that the polishing slurry is sufficiently flowed to the center of the polishing pad without interruption during the polishing operation, and impurities are removed or pushed out of the polishing pad by this polishing slurry. Thus, when a dressing layer is formed on the pad surface by dressing and the polishing slurry is supplied to polish the wafer, the polishing slurry is pushed out by the centrifugal force due to the rotation of the polishing pad and pressing the wafer against the polishing pad. Is discharged outside the polishing pad without directly contributing to polishing, and therefore, an expensive polishing slurry is consumed in excess.

これらの課題を解決するために、溝入口のコーナ部分に直角なエッジを有する溝が同心円状に形成された半導体デバイス加工用研磨パッドおよび溝加工用工具(特許文献1および2参照)、並びに半導体CMP加工用研磨パッドに機械加工により同心円状または碁盤目状の細溝を形成する細溝加工機械、加工用工具および加工方法(特許文献3参照)等が提案されている。   In order to solve these problems, a polishing pad for semiconductor device processing and a groove processing tool (see Patent Documents 1 and 2) in which grooves having edges perpendicular to the corner portion of the groove entrance are formed concentrically, and a semiconductor There have been proposed a narrow groove processing machine, a processing tool and a processing method (see Patent Document 3) that form concentric or grid-like narrow grooves on a polishing pad for CMP processing by machining.

特許文献1および2開示の研磨パッドにおいては、溝入口のコーナ部分に直角なエッジを有する溝を、特定の幅、深さおよび溝ピッチで同心円状に形成したことで、デバイス加工面とパッド上面間でスラリの流れが制御しやすくハイドロプレーン現象の抑制とデバイスの軟質金属面のCMP法加工による平坦化処理の効率化が期待できるが、上記溝の断面形状が不安定であり、スラリの流動性がパッドによって変わり安定した研磨特性が得られない恐れがある。   In the polishing pad disclosed in Patent Documents 1 and 2, a groove having an edge perpendicular to the corner portion of the groove inlet is formed concentrically with a specific width, depth, and groove pitch, so that the device processing surface and the pad upper surface are formed. Slurry flow is easy to control, and the suppression of hydroplane phenomenon and the efficiency of planarization by CMP process on the soft metal surface of the device can be expected, but the cross-sectional shape of the groove is unstable and the flow of slurry There is a risk that stable polishing characteristics may not be obtained depending on the pad.

特許文献3開示の溝加工用工具によって細溝を形成した研磨パッドにおいても、上記溝の断面形状が不安定であり、スラリの流動性がパッドによって変わり、スクラッチが発生しやすくなるなど安定した研磨特性が得られない恐れがある。   Even in a polishing pad in which a narrow groove is formed by the groove processing tool disclosed in Patent Document 3, the cross-sectional shape of the groove is unstable, the fluidity of the slurry changes depending on the pad, and stable polishing is likely to occur. The characteristics may not be obtained.

上記特許文献では、いずれも溝加工用切刃の形状を特定することにより、溝コーナのエッジを直角にし、壁面のだれ、むしれを生じないようにしようとしたものであるが、そのような切刃の形状だけでは、安定した研磨特性を得られにくい恐れがあった。
特開2001−181649号公報 特開2002−184730号公報 特開2002−11630号公報
In each of the above-mentioned patent documents, by specifying the shape of the cutting edge for grooving, the edge of the groove corner is made to be a right angle so as not to cause the wall wall to come into contact with the wall. With the shape of the cutting edge alone, there is a fear that it is difficult to obtain stable polishing characteristics.
JP 2001-181649 A JP 2002-184730 A JP 2002-11630 A

本発明は、半導体デバイスの製造工程などにおいてCMPにより層間絶縁膜などの平坦化処理などを行う時に用いる研磨パッドおよびこの研磨パッドの製造方法において、スクラッチの発生、研磨レートのバラツキや低下、研磨量のウエハ面内でのバラツキが大きいこと、研磨スラリの余分な消費、更に被研磨体と研磨パッドとの間の適切なスラリの保持が出来ないなどの課題を同時に解決せんとするものである。   The present invention relates to a polishing pad used when performing planarization processing of an interlayer insulating film or the like by CMP in a semiconductor device manufacturing process and the like, and in the manufacturing method of this polishing pad, generation of scratches, variation or decrease in polishing rate, polishing amount It is an object of the present invention to simultaneously solve problems such as a large variation in the wafer surface, excessive consumption of polishing slurry, and inability to hold an appropriate slurry between the object to be polished and the polishing pad.

本発明は、前記課題を同時に解決し、たとえば半導体デバイスの製造工程等においてCMPにより層間絶縁膜等の平坦化処理などを行う時に用いる研磨パッドおよびこの研磨パッドの製造方法を提供するものである。即ち、本発明は、研磨面内に溝を有する発泡ポリウレタンから形成される研磨パッドであって、該溝の側面および底面から成る溝の加工面が表面粗さ(Ra)10以下を有することを特徴とする研磨パッドである。   The present invention solves the above problems at the same time, and provides a polishing pad used when performing planarization processing of an interlayer insulating film or the like by CMP in a semiconductor device manufacturing process or the like, and a manufacturing method of the polishing pad. That is, the present invention is a polishing pad formed of foamed polyurethane having a groove in the polishing surface, and the processed surface of the groove comprising the side surface and the bottom surface of the groove has a surface roughness (Ra) of 10 or less. The polishing pad is characterized.

本発明の別の態様として、溝加工刃の送り速度と送り量とを段階的に変化させて機械切削して、研磨面に断面形状が矩形である同心円状の溝を形成する工程を含む研磨パッドの製造方法がある。   As another aspect of the present invention, the polishing includes a step of forming concentric grooves having a rectangular cross-sectional shape on the polishing surface by mechanically changing the feed speed and feed amount of the grooving blade in stages. There is a method for manufacturing a pad.

本発明における研磨パッドは、CMPで被研磨体の平坦化処理を行う時に用いる研磨パッドに好ましく使用されるものであり、スクラッチの発生、研磨レートのバラツキや低下、研磨量のウエハ面内でのバラツキが大きいこと、研磨スラリの余分な消費、更に被研磨体と研磨パッドとの間の適切なスラリの保持が出来ないなどの課題を同時に解決するためのものであり、そのため研磨パッドにおける面内(研磨面内)に、溝を有する発泡ポリウレタンから形成される研磨パッドであって、上記溝の側面および底面から成る溝の加工面が表面粗さ(Ra)10以下を有する溝を形成したものである。   The polishing pad according to the present invention is preferably used for a polishing pad used when performing planarization processing of an object to be polished by CMP. Scratches are generated, polishing rate is varied or decreased, and the amount of polishing in the wafer surface is reduced. It is intended to solve problems such as large variations, excessive consumption of polishing slurry, and inability to hold an appropriate slurry between the object to be polished and the polishing pad. A polishing pad made of foamed polyurethane having a groove (within the polishing surface), wherein a groove having a surface roughness (Ra) of 10 or less is formed on the processed surface of the groove including the side surface and the bottom surface of the groove. It is.

本発明の研磨パッドを使用する半導体ウエハなどの研磨においては、研磨レートのバラツキや低下、研磨量のウエハ面内でのバラツキが大きいこと、研磨スラリの余分な消費、更に被研磨体と研磨パッドとの間の適切なスラリの保持ができないなどの課題を同時に解決し、スクラッチの発生を低減するのに特に有効であり、半導体ウエハ等のCMPなどの生産上においてきわめて有効なものである。   In polishing of a semiconductor wafer or the like using the polishing pad of the present invention, the polishing rate varies or decreases, the variation in the polishing amount in the wafer surface, the excessive consumption of the polishing slurry, and the object to be polished and the polishing pad It is particularly effective in simultaneously solving problems such as failure to hold an appropriate slurry between the two and reducing the occurrence of scratches, and is extremely effective in the production of CMP such as semiconductor wafers.

本発明の研磨パッドは、研磨面内に溝を有する発泡ポリウレタンから形成される研磨パッドであって、上記溝の側面および底面から成る溝の加工面が表面粗さ(Ra)10以下を有するように形成したものである。更に、本発明の研磨パッドの製造方法は、溝加工刃の送り速度と送り量とを段階的に変化させて機械切削して、研磨面に断面形状が矩形である同心円状の溝を形成する工程を含むものである。次に、本発明の研磨パッドおよびその製造方法を図1〜4を用いて具体的に説明する。図1は、本発明の研磨パッドの研磨層に設けられた溝の1つの実施態様の概略断面図であり、図2は、従来の研磨パッドの研磨層に設けられた溝の1つの実施態様の概略断面図である。但し、これらの図は研磨パッドの研磨層の溝の部分模式図であって正確な寸法を示すものではない。   The polishing pad of the present invention is a polishing pad formed of foamed polyurethane having a groove in the polishing surface, and the processed surface of the groove including the side surface and the bottom surface of the groove has a surface roughness (Ra) of 10 or less. Is formed. Further, the polishing pad manufacturing method of the present invention forms a concentric groove having a rectangular cross-sectional shape on the polishing surface by mechanically cutting the feed speed and feed amount of the grooving blade in stages. It includes a process. Next, the polishing pad of this invention and its manufacturing method are demonstrated concretely using FIGS. FIG. 1 is a schematic cross-sectional view of one embodiment of a groove provided in a polishing layer of a polishing pad of the present invention, and FIG. 2 is one embodiment of a groove provided in a polishing layer of a conventional polishing pad. FIG. However, these drawings are partial schematic views of the grooves of the polishing layer of the polishing pad, and do not show accurate dimensions.

図1に示すように、本発明の研磨パッド(1)においては、溝の側面(11)および底面(12)から成る溝の加工面が表面粗さ(Ra)10以下を有することを要件とするが、上記表面粗さ(Ra)は好ましくは1〜9、より好ましくは1〜5である。上記表面粗さ(Ra)が10を超えると、研磨スラリの流れが悪くなって凝集が発生しやすくなったり、不純物のつまりが発生しやすくなったりするため、スクラッチが発生する。   As shown in FIG. 1, in the polishing pad (1) of the present invention, the processing surface of the groove composed of the side surface (11) and the bottom surface (12) of the groove is required to have a surface roughness (Ra) of 10 or less. However, the surface roughness (Ra) is preferably 1 to 9, more preferably 1 to 5. When the surface roughness (Ra) exceeds 10, the flow of the polishing slurry is deteriorated and aggregation is likely to occur, and impurities are likely to be clogged, so that scratches are generated.

また、本発明の研磨パッドの研磨面内にある溝内に、深さ100μm以上(100〜500μm)を有する欠陥または長さ200μm以上(200〜1000μm)を有するひげ状突起が、上記溝の1断面当たり2以下であることが好ましい。上記欠陥またはひげ状突起が2より多いと、研磨スラリの流れが悪くなって凝集が発生しやすくなったり、不純物のつまりが発生しやすくなったりするため、スクラッチが発生する。上記欠陥およびひげ状突起は、研磨パッドを半径方向に5分割して溝断面をSEM等で観察し、上記断面内での両者の状態を確認し、上記深さを有する欠陥または上記長さを有するひげ状突起の個数を測定する。   Further, a defect having a depth of 100 μm or more (100 to 500 μm) or a whisker-like projection having a length of 200 μm or more (200 to 1000 μm) is formed in the groove in the polishing surface of the polishing pad of the present invention. Preferably it is 2 or less per cross section. If there are more than 2 defects or whisker-like protrusions, the flow of the polishing slurry becomes poor and aggregation tends to occur or impurities are easily clogged, so that scratching occurs. The defects and whisker-like projections are obtained by dividing the polishing pad into five in the radial direction and observing the groove cross section with an SEM or the like, confirming both states in the cross section, and determining the defect having the depth or the length. The number of whisker-like protrusions is measured.

図3は、本発明の研磨パッドの製造方法に用いる溝加工刃の1つの実施態様の刃先の部分模式図である。図4は、従来の研磨パッドの製造方法に用いる溝加工刃の刃先の部分模式図である。図3に示すように、本発明の研磨パッドの製造方法においては、溝の形成は溝加工刃を用いて機械切削する方法を用いて行い、研磨面に断面形状が矩形である同心円状の溝を形成する。本発明の研磨パッドの製造方法に用いる溝加工刃の刃先形状は、図4に示すような従来の溝加工刃に見られる横逃げ角(c)を有さない矩形であることが好ましい。上記横逃げ角(c)を有する溝加工刃を用いると、溝加工刃の磨耗により、形成される溝幅が小さくなり、研磨スラリ(研磨剤)の保持量にバラツキを生じ、研磨レートのバラツキや低下につながる。また上記刃先の側面形状においても、図4に示すような従来の溝加工刃に見られる、すくい角(d)を有する溝加工刃を用いると、溝加工刃の磨耗により、溝加工刃と加工される研磨面との接触面積が変わって溝の加工面、特に底面の所望の表面粗さ(Ra)が得られなくなる。従って、本発明の研磨パッドの製造方法に用いる溝加工刃は、上記横逃げ角(c)や、すくい角(d)を有さない、図3に示すような刃先形状を有することが好ましい。   FIG. 3 is a partial schematic view of a cutting edge of one embodiment of a grooving blade used in the method for producing a polishing pad of the present invention. FIG. 4 is a partial schematic view of a cutting edge of a grooving blade used in a conventional polishing pad manufacturing method. As shown in FIG. 3, in the polishing pad manufacturing method of the present invention, the grooves are formed using a method of mechanical cutting using a grooving blade, and concentric grooves having a rectangular cross-sectional shape on the polishing surface. Form. The cutting edge shape of the grooving blade used in the manufacturing method of the polishing pad of the present invention is preferably a rectangle having no lateral clearance angle (c) as seen in a conventional grooving blade as shown in FIG. When using a grooving blade having the above-mentioned lateral clearance angle (c), the groove width to be formed is reduced due to wear of the grooving blade, resulting in variations in the holding amount of the polishing slurry (abrasive), and variations in the polishing rate. Or lead to decline. Also, in the side face shape of the cutting edge, when a grooving blade having a rake angle (d) as shown in a conventional grooving blade as shown in FIG. The contact area with the polished surface is changed, and a desired surface roughness (Ra) of the processed surface of the groove, particularly the bottom surface, cannot be obtained. Therefore, it is preferable that the grooving blade used in the manufacturing method of the polishing pad of the present invention has a blade edge shape as shown in FIG. 3 that does not have the side clearance angle (c) or the rake angle (d).

本発明の研磨パッドの製造方法において、上記溝加工刃の送り速度と送り量とを段階的に変化させて機械切削することを要件とする。本明細書中で、溝加工刃の送り速度や送り量を「段階的に変化させる」とは、同心円状の溝の内の1つを形成する間に、段階に分けて送り速度や送り量を変化させることを意味し、各段階における送り速度値などは順次増加しても、順次減少しても、増加したり減少したりしてもよく、また各段階における時間は同じであっても異なっていてもよいことを意味する。   In the manufacturing method of the polishing pad of the present invention, it is a requirement that the cutting is performed by changing the feed speed and feed amount of the grooving blade stepwise. In this specification, “changing the feed rate and feed amount of the grooving blade stepwise” means that the feed rate and feed amount are divided into stages while one of the concentric grooves is formed. The feed rate value at each stage may increase sequentially, decrease sequentially, increase or decrease, and the time at each stage may be the same. Means it may be different.

上記溝加工刃の送り速度は、同心円状の溝の内の1つを形成する間に、0.01〜0.10m/分、好ましくは0.01〜0.08m/分、より好ましくは0.01〜0.05m/分の範囲で、1〜2段階、好ましくは2〜3段階、より好ましくは2〜5段階に変化させることが望ましい。上記溝加工刃の送り速度が、0.01m/分より小さいと加工時間の増加、刃物磨耗の促進の原因となり、0.10m/分より大きいとバリの増加、刃物への負担増、形状の不安定の原因となる。   The feed speed of the grooving blade is 0.01 to 0.10 m / min, preferably 0.01 to 0.08 m / min, more preferably 0 while forming one of the concentric grooves. In the range of 0.01 to 0.05 m / min, it is desirable to change it to 1 to 2 steps, preferably 2 to 3 steps, more preferably 2 to 5 steps. If the feed speed of the grooving blade is less than 0.01 m / min, it will increase the machining time and promote blade wear. If it is greater than 0.10 m / min, the burr will increase, the burden on the cutter will increase, Causes instability.

また、上記溝加工刃の送りを低速度一定で溝形成を行うと、溝加工刃の磨耗が大きくなるとともに、加工時間が増大したりするため、上記送り速度は段階的に増加することが好ましい。更に、溝加工時に溝加工刃が溝の最深部、即ち所望の溝深さに達した位置で、上記溝加工刃の送りを停止する時間を設けること、即ち上記溝加工刃の送り速度を0にする時間を設けることが望ましい。上記溝加工刃の送りを停止する時間は、0.5〜5秒間、好ましくは1.0〜3.0秒間が望ましく、5秒間を超えると加工刃の磨耗が大きくなり、0.5秒間より短いと安定した溝形状、表面状態を保つことが難しくなる。   Further, when the groove forming blade is formed at a constant low speed, the groove forming blade wear increases and the processing time increases. Therefore, the feed speed is preferably increased stepwise. . Further, a time for stopping the feeding of the grooving blade at a position where the grooving blade reaches the deepest part of the groove, that is, a desired groove depth at the time of grooving, that is, the feed speed of the grooving blade is set to 0. It is desirable to provide time for The time for stopping the feeding of the grooving blade is 0.5 to 5 seconds, preferably 1.0 to 3.0 seconds, and if it exceeds 5 seconds, the wear of the cutting blade increases, and the time is longer than 0.5 seconds. If it is short, it becomes difficult to maintain a stable groove shape and surface state.

上記のように、溝加工刃の送り速度を段階的に変化させることにより、溝加工刃の送り量も同様に段階的に変化する。また、溝加工刃の総送り量は、所望の溝の深さに依存して変化するが、上記送り速度と同様に段階的に変化させることが望ましい。   As described above, by changing the feed speed of the grooving blade stepwise, the feed amount of the grooving blade also changes stepwise similarly. Further, the total feed amount of the grooving blade varies depending on the desired groove depth, but it is desirable to change it stepwise similarly to the feed rate.

上記のように、本発明の研磨パッドの製造方法では、溝加工刃の送り速度と送り量とを段階的に変化させて研磨面に同心円状の溝を形成することによって、溝加工面の表面粗さ(Ra)を10以下と低くすることが可能となり、また溝加工によるパッド表面のバリが低減され、溝の断面形状を所望の矩形とすることが可能となる。上記溝加工面の表面粗さ(Ra)が大きいと、上記のように、研磨スラリや不純物の流れが悪くなって、スクラッチが発生する。また、本発明の研磨パッドの製造方法を用いることにより、図1のように溝加工によるパッド表面のバリが低減されることによって溝入口のエッジが直角となるだけでなく、溝の側面(11)と底面(12)とが直角となり、安定して溝の断面形状を綺麗な矩形とすることが可能となる。これらによって、本発明の研磨パッドの製造方法によって得られた研磨パッドでは、研磨面に形成された溝の形状が安定し、研磨スラリの保持量が安定するため、研磨レートのバラツキや低下、研磨量のウエハ面内でのバラツキが大きいこと、研磨スラリの余分な消費を解決し、更に被研磨体と研磨パッドとの間の適切なスラリの保持を可能とする。   As described above, in the manufacturing method of the polishing pad of the present invention, the surface of the groove processing surface is formed by forming concentric grooves on the polishing surface by changing the feed speed and the feed amount of the groove processing blade stepwise. The roughness (Ra) can be reduced to 10 or less, and burrs on the pad surface due to the groove processing are reduced, and the cross-sectional shape of the groove can be made a desired rectangle. When the surface roughness (Ra) of the groove processing surface is large, the polishing slurry and the flow of impurities are deteriorated as described above, and scratches are generated. Further, by using the polishing pad manufacturing method of the present invention, not only the edge of the groove entrance becomes a right angle by reducing the burr on the pad surface by the groove processing as shown in FIG. 1, but also the side surface (11 ) And the bottom surface (12) are perpendicular to each other, and the cross-sectional shape of the groove can be stably made a beautiful rectangle. By these, in the polishing pad obtained by the manufacturing method of the polishing pad of the present invention, the shape of the groove formed on the polishing surface is stabilized, and the holding amount of the polishing slurry is stabilized. A large amount of variation in the surface of the wafer can solve the excessive consumption of the polishing slurry, and it is possible to hold an appropriate slurry between the object to be polished and the polishing pad.

本発明の研磨パッドにおいて、上記のように安定して溝の断面形状が綺麗な矩形であれば、上記溝の幅、深さおよびピッチは特に限定されるものではないが、0.2mm〜5.0mm程度の幅と0.2mm〜4.0mm程度の深さと0.5〜6.0mm程度のピッチを有しておればよく、これらの範囲から被研磨体や研磨方法や研磨条件に合わせて適宜選択すればよいものである。本発明においては、同心円状のそれぞれの溝の幅は好ましくは同一であり、深さは好ましくは同一であり、ピッチは好ましくは同一であり、この場合研磨レートの制御が容易であり、製造時における利便性が優れている。   In the polishing pad of the present invention, the width, depth and pitch of the groove are not particularly limited as long as the cross-sectional shape of the groove is stable and beautiful as described above, but 0.2 mm to 5 mm. It is only necessary to have a width of about 0.0 mm, a depth of about 0.2 mm to 4.0 mm, and a pitch of about 0.5 to 6.0 mm, and in accordance with the object to be polished, the polishing method and the polishing conditions from these ranges Can be selected as appropriate. In the present invention, the widths of the concentric grooves are preferably the same, the depths are preferably the same, and the pitches are preferably the same. In this case, the polishing rate can be easily controlled, and at the time of manufacture. The convenience is excellent.

本発明における研磨パッドとして、従来一般に使用されている単層型パッドであってもよく、またはウエハ等の被研磨体に当接する硬質表面層および硬質表面層とプラテンとの間に位置する弾性支持層の少なくとも2層を有する積層パッドであってもよいし、更に他層を重ねての多層研磨パッドのような積層研磨パッドであってもよい。生産上、性能上、硬質表面層とプラテン(定盤)との間に位置する弾性支持層の少なくとも2層を有するものが好ましい。本発明はこのように単層、積層の研磨パッドに限定されるものではない。   The polishing pad in the present invention may be a single layer type pad generally used in the past, or a hard surface layer that comes into contact with an object to be polished such as a wafer and an elastic support positioned between the hard surface layer and the platen. It may be a laminated pad having at least two layers, or may be a laminated polishing pad such as a multilayer polishing pad in which other layers are stacked. In view of production and performance, those having at least two elastic support layers located between the hard surface layer and the platen (surface plate) are preferable. Thus, the present invention is not limited to a single-layer or multi-layer polishing pad.

前記の積層研磨パッドにおいて、硬質表面層と弾性支持層とで大別して形成されるものであるが、上記硬質表面層の硬度(JIS K6253−1997に準拠して行った。2cm×2cm(厚み:任意)の大きさに切り出したものを硬度測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。測定時には、試料を重ね合わせ、厚み6mm以上とした。硬度計(高分子計器社製 アスカーD型硬度計)を用い、硬度を測定した。)は、45〜65であることが好ましい。上記硬度が45度未満の場合、被研磨物のプラナリティ(平坦性)が悪化し、また、65度より大きい場合は、プラナリティは良好であるが、被研磨物のユニフォミティ(均一性)が悪化してしまう。弾性支持層の硬度(JIS K6253−1997準拠、高分子計器社製 アスカーA型硬度計)は、好ましくは25〜100、より好ましくは30〜85である。また、硬質表面層の厚さは、好ましくは0.2〜4mm、より好ましくは0.8〜3.0mm、弾性支持層の厚さは好ましくは0.5〜2.5mm、より好ましくは1.0〜2.0mmとすることが望ましい。   In the laminated polishing pad, a hard surface layer and an elastic support layer are roughly divided and formed according to the hardness of the hard surface layer (according to JIS K6253-1997. 2 cm × 2 cm (thickness: A sample cut into a size of (optional) was used as a sample for hardness measurement, and allowed to stand for 16 hours in an environment of a temperature of 23 ° C. ± 2 ° C. and a humidity of 50% ± 5%. The hardness was measured using a hardness meter (Asker D-type hardness meter manufactured by Kobunshi Keiki Co., Ltd.). When the hardness is less than 45 degrees, the planarity (flatness) of the object to be polished is deteriorated. When the hardness is more than 65 degrees, the planarity is good, but the uniformity (uniformity) of the object to be polished is deteriorated. End up. The hardness of the elastic support layer (according to JIS K6253-1997, Asker A hardness meter manufactured by Kobunshi Keiki Co., Ltd.) is preferably 25 to 100, more preferably 30 to 85. The thickness of the hard surface layer is preferably 0.2 to 4 mm, more preferably 0.8 to 3.0 mm, and the thickness of the elastic support layer is preferably 0.5 to 2.5 mm, more preferably 1. It is desirable to set it as 0.0-2.0 mm.

単層型研磨パッドにおいては、厚さは1.0〜5.0mm程であり、その材料は硬質表面層と弾性支持層にそれぞれ使用される材料から適宜選択使用されるものであってよい。   In the single-layer polishing pad, the thickness is about 1.0 to 5.0 mm, and the material may be appropriately selected from materials used for the hard surface layer and the elastic support layer, respectively.

積層研磨パッドにおいて硬質表面層としてはアクリレート系光硬化性樹脂、無発泡ポリウレタンや発泡ポリウレタンなどのポリウレタン、弾性支持層としてはポリエチレンフォーム、ポリウレタンフォーム、ポリエステルの不織布などが好ましいが、これらに限定されるものではない。硬質表面層、弾性支持層を不織布で形成する場合、ポリウレタン樹脂等の含浸剤を不織布に含浸させてもよい。但し、前記硬度範囲を満足するものであれば、前記以外の材質で研磨パッドを構成してもよい。本発明においては、特に好ましい硬質表面層の材料として、発泡ポリウレタン樹脂が挙げられる。   In the laminated polishing pad, the hard surface layer is preferably an acrylate-based photocurable resin, polyurethane such as non-foamed polyurethane or foamed polyurethane, and the elastic support layer is preferably polyethylene foam, polyurethane foam, polyester non-woven fabric, or the like. It is not a thing. When the hard surface layer and the elastic support layer are formed of a nonwoven fabric, the nonwoven fabric may be impregnated with an impregnating agent such as polyurethane resin. However, the polishing pad may be made of a material other than the above as long as the hardness range is satisfied. In the present invention, a particularly preferred hard surface layer material is a foamed polyurethane resin.

ポリウレタン樹脂を発泡させる場合、その発泡方法は化学的な発泡剤による発泡、機械的な泡を混入させる発泡および微小中空体の混入または熱によって微小中空体となる前駆体の混入、これらの共用であってもよい。これらの発泡方法で本発明における研磨パッドに使用する微細発泡体とする。   When a polyurethane resin is foamed, the foaming method can be shared by foaming with a chemical foaming agent, foaming that mixes mechanical foam, and mixing of a hollow body or a precursor that becomes a microhollow body by heat. There may be. By these foaming methods, a fine foam used for the polishing pad in the present invention is obtained.

ポリウレタン樹脂としては、イソシアネート末端ウレタンプレポリマーと有機ジアミン化合物とからなり、イソシアネート末端ウレタンプレポリマーは、ポリイソシアネートと高分子ポリオールと低分子ポリオールからなる。ポリイソシアネートとしては、例えば2,4−及び/または2,6−ジイソシアナトトルエン、2,2’−、2,4’−及び/または4,4’−ジイソシアナトジフェニルメタン、1,5−ナフタレンジイソシアネート、p−及びm−フェニレンジイソシアネート、ダイメリルジイソシアネート、キシリレンジイソシアネート、ジフェニル−4,4’−ジイソシネート、1,3−及び1,4−テトラメチルキシリデンジイソシアネート、テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、シクロヘキサン−1,3−及び1,4−ジイソシアネート、1−イソシアナト−3−イソシアナトメチル−3,5,5−トリメチルシクロヘキサン(=イソホロンジイソシアネート)、ビス−(4−イソシアナトシクロヘキシル)メタン(=水添MDI)、2−及び4−イソシアナトシクロヘキシル−2’−イソシアナトシクロヘキシルメタン、1,3−及び1,4−ビス−(イソシアナトメチル)−シクロヘキサン、ビス−(4−イソシアナト−3−メチルシクロヘキシル)メタン、等が挙げられる。   The polyurethane resin is composed of an isocyanate-terminated urethane prepolymer and an organic diamine compound, and the isocyanate-terminated urethane prepolymer is composed of a polyisocyanate, a high molecular polyol, and a low molecular polyol. Examples of the polyisocyanate include 2,4- and / or 2,6-diisocyanatotoluene, 2,2′-, 2,4′- and / or 4,4′-diisocyanatodiphenylmethane, 1,5- Naphthalene diisocyanate, p- and m-phenylene diisocyanate, dimeryl diisocyanate, xylylene diisocyanate, diphenyl-4,4′-diisocyanate, 1,3- and 1,4-tetramethylxylidene diisocyanate, tetramethylene diisocyanate, 1,6 Hexamethylene diisocyanate, dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane (= isophorone diisocyanate), bis (4-isocyanatocyclohexyl) methane (= hydrogenated MDI), 2- and 4-isocyanatocyclohexyl-2′-isocyanatocyclohexylmethane, 1,3- and 1,4-bis- (isocyanatomethyl) -cyclohexane Bis- (4-isocyanato-3-methylcyclohexyl) methane, and the like.

また、高分子ポリオールとしては、例えばヒドロキシ末端ポリエステル、ポリカーボネート、ポリエステルカーボネート、ポリエーテル、ポリエーテルカーボネート、ポリエステルアミド等が挙げられるが、これらのうち耐加水分解性の良好なポリエーテル及びポリカーボネートが好ましく、価格面と溶融粘度面からはポリエーテルが特に好ましい。ポリエーテルポリオールとしては、反応性水素原子を有する出発化合物と、例えば酸化エチレン、酸化プロピレン、酸化ブチレン、酸化スチレン、テトラヒドロフラン、エピクロルヒドリンの様な酸化アルキレン又はこれら酸化アルキレンの混合物との反応生成物が挙げられる。反応性水素原子を有する出発化合物としては、水、ビスフェノールA並びに後述のようなポリエステルポリオールを製造するための二価アルコールが挙げられる。   Examples of the polymer polyol include hydroxy-terminated polyesters, polycarbonates, polyester carbonates, polyethers, polyether carbonates, polyester amides, etc. Of these, polyethers and polycarbonates having good hydrolysis resistance are preferable, Polyether is particularly preferable from the viewpoint of price and melt viscosity. Polyether polyols include reaction products of starting compounds having reactive hydrogen atoms with alkylene oxides such as ethylene oxide, propylene oxide, butylene oxide, styrene oxide, tetrahydrofuran, epichlorohydrin or mixtures of these alkylene oxides. It is done. Examples of the starting compound having a reactive hydrogen atom include water, bisphenol A, and dihydric alcohol for producing a polyester polyol as described below.

更にヒドロキシ基を有するポリカーボネートとしては、例えば、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール及び/又はポリテトラメチレングリコールの様なジオールとホスゲン、ジアリルカーボネート(例えばジフェニルカーボネート)もしくは環式カーボネート(例えばプロピレンカーボネート)との反応生成物が挙げられる。ポリエステルポリオールとしては、二価アルコールと二塩基性カルボン酸との反応生成物が挙げられるが、耐加水分解性向上のためには、エステル結合間距離が長い方が好ましく、いずれも長鎖成分の組み合わせが望ましい。   Further, examples of the polycarbonate having a hydroxy group include diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, polyethylene glycol, polypropylene glycol and / or polytetramethylene glycol. And the reaction product of phosgene, diallyl carbonate (eg diphenyl carbonate) or cyclic carbonate (eg propylene carbonate). Examples of the polyester polyol include a reaction product of a dihydric alcohol and a dibasic carboxylic acid. In order to improve hydrolysis resistance, a longer distance between ester bonds is preferable. A combination is desirable.

二価アルコールとしては、特に限定はしないが、例えばエチレングリコール、1,3−及び1,2−プロピレングリコール、1,4−及び1,3−及び2,3−ブチレングリコール、1,6−ヘキサングリコール、1,8−オクタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、1,4−ビス−(ヒドロキシメチル)−シクロヘキサン、2−メチル−1,3−プロパンジオール、3−メチル−1,5−ペンタンジオール、2,2,4−トリメチル−1,3−ペンタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ジブチレングリコール等が挙げられる。   Although it does not specifically limit as dihydric alcohol, For example, ethylene glycol, 1, 3- and 1, 2- propylene glycol, 1, 4- and 1, 3- and 2, 3- butylene glycol, 1, 6-hexane Glycol, 1,8-octanediol, neopentyl glycol, cyclohexanedimethanol, 1,4-bis- (hydroxymethyl) -cyclohexane, 2-methyl-1,3-propanediol, 3-methyl-1,5-pentane Examples include diol, 2,2,4-trimethyl-1,3-pentanediol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, and dibutylene glycol.

二塩基性カルボン酸としては、脂肪族、脂環族、芳香族及び/又は複素環式のものがあるが、生成する末端NCOプレポリマーを液状又は低溶融粘度とする必要上から、脂肪族や脂環族のものが好ましく、芳香族系を適用する場合は脂肪族や脂環族のものとの併用が好ましい。これらカルボン酸としては、限定はしないが、例えばコハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸、シクロヘキサンジカルボン酸(o−、m−、p−)、ダイマー脂肪酸、例えばオレイン酸、等が挙げられる。これらポリエステルポリオールとしては、カルボキシル末端基の一部を有することもできる。例えば、ε−カプロラクトンの様なラクトン、又はε−ヒドロキシカプロン酸の様なヒドロキシカルボン酸のポリエステルも使用することができる。   As the dibasic carboxylic acid, there are aliphatic, alicyclic, aromatic and / or heterocyclic ones. From the necessity of making the terminal NCO prepolymer to be liquid or low melt viscosity, An alicyclic group is preferred, and in the case of applying an aromatic system, combined use with an aliphatic or alicyclic group is preferred. Examples of these carboxylic acids include, but are not limited to, succinic acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid, cyclohexanedicarboxylic acid (o-, m-, p-), dimer fatty acids such as oleic acid and the like. These polyester polyols may have a part of carboxyl end groups. For example, a lactone such as ε-caprolactone or a polyester of a hydroxycarboxylic acid such as ε-hydroxycaproic acid can be used.

低分子ポリオールとしては、前述のポリエステルポリオールを製造するのに用いられる二価アルコールが挙げられるが、本発明の低分子ポリオールとは、ジエチレングリコール、1,3−ブチレングリコール、3−メチル−1,5−ペンタンジオール及び1,6−ヘキサメチレングリコールのいずれか1種又はそれらの混合物を用いることが好ましい。本発明に用いられるもの以外の低分子ポリオールであるエチレングリコールや1,4−ブチレングリコールを用いると、注型成形時の反応性が速くなり過ぎたり、最終的に得られるポリウレタン研磨材成形物の硬度が高くなりすぎるため、本発明の研磨材としては、脆くなったり又IC表面に傷がつき易くなる。他方、1,6−ヘキサメチレングリコールよりも長鎖の二価アルコールを用いると、注型成形時の反応性や、最終的に得られるポリウレタン研磨材成形物の硬度が適切なものが得られる場合もあるが、価格的に高くなり過ぎ、実用的ではない。   Examples of the low molecular polyol include dihydric alcohols used for producing the above-described polyester polyol. The low molecular polyol of the present invention includes diethylene glycol, 1,3-butylene glycol, 3-methyl-1,5. It is preferable to use any one of pentanediol and 1,6-hexamethylene glycol or a mixture thereof. When ethylene glycol or 1,4-butylene glycol, which is a low molecular polyol other than those used in the present invention, is used, the reactivity at the time of cast molding becomes too fast, or the polyurethane abrasive molded product finally obtained Since the hardness becomes too high, the abrasive of the present invention becomes brittle and the IC surface is easily damaged. On the other hand, when a dihydric alcohol having a longer chain than 1,6-hexamethylene glycol is used, the reactivity at the time of cast molding and the hardness of the finally obtained polyurethane abrasive molding can be obtained. Although it is too expensive, it is not practical.

イソシアネート成分は、注型成形時に必要とされるポットライフに応じて適宜に選定されると共に、生成する末端NCOプレポリマーを低溶融粘度とすることが必要であるため、単独又は2種以上の混合物で適用される。それらの具体例としては、特に限定はしないが、2,4−及び/または2,6−ジイソシアナトトルエン、2,2’−、2,4’−及び/または4,4’−ジイソシアナトジフェニルメタン、1,5‐ナフタレンジイソシアネート、p−及びm−フェニレンジイソシアネート、ダイメリルジイソシアネート、キシリレンジイソシアネート、ジフェニル−4,4’−ジイソシネート、1,3−及び1,4−テトラメチルキシリデンジイソシアネート、テトラメチレンジイソシアネート、1,6−ヘキサメチレンジイソシアネート、ドデカメチレンジイソシアネート、シクロヘキサン−1,3−及び1,4−ジイソシアネート、1−イソシアナト−3−イソシアナトメチル−3,5,5−トリメチルシクロヘキサン(=イソホロンジイソシアネート)、ビス−(4−イソシアナトシクロヘキシル)メタン(=水添MDI)、2−及び4−イソシアナトシクロヘキシル−2’−イソシアナトシクロヘキシルメタン、1,3−及び1,4−ビス−(イソシアナトメチル)−シクロヘキサン、ビス−(4−イソシアナト−3−メチルシクロヘキシル)メタン、等が挙げられる。   The isocyanate component is appropriately selected according to the pot life required at the time of cast molding, and the terminal NCO prepolymer to be produced needs to have a low melt viscosity. Therefore, the isocyanate component is used alone or as a mixture of two or more. Applied at. Specific examples thereof include, but are not limited to, 2,4- and / or 2,6-diisocyanatotoluene, 2,2′-, 2,4′- and / or 4,4′-diisocyanate. Natodiphenylmethane, 1,5-naphthalene diisocyanate, p- and m-phenylene diisocyanate, dimeryl diisocyanate, xylylene diisocyanate, diphenyl-4,4'-diisocyanate, 1,3- and 1,4-tetramethylxylidene diisocyanate, Tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, dodecamethylene diisocyanate, cyclohexane-1,3- and 1,4-diisocyanate, 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethylcyclohexane (= isophorone) Diisocyanate ), Bis- (4-isocyanatocyclohexyl) methane (= hydrogenated MDI), 2- and 4-isocyanatocyclohexyl-2′-isocyanatocyclohexylmethane, 1,3- and 1,4-bis- (isocyanato) Methyl) -cyclohexane, bis- (4-isocyanato-3-methylcyclohexyl) methane, and the like.

本発明で使用される有機ジアミン化合物としては、特に限定されないが、例えば、3,3’−ジクロロ−4,4’−ジアミノジフェニルメタン、クロロアニリン変性ジクロロジアミノジフェニルメタン、1,2−ビス(2−アミノフェニルチオ)エタン、トリメチレングリコールジ−p−アミノベンゾエート、3,5−ビス(メチルチオ)−2,6−トルエンジアミン等が挙げられる。   The organic diamine compound used in the present invention is not particularly limited. For example, 3,3′-dichloro-4,4′-diaminodiphenylmethane, chloroaniline-modified dichlorodiaminodiphenylmethane, 1,2-bis (2-amino) Phenylthio) ethane, trimethylene glycol di-p-aminobenzoate, 3,5-bis (methylthio) -2,6-toluenediamine and the like.

本発明における微細発泡体からなる研磨領域の平均気泡径は、70μm以下であることが好ましい。この範囲から逸脱する場合は、プラナリティが悪化するため好ましくない。   The average cell diameter of the polishing region made of the fine foam in the present invention is preferably 70 μm or less. A deviation from this range is not preferable because planarity deteriorates.

本発明における微細発泡体からなる研磨領域の比重が、0.5〜1.0g/cmであることが好ましい。比重が0.5g/cm未満の場合、研磨領域の表面の強度が低下し、被研磨物のプラナリティ(平坦性)が悪化し、また、1.0g/cmより大きい場合は、研磨領域表面での微細気泡の数が少なくなり易く、プラナリティは良好であるが、研磨速度が悪化してしまうため好ましくない。 The specific gravity of the polishing region made of the fine foam in the present invention is preferably 0.5 to 1.0 g / cm 3 . When the specific gravity is less than 0.5 g / cm 3, the strength of the surface of the polishing region decreases, the planarity (flatness) of the object to be polished deteriorates, and when the specific gravity is greater than 1.0 g / cm 3 , the polishing region Although the number of fine bubbles on the surface tends to be small and planarity is good, it is not preferable because the polishing rate is deteriorated.

本発明における微細発泡体からなる研磨領域の硬度は、アスカーD硬度計にて、45〜65であることが好ましい。D硬度が45度未満の場合、被研磨物のプラナリティ(平坦性)が悪化し、また、65度より大きい場合は、プラナリティは良好であるが、被研磨物のユニフォミティ(均一性)が悪化してしまう。   The hardness of the polishing region made of the fine foam in the present invention is preferably 45 to 65 by an Asker D hardness meter. When the D hardness is less than 45 degrees, the planarity (flatness) of the object to be polished is deteriorated. When it is greater than 65 degrees, the planarity is good, but the uniformity (uniformity) of the object to be polished is deteriorated. End up.

本発明における微細発泡体からなる研磨領域の圧縮率は、0.5〜5.0%であることが好ましい。上記範囲に圧縮率があることにより、プラナリティとユニフォミティを両立させることが可能となる。   The compressibility of the polishing region made of the fine foam in the present invention is preferably 0.5 to 5.0%. By having a compression ratio in the above range, it is possible to achieve both planarity and uniformity.

本発明における微細発泡体からなる研磨領域の圧縮回復率が、50〜100%であることが好ましい。圧縮回復率がこの範囲を逸脱する場合、被研磨物による繰り返しの荷重が研磨中に研磨領域にかかるにつれて、研磨層厚みに大きな変化が現れ、研磨特性の安定性が悪化してしまうため好ましくない。   In the present invention, the compression recovery rate of the polishing region made of the fine foam is preferably 50 to 100%. When the compression recovery rate deviates from this range, it is not preferable because a large change appears in the polishing layer thickness and the stability of the polishing characteristics deteriorates as the repeated load applied to the object is applied to the polishing region during polishing. .

本発明における微細発泡体からなる研磨領域の貯蔵弾性率が、測定温度40℃、測定周波数1Hzにおいて、200MPa以上であることが好ましい。貯蔵弾性率とは、微細発泡体に、動的粘弾性測定装置で引っ張り試験用治具を用い、正弦波振動を加え測定した弾性率のことをいう。貯蔵弾性率が200MPa未満の場合、研磨領域の表面の強度が低下し、被研磨物のプラナリティ(平坦性)が悪化してしまうため好ましくない。   In the present invention, the storage elastic modulus of the polishing region made of the fine foam is preferably 200 MPa or more at a measurement temperature of 40 ° C. and a measurement frequency of 1 Hz. The storage elastic modulus means an elastic modulus measured by applying a sinusoidal vibration to a fine foam using a tensile test jig with a dynamic viscoelasticity measuring apparatus. When the storage elastic modulus is less than 200 MPa, the strength of the surface of the polishing region is lowered, and the planarity (flatness) of the object to be polished is deteriorated.

比重測定方法
JIS Z8807−1976に準拠して行った。4cm×8.5cmの短冊状(厚み:任意)に切り出したものを比重測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。測定には比重計(ザルトリウス社製)を用いた。
Specific gravity measuring method It carried out based on JISZ8807-1976. A sample cut into a 4 cm × 8.5 cm strip (thickness: arbitrary) was used as a sample for measuring specific gravity, and allowed to stand for 16 hours in an environment of temperature 23 ° C. ± 2 ° C. and humidity 50% ± 5%. A hydrometer (manufactured by Sartorius) was used for the measurement.

硬度測定方法
JIS K6253−1997に準拠して行った。2cm×2cm(厚み:任意)の大きさに切り出したものを硬度測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。測定時には、試料を重ね合わせ、厚み6mm以上とした。硬度計(高分子計器社製 アスカーD型硬度計)を用い、硬度を測定した。
Hardness measurement was performed in accordance with JIS K6253-1997. A sample cut into a size of 2 cm × 2 cm (thickness: arbitrary) was used as a sample for hardness measurement, and allowed to stand for 16 hours in an environment of a temperature of 23 ° C. ± 2 ° C. and a humidity of 50% ± 5%. At the time of measurement, the samples were overlapped to a thickness of 6 mm or more. The hardness was measured using a hardness meter (Asker D-type hardness meter manufactured by Kobunshi Keiki Co., Ltd.).

圧縮率・圧縮回復率測定方法
直径7mmの円(厚み:任意)に切り出したものを圧縮率・圧縮回復率測定用試料とし、温度23℃±2℃、湿度50%±5%の環境で40時間静置した。測定には熱分析測定器 TMA(SEIKO INSTRUMENTS製 SS6000)を用い、圧縮率と圧縮回復率を測定した。また、圧縮率と圧縮回復率の計算式は以下の通りである。
Compression rate / compression recovery measurement method Cut into a circle (thickness: arbitrary) with a diameter of 7 mm as a sample for measurement of compression rate / compression recovery rate, in an environment of temperature 23 ° C. ± 2 ° C. and humidity 50% ± 5% 40 Let stand for hours. For the measurement, a thermal analysis measuring instrument TMA (SS6000 manufactured by SEIKO INSTRUMENTS) was used to measure the compression rate and the compression recovery rate. The calculation formulas for the compression rate and the compression recovery rate are as follows.

Figure 0003769581
Figure 0003769581

[式中、T1は研磨層に無負荷状態から30KPa(300g/cm)の応力の負荷を60秒間保持した時の研磨層厚みであり、T2はT1の状態から180KPa(1800g/cm)の応力の負荷を60秒間保持した時の研磨層厚みである。] [In the formula, T1 is the thickness of the polishing layer when a stress load of 30 KPa (300 g / cm 2 ) is maintained for 60 seconds from the unloaded state to the polishing layer, and T2 is 180 KPa (1800 g / cm 2 ) from the state of T1. The thickness of the polishing layer when the stress load of 60 seconds is maintained. ]

Figure 0003769581
Figure 0003769581

[式中、T1は研磨層に無負荷状態から30KPa(300g/cm)の応力の負荷を60秒間保持した時の研磨層厚みであり、T2はT1の状態から180KPa(1800g/cm)の応力の負荷を60秒間保持した時の研磨層厚みであり、T3はT2の状態から無負荷状態で60秒間保持し、その後、30KPa(300g/cm)の応力の負荷を60秒間保持した時の研磨層厚みである。] [In the formula, T1 is the thickness of the polishing layer when a stress load of 30 KPa (300 g / cm 2 ) is maintained for 60 seconds from the unloaded state to the polishing layer, and T2 is 180 KPa (1800 g / cm 2 ) from the state of T1. The thickness of the polishing layer when the stress load of 60 seconds was held, and T3 was held for 60 seconds in the unloaded state from the state of T2, and then the stress load of 30 KPa (300 g / cm 2 ) was held for 60 seconds. It is the polishing layer thickness at the time. ]

本発明の研磨パッドを使用して、研磨パッドの表面に対して研磨スラリを供給しながら、被研磨体を所望の研磨圧で押し付けながら回転させて前記研磨パッドの移動方向に対して交差する方向に揺動させることによって、前記研磨パッドの表面と被研磨体の表面との間に供給されたスラリの化学的および機械的な作用によって被研磨体の表面を研磨する方法で被研磨体が半導体デバイスである研磨方法であり、この半導体の研磨において本発明の研磨パッドがもっとも効果を発揮する。また本発明は、そのような研磨パッドの製造方法に及ぶものである。   Using the polishing pad of the present invention, while supplying a polishing slurry to the surface of the polishing pad, the object to be polished is rotated while being pressed with a desired polishing pressure, and intersects the moving direction of the polishing pad. The object to be polished is a semiconductor by a method of polishing the surface of the object to be polished by the chemical and mechanical action of the slurry supplied between the surface of the polishing pad and the surface of the object to be polished. The polishing method is a device, and the polishing pad of the present invention is most effective in polishing this semiconductor. The present invention also extends to a method for manufacturing such a polishing pad.

以下、本発明の効果を具体的に示す実施例等について説明する。但し、本発明はこれら実施例に限定されるものではない。尚、実施例等における評価項目は以下のようにして測定した。   Examples and the like that specifically show the effects of the present invention will be described below. However, the present invention is not limited to these examples. The evaluation items in Examples and the like were measured as follows.

(研磨特性の評価)
研磨装置としてSPP600S(岡本工作機械社製)を用い、作製した研磨パッドを用いて以下の研磨特性の評価を行った。
(1)研磨レート
研磨レートは、8インチのシリコンウエハに熱酸化膜を1μm製膜したものを、約0.5μm研磨して、このときの時間から算出した。酸化膜の膜厚測定には、干渉式膜厚測定装置(大塚電子社製)を用いた。研磨条件としては、スラリとしてシリカスラリー(SS12、キャボット社製)を研磨中に150ミリリットル/分添加した。研磨荷重としては350g/cm、研磨定盤回転数35rpm、ウエハ回転数30rpmとした。
(Evaluation of polishing characteristics)
SPP600S (manufactured by Okamoto Machine Tool Co., Ltd.) was used as a polishing apparatus, and the following polishing characteristics were evaluated using the prepared polishing pad.
(1) Polishing rate The polishing rate was calculated from the time obtained by polishing about 0.5 μm of a 1-μm thermal oxide film formed on an 8-inch silicon wafer. An interference type film thickness measuring device (manufactured by Otsuka Electronics Co., Ltd.) was used for measuring the thickness of the oxide film. As polishing conditions, silica slurry (SS12, manufactured by Cabot) was added as a slurry at 150 ml / min during polishing. The polishing load was 350 g / cm 2 , the polishing platen rotation number was 35 rpm, and the wafer rotation number was 30 rpm.

(2)スクラッチ数
トプコン社製ウエハ表面検査装置(WM2500)を用いて研磨後、ウエハ上に0.5μm以上の条痕(スクラッチ)の個数を測定した。
(2) Number of scratches After polishing using a wafer surface inspection apparatus (WM2500) manufactured by Topcon Corporation, the number of scratches (scratches) of 0.5 μm or more on the wafer was measured.

(3)表面粗さ(Ra)
テンコール(Tencor)P−15表面粗さ測定装置を用いて、以下の条件で測定した。
走査長さ:2500μm
走査速度:20μm/秒
探針力 :2mg
探針半径:2.0μm
先端角 :60゜
(3) Surface roughness (Ra)
Measurement was performed under the following conditions using a Tencor P-15 surface roughness measuring device.
Scanning length: 2500 μm
Scanning speed: 20 μm / second Probe force: 2 mg
Probe radius: 2.0 μm
Tip angle: 60 °

(4)溝断面形状
以下の評価基準を用いて評価した。
評価基準
○…溝断面形状を観察した際に深さ方向に対して3点(上、中、下)の溝幅を測定した際の平均が狙い範囲にあり溝幅3点(上、中、下)のバラツキが30μm以下または狙い幅の10%以下で矩形が出ている。
△…平均溝幅は狙い範囲内にあるが溝幅3点(上、中、下)のバラツキが30μmより大きい。
一部分だけバリが大きく出ている。
矩形はある程度出ており溝幅3点(上、中、下)のバラツキも30μm以下であるが平均溝幅が狙い範囲より僅かに外れている。
×…溝幅が狙い範囲内にない。
矩形が全く出ていない。
(4) Groove cross-sectional shape It evaluated using the following evaluation criteria.
Evaluation Criteria ○: When observing the groove cross-sectional shape, the average when measuring the groove width of 3 points (upper, middle, lower) in the depth direction is within the target range, and the groove width is 3 points (upper, middle, A rectangle appears when the variation in (lower) is 30 μm or less or 10% or less of the target width.
Δ: The average groove width is within the target range, but the variation at three groove widths (upper, middle, lower) is larger than 30 μm.
Only a part of the burr is large.
The rectangle appears to some extent, and the variation of the groove width at three points (upper, middle, lower) is 30 μm or less, but the average groove width is slightly outside the target range.
X: The groove width is not within the target range.
There are no rectangles.

(5)表面バリ
上記溝断面形状を測定した断面内において、その溝から表面にかけてのバリを、以下の評価基準を用いて評価した。
評価基準
○…80μm以下
△…80〜100μm
×…100μm以上
(5) Surface burr In the cross section where the groove cross-sectional shape was measured, the burr from the groove to the surface was evaluated using the following evaluation criteria.
Evaluation criteria ○ ... 80 μm or less △… 80-100 μm
× ... 100μm or more

(6)溝加工刃磨耗
刃先がきれいに研磨された溝加工刃を用いて、溝加工を行い、加工後の刃先状態を確認する。図5に示すような刃先角部のRを(走査型電子顕微鏡(SEM)またはマイクロスコープを用いて)測定し、その大きさで以下の評価基準を用いて評価した。
評価基準
○…R:0〜0.20mm(カケなし)
△…R:0.20〜0.30mm(またはカケ小あり)
×…R:0.30mm以上(またはカケ大あり)
(6) Grooving blade wear Groove processing is performed using a grooving blade with a sharply polished cutting edge, and the state of the cutting edge after processing is confirmed. The R at the corner of the blade edge as shown in FIG. 5 was measured (using a scanning electron microscope (SEM) or a microscope), and the size was evaluated using the following evaluation criteria.
Evaluation criteria ○ ... R: 0 to 0.20 mm (no chipping)
Δ: R: 0.20 to 0.30 mm (or small chipping)
X: R: 0.30 mm or more (or there is a chip size)

実施例1
フッ素コーティングした反応容器に、フィルタリングしたポリエーテル系プレポリマー(ユニロイヤル社製、アジプレンL‐325、イソシアネート基濃度:2.22meq/)100重量部、及びフィルタリングしたシリコーン系界面活性剤(東レ・ダウシリコーン社製、SH192)3重量部を混合し、反応温度を80℃に調整した。フッ素コーティングした攪拌機を用いて、回転数900rpmで反応系内に気泡を取り込むように約4分間激しく攪拌を行った。そこへ予め120℃の温度で溶融させ、フィルタリングした4,4’−メチレンビス(o−クロロアニリン)(イハラケミカル社製、イハラキュアミンMT)を26重量部添加した。約1分間攪拌を続けた後、フッ素コーティングしたパン型のオープンモールドへ反応溶液を流し込んだ。この反応溶液に流動性がなくなった時点でオーブン内に入れ、110℃で6時間ポストキュアを行いポリウレタン樹脂発泡体ブロックを得た。このポリウレタン樹脂発泡体ブロックからバンドソータイプのスライサー(フェッケン社製)を使用してスライスし、シート状のポリウレタン発泡体を得た。次にこのシートをバフ機(アミテック社製)を使用して、所定の厚さに表面バフをし、厚み精度を整えたシートとした(シート厚み:1.27mm)。このシートの被溝加工面における平均気泡径は45μm、比重0.86g/cm、硬度53度、圧縮率1.0%、圧縮回復率65.0%、貯蔵弾性率275MPaであった。
Example 1
In a fluorine-coated reaction vessel, 100 parts by weight of a filtered polyether-based prepolymer (Uniroy, Adiprene L-325, isocyanate group concentration: 2.22 meq /), and a filtered silicone-based surfactant (Toray Dow) 3 parts by weight manufactured by Silicone Corporation (SH192) were mixed, and the reaction temperature was adjusted to 80 ° C. Using a fluorine-coated stirrer, the mixture was vigorously stirred for about 4 minutes so that air bubbles were taken into the reaction system at a rotation speed of 900 rpm. Thereto was added 26 parts by weight of 4,4′-methylenebis (o-chloroaniline) (made by Ihara Chemical Co., Ltd., Iharacamine MT) which was previously melted at 120 ° C. and filtered. After stirring for about 1 minute, the reaction solution was poured into a pan-type open mold coated with fluorine. When the fluidity of the reaction solution disappeared, it was placed in an oven and post-cured at 110 ° C. for 6 hours to obtain a polyurethane resin foam block. The polyurethane resin foam block was sliced using a band saw type slicer (Fecken) to obtain a sheet-like polyurethane foam. Next, this sheet was subjected to surface buffing to a predetermined thickness using a buffing machine (Amitech Co., Ltd.) to obtain a sheet with adjusted thickness accuracy (sheet thickness: 1.27 mm). The average bubble diameter on the grooved surface of this sheet was 45 μm, specific gravity 0.86 g / cm 3 , hardness 53 degrees, compression rate 1.0%, compression recovery rate 65.0%, and storage elastic modulus 275 MPa.

このバフ処理をしたシートを直径61cmに打ち抜き、溝加工機を用いて表面に溝幅0.25mm、溝深さ0.40mm、溝ピッチ1.5mmの同心円状の溝加工を行った。その際の溝加工刃の送り速度は以下の表2に示すNo.1を用いた。得られた溝加工面の表面粗さを測定し、溝形状、表面バリおよび溝加工刃磨耗を評価し、その結果をそれぞれ以下の表1および表2に示す。このシートの溝加工面と反対の面にラミネーターを使用して、両面テープ(積水化学工業社製、ダブルタックテープ)を貼り、更に、コロナ処理をしたクッションシート(東レ社製、ポリエチレンフォーム、トーレペフ、厚み0.8mm)の表面をバフ掛け、ラミネーターを使用して前記シートに貼り合せた。更にクッションシートの他面にラミネーターを使用して両面テープを貼り合せて研磨パッドを作製した。   The buffed sheet was punched to a diameter of 61 cm, and concentric grooves with a groove width of 0.25 mm, a groove depth of 0.40 mm, and a groove pitch of 1.5 mm were formed on the surface using a groove processing machine. The feed speed of the grooving blade at that time is No. shown in Table 2 below. 1 was used. The surface roughness of the obtained grooved surface was measured to evaluate the groove shape, surface burrs, and grooved blade wear, and the results are shown in Tables 1 and 2 below. Using a laminator on the opposite side of the grooved surface of this sheet, a double-sided tape (Sekisui Chemical Co., Ltd., double tack tape) was applied, and a corona-treated cushion sheet (Toray Industries, polyethylene foam, Torepefu) , 0.8 mm thick) and buffed and bonded to the sheet using a laminator. Further, a double-sided tape was attached to the other side of the cushion sheet using a laminator to prepare a polishing pad.

実施例2
溝加工時の溝加工刃送り速度として以下の表2のNo.4を用いた以外は、実施例1と同様にして研磨パッドを作製した。得られた溝加工面の表面粗さを測定し、溝形状、表面バリおよび溝加工刃磨耗を評価し、その結果をそれぞれ以下の表1および表2に示す。
Example 2
The grooving blade feed speed at the time of grooving is shown in Table 2 below. A polishing pad was prepared in the same manner as in Example 1 except that 4 was used. The surface roughness of the obtained grooved surface was measured to evaluate the groove shape, surface burrs, and grooved blade wear, and the results are shown in Tables 1 and 2 below.

比較例1
溝加工時の溝加工刃送り速度として以下の表2のNo.11を用いた以外は、実施例1と同様にして研磨パッドを作製した。得られた溝加工面の表面粗さを測定し、溝形状、表面バリおよび溝加工刃磨耗を評価し、その結果をそれぞれ以下の表1および表2に示す。
Comparative Example 1
The grooving blade feed speed at the time of grooving is shown in Table 2 below. A polishing pad was prepared in the same manner as in Example 1 except that 11 was used. The surface roughness of the obtained grooved surface was measured to evaluate the groove shape, surface burrs, and grooved blade wear, and the results are shown in Tables 1 and 2 below.

得られた実施例1〜2および比較例1の研磨パッドを上記方法により評価した。結果を表1に示す。   The obtained polishing pads of Examples 1 and 2 and Comparative Example 1 were evaluated by the above methods. The results are shown in Table 1.

Figure 0003769581
Figure 0003769581

Figure 0003769581
Figure 0003769581

上記表1の結果から明らかなように、実施例1および2の本発明の研磨パッドは、比較例1の研磨パッドに比べて、溝加工面の表面粗さ(Ra)が小さく、スクラッチ数が小さくて研磨特性が非常に優れていることがわかる。また、本発明の製造方法を用いた実施例1および2の研磨パッドは、溝加工によるパッド表面のバリが大きく低減されていることがわかる。   As is clear from the results of Table 1 above, the polishing pads of the present invention of Examples 1 and 2 have a smaller surface roughness (Ra) of the grooved surface and a number of scratches than the polishing pad of Comparative Example 1. It can be seen that it is small and has excellent polishing characteristics. In addition, it can be seen that the polishing pads of Examples 1 and 2 using the manufacturing method of the present invention have greatly reduced burrs on the pad surface due to groove processing.

これに対して、本発明の製造方法を用いていない比較例1の研磨パッドは、研磨レートは低下していないものの、スクラッチ数が非常に大きくなっており、溝加工によるパッド表面のバリが非常に悪いものとなっている。   On the other hand, the polishing pad of Comparative Example 1 that does not use the manufacturing method of the present invention has a very high number of scratches, although the polishing rate is not lowered, and the pad surface burrs due to grooving are very large. It ’s bad.

前述のように、実施例1、実施例2および比較例1の研磨パッドの溝加工刃の送り速度は、表2のNo.1、4および11に示す通りである。No.1および4では、溝加工刃の送り速度は段階的に変化しており、No.4では上記送り速度は順次増加しており、No.1では増加したり減少したりしている。No.1では、所望の溝深さに達した位置で、上記溝加工刃の送り速度を0にする時間を設けている。これに対して、No.11は溝加工刃の送り速度がすべて同じである従来の研磨パッドの製造方法を示している。実施例1および2の研磨パッドは、No.1および4に示すように、溝加工刃の送り速度を段階的に変化させることによって、溝の断面形状が綺麗な矩形となり、加工面の表面バリが少ない溝が得られるのに対して、比較例1の研磨パッドのNo.11に示すような一定の送り速度の場合には、溝の断面形状が綺麗な矩形とならず、加工面の表面バリの多い溝となってしまう。   As described above, the feed speeds of the grooving blades of the polishing pads of Examples 1, 2 and Comparative Example 1 are No. 2 in Table 2. As shown in 1, 4 and 11. No. In Nos. 1 and 4, the feed speed of the grooving blade changes in stages. In No. 4, the feed rate is increasing gradually. In 1, it is increasing or decreasing. No. In No. 1, a time for setting the feed speed of the grooving blade to 0 at a position where the desired groove depth is reached is provided. In contrast, no. Reference numeral 11 denotes a conventional polishing pad manufacturing method in which the feed speeds of the grooving blades are all the same. The polishing pads of Examples 1 and 2 were No. As shown in 1 and 4, by changing the feed speed of the grooving blade stepwise, the cross-sectional shape of the groove becomes a beautiful rectangle, and a groove with less surface burrs on the machined surface can be obtained. No. 1 of the polishing pad of Example 1 In the case of a constant feed speed as shown in FIG. 11, the cross-sectional shape of the groove does not become a beautiful rectangle, and the processed surface has a lot of surface burrs.

本発明の研磨パッドの研磨層に設けられた溝の1つの実施態様の概略断面図である。It is a schematic sectional drawing of one embodiment of the groove | channel provided in the polishing layer of the polishing pad of this invention. 従来の研磨パッドの研磨層に設けられた溝の概略断面図である。It is a schematic sectional drawing of the groove | channel provided in the polishing layer of the conventional polishing pad. 本発明の研磨パッドの製造方法に用いられる溝加工刃の刃先の拡大模式図である(図3−a正面図、図3−b側面図)。It is an expansion schematic diagram of the blade edge | tip of the groove processing blade used for the manufacturing method of the polishing pad of this invention (FIG. 3-a front view, FIG. 3-b side view). 従来の研磨パッドの製造方法に用いられる溝加工刃の刃先の拡大模式図である(図4−a正面図、図4−b側面図)。It is an expansion schematic diagram of the blade edge | tip of the groove processing blade used for the manufacturing method of the conventional polishing pad (FIG. 4-a front view, FIG. 4-b side view). 溝加工刃摩耗の試験方法を説明するための使用前後の刃先角部の拡大概略図である。It is the expansion schematic of the blade edge | corner part before and behind use for demonstrating the test method of grooving blade abrasion.

符号の説明Explanation of symbols

1、2…溝、
11、21…溝加工面の側面、
12、22…溝加工面の底面、
23…膨れ。
1, 2, ... groove
11, 21 ... side surface of groove processing surface,
12, 22 ... bottom surface of groove processing surface,
23 ... Swelling.

Claims (6)

研磨面内に溝を有する発泡ポリウレタンから形成される研磨パッドであって、該溝の側面および底面から成る溝の加工面が表面粗さ(Ra)10以下を有することを特徴とする研磨パッド。   A polishing pad formed of foamed polyurethane having a groove in a polishing surface, wherein a processed surface of the groove composed of a side surface and a bottom surface of the groove has a surface roughness (Ra) of 10 or less. 前記溝の加工面が表面粗さ(Ra)1〜9を有する請求項1記載の研磨パッド。   The polishing pad according to claim 1, wherein a processed surface of the groove has a surface roughness (Ra) of 1 to 9. 溝加工刃の送り速度と送り量とを段階的に変化させて機械切削して、研磨面に断面形状が矩形である同心円状の溝を形成する工程を含む研磨パッドの製造方法。   A method for manufacturing a polishing pad, comprising: forming a concentric groove having a rectangular cross-sectional shape on a polishing surface by mechanically changing a feed speed and a feed amount of a grooving blade stepwise. 前記溝を形成する工程において、溝加工刃が所望の溝深さまで達した位置で送りを停止する時間を設ける請求項3記載の製造方法。   The manufacturing method according to claim 3, wherein, in the step of forming the groove, a time for stopping feeding is provided at a position where the groove processing blade reaches a desired groove depth. 前記溝加工刃の送り速度と送り量とが、段階的に変化し、かつ順次増加する請求項3記載の製造方法。   The manufacturing method according to claim 3, wherein a feed speed and a feed amount of the grooving blade change stepwise and sequentially increase. 前記研磨パッドが発泡ポリウレタンから形成される請求項3記載の製造方法。
The manufacturing method according to claim 3, wherein the polishing pad is formed from foamed polyurethane.
JP2005145599A 2004-12-28 2005-05-18 Polishing pad and manufacturing method thereof Active JP3769581B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005145599A JP3769581B1 (en) 2005-05-18 2005-05-18 Polishing pad and manufacturing method thereof
CN200680017013.3A CN101175603B (en) 2005-05-18 2006-02-24 Process for producing semiconductor device polishing pad
US11/912,092 US20090075568A1 (en) 2005-05-18 2006-02-24 Polishing pad, method of producing the same and method of producing semiconductor device by using the same
PCT/JP2006/303454 WO2006123463A1 (en) 2005-05-18 2006-02-24 Polishing pad, process for producing the same, and process for producing semiconductor device using said polishing pad
KR1020077026752A KR101214687B1 (en) 2005-05-18 2006-02-24 Polishing pad, process for producing the same, and process for producing semiconductor device using said polishing pad
TW095106611A TWI371340B (en) 2004-12-28 2006-02-27 Polishing pad, method of producing the same and method of producing semiconductor device by using the same
MYPI20060858A MY141334A (en) 2005-05-18 2006-02-28 Polishing pad and method of producing the same
US13/615,065 US8517798B2 (en) 2005-05-18 2012-09-13 Polishing pad, method of producing the same and method of producing semiconductor device by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005145599A JP3769581B1 (en) 2005-05-18 2005-05-18 Polishing pad and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP3769581B1 true JP3769581B1 (en) 2006-04-26
JP2006320998A JP2006320998A (en) 2006-11-30

Family

ID=36383723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145599A Active JP3769581B1 (en) 2004-12-28 2005-05-18 Polishing pad and manufacturing method thereof

Country Status (7)

Country Link
US (2) US20090075568A1 (en)
JP (1) JP3769581B1 (en)
KR (1) KR101214687B1 (en)
CN (1) CN101175603B (en)
MY (1) MY141334A (en)
TW (1) TWI371340B (en)
WO (1) WO2006123463A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825618A (en) * 2017-02-21 2017-06-13 浙江辛子精工机械股份有限公司 A kind of processing method of annular groove

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI455795B (en) * 2007-10-18 2014-10-11 Iv Technologies Co Ltd Polishing pad and polishing method
CN101422882B (en) * 2007-10-31 2015-05-20 智胜科技股份有限公司 Grinding mat and method
US8083570B2 (en) * 2008-10-17 2011-12-27 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad having sealed window
JP5242427B2 (en) * 2009-01-20 2013-07-24 東洋ゴム工業株式会社 Polishing pad and manufacturing method thereof
TWI517230B (en) * 2009-01-27 2016-01-11 音諾帕德股份有限公司 Chemical mechanical planarization pad, and method of forming and using same
TWI510328B (en) * 2010-05-03 2015-12-01 Iv Technologies Co Ltd Base layer, polishing pad including the same and polishing method
JP5062455B2 (en) 2010-07-12 2012-10-31 Jsr株式会社 Chemical mechanical polishing pad and chemical mechanical polishing method
KR20130124331A (en) * 2010-12-07 2013-11-13 제이에스알 가부시끼가이샤 Chemical mechanical polishing pad and chemical mechanical polishing method using same
JP5766943B2 (en) * 2010-12-10 2015-08-19 学校法人立命館 Polishing pad
WO2013011922A1 (en) * 2011-07-15 2013-01-24 東レ株式会社 Polishing pad
JP5893413B2 (en) * 2012-01-17 2016-03-23 東洋ゴム工業株式会社 Manufacturing method of laminated polishing pad
US10722997B2 (en) 2012-04-02 2020-07-28 Thomas West, Inc. Multilayer polishing pads made by the methods for centrifugal casting of polymer polish pads
US10022842B2 (en) 2012-04-02 2018-07-17 Thomas West, Inc. Method and systems to control optical transmissivity of a polish pad material
KR102100654B1 (en) * 2012-04-02 2020-04-14 토마스 웨스트 인코포레이티드 Methods and systems for centrifugal casting of polymer polish pads and polishing pads made by the methods
JP5789634B2 (en) * 2012-05-14 2015-10-07 株式会社荏原製作所 Polishing pad for polishing a workpiece, chemical mechanical polishing apparatus, and method for polishing a workpiece using the chemical mechanical polishing apparatus
CN102744676A (en) * 2012-07-26 2012-10-24 上海宏力半导体制造有限公司 chemical mechanical polishing (CMP) pad and chemical mechanical polishing device
US9034063B2 (en) 2012-09-27 2015-05-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of manufacturing grooved chemical mechanical polishing layers
JP5629749B2 (en) * 2012-12-28 2014-11-26 東洋ゴム工業株式会社 Polishing pad manufacturing method
US20140370788A1 (en) * 2013-06-13 2014-12-18 Cabot Microelectronics Corporation Low surface roughness polishing pad
KR101763872B1 (en) * 2013-10-04 2017-08-01 주식회사 엘지화학 Poly-urethane mounting pad
CN103525314B (en) * 2013-10-30 2014-12-10 湖北三翔超硬材料有限公司 High-efficiency diamond lubricating cooling polishing solution and preparation method and application thereof
US9421666B2 (en) * 2013-11-04 2016-08-23 Applied Materials, Inc. Printed chemical mechanical polishing pad having abrasives therein
CN106132630B (en) * 2014-04-03 2019-11-26 3M创新有限公司 The method of polishing pad and system and manufacture and use such polishing pad and system
US20160081196A1 (en) * 2014-09-16 2016-03-17 HGST Netherlands B.V. Heat-sinking components mounted on printed boards
US10086500B2 (en) * 2014-12-18 2018-10-02 Applied Materials, Inc. Method of manufacturing a UV curable CMP polishing pad
CN105171593B (en) * 2015-08-11 2017-12-26 湖北鼎龙控股股份有限公司 Weatherability chemical mechanical polishing pads
KR102021270B1 (en) * 2016-11-17 2019-09-11 미쓰이 가가쿠 가부시키가이샤 Thermoplastic polyurethane resin for foaming and manufacturing method thereof, and molded article
JPWO2018181347A1 (en) * 2017-03-31 2020-03-05 古河電気工業株式会社 Polishing pad
KR101835090B1 (en) * 2017-05-29 2018-03-06 에스케이씨 주식회사 Porous polyurethane polishing pad and method preparing semiconductor device by using the same
US10857648B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings Trapezoidal CMP groove pattern
US10861702B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings Controlled residence CMP polishing method
US10777418B2 (en) * 2017-06-14 2020-09-15 Rohm And Haas Electronic Materials Cmp Holdings, I Biased pulse CMP groove pattern
US10586708B2 (en) 2017-06-14 2020-03-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Uniform CMP polishing method
US10857647B2 (en) 2017-06-14 2020-12-08 Rohm And Haas Electronic Materials Cmp Holdings High-rate CMP polishing method
KR102026250B1 (en) * 2018-02-05 2019-09-27 에스케이실트론 주식회사 Wafer polishing pad and Manufacturing Method of it
KR102079944B1 (en) * 2018-09-04 2020-02-21 정상희 Protection sheet and method for producing the same
CN109291471B (en) * 2018-09-18 2021-05-07 株洲时代新材料科技股份有限公司 Cutting and polishing processing method for thick workpiece glass fiber reinforced plastic laminated plate
CN111318957A (en) * 2018-12-14 2020-06-23 夏泰鑫半导体(青岛)有限公司 Polyurethane polishing pad, method for producing same, and chemical mechanical polishing apparatus
US11717932B2 (en) 2018-12-14 2023-08-08 Xia Tai Xin Semiconductor (Qing Dao) Ltd. Polyurethane polishing pad and composition for manufacturing the same
CN109824854B (en) * 2018-12-27 2021-09-28 湖北鼎汇微电子材料有限公司 Polishing pad
CN113874167A (en) * 2019-05-31 2021-12-31 应用材料公司 Polishing platen and method of manufacturing polishing platen
JP7264775B2 (en) * 2019-09-03 2023-04-25 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Optical connector polishing pad
JP7105334B2 (en) * 2020-03-17 2022-07-22 エスケーシー ソルミックス カンパニー,リミテッド Polishing pad and method for manufacturing semiconductor device using the same
US11759909B2 (en) 2020-06-19 2023-09-19 Sk Enpulse Co., Ltd. Polishing pad, preparation method thereof and method for preparing semiconductor device using same
KR102489678B1 (en) * 2020-12-07 2023-01-17 에스케이엔펄스 주식회사 Sheet for polishing pad, poishing pad and manufacturing method for semiconductor device
CN113334243B (en) * 2021-06-03 2023-03-31 万华化学集团电子材料有限公司 Chemical mechanical polishing pad, preparation method and application thereof
CN114515994A (en) * 2022-03-03 2022-05-20 上海江丰平芯电子科技有限公司 Method for improving grinding rate of edge area of wafer
KR102434418B1 (en) * 2022-03-10 2022-08-22 (주)뉴이스트 Manufacturing Method for Carrier Used in Polishing Wafer for Seimi-Conductor
CN116000799B (en) * 2022-12-20 2023-09-22 南通北风橡塑制品有限公司 Antistatic polyurethane polishing pad and preparation method thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179575A (en) * 1984-09-25 1986-04-23 Achilles Corp Abrasive ground fabric and manufacturing method thereof
US5842910A (en) * 1997-03-10 1998-12-01 International Business Machines Corporation Off-center grooved polish pad for CMP
US5921855A (en) 1997-05-15 1999-07-13 Applied Materials, Inc. Polishing pad having a grooved pattern for use in a chemical mechanical polishing system
GB2345255B (en) * 1998-12-29 2000-12-27 United Microelectronics Corp Chemical-Mechanical Polishing Pad
JP2001181649A (en) 1999-12-27 2001-07-03 Nippon Steel Corp Method for producing coke
JP2001232555A (en) * 2000-02-23 2001-08-28 Matsushita Electric Ind Co Ltd Flattening method
JP3877128B2 (en) 2000-06-26 2007-02-07 東邦エンジニアリング株式会社 Fine groove processing machine for pads for semiconductor CMP processing
JP2002224950A (en) 2001-01-29 2002-08-13 Kogi Corp Surface plate for grinding
JP3497492B2 (en) 2001-11-02 2004-02-16 東邦エンジニアリング株式会社 Hard foam resin grooved pad for semiconductor device processing and pad turning groove processing tool
KR100877385B1 (en) * 2001-11-13 2009-01-07 도요 고무 고교 가부시키가이샤 Grinding pad and method of producing the same
JP3955066B2 (en) * 2002-04-03 2007-08-08 東邦エンジニアリング株式会社 Polishing pad, method for manufacturing the polishing pad, and method for manufacturing a semiconductor substrate using the polishing pad
US20050276967A1 (en) * 2002-05-23 2005-12-15 Cabot Microelectronics Corporation Surface textured microporous polishing pads
JP3849594B2 (en) * 2002-06-28 2006-11-22 Jsr株式会社 Polishing pad
KR100669301B1 (en) * 2002-06-03 2007-01-16 제이에스알 가부시끼가이샤 Polishing Pad and Multi-Layer Polishing Pad
JP3849582B2 (en) 2002-06-03 2006-11-22 Jsr株式会社 Polishing pad and multilayer polishing pad
TWI228768B (en) * 2002-08-08 2005-03-01 Jsr Corp Processing method of polishing pad for semiconductor wafer and polishing pad for semiconductor wafer
JP4233319B2 (en) * 2002-12-12 2009-03-04 東洋ゴム工業株式会社 Polishing pad manufacturing method and polishing pad
JP3716257B2 (en) * 2003-02-17 2005-11-16 東邦エンジニアリング株式会社 Groove processing method for pad for semiconductor CMP processing and ion blow apparatus for implementing the same
US20040224622A1 (en) * 2003-04-15 2004-11-11 Jsr Corporation Polishing pad and production method thereof
JP2005074596A (en) * 2003-09-02 2005-03-24 Toyo Tire & Rubber Co Ltd Polishing sheet machining and grooving tool, grooved polishing sheet, and grooved polishing pad
US7234224B1 (en) * 2006-11-03 2007-06-26 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Curved grooving of polishing pads
JP2009117815A (en) * 2007-10-18 2009-05-28 Jsr Corp Method of manufacturing chemical mechanical polishing pad
JP2009220265A (en) * 2008-02-18 2009-10-01 Jsr Corp Chemical machinery polishing pad

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825618A (en) * 2017-02-21 2017-06-13 浙江辛子精工机械股份有限公司 A kind of processing method of annular groove

Also Published As

Publication number Publication date
JP2006320998A (en) 2006-11-30
WO2006123463A1 (en) 2006-11-23
US8517798B2 (en) 2013-08-27
KR20080005558A (en) 2008-01-14
CN101175603B (en) 2014-12-10
TWI371340B (en) 2012-09-01
KR101214687B1 (en) 2012-12-21
US20090075568A1 (en) 2009-03-19
TW200640612A (en) 2006-12-01
CN101175603A (en) 2008-05-07
US20130000459A1 (en) 2013-01-03
MY141334A (en) 2010-04-16

Similar Documents

Publication Publication Date Title
JP3769581B1 (en) Polishing pad and manufacturing method thereof
JP5031236B2 (en) Polishing pad
US8939818B2 (en) Polishing pad
JP2012106328A (en) Laminate polishing pad
JP4616571B2 (en) Polishing pad
JP2008105117A (en) Polishing pad
JP4806160B2 (en) Polishing pad, polishing method, semiconductor device manufacturing method, and semiconductor device
JP2005294412A (en) Polishing pad
JP4695386B2 (en) Polishing pad, polishing method, semiconductor device manufacturing method, and semiconductor device
JP5623927B2 (en) Polishing pad
JP2010240770A (en) Polishing pad and method of manufacturing the same
JP2004189820A (en) Polymer material for polishing sheet, polishing sheet and polishing pad
JP2005251851A (en) Polishing pad and polishing method
JP5048107B2 (en) Polishing pad
JP4621014B2 (en) Polishing pad and method for manufacturing semiconductor device
JP5356098B2 (en) Polishing pad and manufacturing method thereof
JP2006186239A (en) Method for manufacturing grinding pad and semiconductor device
JP2017113856A (en) Polishing pad and method for producing the same
JP4514199B2 (en) Polishing pad and semiconductor device manufacturing method
JP4625252B2 (en) Polishing pad for CMP and polishing method using the same
JP2006346805A (en) Laminated polishing pad
JP4004486B2 (en) Manufacturing method of polishing pad for semiconductor CMP
JP2005347404A (en) Polishing pad for semiconductor cmp
JP5107683B2 (en) Polishing pad and method of manufacturing polishing pad
JP2010131737A (en) Polishing pad and method for manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060206

R150 Certificate of patent or registration of utility model

Ref document number: 3769581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02