TWI757691B - 運轉指標提示裝置、運轉指標提示方法及程式 - Google Patents
運轉指標提示裝置、運轉指標提示方法及程式 Download PDFInfo
- Publication number
- TWI757691B TWI757691B TW109104960A TW109104960A TWI757691B TW I757691 B TWI757691 B TW I757691B TW 109104960 A TW109104960 A TW 109104960A TW 109104960 A TW109104960 A TW 109104960A TW I757691 B TWI757691 B TW I757691B
- Authority
- TW
- Taiwan
- Prior art keywords
- operation index
- value
- time series
- factory
- model
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 10
- 238000005457 optimization Methods 0.000 claims abstract description 42
- 238000011156 evaluation Methods 0.000 claims description 24
- 238000013461 design Methods 0.000 claims description 3
- 238000013178 mathematical model Methods 0.000 claims description 3
- 230000005611 electricity Effects 0.000 description 12
- 230000006870 function Effects 0.000 description 11
- 230000006399 behavior Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 5
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000004549 pulsed laser deposition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000002945 steepest descent method Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06315—Needs-based resource requirements planning or analysis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0224—Process history based detection method, e.g. whereby history implies the availability of large amounts of data
- G05B23/024—Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0218—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
- G05B23/0243—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
- G05B23/0254—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model based on a quantitative model, e.g. mathematical relationships between inputs and outputs; functions: observer, Kalman filter, residual calculation, Neural Networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
- G06Q30/0202—Market predictions or forecasting for commercial activities
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/31—From computer integrated manufacturing till monitoring
- G05B2219/31414—Calculate amount of production energy, waste and toxic release
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32021—Energy management, balance and limit power to tools
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/10—Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Strategic Management (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- General Business, Economics & Management (AREA)
- Marketing (AREA)
- Finance (AREA)
- Theoretical Computer Science (AREA)
- Accounting & Taxation (AREA)
- Automation & Control Theory (AREA)
- Game Theory and Decision Science (AREA)
- Health & Medical Sciences (AREA)
- Tourism & Hospitality (AREA)
- Quality & Reliability (AREA)
- Artificial Intelligence (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Evolutionary Computation (AREA)
- Educational Administration (AREA)
- Public Health (AREA)
- Operations Research (AREA)
- General Health & Medical Sciences (AREA)
- Water Supply & Treatment (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- General Engineering & Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Testing And Monitoring For Control Systems (AREA)
- General Factory Administration (AREA)
Abstract
需求預測部使用預測模型,預測涉及既定的預測期間的需求值的時序列。預測模型為以輸入工廠的運轉計畫值與涉及工廠的環境的預測值從而輸出能源的需求值的方式進行學習的學習完畢模型。最佳化部就預測的需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的工廠的運轉指標。提示部提示涉及預測期間的運轉指標的涉及時序列的資訊。
Description
本發明涉及工廠的運轉指標提示裝置、運轉指標提示方法及程式。
於專利文獻1,已揭露為了將工廠的成本最小化用的作業最佳化方法。
[先前技術文獻]
[專利文獻]
[專利文獻1]特開2005-55997號公報
[發明所欲解決之問題]
依揭露於專利文獻1的技術時,可獲得在一時點的作業的最佳解。另一方面,於能源廠的作業,由於最佳的作業條件亦依將來的能量需求的變動而變化,故存在欲進行將來的工廠的運轉的推測如此之需求。
本發明的目的在於提供可進行將來的工廠的運轉的推測的運轉指標提示裝置、運轉指標提示方法及程式。
[用於解決問題之手段]
依本發明的第1態樣時,為一種運轉指標提示裝置,其具備:需求預測部,其使用以輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值從而輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;最佳化部,其就預測的前述需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列;和提示部,其提示涉及前述預測期間的運轉指標的涉及時序列的資訊。
依本發明的第2態樣時,於涉及第1態樣的運轉指標提示裝置,可為前述最佳化部根據就前述工廠的複數個組件的舉動進行模擬的複數個模型而特定出前述運轉指標,前述複數個模型包括根據涉及該模型所模擬的組件的輸入值與輸出值的組合而學習的至少一個學習完畢模型。
依本發明的第3態樣時,可為如第1或第2態樣的運轉指標提示裝置,其中,前述工廠就一個能源具有複數個供應手段,前述最佳化部是作為前述運轉指標,特定出與透過前述複數個供應手段之輸出的比例相關的值。
依本發明的第4態樣時,可為如第1至第3態樣中任一個態樣的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
依本發明的第5態樣時,為一種運轉指標提示方法,其具備以下步驟:使用以輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值從而輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;就預測的前述需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列;和提示涉及前述預測期間的運轉指標的涉及時序列的資訊。
依本發明的第6態樣時,為一種程式,其使電腦執行以下步驟:使用以輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值從而輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;就預測的前述需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列;和提示涉及前述預測期間的運轉指標的涉及時序列的資訊。
[發明功效]
依上述態樣中至少一個態樣時,利用者可透過識認運轉指標提示裝置所提示的資訊,從而進行將來的工廠的運轉的推測。
以下,一面參見圖式一面就實施方式詳細進行說明。
圖1為就涉及一實施方式的運轉指標提示裝置的概要進行繪示的圖。
運轉指標提示裝置100就將來的一定期間,預測工廠等的用戶C對能源的需求,提示為了符合該需求用的工廠P的運轉指標。能源舉例如電、溫水、冷水、蒸氣等。以下,將成為需求的預測對象之期間稱為預測期間。
工廠P就各能源具備供應手段2個以上。例如,工廠P使透過燃氣引擎之蒸氣生成和透過直流鍋爐之蒸氣生成作為蒸氣的供應手段。
圖2為就涉及一實施方式的運轉指標提示裝置的構成進行繪示的示意方塊圖。
運轉指標提示裝置100具備預測模型記憶部101、組件模型記憶部102、資料取得部103、學習部104、需求預測部105、模擬部106、最佳化部107、提示部108。
預測模型記憶部101記憶屬學習完畢模型之預測模型,該模型以輸入工廠P的運轉計畫值與涉及工廠P的環境的預測值從而輸出複數個能源的需求值的方式進行學習。本實施方式中「學習完畢模型」為機械學習模型與學習完畢參數的組合。機械學習模型方面,舉例如神經網路、貝氏網路、線形回歸、迴歸樹等。另外,學習完畢模型的預測值與實績值趨於背離的情況下,亦可實施再學習。據此,可防止歷年劣化等的影響。
組件模型記憶部102記憶就構成工廠P的複數個組件個別的舉動進行模擬的組件模型。組件模型由學習完畢模型或數學模型而構成。另外,組件模型記憶部102記憶以學習完畢模型而構成的組件模型和以基於組件的設計資訊之數學模型而構成的組件模型個別至少一個。另外,性能可能因歷年劣化等而變化的組件優選上透過學習完畢模型進行模擬。亦即,於本實施方式,工廠P被表現為將機器構成的一部分以物理方式模型化,並將其餘以統計方式模型化的混合模型。
資料取得部103取得用於用戶的需求的預測的資料及用於模型的學習的資料。具體而言,資料取得部103從工廠P取得運轉實績資料及運轉計畫資料。運轉實績資料包括工廠P的一次能源的消耗量、二次能源(燃料等)的供應量、組件的狀態、組件的控制量。運轉計畫資料被依二次能源的生成量時序列而表示。此外,資料取得部103從用戶C取得過去的需求實績資料及環境資料。需求實績資料被依過去的能量的需求值的時序列而表示。環境資料之例方面,舉例工廠的室溫等。此外,資料取得部103從外部伺服器取得氣象資訊、一次能源的價格、買電價格等的資訊。氣象資訊及工廠的室溫為涉及工廠的環境的預測值的一例。
學習部104根據資料取得部103取得的資料,學習預測模型及組件模型。具體而言,學習部104使用以過去的工廠P的運轉計畫資料、氣象資訊、及工廠的室溫的值為輸入樣本並以需求實績資料為輸出樣本的學習用資料集而學習預測模型。學習的預測模型記錄於預測模型記憶部101。此外,學習部104使用以運轉實績資料之中涉及組件的輸入的值為輸入樣本並以運轉實績資料之中涉及組件的輸出的值為輸出樣本的學習用資料集而學習組件模型。學習的組件模型記錄於組件模型記憶部102。
另外,學習部104亦可設於與運轉指標提示裝置100為個別的裝置。此情況下,於個別的裝置學習的學習完畢模型被記錄於預測模型記憶部101及組件模型記憶部102。
需求預測部105將資料取得部103取得的涉及預測期間的運轉計畫資料、氣象資訊時序列、及工廠的室溫時序列,輸入至預測模型記憶部101記憶的預測模型,從而預測涉及預測期間的需求值的時序列。另外,涉及預測期間的工廠的室溫為根據例如過去的工廠的室溫而推定的值。
模擬部106使用組件模型記憶部102記憶的複數個組件模型,模擬工廠的舉動。模擬部106根據一次能源的供應量及組件的控制量,算出複數個二次能源的生成量。
最佳化部107使用模擬部106的計算結果,特定出符合需求預測部105預測的需求值且成本成為最小的工廠P的運轉指標。具體而言,最佳化部107將在工廠P的成本越大取越大的值之成本函數和對在工廠P應迴避的運轉所給予的懲罰函數的和算出作為評價值。最佳化部107以評價值變小的方式特定出運轉指標。工廠P的成本之例方面,舉例一次能源的購入成本、買電成本、組件的保養成本。於工廠P應迴避的運轉之例方面,舉例不符合需求的運轉、CO2
、NOx
的產生量多的運轉、超載運轉、引擎的啟動停止頻率高的運轉等。
最佳化部107使用例如動態規劃、貪婪演算法、最陡下降法、遺傳演算法等的最佳化手法而特定出評價值成為最小的運轉指標。另外,本實施方式中的「最佳化」包含獲得近似解。
提示部108將顯示透過最佳化部107特定出的運轉指標的時序列之資訊,予以顯示於顯示器。例如,提示部108就工廠P供應的各能源,將按供應手段而不同的輸出的比例(例如,引擎發電機70%、買電30%等)的時序列進行圖形顯示。另外,於其他實施方式,亦可顯示涉及按供應手段而不同的輸出的數值(例如,引擎發電機700kW、買電300kW等)的時序列。
接著,就運轉指標提示裝置100的動作進行說明。另外,在以下,當作預測模型及組件模型的學習已完成而進行說明。
圖3為就涉及一實施方式的運轉指標提示裝置的動作進行繪示的流程圖。
運轉指標提示裝置100的資料取得部103從利用者受理預測期間的輸入(步驟S1)。資料取得部103取得涉及輸入的預測期間的工廠P的運轉計畫、氣象資訊時序列、及工廠的室溫時序列(步驟S2)。需求預測部105將在步驟S1取得的資料輸入至預測模型記憶部101記憶的預測模型,從而預測涉及預測期間的需求值的時序列(步驟S3)。
最佳化部107選擇涉及預測的時序列的需求值一次一個,就各需求值,進行以下的步驟S5至步驟S11的最佳化處理(步驟S4)。
最佳化部107根據亂數而生成一次能源的供應量及組件的控制量的種子(步驟S5)。模擬部106根據生成的種子,使用組件模型記憶部102記憶的複數個組件模型,模擬工廠的舉動,算出二次能源的生成量(步驟S6)。
最佳化部107根據生成的種子和資料取得部103取得的一次能源的購入成本及買電成本而算出成本函數(步驟S7)。此外,最佳化部107根據透過模擬部106而模擬的工廠P的舉動及二次能源的生成量,算出懲罰函數(步驟S8)。最佳化部107將成本函數與懲罰函數進行加算從而算出評價值(步驟S9)。
最佳化部107根據評價值而判定是否符合既定的收束條件(步驟S10)。收束條件是透過最佳化演算法而決定。不符合收束條件的情況(步驟S10:NO)下,返回步驟S5而再度進行種子的生成。此時,最佳化部根據最佳化演算法而進行種子的生成。另一方面,符合收束條件的情況(步驟S10:YES)下,最佳化部107根據評價值成為最小時的種子,特定出運轉指標(步驟S11)。
最佳化部107就預測期間的所有的時點,特定出運轉指標時,提示部108將顯示特定出的運轉指標的時序列的資訊,予以顯示於顯示器(步驟S12)。
如此般,依本實施方式時,運轉指標提示裝置100使用預測模型而預測涉及既定的預測期間的需求值的時序列,就涉及預測的需求值的時序列的個別的時刻特定出運轉指標,從而特定出涉及預測期間的運轉指標的時序列。據此,運轉指標提示裝置100可提示為了進行將來的工廠P的運轉的推測用的資訊。
此外,依本實施方式時,個別地構成為了模擬工廠P的舉動用的組件模型和最佳化部107。據此,運轉指標提示裝置100的設計者或維護人員可切開組件模型的舉動的檢證與最佳化處理的檢證。設計者或維護人員可對於組件模型的檢證,使用過去的運轉資料,從而檢證組件模型是否可正確地模擬過去的工廠P的舉動。
此外,依本實施方式時,工廠P就各能源具備複數個供應手段,運轉指標提示裝置100特定出涉及各供應手段的運轉的運轉指標。據此,運轉指標提示裝置100可特定出達成各供應手段的組合最佳化的運轉指標。
以上,雖參照圖式就一實施方式詳細進行說明,惟具體的構成不限於上述者,可進行各種的設計變更等。於其他實施方式,亦可酌情變更上述的處理的順序。此外,亦可一部分的處理被並列地執行。
涉及上述的實施方式的運轉指標提示裝置100雖就預測期間的各時刻以在該時刻的評價值成為最小的方式算出運轉指標,惟不限於此。例如,涉及其他實施方式的運轉指標提示裝置100亦能以預測期間整體的評價值的總和成為最小的方式而特定出運轉指標的時序列。
此外,涉及上述的實施方式的運轉指標提示裝置100雖以使成本為最小化作為條件而進行最佳化計算,惟不限於此。例如,涉及其他實施方式的運轉指標提示裝置100亦能以CO2
排出量的最小化、工廠營運的最佳化(工廠P的營運所致的收益的最大化)為條件而進行最佳化計算。此情況下,評價值方面,可使用CO2
的排出量越小則越小的值,亦可使用工廠P的收益越大則越小的值。例如,涉及其他實施方式的運轉指標提示裝置100進行以工廠營運的最佳化為條件的最佳化計算的情況下,運轉指標提示裝置100的需求預測部105除在預測期間的需求值以外,進一步預測燃料成本、賣電單價、及買電單價的時序列,以收益成為最大化的方式特定出運轉指標。另外,需求值、燃料成本、賣電單價、買電單價可透過相同的預測模型進行預測,亦可分別透過個別的預測模型進行預測。於運轉指標,包含燃料的購入量及買賣的電力量。據此,利用者可適切地預測燃料的購入時點及賣電時點。此情況下,運轉指標提示裝置100優選上以預測期間整體的評價值的總和成為最小的方式特定出運轉指標的時序列。
圖4為就至少一個涉及實施方式的電腦的構成進行繪示的示意方塊圖。
電腦90具備處理器91、主記憶體92、儲存器93、介面94。
上述的運轉指標提示裝置100透過電腦90實現。然後,上述的各處理部的動作以程式的形式而記憶於儲存器93。處理器91將程式從儲存器93讀出而展開於主記憶體92,依該程式而執行上述處理。此外,處理器91依程式而於主記憶體92確保與上述的各記憶部對應的記憶區域。
程式亦可為用於實現使電腦90發揮的功能的一部分者。例如,程式亦可為透過與已記憶於儲存器93的其他程式的組合、或與被其他裝置實現的其他程式的組合從而予以發揮功能者。另外,於其他實施方式,電腦90亦可除上述構成外或代替上述構成而具備PLD(Programmable Logic Device)等的客製化LSI(Large Scale Integrated Circuit)。PLD之例方面,舉例PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)。此情況下,亦可透過處理器91而實現的功能的一部分或全部被透過該積體電路而實現。
儲存器93之例方面,舉例磁碟、磁光碟、光碟、半導體記憶體等。儲存器93可為直接連接於電腦90的匯流排的內部媒體,亦可為經由介面94或通訊線路而連接於電腦90的外部媒體。此外,此程式被透過通訊線路而發布於電腦90的情況下,亦可接受發布的電腦90將該程式展開於主記憶體92,執行上述處理。於至少一個實施方式,儲存器93為非暫時性的有形的記憶媒體。
此外,該程式亦可為用於實現前述的功能的一部分者。再者,該程式亦可為將前述的功能以與已記憶於儲存器93的其他程式的組合從而實現者,即所謂的差分檔(差分程式)。
[產業上之可利用性]
依本案之上述揭示時,利用者可透過識認運轉指標提示裝置所提示的資訊,從而進行將來的工廠的運轉的推測。
100:運轉指標提示裝置
101:預測模型記憶部
102:組件模型記憶部
103:資料取得部
104:學習部
105:需求預測部
106:模擬部
107:最佳化部
108:提示部
C:用戶
P:工廠
[圖1]就涉及一實施方式的運轉指標提示裝置的概要進行繪示的圖。
[圖2]就涉及一實施方式的運轉指標提示裝置的構成進行繪示的示意方塊圖。
[圖3]就涉及一實施方式的運轉指標提示裝置的動作進行繪示的流程圖。
[圖4]就至少一個涉及實施方式的電腦的構成進行繪示的示意方塊圖。
100:運轉指標提示裝置
C:用戶
P:工廠
Claims (14)
- 一種運轉指標提示裝置,其具備:需求預測部,其使用以輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值從而輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;最佳化部,其就預測的前述需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列;和提示部,其提示涉及前述預測期間的運轉指標的涉及時序列的資訊;前述最佳化部根據就前述工廠的複數個組件的舉動進行模擬的複數個模型而特定出前述運轉指標,前述複數個模型包括根據涉及該模型所模擬的組件的輸入值與輸出值的組合而學習的至少一個學習完畢模型。
- 如請求項1的運轉指標提示裝置,其中,前述複數個模型進一步包含基於涉及該模型模擬的組件的設計資訊之至少一個數學模型。
- 如請求項1的運轉指標提示裝置,其中,前述工廠就一個能源具有複數個供應手段,前述提示部是作為涉及前述運轉指標的時序列的資訊,提示透過前述複數個供應手段之輸出的數值或與比例相關的值的時序列。
- 如請求項1的運轉指標提示裝置,其中,前述工廠就一個能源具有複數個供應手段,前述提示部是作為涉及前述運轉指標的時序列的資訊,提示透過前述複數個供應手段之輸出的數值或與比例相關的值的時序列。
- 如請求項2的運轉指標提示裝置,其中,前述工廠就一個能源具有複數個供應手段,前述提示部是作為涉及前述運轉指標的時序列的資訊,提示透過前述複數個供應手段之輸出的數值或與比例相關的值的時序列。
- 如請求項1的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項1的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項2的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項3的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本 越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項4的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項5的運轉指標提示裝置,其中,前述最佳化部根據前述運轉指標,算出在前述工廠之成本越大且在前述工廠應迴避的運轉越多則取越大的值的評價值,以前述評價值變小的方式,特定出前述運轉指標。
- 如請求項1至請求項11中任一項的運轉指標提示裝置,其中,前述期望的條件包含前述工廠的營運所致的收益的最大化。
- 一種運轉指標提示方法,其具備以下步驟:輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值,從而使用以輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;就預測的前述需求值的時序列的個別的時刻,特定出符合複數個需求值且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列; 和提示涉及前述預測期間的運轉指標的涉及時序列的資訊;在前述特定出時序列的步驟,根據就前述工廠的複數個組件的舉動進行模擬的複數個模型而特定出前述運轉指標,前述複數個模型包括根據涉及該模型所模擬的組件的輸入值與輸出值的組合而學習的至少一個學習完畢模型。
- 一種非一時性的記錄媒體,其記載有為了使電腦執行以下步驟用的程式:輸入工廠的運轉計畫值與涉及前述工廠的環境的預測值,從而使用以輸出能源的需求值的方式進行學習的屬學習完畢模型之預測模型,預測涉及既定的預測期間的需求值的時序列;就預測的前述需求值的時序列的個別的時刻,符合複數個需求值特定出且符合期望的條件的前述工廠的運轉指標,從而特定出涉及前述預測期間的運轉指標的時序列;和提示涉及前述預測期間的運轉指標的涉及時序列的資訊;在前述特定出時序列的步驟,根據就前述工廠的複數個組件的舉動進行模擬的複數個模型而特定出前述運轉指標,前述複數個模型包括根據涉及該模型所模擬的組件的 輸入值與輸出值的組合而學習的至少一個學習完畢模型。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-033276 | 2019-02-26 | ||
JP2019033276A JP7233964B2 (ja) | 2019-02-26 | 2019-02-26 | 運転指標提示装置、運転指標提示方法、およびプログラム |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202102958A TW202102958A (zh) | 2021-01-16 |
TWI757691B true TWI757691B (zh) | 2022-03-11 |
Family
ID=72239902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109104960A TWI757691B (zh) | 2019-02-26 | 2020-02-17 | 運轉指標提示裝置、運轉指標提示方法及程式 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220138654A1 (zh) |
EP (1) | EP3913452A4 (zh) |
JP (1) | JP7233964B2 (zh) |
TW (1) | TWI757691B (zh) |
WO (1) | WO2020175239A1 (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7081728B1 (ja) | 2022-01-20 | 2022-06-07 | 富士電機株式会社 | 運転支援装置、運転支援方法及びプログラム |
JP2023107636A (ja) * | 2022-01-24 | 2023-08-03 | エヌ・ティ・ティ・コミュニケーションズ株式会社 | 生産支援装置、方法およびプログラム |
JP7501561B2 (ja) | 2022-03-30 | 2024-06-18 | 横河電機株式会社 | プラントシステム、プラント制御方法及びプラント制御プログラム |
JP7384265B1 (ja) * | 2022-12-01 | 2023-11-21 | 富士電機株式会社 | 運転支援装置、運転支援方法及びプログラム |
CN118642453B (zh) * | 2024-08-16 | 2024-10-18 | 武威恒大牧业服务有限公司 | 一种饲料生产线智能调度控制方法、系统、设备及介质 |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1574537A (zh) * | 2003-05-08 | 2005-02-02 | 株式会社日立制作所 | 电力买卖支援系统 |
TW200825963A (en) * | 2006-10-13 | 2008-06-16 | Responsiveload Ltd | Optimisation of use or provision of a resource or service |
CN102331759A (zh) * | 2010-07-09 | 2012-01-25 | 爱默生过程管理电力和水解决方案公司 | 使用迭代专家引擎的优化系统 |
CN102414951A (zh) * | 2010-02-25 | 2012-04-11 | 松下电器产业株式会社 | 供需控制装置、供需控制方法及程序 |
CN102436630A (zh) * | 2010-07-28 | 2012-05-02 | 株式会社东芝 | 电力需求/供应计划装置以及用于该装置的方法 |
TW201246109A (en) * | 2011-05-12 | 2012-11-16 | Air Prod & Chem | Methods for improved production and distribution |
WO2014141435A1 (ja) * | 2013-03-14 | 2014-09-18 | 株式会社日立製作所 | 業務計画調整システムおよび業務計画調整方法 |
CN104950720A (zh) * | 2015-06-16 | 2015-09-30 | 天津大学 | 基于气象预报将需求响应和舒适度反馈结合的供能系统 |
CN104956387A (zh) * | 2012-08-21 | 2015-09-30 | 大宇信息系统股份有限公司 | 通过能源管理对象建模的能源管理方法 |
CN105144529A (zh) * | 2014-04-01 | 2015-12-09 | 株式会社东芝 | 监视装置、控制装置以及控制系统 |
CN105375479A (zh) * | 2015-12-14 | 2016-03-02 | 东南大学 | 一种基于模型预测控制的分布式能源能量管理方法 |
CN105574680A (zh) * | 2015-12-27 | 2016-05-11 | 乌鲁木齐三力元生产力促进中心有限公司 | 一种企业竞争能力诊断的方法及系统 |
US9547285B2 (en) * | 2013-03-08 | 2017-01-17 | Hitachi, Ltd. | Electricity demand regulating system and demand adjustment executive system |
CN108009667A (zh) * | 2017-07-19 | 2018-05-08 | 国家电网公司西南分部 | 一种能源需求总量及结构预测系统 |
TW201833857A (zh) * | 2017-02-10 | 2018-09-16 | 日商東芝股份有限公司 | 運轉計畫擬訂裝置、運轉計畫擬訂方法及記憶媒體 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4496587B2 (ja) | 2000-01-26 | 2010-07-07 | 株式会社Ihi | コジェネプラントの運転方法及びその装置 |
JP4340104B2 (ja) | 2003-08-07 | 2009-10-07 | 新日本製鐵株式会社 | 鉄鋼生産工場の操業最適化方法 |
US8872379B2 (en) * | 2007-11-30 | 2014-10-28 | Johnson Controls Technology Company | Efficient usage, storage, and sharing of energy in buildings, vehicles, and equipment |
US8260469B2 (en) * | 2008-11-04 | 2012-09-04 | Green Energy Corporation | Distributed hybrid renewable energy power plant and methods, systems, and comptuer readable media for controlling a distributed hybrid renewable energy power plant |
CA2749770C (en) * | 2009-01-14 | 2021-07-20 | Integral Analytics, Inc. | Optimization of microgrid energy use and distribution |
JP2011013954A (ja) | 2009-07-02 | 2011-01-20 | Yokogawa Electric Corp | プラント最適運転計画装置 |
US20110231320A1 (en) * | 2009-12-22 | 2011-09-22 | Irving Gary W | Energy management systems and methods |
US8617920B2 (en) | 2010-02-12 | 2013-12-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
WO2012162570A1 (en) * | 2011-05-24 | 2012-11-29 | Cameron D Kevin | System and method for integrating and managing demand/response between alternative energy sources, grid power, and loads |
US9588506B1 (en) * | 2011-10-10 | 2017-03-07 | Autani, Llc | Automation devices, systems, architectures, and methods for energy management and other applications |
WO2014197931A1 (en) * | 2013-06-12 | 2014-12-18 | Applied Hybrid Energy Pty Ltd | Electrical power control method and system |
US9564757B2 (en) * | 2013-07-08 | 2017-02-07 | Eaton Corporation | Method and apparatus for optimizing a hybrid power system with respect to long-term characteristics by online optimization, and real-time forecasts, prediction or processing |
US9404426B2 (en) * | 2013-12-31 | 2016-08-02 | General Electric Company | Methods and systems for enhancing control of power plant generating units |
WO2015155978A1 (ja) * | 2014-04-11 | 2015-10-15 | 日本電気株式会社 | 環境制御システム |
US20170091615A1 (en) * | 2015-09-28 | 2017-03-30 | Siemens Aktiengesellschaft | System and method for predicting power plant operational parameters utilizing artificial neural network deep learning methodologies |
US10241528B1 (en) * | 2015-12-01 | 2019-03-26 | Energyhub, Inc. | Demand response technology utilizing a simulation engine to perform thermostat-based demand response simulations |
JP7015108B2 (ja) | 2016-12-07 | 2022-02-02 | 三菱重工業株式会社 | 運用支援装置、機器運用システム、運用方法、制御方法及びプログラム |
US20190086882A1 (en) * | 2017-09-18 | 2019-03-21 | Ecofactor, Inc. | Message-based demand response systems and methods |
US20190086106A1 (en) * | 2017-09-18 | 2019-03-21 | Ecofactor, Inc. | Systems and methods for fan delay-based variable thermostat settings |
US10459412B2 (en) * | 2017-09-27 | 2019-10-29 | Ademco Inc. | Convergence structure for control and data analytics systems |
WO2019082426A1 (ja) * | 2017-10-23 | 2019-05-02 | 住友電気工業株式会社 | エネルギー管理装置、エネルギー管理システム、及び、エネルギー管理方法 |
US11361392B2 (en) * | 2018-11-01 | 2022-06-14 | Battelle Memorial Institute | Flexible allocation of energy storage in power grids |
-
2019
- 2019-02-26 JP JP2019033276A patent/JP7233964B2/ja active Active
-
2020
- 2020-02-17 TW TW109104960A patent/TWI757691B/zh active
- 2020-02-18 WO PCT/JP2020/006258 patent/WO2020175239A1/ja unknown
- 2020-02-18 EP EP20763762.0A patent/EP3913452A4/en not_active Withdrawn
- 2020-02-18 US US17/431,454 patent/US20220138654A1/en active Pending
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1574537A (zh) * | 2003-05-08 | 2005-02-02 | 株式会社日立制作所 | 电力买卖支援系统 |
TW200825963A (en) * | 2006-10-13 | 2008-06-16 | Responsiveload Ltd | Optimisation of use or provision of a resource or service |
CN102414951A (zh) * | 2010-02-25 | 2012-04-11 | 松下电器产业株式会社 | 供需控制装置、供需控制方法及程序 |
CN102331759A (zh) * | 2010-07-09 | 2012-01-25 | 爱默生过程管理电力和水解决方案公司 | 使用迭代专家引擎的优化系统 |
CN102436630A (zh) * | 2010-07-28 | 2012-05-02 | 株式会社东芝 | 电力需求/供应计划装置以及用于该装置的方法 |
TW201246109A (en) * | 2011-05-12 | 2012-11-16 | Air Prod & Chem | Methods for improved production and distribution |
CN104956387A (zh) * | 2012-08-21 | 2015-09-30 | 大宇信息系统股份有限公司 | 通过能源管理对象建模的能源管理方法 |
US9547285B2 (en) * | 2013-03-08 | 2017-01-17 | Hitachi, Ltd. | Electricity demand regulating system and demand adjustment executive system |
WO2014141435A1 (ja) * | 2013-03-14 | 2014-09-18 | 株式会社日立製作所 | 業務計画調整システムおよび業務計画調整方法 |
CN105144529A (zh) * | 2014-04-01 | 2015-12-09 | 株式会社东芝 | 监视装置、控制装置以及控制系统 |
CN104950720A (zh) * | 2015-06-16 | 2015-09-30 | 天津大学 | 基于气象预报将需求响应和舒适度反馈结合的供能系统 |
CN105375479A (zh) * | 2015-12-14 | 2016-03-02 | 东南大学 | 一种基于模型预测控制的分布式能源能量管理方法 |
CN105574680A (zh) * | 2015-12-27 | 2016-05-11 | 乌鲁木齐三力元生产力促进中心有限公司 | 一种企业竞争能力诊断的方法及系统 |
TW201833857A (zh) * | 2017-02-10 | 2018-09-16 | 日商東芝股份有限公司 | 運轉計畫擬訂裝置、運轉計畫擬訂方法及記憶媒體 |
CN108009667A (zh) * | 2017-07-19 | 2018-05-08 | 国家电网公司西南分部 | 一种能源需求总量及结构预测系统 |
Also Published As
Publication number | Publication date |
---|---|
EP3913452A4 (en) | 2022-03-16 |
TW202102958A (zh) | 2021-01-16 |
JP7233964B2 (ja) | 2023-03-07 |
EP3913452A1 (en) | 2021-11-24 |
WO2020175239A1 (ja) | 2020-09-03 |
JP2020140253A (ja) | 2020-09-03 |
US20220138654A1 (en) | 2022-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI757691B (zh) | 運轉指標提示裝置、運轉指標提示方法及程式 | |
Andryushkevich et al. | Composition and application of power system digital twins based on ontological modeling | |
Stock-Williams et al. | Automated daily maintenance planning for offshore wind farms | |
Moradi et al. | An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming | |
Li et al. | Day-ahead electricity price forecasting in a grid environment | |
Bello et al. | Medium-term probabilistic forecasting of electricity prices: A hybrid approach | |
CN110506289B (zh) | 成套设备评价系统、成套设备评价方法以及程序 | |
JP7099805B2 (ja) | 予測装置、予測システム、予測方法及びプログラム | |
JP2005157793A (ja) | 保守計画の支援システム及び保守計画の支援方法及び保守計画の支援のためのコンピュータプログラム | |
JP2011013954A (ja) | プラント最適運転計画装置 | |
JP7156975B2 (ja) | 運営評価装置、運営評価方法、およびプログラム | |
El Kafazi et al. | Modeling and forecasting energy demand | |
JP2009134468A (ja) | 供給連鎖シミュレーションシステム及び最適設計プログラム | |
JP2001273006A (ja) | エネルギープラントの運用評価システム | |
Zhang et al. | Guided probabilistic reinforcement learning for sampling-efficient maintenance scheduling of multi-component system | |
Markoska et al. | Continuous commissioning of buildings: A case study of a campus building in Denmark | |
KR970004105B1 (ko) | 계량 경제 모델 시뮬레이션 시스템 | |
US20110246257A1 (en) | Multi-Period Financial Simulator of a Process | |
Gonzalez | An intelligent controller for the smart grid | |
JPH06161989A (ja) | 予測装置 | |
JP2005122517A (ja) | エネルギー需要予測方法、エネルギー需要予測装置、エネルギー需要予測プログラムおよび記録媒体 | |
Altuger et al. | Manual assembly line operator scheduling using hierarchical preference aggregation | |
Jaisiva et al. | Real Time Investigation on Congestion Forecasting in De-regulated Power Markets using Artificial Neural Network | |
Markoska et al. | Comparative evaluation of threshold modelling for smart buildings’ performance testing | |
JPH0949896A (ja) | 放射線管理計画立案システム |