TWI759075B - 鐵電隨機存取記憶體元件及形成方法 - Google Patents

鐵電隨機存取記憶體元件及形成方法 Download PDF

Info

Publication number
TWI759075B
TWI759075B TW110101529A TW110101529A TWI759075B TW I759075 B TWI759075 B TW I759075B TW 110101529 A TW110101529 A TW 110101529A TW 110101529 A TW110101529 A TW 110101529A TW I759075 B TWI759075 B TW I759075B
Authority
TW
Taiwan
Prior art keywords
layer stack
layer
dielectric
forming
ferroelectric
Prior art date
Application number
TW110101529A
Other languages
English (en)
Other versions
TW202201763A (zh
Inventor
林孟漢
楊柏峰
漢中 賈
王聖禎
楊豐誠
世海 楊
林佑明
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202201763A publication Critical patent/TW202201763A/zh
Application granted granted Critical
Publication of TWI759075B publication Critical patent/TWI759075B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/20Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the three-dimensional arrangements, e.g. with cells on different height levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6684Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a ferroelectric gate insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/78391Field effect transistors with field effect produced by an insulated gate the gate comprising a layer which is used for its ferroelectric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/10Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B51/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors
    • H10B51/50Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory transistors characterised by the boundary region between the core and peripheral circuit regions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/22Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements
    • G11C11/223Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using ferroelectric elements using MOS with ferroelectric gate insulating film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本發明實施例提供一種形成鐵電隨機存取記憶體 (FeRAM)元件的方法,方法包含:在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊具有相同層狀結構,層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍;形成延伸穿過第一層堆疊及第二層堆疊的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在溝渠中於鐵電材料上方共形地形成通道材料;用第二介電材料填充溝渠;在第二介電材料中形成第一開口及第二開口;以及用第二導電材料填充第一開口及第二開口。

Description

鐵電隨機存取記憶體元件及形成方法
本發明實施例大體上是關於半導體記憶體元件,且在特定實施例中,是關於三維(three-dimensional;3D)鐵電隨機存取(ferroelectric random access;FeRAM)記憶體元件。
半導體記憶體用於電子應用的積體電路中,所述電子應用作為實例包含收音機、電視、手機以及個人計算元件。半導體記憶體包含兩個主類別。一個類別為揮發性記憶體,另一類別為非揮發性記憶體。揮發性記憶體包含隨機存取記憶體(random access memory;RAM),其可進一步劃分成兩個子類別:靜態隨機存取記憶體(static random access memory;SRAM)及動態隨機存取記憶體(dynamic random access memory;DRAM)。SRAM及DRAM均為揮發性的,此是由於SRAM及DRAM在其未供電時將丟失儲存的資訊。
另一方面,非揮發性記憶體可在未供應電力的情況下保持儲存於其上的資料。非揮發性半導體記憶體的一種類型為鐵電隨機存取記憶體(ferroelectric random access memory;FeRAM或FRAM)。FeRAM的優勢包含其快速寫入/讀取速度及較小大小。
根據本發明的一些實施例,一種形成鐵電隨機存取記憶體(FeRAM)元件的方法包含:在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊中的每一者具有第一介電層及形成於第一介電層上方的導電層;在第二層堆疊上方形成第二介電層;圖案化第一層堆疊、第二層堆疊以及第二介電層,其中圖案化形成階梯形區,其中在階梯形區中,第二層堆疊延伸超出第二介電層的側向範圍,且第一層堆疊延伸超出第二層堆疊的側向範圍,其中在圖案化之後,第一層堆疊及第二層堆疊的導電層分別形成第一字元線及第二字元線;在圖案化之後,形成延伸穿過第一層堆疊、第二層堆疊以及第二介電層的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在鐵電材料上方形成通道材料;藉由在通道材料上方形成介電材料來填充溝渠;以及在介電材料中形成源極線及位元線,其中源極線及位元線延伸穿過第二介電層、第二層堆疊以及第一層堆疊。
根據本發明的一些實施例,一種形成鐵電隨機存取記憶體(FeRAM)元件的方法包含:在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊具有相同層狀結構,層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍;形成延伸穿過第一層堆疊及第二層堆疊的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在溝渠中於鐵電材料上方共形地形成通道材料;用第二介電材料填充溝渠;在第二介電材料中形成第一開口及第二開口;以 及用第二導電材料填充第一開口及第二開口。
根據本發明的一些實施例,一種鐵電隨機存取記憶體(FeRAM)元件包含:第一層堆疊;第二層堆疊,處於第一層堆疊上方,其中第一層堆疊及第二層堆疊具有相同層狀結構,所述層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍;第二介電材料,嵌入於第一層堆疊及第二層堆疊中,所述第二介電材料延伸穿過第一層堆疊及第二層堆疊;鐵電材料,處於第二介電材料與第一層堆疊之間以及處於第二介電材料與第二層堆疊之間;通道材料,處於鐵電材料與第二介電材料之間;以及導電線,嵌入於第二介電材料中,其中導電線延伸穿過第一層堆疊及第二層堆疊。
50,101:基底
100:半導體元件
103:半導體鰭片
105:隔離區
107:源極/汲極區
109:閘極電極
110:第一區
111:閘極間隙壁
113:接點
114,124:通孔
115,125:導電線
117,119,121,201,201T:介電層
120:第二區
123,123A,123B,200,200A,200B:記憶體元件
124:通孔
130:記憶體區
140:內連線結構
202,202A,202B,202C,202D:層堆疊
203:導電層
205,208,209,212:介電材料
206,232,234:溝渠
207:通道材料
212:隔離區
213:鐵電材料
213S:側壁
215,215A,215B,216:導電線
221:雙箭頭虛線
223,223A,223B,223C:記憶胞
225,227:接點
231:階梯形區
233:記憶陣列區
300:電路圖
1000:方法
1010,1020,1030,1040,1050,1060,1070:區塊
A-A,B-B,C-C,D-D,E-E,F-F:橫截面
BL0,BL1,BL2,BL3,BL4,BL5:位元線
SL0,SL1,SL2,SL3,SL4,SL5:源極線
VH:高臨限電壓
VL:低臨限電壓
VT:臨限電壓
WL0,WL1,WL2,WL3,WL4,WL5:字元線
W:寬度
為了更全面地理解本發明及其優勢,現結合隨附圖式參考以下描述,在隨附圖式中:
圖1示出一實施例中的具有整合式記憶體元件的半導體元件的橫截面圖。
圖2A、圖2B、圖3A、圖3B、圖4至圖7、圖8A、圖8B、圖8C、圖8D、圖8E、圖9、圖10A以及圖10B示出一實施例中的處於各個製造階段的三維(3D)鐵電隨機存取記憶體(FeRAM)元件的各種視圖。
圖11及圖12示出另一實施例中的處於各個製造階段的三維(3D)鐵電隨機存取記憶體(FeRAM)元件的透視圖。
圖13至圖19示出又一實施例中的處於各個製造階段的三維 (3D)鐵電隨機存取記憶體(FeRAM)元件的透視圖。
圖20示出一實施例中的三維(3D)鐵電隨機存取記憶體(FeRAM)元件的等效電路圖。
圖21示出一些實施例中的形成三維(3D)鐵電隨機存取記憶體(FeRAM)元件的方法的流程圖。
以下揭露內容提供用於實施本發明的不同特徵的許多不同實施例或實例。下文描述構件及配置的具體實例用以簡化本揭露內容。當然,此等構件及配置僅為實例且並不意欲為限制性的。舉例而言,在下文描述中,第一特徵在第二特徵上方或第二特徵上的形成可包含第一特徵與第二特徵直接接觸地形成的實施例,且亦可包含額外特徵可在第一特徵與第二特徵之間形成以使得第一特徵與第二特徵可不直接接觸的實施例。
另外,為易於描述,本文中可使用諸如「在...之下」、「在...下方」、「下部」、「在...上方」、「上部」以及類似術語的空間相對術語來描述如圖式中所示出的一個元件或特徵相對於另一元件或特徵的關係。除圖式中所描繪的定向之外,空間相對術語意欲涵蓋元件在使用或操作中的不同定向。設備可以其他方式定向(旋轉90度或處於其他定向)且本文中所使用的空間相對描述詞可同樣相應地進行解譯。貫穿本文中的論述,除非另外指定,否則不同圖式中的相同或類似附圖標號是指使用相同或類似材料藉由相同或類似製程形成的相同或類似元件。
在一些實施例中,一種形成鐵電隨機存取記憶體 (FeRAM)元件包含在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊具有相同層狀結構,層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍。方法更包含:形成延伸穿過第一層堆疊及第二層堆疊的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在溝渠中於鐵電材料上方共形地形成通道材料;用第二介電材料填充溝渠;在第二介電材料中形成第一開口及第二開口;以及用第二導電材料填充第一開口及第二開口。
圖1示出一實施例中的具有整合式記憶體元件123(例如123A及123B)的半導體元件100的橫截面圖。在所示出實施例中,半導體元件100為鰭式場效電晶體(fin-field effect transistor;FinFET)元件,其中三維(3D)鐵電隨機存取記憶體(FeRAM)元件123整合於半導體製造的後段製程(back-end-of-line;BEOL)過程中。為了避免雜亂,記憶體元件123的細節未在圖1中繪示,而在下文後續圖式中示出。
如圖1中所示出,半導體元件100包含用於形成不同類型的電路的不同區。舉例而言,半導體元件100可包含第一區110以用於形成邏輯電路,且可包含第二區120以用於形成例如周邊電路、輸入/輸出(input/output;I/O)電路、靜電放電(electrostatic discharge;ESD)電路及/或類比電路。用於形成其他類型的電路的其他區為可能的,且充分地意欲包含於本揭露內容的範疇內。
半導體元件100包含基底101。基底101可為塊狀基底,諸如摻雜或未摻雜的矽基底或絕緣層上半導體(semiconductor-on-insulator;SOI)基底的主動層。基底101可包 含其他半導體材料,諸如鍺;化合物半導體,包含碳化矽、砷化鎵、磷化鎵、氮化鎵、磷化銦、砷化銦及/或銻化銦;合金半導體,包含SiGe、GaAsP、AlInAs、AlGaAs、GaInAs、GaInP及/或GaInAsP;或其組合。亦可使用其他基底,諸如多層基底或梯度基底。
電構件(諸如電晶體、電阻器、電容器、電感器、二極體或類似者)在半導體製造的前段製程(front-end-of-line;FEOL)過程中形成於基底101中或基底101上。在圖1的實例中,半導體鰭片103(亦稱作鰭片)形成為在基底101上方凸起。隔離區105(諸如淺溝渠隔離(shallow-trench isolation;STI)區)形成於半導體鰭片103之間或半導體鰭片103周圍。閘極電極109形成於半導體鰭片103上方。閘極間隙壁111沿閘極電極109的側壁形成。源極/汲極區107(諸如磊晶源極/汲極區)形成於閘極電極109的相對側上。接點113(諸如,閘極接點及源極/汲極接點)形成於各別底層導電特徵(例如,閘極電極109或源極/汲極區107)上方,且電耦接至各別底層導電特徵。一或多個介電層117(諸如層間介電(inter-layer dielectric)層)形成於基底101上方,且在半導體鰭片103及閘極電極109周圍。其他導電特徵(諸如,包括導電線115及通孔114的內連線結構)亦可形成於一或多個介電層117中。圖1中的FinFET可由本領域中已知或使用的任何合適的方法形成,但此處未重複細節。為了在本文中易於論述,基底101、形成於基底101中/上的電構件(例如finFET)、接點113、導電特徵(諸如,包括導電線115及通孔114的內連線結構)及一或多個介電層117共同稱為基底50。
仍參考圖1,可作為蝕刻終止層(etch stop layer;ESL)的介電層119形成於一或多個介電層117上方。在一實施例中,使用電漿增強型物理氣相沉積(plasma-enhanced physical vapor deposition;PECVD)利用氮化矽形成介電層119,但可替代地使用其他介電材料(諸如,氮化物、碳化物、其組合或類似材料)及形成介電層119的替代技術(諸如,低壓化學氣相沉積(low-pressure chemical vapor deposition;LPCVD)、PVD或類似技術)。在一些實施例中,省略介電層119。接著,介電層121形成於介電層119上方。介電層121可為由合適的方法(諸如,PVD、CVD或類似方法)形成的任何合適的介電材料,諸如氧化矽、氮化矽或類似材料。一或多個記憶體元件123A(每一者包含多個記憶胞)形成於介電層121中,且耦接至介電層121中的導電特徵(例如,通孔124及導電線125)。圖1中的記憶體元件123A或記憶體元件123B的各種實施例(例如,三維(3D)鐵電隨機存取記憶體(FeRAM)元件200、三維(3D)鐵電隨機存取記憶體(FeRAM)元件200A以及三維(3D)鐵電隨機存取記憶體(FeRAM)元件200B)在下文詳細論述。
圖1進一步示出形成於記憶體元件123A上方的記憶體元件123B,即第二層。記憶體元件123A及記憶體元件123B可具有相同或類似結構,且可統稱為記憶體元件123。圖1的實例示出兩層的記憶體元件123的作為非限制性實例。可具有其他數目的層(諸如,一個層、三個層或大於三個層)的記憶體元件123亦為可能的,且充分地意欲包含於本揭露內容的範疇內。一或多個層的記憶體元件123形成於半導體元件100的記憶體區130中,且可 在半導體製造的後段製程(BEOL)過程中形成。記憶體元件123可在BEOL過程中形成於半導體元件100內的任何合適的位置處,諸如第一區110上方(例如,正上方)、第二區120上方或多個區上方。
在圖1的實例中,記憶體元件123佔據半導體元件100的記憶體區130的區域中的一些而非所有,此是因為其他特徵(諸如,導電線125及通孔124)可形成於記憶體區130的其他區域中,以用於連接至記憶體區130上方及下方的導電特徵。在一些實施例中,為了形成記憶體元件123A或記憶體元件123B,諸如圖案化的光阻層的罩幕層形成為覆蓋記憶體區130的一些區域,同時記憶體元件123A或記憶體元件123B形成於記憶體區130的由罩幕層暴露的其他區域中。在記憶體元件123形成之後,接著移除罩幕層。
仍參考圖1,在記憶體區130形成之後,包含介電層121及介電層121中的導電特徵(例如,通孔124及導電線125)的內連線結構140形成於記憶體區130上方。內連線結構140可電連接形成於基底101中/上的電構件,以形成功能電路。內連線結構140亦可使記憶體元件123電耦接至形成於基底101中/上的構件,且/或使記憶體元件123耦接至形成於內連線結構140上方的導電接墊,以用於與外部電路或外部元件連接。內連線結構的形成為本領域中已知的,因此此處未重複細節。
在一些實施例中,記憶體元件123例如藉由通孔124及導電線125電耦接至形成於基底50上的電構件(例如電晶體),且在一些實施例中,記憶體元件123藉由半導體元件100的功能 電路控制或存取(例如,寫入功能電路或自功能電路讀取)。此外或可替代地,在一些實施例中,記憶體元件123電耦接至形成於內連線結構140的頂部金屬層上方的導電接墊,在此情況下,記憶體元件123可藉由外部電路(例如,另一半導體元件)直接控制或存取,而無需涉及半導體元件100的功能電路。儘管額外金屬層(例如,內連線結構140)在圖1的實例中形成於記憶體元件123上方,但記憶體元件123可形成於半導體元件100的頂部(例如,最頂部)金屬層中,此等及其他變化充分地意欲包含於本揭露內容的範疇內。
圖2A、圖2B、圖3A、圖3B、圖4至圖7、圖8A、圖8B、圖8C、圖8D、圖8E、圖9、圖10A及圖10B示出一實施例中的處於各個製造階段的三維(3D)鐵電隨機存取記憶體(FeRAM)元件200的各種視圖(例如,透視圖、橫截面圖及/或俯視圖)。為了易於論述,3D FeRAM元件在本文中的論述中亦可稱作3D記憶體元件,或簡單地稱作記憶體元件。3D記憶體元件200為具有鐵電材料的三維記憶體元件。3D記憶體元件200在圖1中可用作記憶體元件123A及/或記憶體元件123B。注意,為簡單起見,3D記憶體元件200的特徵並非全部在圖式中示出。
現參考圖2A,其繪示處於製造的早期階段的記憶體元件200的透視圖。圖2B示出圖2A的沿橫截面A-A的記憶體元件200的橫截面圖。如圖2A及圖2B中所示出,層堆疊202A、層堆疊202B、層堆疊202C以及層堆疊202D連續地形成於基底50上方。層堆疊202A、層堆疊202B、層堆疊202C以及層堆疊202D在本文中可統稱為層堆疊202。在所示出實施例中,層堆疊202A、層 堆疊202B、層堆疊202C以及層堆疊202D具有相同層狀結構。舉例而言,層堆疊202中的每一者包含介電層201及介電層201上方的導電層203。注意,在圖2A及圖2B中示出基底50以繪示出記憶體元件200形成於基底50上方,且基底50可不考慮為記憶體元件200的部分。為簡單起見,基底50可能未在後續圖式中示出。
在一些實施例中,為了形成層堆疊202A,藉由使用合適的沉積方法(諸如,PVD、CVD、原子層沉積(atomic layer deposition;ALD)或類似方法)沉積合適的介電材料(諸如,氧化矽、氮化矽或類似材料)來首先形成介電層201。接著,導電層203形成於介電層201上方。在一些實施例中,導電層203由導電材料(諸如,金屬或含有金屬的材料)形成。導電層203的實例材料包含Al、Ti、TiN、TaN、Co、Ag、Au、Cu、Ni、Cr、Hf、Ru、W、Pt或類似物。導電層203可由例如PVD、CVD、ALD、其組合或類似者形成。
如圖1中所示出,在層堆疊202A形成之後,可重複形成層堆疊202A的製程以在層堆疊202A上方連續地形成層堆疊202B、層堆疊202C以及層堆疊202D。在層堆疊202A、層堆疊202B、層堆疊202C以及層堆疊202D形成之後,介電層201T形成於在所示出實施例中為層堆疊202D的最頂部層堆疊上方。在實例實施例中,介電層201T由與層堆疊202的介電層201相同的介電材料形成,因此介電層201T在後續論述中亦可稱作介電層201。
接著,如圖3A及圖3B中所示出,執行多個蝕刻製程以圖案化層堆疊202及介電層201T,使得階梯形區231形成。此外, 圖案化的介電層201T在多個蝕刻製程之後界定記憶陣列區233。舉例而言,記憶陣列區233由圖案化的介電層201T的側壁界定。在後續過程中,記憶胞的陣列將形成於記憶陣列區233中。圖3A示出記憶體元件200的透視圖,且圖3B示出圖3A中的沿橫截面B-B的記憶體元件200的橫截面圖。
如圖3A及圖3B中所示出,在階梯形區231中,層堆疊202D例如沿橫截面B-B的方向延伸超出介電層201T的側向範圍。此外,對於任何兩個垂直鄰近的層堆疊(例如,層堆疊202A及層堆疊202B),更接近於基底50的下部層堆疊(例如層堆疊202A)例如沿橫截面B-B的方向延伸超出離基底50更遠的較高層堆疊(例如層堆疊202B)的側向範圍。換言之,沿下部層堆疊的相對側壁之間的橫截面B-B的方向量測的下部層堆疊(例如層堆疊202A)的寬度大於沿較高層堆疊的相對側壁之間的橫截面B-B的方向量測的較高層堆疊(例如層堆疊202B)的寬度。此外,層堆疊202D的寬度大於沿橫截面B-B的方向量測的介電層201T的寬度。在所示出實施例中,層堆疊202及介電層201T具有沿垂直於橫截面B-B的方向量測的相同寬度W。
注意,在本文中的論述中,層堆疊202A、層堆疊202B、層堆疊202C或層堆疊202D的側壁包含所述層堆疊的所有構成層(例如,介電層201及導電層203)的對應側壁。舉例而言,由溝渠206(參見圖5)暴露的層堆疊202A的側壁包含介電層201的對應側壁及導電層203的對應側壁。在所示出實施例中,對層堆疊202中的每一者執行以形成階梯形區231的蝕刻製程為非等向性的,且因此,同一層堆疊202(例如,層堆疊202A、層堆疊202B、 層堆疊202C或層堆疊202D)中的介電層201的側壁及導電層203的對應側壁沿同一垂直平面對準。
仍參考圖3A及圖3B,在階梯形區231中,移除每一層堆疊202的側向遠離記憶陣列區233的部分。層堆疊202愈高(例如,離基底50愈遠),層堆疊的移除部分的寬度(例如,沿橫截面B-B的方向量測)愈大。因此,對於每一層堆疊202,導電層203的側向遠離記憶陣列區233的部分由上覆層堆疊暴露。階梯形區231因此例如在形成接點227(參見圖10B)的後續過程期間提供對每一層堆疊202的導電層203的簡易存取。
在一些實施例中,為了形成階梯形區231,具有第一寬度(例如,沿橫截面B-B的方向)的圖案化的光阻形成於介電層201T上方,且執行第一非等向性蝕刻製程以圖案化介電層201T且暴露層堆疊202D。換言之,在層堆疊202D的導電層203的上表面暴露時停止第一非等向性蝕刻製程。接著,減小圖案化的光阻的寬度(例如,藉由光阻微調製程),且執行第二非等向性蝕刻製程以圖案化層堆疊202D且暴露層堆疊202C。換言之,在層堆疊202C的導電層203的上表面暴露時停止第二非等向性蝕刻製程。第二非等向性蝕刻製程亦移除介電層201T的暴露部分,且因此減小介電層201T的寬度。重複上文所描述的製程,其中對於每一額外非等向性蝕刻製程,減小圖案化的光阻的寬度,直至層堆疊202A的導電層203的上表面由圖案化的層堆疊202B暴露。接著可例如藉由灰化製程或剝離製程移除圖案化的光阻。在一些實施例中,使用包括CF4、C4F8、BCl3、Cl2、CCl4、SiCl4、CH2F2、類似物或其組合的氣體源來執行非等向性蝕刻製程(例如,乾式蝕刻製程, 諸如電漿蝕刻製程)。
在本揭露內容中,在記憶陣列區233中形成記憶胞之前,階梯形區231在製造製程中的早期形成。此製造製程稱作先階梯(staircase-first)製程,其不同於在記憶胞形成之後形成階梯形區的後階梯(staircase-last)製程。藉由早期形成階梯形區231,形成階梯形區231的非等向性蝕刻製程具有較少的待蝕刻材料(例如,介電層201及導電層203),且因此,更易於選擇可實現目標蝕刻選擇性及目標蝕刻輪廓(例如,蝕刻之後的側壁輪廓)的蝕刻劑(例如,蝕刻氣體)。由於先階梯製程,減少或避免了後階梯製程的問題,諸如多膜蝕刻挑戰(例如,歸因於更多的待蝕刻材料,諸如鐵電材料213、通道材料207以及額外介電材料209/介電材料212)及缺陷(例如,由蝕刻製程的非揮發性副產品誘發的諸如階梯圖案失效)。因此,所揭露的先階梯製程實現較佳的製程控制及蝕刻輪廓,同時減少缺陷且改良製造良率及元件效能。
接著,在圖4中,介電材料205形成於介電層201T上方及層堆疊202上方。可執行平坦化製程,諸如化學及機械平坦化(chemical and mechanical planarization;CMP),使得介電材料205的上表面與介電層201T的上表面齊平。在一些實施例中,藉由使用合適的沉積方法(諸如,PVD、CVD或類似方法)沉積合適的介電材料(諸如,氧化矽、氮化矽或類似材料)來形成介電材料205。
接著,在圖5中,形成溝渠206。溝渠206(亦可稱作開口、凹部或槽)形成為延伸穿過介電層201T、介電材料205以及層堆疊202(的剩餘部分)。在圖5的實例中,溝渠206的縱向軸 線沿著橫截面B-B(參見圖3A)的方向延伸。溝渠206在層堆疊202A的相對側壁之間連續地延伸,使得溝渠206切穿圖4的結構,且將圖4的結構分隔成彼此獨立(例如,間隔開)的多個切片。
接著,在圖6中,鐵電材料213沿溝渠206的側壁及底部(例如共形地)形成於溝渠206中,且通道材料207(例如共形地)形成於鐵電材料213上方。介電材料209接著形成於通道材料207上方以填充溝渠206。可執行諸如CMP的平坦化製程以自介電層201T的上表面以及自介電材料205的上表面移除鐵電材料213的多餘部分、通道材料207的多餘部分以及介電材料209的多餘部分。溝渠206中的剩餘鐵電材料213可稱作鐵電膜,且溝渠206中的剩餘通道材料207可稱作通道層。
在一些實施例中,鐵電材料213包括BaTiO3、PbTiO3、PbZrO3、LiNbO3、NaNbO3、KNbO3、KTaO3、BiScO3、BiFeO3、Hf1-xErxO、Hf1-xLaxO、Hf1-xYxO、Hf1-xGdxO、Hf1-xAlxO、Hf1-xZrxO、Hf1-xTixO、Hf1-xTaxO、AlScN、類似物、其組合或其多層,且可由合適的形成方法(諸如,PVD、CVD、ALD或類似方法)形成。在一些實施例中,通道材料207為半導體材料,諸如非晶形矽(amorphous-silicon;a-Si)、多晶矽(polysilicon;poly-Si)、半導體氧化物(例如,氧化銦鎵鋅(indium gallium zinc oxide;IGZO)、氧化銦鋅(indium zinc oxide;IZO)、氧化鋅(zinc oxide;ZnO)、氧化銦錫(indium tin oxide;ITO)或氧化銦鎢(indium tungsten oxide;IWO))或類似物。通道材料207可由例如PVD、CVD、ALD、其組合或類似者形成。在一些實施例中,藉由使用合適的沉積方法(諸如,PVD、CVD或類似方法)沉積合適的介電材料 (諸如,氧化矽、氮化矽或類似材料)來形成介電材料209。
接著,在圖7中,導電線216形成於記憶陣列區233中,且垂直地延伸穿過介電層201T及層堆疊202。導電線216為導電柱(亦可稱作金屬柱或金屬線),其垂直地(例如,垂直於基底50的上表面)延伸穿過記憶陣列區233且電耦接至層堆疊202A、層堆疊202B、層堆疊202C以及層堆疊202D的導電層203。為了形成導電線216,在記憶陣列區233中的介電材料209中形成開口(例如,藉由光微影及蝕刻技術),其中開口自介電層201T的上表面延伸至層堆疊202A的面向基底50的下表面。接著,形成導電材料,諸如Al、Ti、TiN、TaN、Co、Ag、Au、Cu、Ni、Cr、Hf、Ru、W、Pt或類似物,以填充開口,藉此形成導電線216。
接著,在圖8A中,隔離區212形成於導電線216中的每一者中,以將每一導電線216分隔成一對導電線215A及導電線215B。為了易於論述,導電線215A及導電線215B可統稱為導電線215。可藉由執行非等向性蝕刻製程形成隔離區212以在導電線216中的每一者中形成開口,接著使用合適的形成方法(諸如,CVD、PVD、ALD或類似方法)用介電材料(諸如,氧化矽、氮化矽或類似材料)填充開口。
圖8B示出圖8A的記憶體元件200的記憶陣列區233的一部分的俯視圖。圖8C、圖8D以及圖8E分別示出圖8B中的沿橫截面C-C、橫截面D-D以及橫截面E-E的記憶體元件200的一部分的橫截面圖。如圖8B的俯視圖中所示出,每一隔離區212自鐵電材料213的第一側壁連續地延伸至鐵電材料213的面向鐵電材料的第一側壁的第二側壁。換言之,沿圖8B的水平方向量測的 隔離區212的寬度與溝渠中的鐵電材料213的面向彼此的內部側壁之間的距離相同。此外,導電線215中的每一者自通道材料207的第一側壁連續地延伸至通道材料207的面向通道材料的第一側壁的第二側壁。換言之,沿圖8B的水平方向量測的導電線215的寬度與溝渠中的通道材料207的面向彼此的內部側壁之間的距離相同。
在圖8B中,藉由虛線框強調形成於記憶陣列區中的幾個(而非所有)記憶胞223(例如,記憶胞223A、記憶胞223B、記憶胞223C)。記憶胞223在圖8C及圖8D中亦藉由虛線框強調。如圖8A至圖8E中所示出,每一記憶胞223為具有嵌入式鐵電膜(例如鐵電材料213)的電晶體。在每一記憶胞223內,導電層203(參見例如圖8C及圖8D)充當電晶體的閘極電極,且導電線215A及導電線215B充當電晶體的源極/汲極區,且通道材料207充當源極/汲極區之間的通道層。圖8B(亦參見圖8C及圖8D)中的雙箭頭虛線221示出在記憶體元件200的操作期間(例如,電壓施加於電晶體的閘極處且使得電晶體接通時)形成於通道材料207中的通道區。每一記憶胞223中的鐵電膜的電極化方向指示儲存於記憶胞223中的數位資訊(例如,「0」或「1」),且判定記憶胞223的電晶體的臨限電壓,更多細節在下文中論述。
在記憶體元件的上下文中,每一記憶胞223中的導電層203(例如閘極電極)稱作記憶胞的字元線(word line;WL),導電線215A及導電線215B(例如,源極/汲極區)可稱作記憶胞的源極線(source line;SL)及位元線(bit line;BL)。源極線亦可稱作掃描線。
如圖8A中所示出,記憶體元件200的導電層203(例如WL)中的每一者電連接沿同一水平面(例如,在距基底50相同的垂直距離處)形成的多個記憶胞。此外,如圖8C至圖8D中所示出,每一導電線215(諸如SL或BL)電連接多個垂直堆疊的記憶胞223。因此,所揭露的3D記憶體元件200實現了多個記憶胞223當中的WL、BL以及SL的有效共用,且記憶胞223的3D結構允許記憶胞223的多個層容易地堆疊在一起以形成高密度記憶陣列。
接著,在圖9中,移除安置於階梯形區231中的通道材料207,且形成介電材料208以填充由移除的通道材料207留下的空間。在一些實施例中,為了移除階梯形區231中的通道材料207,圖案化的罩幕層(例如,圖案化的光阻)形成於記憶體元件200上方以覆蓋記憶陣列區233且暴露階梯形區231。接著,執行使用對通道材料207具有選擇性(例如,具有較高蝕刻速率)的蝕刻劑的蝕刻製程以選擇性地移除暴露的通道材料207。接著,形成介電材料208以填充由通道材料207的移除部分留下的空間。介電材料208可由與介電材料205相同或類似的材料形成,因此此處未重複細節。介電材料208與介電材料209之間的界面在圖9中由虛線指示,此在最終產品中可能可見或可能不可見。
接著,在圖10A中,接點225形成於記憶陣列區233上方且電耦接至各別導電線215(例如,SL/BL),且接點227形成於階梯形區231上方且電耦接至各別導電層203(例如,WL)。可藉由在介電材料205中形成開口及用導電材料填充開口來形成接點227。可藉由在介電材料205的上表面上方形成介電層(未繪 示)、在介電層中形成開口以及用導電材料填充開口來形成接點225。圖10B示出圖10A的沿橫截面F-F的3D記憶體元件200的橫截面圖。如圖10B中所示出,接點227形成為延伸穿過介電材料205,且每一接點227電耦接至各別導電層203(例如,WL)。如圖10B中所示出,階梯形區允許接點227能輕易靠近(easy access)導電層203(例如,WL)。接點225及接點227可經由例如通孔124及導電線125連接至例如基底50(參見圖1)中的底層電構件或電路及/或內連線結構140。
參考圖8A至圖8E及圖10A,為了對特定記憶胞223執行寫入操作,在記憶胞223內的鐵電材料213的一部分兩端施加寫入電壓。可例如藉由將第一電壓施加至記憶胞223的導電層203(例如,閘極電極)(經由接點227)以及將第二電壓施加至導電線215A/215B(例如,源極區/汲極區)(經由接點225)來施加寫入電壓。第一電壓與第二電壓之間的電壓差設置鐵電材料213的極化方向。取決於鐵電材料213的極化方向,記憶胞223的對應電晶體的臨限電壓VT可自低臨限電壓VL轉換為高臨限電壓VH,或反之亦然。電晶體的臨限電壓值(VL或VH)可用於指示儲存於記憶胞中的「0」或「1」的位元。
為了對記憶胞223執行讀取操作,作為低臨限電壓VL與高臨限電壓VH之間的電壓的讀取電壓施加至導電層203(例如,閘極電極)。取決於鐵電材料213的極化方向(或電晶體的臨限電壓VT),記憶胞223的電晶體可能接通或可能不接通。因此,在電壓施加於例如導電線215A(例如,源極區/汲極區)與導電線215B(例如,源極區/汲極區)之間時,電流可能或可能不在導電 線215A(例如,源極區/汲極區)與導電線215B(例如,源極區/汲極區)之間流動。因此,可偵測電流以判定儲存於記憶胞中的數位位元。
圖11及圖12示出另一實施例中的處於各個製造階段的三維(3D)鐵電隨機存取記憶體(FeRAM)元件200A的透視圖。三維(3D)鐵電隨機存取記憶體(FeRAM)元件200A與圖10A的三維(3D)鐵電隨機存取記憶體(FeRAM)元件200類似,但其中通道材料207及鐵電材料213自階梯形區231移除。舉例而言,可藉由遵循圖2A、圖2B、圖3A、圖3B、圖4至圖7、圖8A、圖8B、圖8C、圖8D以及圖8E中所示出的過程來形成三維(3D)鐵電隨機存取記憶體(FeRAM)元件200A。接著,在圖9的過程步驟中,例如使用一或多個選擇性蝕刻製程而自階梯形區231移除通道材料207及鐵電材料213。接著,可形成介電材料208以填充由通道材料207的移除部分及鐵電材料213的移除部分留下的空間。接著,在圖12中,遵循圖10A的相同或類似過程,形成接點225及接點227。
圖13至圖19示出又一實施例中的處於各個製造階段的三維(3D)鐵電隨機存取記憶體(FeRAM)元件200B的透視圖。三維(3D)鐵電隨機存取記憶體(FeRAM)元件200B與圖10A的三維(3D)鐵電隨機存取記憶體(FeRAM)元件200類似,但其中鐵電材料213及通道材料207僅形成於記憶陣列區233中。特定言之,圖13中的過程遵循圖2A、圖2B、圖3A、圖3B以及圖4的過程步驟。在圖4的過程之後,溝渠232形成於記憶陣列區233中。溝渠232延伸穿過介電層201T及層堆疊202。在所示 出實施例中,沿橫截面B-B(參見圖3A)的方向所量測的溝渠232的長度與記憶陣列區233的長度相同。因此,在圖13的實例中,溝渠232並不延伸至階梯形區231中。在其他實施例中,沿橫截面B-B的方向所量測的溝渠232的長度比記憶陣列區233的長度更小或更大。
接著,在圖14中,鐵電材料213沿溝渠232的側壁及底部(例如,共形地)形成,且通道材料207(例如,共形地)形成於鐵電材料213上方。介電材料209接著形成於通道材料207上方以填充溝渠232。可執行諸如CMP的平坦化製程以自介電層201T的上表面以及自介電材料205的上表面移除鐵電材料213的多餘部分、通道材料207的多餘部分以及介電材料209的多餘部分。溝渠232中的剩餘鐵電材料213可稱作鐵電膜,且溝渠232中的剩餘通道材料207可稱作通道層。
接著,在圖15中,導電線216形成於介電材料209中。接著,在圖16中,隔離區212形成於導電線216中的每一者中,以將每一導電線216分隔成一對導電線215A及導電線215B。過程與上文參考圖7及圖8A至圖8E所論述的彼等相同或類似,因此未重複細節。
接著,在圖17中,溝渠234形成於階梯形區231中。溝渠234延伸穿過介電層201T及層堆疊202。在一些實施例中,藉由在記憶體元件200B上方形成圖案化的光阻而形成溝渠234,其中圖案化的光阻的圖案(例如開口)暴露待形成溝渠234的階梯形區231的區域。接著,使用圖案化的光阻作為蝕刻罩幕執行非等向性蝕刻製程,以移除3D記憶體元件200B的暴露部分。如圖 17中所示出,溝渠234暴露鐵電材料213的側壁213S。注意,不管圖13中的溝渠232的長度如何,調節溝渠234的尺寸以適於圖13中的溝渠232的長度,使得鐵電材料213的側壁213S由溝渠234暴露。在蝕刻製程之後,圖案化的光阻可例如藉由灰化製程或剝離製程移除。
接著,在圖18中,形成介電材料以填充溝渠234。在所示出實施例中,填充溝渠234的介電材料與介電材料205相同,因此圖17中的介電材料205及填充溝渠234的介電材料在圖18中可統稱為介電材料205。可執行諸如CMP的平坦化製程以暴露介電層201T的上表面,且在介電材料205與介電層201T之間實現共面的上表面。
接著,在圖19中,接點225形成於記憶陣列區233上方且電耦接至各別導電線215(諸如SL/BL),且接點227形成於階梯形區域231上方且電耦接至各別導電層203(例如,WL)。
圖20示出一實施例中的三維(3D)鐵電隨機存取記憶體(FeRAM)元件的等效電路圖300。電路圖300可對應於本文中所揭露的3D記憶體元件(諸如,記憶體元件200、記憶體元件200A或記憶體元件200B)的一部分。
圖20示出位於三個垂直高度下的三個水平延伸的WL(例如,WL0、WL1以及WL2),其對應於三維(3D)鐵電隨機存取記憶體(FeRAM)元件200、三維(3D)鐵電隨機存取記憶體(FeRAM)元件200A或三維(3D)鐵電隨機存取記憶體(FeRAM)元件200B的三個不同導電層203(例如,WL)。每一垂直高度下的記憶胞示出為電晶體。同一垂直高度下的電晶體的閘極電極連 接至同一WL。圖20進一步示出垂直延伸的BL(例如,BL0、BL1、......、BL5)及SL(例如,SL0、SL1、......、SL5)。BL及SL對應於例如實施例三維(3D)鐵電隨機存取記憶體(FeRAM)元件200/200A/200B的導電線215A(例如,BL)及導電線215B(例如,SL)。BL及SL中的每一者連接至多個垂直堆疊的記憶胞。
圖21示出一些實施例中的形成三維(3D)鐵電隨機存取記憶體(FeRAM)元件的方法1000的流程圖。應理解,圖21中所繪示的實施例方法僅為多個可能實施例方法的實例。於本領域具有通常知識者將認識到許多變化、替代方式以及修改。舉例而言,可添加、移除、代替、重新配置或重複如圖21中所示出的各種步驟。
參考圖21,在區塊1010處,第一層堆疊及第二層堆疊連續地形成於基底上方,其中第一層堆疊及第二層堆疊具有相同層狀結構,所述層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍。在區塊1020處,形成延伸穿過第一層堆疊及第二層堆疊的溝渠。在區塊1030處,用鐵電材料鑲襯溝渠的側壁及底部。在區塊1040處,在溝渠中於鐵電材料上方共形地形成通道材料。在區塊1050處,用第二介電材料填充溝渠。在區塊1060處,第一開口及第二開口形成於第二介電材料中。在區塊1070處,用第二導電材料填充第一開口及第二開口。
對所揭露實施例的變化及修改為可能的,且充分地意欲包含於本揭露內容的範疇內。舉例而言,四個層堆疊202(例如,層堆疊202A、層堆疊202B、層堆疊202C以及層堆疊200D)在 3D記憶體元件200、3D記憶體元件200A以及3D記憶體元件200B中示出為非限制性實例。如熟練的技術人員容易地理解,3D記憶體元件中的層堆疊202的數目可為任何合適的數目,諸如一、兩、三或大於四。作為另一實例,除所示出的三個溝渠以外,所形成的溝渠(例如,圖5中的溝渠206或圖13中的溝渠232)的數目可為任何合適的數目。作為又一實例,形成於介電材料209的每一列(例如,形成於溝渠中的每一列)中的導電線215的數目可為任何合適的數目。作為又一實例,在所示出實施例中,作為非限制性實例,階梯形區231形成於記憶陣列區233的相對側上。記憶體元件200、記憶體元件200A以及記憶體元件200B可藉由僅形成鄰近於記憶陣列區233的一個階梯形區231而形成。
實施例可實現優勢。所揭露的先階梯製程避免或減少與後階梯製程相關聯的問題,諸如多膜蝕刻挑戰及缺陷(例如,由蝕刻製程的非揮發性副產品誘發的諸如階梯圖案失效)。因此,所揭露的先階梯製程實現較佳的製程控制及蝕刻輪廓,同時減少缺陷且改良製造良率及元件效能。所揭露的3D記憶體元件在BEOL過程期間可容易地整合至現有的半導體元件中。3D記憶體元件下的區域在FEOL過程期間仍可用於形成各種電路,諸如邏輯電路、I/O電路或ESD電路。因此,除用於3D記憶體元件的周邊電路(例如,解碼器、放大器)及佈線電路以外,就對於用於整合所揭露的3D記憶體元件的佔地面積(foot print)而言存在極小損失(penalty)。此外,所揭露的3D記憶體元件具有高效的結構以減小其記憶胞大小。舉例而言,每一BL或SL由多個垂直堆疊的記憶胞共用。每一WL由在距基底相同的垂直距離處形成的多個水平 對準的記憶胞共用。如上文所論述,所揭露的3D記憶體元件具有可容易按比例調整的結構,以允許形成高密度記憶陣列,此對於諸如物聯網(Internet of Things;IoT)及機器學習等新興應用是重要的。藉由在BEOL過程期間整合晶片上的3D記憶陣列,避免歸因於晶片外記憶體存取的諸如能量消耗瓶頸的問題。因此,具有所揭露的整合式3D記憶體元件的半導體元件可變得更小、更便宜,同時以更快的速度進行操作且消耗更少的電力。
根據一實施例,一種形成鐵電隨機存取記憶體(FeRAM)元件的方法包含:在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊中的每一者具有第一介電層及形成於第一介電層上方的導電層;在第二層堆疊上方形成第二介電層;圖案化第一層堆疊、第二層堆疊以及第二介電層,其中圖案化形成階梯形區,其中在階梯形區中,第二層堆疊延伸超出第二介電層的側向範圍,且第一層堆疊延伸超出第二層堆疊的側向範圍,其中在圖案化之後,第一層堆疊及第二層堆疊的導電層分別形成第一字元線及第二字元線;在圖案化之後,形成延伸穿過第一層堆疊、第二層堆疊以及第二介電層的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在鐵電材料上方形成通道材料;藉由在通道材料上方形成介電材料來填充溝渠;以及在介電材料中形成源極線及位元線,其中源極線及位元線延伸穿過第二介電層、第二層堆疊以及第一層堆疊。在一實施例中,在階梯形區中,第二層堆疊沿第一方向延伸超出第二介電層的側向範圍,且第一層堆疊沿第一方向延伸超出第二層堆疊的側向範圍。在一實施例中,溝渠形成為具有沿第一方向的縱向軸線。在一實施例中,在圖案化 之後,圖案化的第二介電層的側壁界定鄰近於階梯形區的記憶陣列區。在一實施例中,溝渠形成為延伸穿過記憶陣列區及階梯形區。在一實施例中,方法更包含在形成源極線及位元線之後,自階梯形區移除通道材料。在一實施例中,方法更包含在形成源極線及位元線之後,自階梯形區移除通道材料及鐵電材料。在一實施例中,溝渠形成於記憶陣列區內。在一實施例中,位元線及源極線形成於記憶陣列區內,其中方法更包括:在記憶陣列區上方形成第一接點,且將第一接點電耦接至位元線及源極線;以及在階梯形區上方形成第二接點,且將第二接點電耦接至第一字元線及第二字元線。在一實施例中,源極線及位元線由導電材料形成,其中源極線及位元線的縱向軸線垂直於基底的上表面。在一實施例中,在俯視圖中,源極線及位元線自通道材料的第一側壁連續地延伸至通道材料的面向通道材料的第一側壁的第二側壁。在一實施例中,方法更包含:在介電材料中形成鄰近於位元線的另一源極線;以及形成處於位元線與另一源極線之間且接觸位元線及另一源極線的隔離區,其中在俯視圖中,隔離區自鐵電材料的第一側壁連續地延伸至鐵電材料的面向鐵電材料的第一側壁的第二側壁。
根據一實施例,一種形成鐵電隨機存取記憶體(FeRAM)元件的方法包含:在基底上方連續地形成第一層堆疊及第二層堆疊,其中第一層堆疊及第二層堆疊具有相同層狀結構,層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍;形成延伸穿過第一層堆疊及第二層堆疊的溝渠;用鐵電材料鑲襯溝渠的側壁及底部;在溝渠中於 鐵電材料上方共形地形成通道材料;用第二介電材料填充溝渠;在第二介電材料中形成第一開口及第二開口;以及用第二導電材料填充第一開口及第二開口。在一實施例中,第一層堆疊在第一方向上延伸超出第二層堆疊的側向範圍,其中溝渠的縱向軸線形成為沿著第一方向延伸。在一實施例中,溝渠將第一層堆疊及第二層中的每一者堆疊分隔成兩個單獨部分。在一實施例中,方法更包含在填充第一開口及第二開口之後,至少移除鐵電材料的安置於第二層堆疊的邊界之外的部分。在一實施例中,溝渠形成於由第二層堆疊的側壁界定的區域內。
根據一實施例,一種鐵電隨機存取記憶體(FeRAM)元件包含:第一層堆疊;第二層堆疊,處於第一層堆疊上方,其中第一層堆疊及第二層堆疊具有相同層狀結構,所述層狀結構包含第一介電材料層上方的第一導電材料層,其中第一層堆疊延伸超出第二層堆疊的側向範圍;第二介電材料,嵌入於第一層堆疊及第二層堆疊中,所述第二介電材料延伸穿過第一層堆疊及第二層堆疊;鐵電材料,處於第二介電材料與第一層堆疊之間以及處於第二介電材料與第二層堆疊之間;通道材料,處於鐵電材料與第二介電材料之間;以及導電線,嵌入於第二介電材料中,其中導電線延伸穿過第一層堆疊及第二層堆疊。在一實施例中,FeRAM元件更包含:第一介電層,處於第二層堆疊上方,其中第二層堆疊延伸超出第一介電層的側向範圍;以及第二介電層,處於第一層堆疊及第二層堆疊上方,其中第二介電層的上表面與第一介電層的上表面齊平。在一實施例中,FeRAM元件更包含嵌入於第二介電材料中的隔離區,其中隔離區延伸穿過第一層堆疊及第二層 堆疊,其中在俯視圖中,隔離區自鐵電材料的第一側壁連續地延伸至鐵電材料的面向第一側壁的第二側壁。
雖然已參考說明性實施例來描述本發明,但此描述並不意欲以限制性意義來解釋。在參考描述後,本領域的技術人員將顯而易知本發明的說明性實施例以及其他實施例的各種修改及組合。因此,預期所附申請專利範圍涵蓋任何此類修改或實施例。
1000:方法
1010,1020,1030,1040,1050,1060,1070:區塊

Claims (10)

  1. 一種形成鐵電隨機存取記憶體(FeRAM)元件的方法,所述方法包括:在基底上方連續地形成第一層堆疊及第二層堆疊,其中所述第一層堆疊及所述第二層堆疊中的每一者具有第一介電層及形成於所述第一介電層上方的導電層;在所述第二層堆疊上方形成第二介電層;圖案化所述第一層堆疊、所述第二層堆疊以及所述第二介電層,其中所述圖案化形成階梯形區,其中在所述階梯形區中,所述第二層堆疊延伸超出所述第二介電層的側向範圍,且所述第一層堆疊延伸超出所述第二層堆疊的側向範圍,其中在所述圖案化之後,所述第一層堆疊及所述第二層堆疊的所述導電層分別形成第一字元線及第二字元線;在所述圖案化之後,形成延伸穿過所述第一層堆疊、所述第二層堆疊以及所述第二介電層的溝渠;用鐵電材料鑲襯所述溝渠的側壁及底部;在所述鐵電材料上方形成通道材料;藉由在所述通道材料上方形成介電材料來填充所述溝渠;以及在所述介電材料中形成源極線及位元線,其中所述源極線及所述位元線延伸穿過所述第二介電層、所述第二層堆疊以及所述第一層堆疊。
  2. 如請求項1所述的形成鐵電隨機存取記憶體元件的方法,其中在所述階梯形區中,所述第二層堆疊沿第一方向延伸 超出所述第二介電層的所述側向範圍,且所述第一層堆疊沿所述第一方向延伸超出所述第二層堆疊的所述側向範圍。
  3. 如請求項2所述的形成鐵電隨機存取記憶體元件的方法,其中所述溝渠形成為具有沿所述第一方向的縱向軸線。
  4. 如請求項3所述的形成鐵電隨機存取記憶體元件的方法,其中在所述圖案化之後,圖案化的所述第二介電層的側壁界定鄰近於所述階梯形區的記憶陣列區。
  5. 如請求項4所述的形成鐵電隨機存取記憶體元件的方法,其中所述溝渠形成為延伸穿過所述記憶陣列區及所述階梯形區。
  6. 如請求項5所述的形成鐵電隨機存取記憶體元件的方法,更包括在形成所述源極線及所述位元線之後,自所述階梯形區移除所述通道材料。
  7. 一種形成鐵電隨機存取記憶體(FeRAM)元件的方法,所述方法包括:在基底上方連續地形成第一層堆疊及第二層堆疊,其中所述第一層堆疊及所述第二層堆疊具有相同層狀結構,所述層狀結構包含第一介電材料層上方的第一導電材料層,其中所述第一層堆疊延伸超出所述第二層堆疊的側向範圍;形成延伸穿過所述第一層堆疊及所述第二層堆疊的溝渠;用鐵電材料鑲襯所述溝渠的側壁及底部;在所述溝渠中於所述鐵電材料上方共形地形成通道材料;用第二介電材料填充所述溝渠;在所述第二介電材料中形成第一開口及第二開口;以及 用第二導電材料填充所述第一開口及所述第二開口。
  8. 如請求項7所述的形成鐵電隨機存取記憶體元件的方法,其中所述第一層堆疊在第一方向上延伸超出所述第二層堆疊的所述側向範圍,其中所述溝渠的縱向軸線形成為沿著所述第一方向延伸。
  9. 一種鐵電隨機存取記憶體(FeRAM)元件,包括:第一層堆疊;第二層堆疊,處於所述第一層堆疊上方,其中所述第一層堆疊及所述第二層堆疊具有相同層狀結構,所述層狀結構包含第一介電材料層上方的第一導電材料層,其中所述第一層堆疊延伸超出所述第二層堆疊的側向範圍;第二介電材料,嵌入於所述第一層堆疊及所述第二層堆疊中,所述第二介電材料延伸穿過所述第一層堆疊及所述第二層堆疊;鐵電材料,處於所述第二介電材料與所述第一層堆疊之間以及處於所述第二介電材料與所述第二層堆疊之間;通道材料,處於所述鐵電材料與所述第二介電材料之間;以及導電線,嵌入於所述第二介電材料中,其中所述導電線延伸穿過所述第一層堆疊及所述第二層堆疊。
  10. 如請求項9所述的鐵電隨機存取記憶體元件,更包括:第一介電層,處於所述第二層堆疊上方,其中所述第二層堆疊延伸超出所述第一介電層的側向範圍;以及 第二介電層,處於所述第一層堆疊及所述第二層堆疊上方,其中所述第二介電層的上表面與所述第一介電層的上表面齊平。
TW110101529A 2020-06-26 2021-01-15 鐵電隨機存取記憶體元件及形成方法 TWI759075B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063044578P 2020-06-26 2020-06-26
US63/044,578 2020-06-26
US17/018,139 US11552103B2 (en) 2020-06-26 2020-09-11 Three-dimensional stackable ferroelectric random access memory devices and methods of forming
US17/018,139 2020-09-11

Publications (2)

Publication Number Publication Date
TW202201763A TW202201763A (zh) 2022-01-01
TWI759075B true TWI759075B (zh) 2022-03-21

Family

ID=78060243

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110101529A TWI759075B (zh) 2020-06-26 2021-01-15 鐵電隨機存取記憶體元件及形成方法

Country Status (5)

Country Link
US (2) US11552103B2 (zh)
KR (1) KR102522335B1 (zh)
CN (1) CN113517299B (zh)
DE (1) DE102020124477A1 (zh)
TW (1) TWI759075B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11723210B2 (en) * 2021-03-05 2023-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. High selectivity isolation structure for improving effectiveness of 3D memory fabrication
CN115734614A (zh) * 2021-08-27 2023-03-03 联华电子股份有限公司 半导体元件及其制作方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181259A1 (en) * 2014-12-23 2016-06-23 Imec Vzw Vertical ferroelectric memory device and a method for manufacturing thereof
TW201740584A (zh) * 2016-02-22 2017-11-16 Samsung Electronics Co Ltd 記憶體元件
TW201842649A (zh) * 2017-01-06 2018-12-01 美商美光科技公司 集成記憶體、集成總成及形成記憶體陣列之方法
TW201911537A (zh) * 2017-07-26 2019-03-16 美商美光科技公司 在交叉點記憶體陣列中之自我對準記憶體層板
TW201917872A (zh) * 2017-07-13 2019-05-01 美商美光科技公司 用於包含鐵電記憶體單元和介電記憶體單元之記憶體之裝置及方法
EP3499580A1 (en) * 2017-12-18 2019-06-19 IMEC vzw Method of manufacturing a 3d semiconductor memory device and device manufactured using such method
US20190245543A1 (en) * 2018-02-01 2019-08-08 iCometrue Company Ltd. Logic drive using standard commodity programmable logic ic chips comprising non-volatile radom access memory cells
TW201946253A (zh) * 2018-03-19 2019-12-01 美商美光科技公司 具水平存取線之自選擇記憶體陣列
TW202002246A (zh) * 2018-04-24 2020-01-01 美商美光科技公司 交叉點記憶體陣列及相關製造技術
US20200105772A1 (en) * 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. METHOD AND STRUCTURES PERTAINING TO IMPROVED FERROELECTRIC RANDOM-ACCESS MEMORY (FeRAM)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413805B1 (ko) * 1996-10-31 2004-06-26 삼성전자주식회사 누설전류를이용한매트릭스형다진법강유전체랜덤액세서메모리
JP2004356170A (ja) * 2003-05-27 2004-12-16 Seiko Epson Corp FeRAMキャパシタセル及びこれを用いたFeRAM並びにその製造方法
JP5024046B2 (ja) * 2005-09-30 2012-09-12 富士通セミコンダクター株式会社 半導体装置とその製造方法
KR101744127B1 (ko) 2010-11-17 2017-06-08 삼성전자주식회사 반도체 소자 및 그 제조방법
KR20140008622A (ko) * 2012-07-10 2014-01-22 에스케이하이닉스 주식회사 반도체 장치 및 그 제조 방법
US20190148286A1 (en) 2015-09-21 2019-05-16 Monolithic 3D Inc. Multi-level semiconductor device and structure with memory
CN108431893A (zh) * 2015-11-24 2018-08-21 许富菖 三维垂直存储器阵列单元结构及工艺
CN106876397B (zh) * 2017-03-07 2020-05-26 长江存储科技有限责任公司 三维存储器及其形成方法
US10651201B2 (en) * 2017-04-05 2020-05-12 Samsung Electronics Co., Ltd. Integrated circuit including interconnection and method of fabricating the same, the interconnection including a pattern shaped and/or a via disposed for mitigating electromigration
US11011529B2 (en) 2017-06-29 2021-05-18 Micron Technology, Inc. Memory arrays comprising vertically-alternating tiers of insulative material and memory cells and methods of forming a memory array comprising memory cells individually comprising a transistor and a capacitor
US10777566B2 (en) * 2017-11-10 2020-09-15 Macronix International Co., Ltd. 3D array arranged for memory and in-memory sum-of-products operations
WO2019139622A1 (en) 2018-01-12 2019-07-18 Intel Corporation Ferroelectric field-effect transistors for 3d memory arrays and methods of manufacturing the same
US10593692B2 (en) * 2018-04-30 2020-03-17 Sandisk Technologies Llc Three-dimensional nor-type memory device and method of making the same
US11049880B2 (en) * 2019-08-02 2021-06-29 Sandisk Technologies Llc Three-dimensional memory device containing epitaxial ferroelectric memory elements and methods for forming the same
US10937809B1 (en) 2019-08-15 2021-03-02 Sandisk Technologies Llc Three-dimensional memory device containing ferroelectric memory elements encapsulated by transition metal nitride materials and method of making thereof
US11133329B2 (en) * 2019-09-09 2021-09-28 Macronix International Co., Ltd. 3D and flash memory architecture with FeFET

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160181259A1 (en) * 2014-12-23 2016-06-23 Imec Vzw Vertical ferroelectric memory device and a method for manufacturing thereof
TW201740584A (zh) * 2016-02-22 2017-11-16 Samsung Electronics Co Ltd 記憶體元件
TW201842649A (zh) * 2017-01-06 2018-12-01 美商美光科技公司 集成記憶體、集成總成及形成記憶體陣列之方法
TW201917872A (zh) * 2017-07-13 2019-05-01 美商美光科技公司 用於包含鐵電記憶體單元和介電記憶體單元之記憶體之裝置及方法
TW201911537A (zh) * 2017-07-26 2019-03-16 美商美光科技公司 在交叉點記憶體陣列中之自我對準記憶體層板
EP3499580A1 (en) * 2017-12-18 2019-06-19 IMEC vzw Method of manufacturing a 3d semiconductor memory device and device manufactured using such method
US20190245543A1 (en) * 2018-02-01 2019-08-08 iCometrue Company Ltd. Logic drive using standard commodity programmable logic ic chips comprising non-volatile radom access memory cells
TW201946253A (zh) * 2018-03-19 2019-12-01 美商美光科技公司 具水平存取線之自選擇記憶體陣列
TW202002246A (zh) * 2018-04-24 2020-01-01 美商美光科技公司 交叉點記憶體陣列及相關製造技術
US20200105772A1 (en) * 2018-09-28 2020-04-02 Taiwan Semiconductor Manufacturing Co., Ltd. METHOD AND STRUCTURES PERTAINING TO IMPROVED FERROELECTRIC RANDOM-ACCESS MEMORY (FeRAM)

Also Published As

Publication number Publication date
KR20220000793A (ko) 2022-01-04
US20210408042A1 (en) 2021-12-30
US11552103B2 (en) 2023-01-10
KR102522335B1 (ko) 2023-04-14
US20230165011A1 (en) 2023-05-25
TW202201763A (zh) 2022-01-01
CN113517299A (zh) 2021-10-19
CN113517299B (zh) 2023-07-04
US11991886B2 (en) 2024-05-21
DE102020124477A1 (de) 2021-12-30

Similar Documents

Publication Publication Date Title
KR102597954B1 (ko) 메모리 어레이 계단 구조체
US11991886B2 (en) Three-dimensional stackable ferroelectric random access memory devices and methods of forming
US11532343B2 (en) Memory array including dummy regions
US12002534B2 (en) Memory array word line routing
US11935624B2 (en) Memory array test structure and method of forming the same
US20230309315A1 (en) Three-Dimensional Memory Device and Method
US20240155845A1 (en) Three-dimensional ferroelectric random access memory devices and methods of forming
US20230063038A1 (en) Memory Device and Method of Forming Thereof
US11844224B2 (en) Memory structure and method of forming the same
TW202230744A (zh) 記憶體元件