TWI755488B - 磁性記憶體及磁性記憶體之記錄方法 - Google Patents

磁性記憶體及磁性記憶體之記錄方法 Download PDF

Info

Publication number
TWI755488B
TWI755488B TW107105910A TW107105910A TWI755488B TW I755488 B TWI755488 B TW I755488B TW 107105910 A TW107105910 A TW 107105910A TW 107105910 A TW107105910 A TW 107105910A TW I755488 B TWI755488 B TW I755488B
Authority
TW
Taiwan
Prior art keywords
magnetic
layer
magnetic memory
voltage
spin
Prior art date
Application number
TW107105910A
Other languages
English (en)
Other versions
TW201838097A (zh
Inventor
大森広之
細見政功
肥後豊
內田裕行
基 長谷
佐藤陽
Original Assignee
日商索尼半導體解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼半導體解決方案公司 filed Critical 日商索尼半導體解決方案公司
Publication of TW201838097A publication Critical patent/TW201838097A/zh
Application granted granted Critical
Publication of TWI755488B publication Critical patent/TWI755488B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/82Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

[課題]提供一種可抑制反轉錯誤之發生,可進行穩定記錄的磁性記憶體。   [解決手段]提供一種磁性記憶體,其係具備:自旋軌道層,係因電流而產生自旋偏極電子;和磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;前記電壓施加層,係在前記自旋軌道層中有前記電流通過的同時,藉由對前記磁性層施加電壓,以使該當磁性層之磁異向性或者是磁制動常數產生變化。

Description

磁性記憶體及磁性記憶體之記錄方法
本揭露係有關於磁性記憶體及磁性記憶體之記錄方法。
從大容量伺服器到行動終端,隨著各種資訊機器的飛躍性的發展,構成其的記憶體或邏輯電路等之元件,也追求高集縮化、高速化、低耗電化等,更高性能化。尤其是非揮發性半導體記憶體之進步係為顯著,例如,作為大容量檔案記憶體的快閃記憶體,正以淘汰硬碟的趨勢而邁向普及。另一方面,從程式碼儲存體用途甚至上看對工作記憶體之適用,企圖置換掉現在一般所被使用的NOR快閃記憶體、DRAM(Dynamic Random Access Memory)等的FeRAM(Ferroelectric random access Memory)、MRAM(Magnetic Random Access Memory)、PCRAM (Phase-Change Random Access Memory)等各式各樣之類型的半導體記憶體之開發,正在邁進。此外,這些其中一部分已經被實用化。
上述其中之1者的MRAM,係藉由使MRAM所具有的磁性記憶體元件之磁性體的磁化狀態改變,電阻就會改變,利用這點而進行資訊的記錄。此種MRAM,係可高速動作,同時,可幾乎無限(1015 次以上)地改寫,再者由於信賴性也很高,因此已經被使用在產業自動化或飛航機等之領域。甚至,MRAM係由於其高速動作與高信賴性,因此期待今後往程式碼儲存體或工作記憶體之發展。
如上述的MRAM之中,關於使用自旋力矩磁化反轉而使磁性體之磁化做反轉的MRAM,係具有高速動作等之上述優點,同時可低耗電化、大容量化,因此被寄予更大的期待。此外,此種利用自旋力矩磁化反轉的MRAM,係被稱為STT-MRAM(Spin Transfer Torque-Magnetic Random Access Memory)(自旋注入型MRAM)。
又,於MRAM中為了朝更大容量化邁進,而被要求促使磁化反轉的反轉電流能夠更加地降低。作為其方法之一而正在研討的有,利用對非磁性金屬通過電流時所誘發的自旋分極所產生的自旋軌道力矩(Spin Orbit Torque)來記錄資訊的SOT-MRAM(Spin Orbit Torque-Magnetic random access Memory)。
SOT-MRAM所具有之磁性記憶體元件的基本構成,係具有:磁化方向會改變而進行資訊記錄的磁性層、對磁性層給予自旋軌道力矩的自旋軌道層、將磁性層中所被記錄之資訊予以讀出之機構。例如,在下記的專利文獻1及非專利文獻1中係揭露,使用自旋軌道力矩,而使磁化方向做反轉的SOT-MRAM。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2014-45196號公報 [非專利文獻]
[非專利文獻1]Applied Physics Letters 104,042406 (2014)   [非專利文獻2]Nature Materials 3172 (2012)
[發明所欲解決之課題]
可是,關於SOT-MRAM所具有之磁性記憶體元件的磁性層,雖然可以藉由面內磁化膜及垂直磁化膜之任意一方來加以形成,但為了SOT-MRAM的大容量化,使用垂直磁化膜是較為理想。作為磁性層是使用垂直磁化膜的情況下,則在自旋軌道層中有電流通過的期間,在該當磁性層中,係使磁化方向做旋轉的力會持續作用。因此,為了使磁性層的磁化方向朝所望之方向穩定地反轉,自旋軌道層中所通過之脈衝電流的電流值與時間寬(脈衝寬),必須嚴密地控制。
然而,於複數個磁性記憶體元件所集縮而成的磁性記憶體中,各磁性記憶體元件之特性係有參差,使磁性層的磁化方向朝所望之方向穩定地反轉所需之電流值及脈衝寬的最佳值,係隨每一磁性記憶體元件而不同。甚至,隨著磁性記憶體所被使用的環境之溫度等,上記最佳值會跟著改變,因此自旋軌道層中所通過之電流的電流值與脈衝寬難以做合適的控制。因此,磁性記憶體元件的磁性層沒有像是所望般地反轉,或者是做了非意圖地反轉,這類反轉錯誤之發生,是難以抑制的。
於是,在本揭露中係提出,可抑制反轉錯誤之發生,可進行穩定記錄的磁性記憶體及磁性記憶體之記錄方法。 [用以解決課題之手段]
若依據本揭露,則可提供一種磁性記憶體,其係具備:自旋軌道層,係因電流而產生自旋偏極電子;和磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;前記電壓施加層,係在前記自旋軌道層中有前記電流通過的同時,藉由對前記磁性層施加電壓,以使該當磁性層之磁異向性或者是磁制動常數產生變化。
若依據本揭露,則可提供一種磁性記憶體,其係具備:複數個磁性記憶體元件,係被配置成矩陣狀,並分別具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和複數個自旋軌道層,係對應於由沿著第1方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件列之每一者而被設置,並因電流而產生自旋偏極電子;和複數個電壓施加層,係對應於由沿著與前記第1方向正交之第2方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件行之每一者而被設置,對前記各磁性記憶體元件行中所含之前記複數個磁性記憶體元件的前記磁性層之每一者,隔著前記絕緣層而施加電壓;前記電壓施加層,係在前記自旋軌道層中有前記電流通過的同時,藉由對對應之前記磁性記憶體元件的前記磁性層施加電壓,以使該當磁性層之磁異向性或者是磁制動常數產生變化。
若依據本揭露,則可提供一種磁性記憶體之記錄方法,其中,前記磁性記憶體係具有:自旋軌道層,係因電流而產生自旋偏極電子;和磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;該磁性記憶體之記錄方法係含有以下步驟:藉由前記電壓施加層,以使得前記磁性層的磁異向性會降低、或者是使磁制動常數會降低的方式,對前記磁性層施加第1電壓,同時,在前記自旋軌道層中通過電流。
若依據本揭露,則可提供一種磁性記憶體之記錄方法,其中,前記磁性記憶體係具有:自旋軌道層,係因電流而產生自旋偏極電子;和磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;該磁性記憶體之記錄方法係含有以下步驟:在前記自旋軌道層中通過電流;在晚於前記電流、或者是前記電流減少之後,藉由前記電壓施加層,以使得前記磁性層的磁異向性會提高、或者是使磁制動常數會提高的方式,對前記磁性層施加第3電壓。
若依據本揭露,則可提供一種磁性記憶體之記錄方法,其中,前記磁性記憶體係具有:複數個磁性記憶體元件,係被配置成矩陣狀,並分別具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和複數個自旋軌道層,係對應於由沿著第1方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件列之每一者而被設置,並因電流而產生自旋偏極電子;和複數個電壓施加層,係對應於由沿著與前記第1方向正交之第2方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件行之每一者而被設置,對前記各磁性記憶體元件行中所含之前記複數個磁性記憶體元件的前記磁性層之每一者,隔著前記絕緣層而施加電壓;該磁性記憶體之記錄方法係含有以下步驟:藉由控制由前記電壓施加層對前記磁性層所施加的電壓,來選擇要記錄資訊的前記磁性記憶體元件。 [發明效果]
如以上說明,若依據本揭露,則可抑制反轉錯誤之發生,可進行穩定記錄。
此外,上記效果並不一定是限定性的,亦可連同上記效果、或取代上記效果,而達成本說明書所揭露之效果、或根據本說明書所能掌握的其他效果。
以下,一邊參照添附圖式,一邊詳細說明本揭露的理想實施形態。此外,於本說明書及圖面中,關於實質上具有同一機能構成的構成要素,係標示同一符號而省略重複說明。
又,本說明書及圖式中,有時候係將實質上具有相同或類次之機能構成的複數構成要素,在同一符號之後標示不同數字來做區別。但是,在沒有必要特別區別實質上具有相同或類似之機能構成的複數構成要素之每一者的時候,就僅表示同一符號。又,關於不同實施形態的類似之構成要素,有時候係在同一符號之後標示不同的英文字母來做區別。但是,在沒有必要特別區別類似之構成要素之每一者的時候,就僅標示同一符號。
然後,以下說明中所參照的圖式,係為了本揭露之一實施形態之說明與促進其理解而為的圖式,為了便於理解,圖中所示的形狀或尺寸、比例等,有的時候是和實際情形不同。甚至,圖中所示的磁性記憶體等,係可參酌以下的說明與公知技術,而做適宜地設計變更。又,在以下的說明中,磁性記憶體元件等之層積結構的上下方向係對應於,將磁性記憶體元件所被設置的基板上的面視為上方時的相對方向,有的時候會和實際依照重力加速度的上下方向不同。
再者,於以下的說明中,關於磁化方向(磁矩)或磁異向性的說明之際,為了方便起見,會採用「垂直方向」(對膜面垂直的方向)及「面內方向」(對膜面平行的方向)等用語。但是,這些用語,並不一定意味著磁化的嚴謹之方向。例如,「磁化方向係為垂直方向」或「具有垂直磁異向性」等文字係意味著,相較於面內方向之磁化,垂直方向之磁化是處於比較優位的狀態。例如,「磁化方向係為面內方向」或「具有面內磁異向性」等文字係意味著,相較於垂直方向之磁化,面內方向之磁化是處於比較優位的狀態。
此外,說明是按照以下順序進行。   1.SOT-MRAM的概略    1.1.SOT-MRAM的概略    1.2.SOT-MRAM之結構    1.3.SOT-MRAM的動作   2.本揭露的技術背景    2.1.本揭露的技術背景    2.2.關於磁性層100的磁異向性、磁制動常數會因為電壓而改變的現象   3.關於本揭露之一實施形態    3.1.磁性記憶體1的基本結構    3.2.磁性記憶體1之記錄方法    3.3.具有複數個磁性記憶體元件10的磁性記憶體1之記錄方法    3.4.磁性記憶體1之製造方法   4.實施例   5.總結   6.補充
<<1.SOT-MRAM的概略>> <1.1.SOT-MRAM的概略>   STT-MRAM係具有高速動作等之優點,同時可低耗電化、大容量化,因此被寄予更大的期待。例如,於此種STT-MRAM中,為了使其產生自旋力矩磁化反轉而必須的電流之絕對值,在50nm左右之尺度的磁性記憶體元件中,會是100μA以下。然而,於MRAM中為了朝更大容量化邁進,而被要求更加地降低反轉電流。於是,作為其方法之一,SOT-MRAM正被研討。
SOT-MRAM所具有之磁性記憶體元件的基本構成,如之前所說明,係具有:對磁性層給予自旋軌道力矩的自旋軌道層;和藉由從自旋軌道層所被給予之自旋軌道力矩而使磁化方向產生變化以進行資訊記錄的磁性層;和將磁性層中所被記錄之資訊予以讀出的機構。詳言之,資訊的記錄,係藉由在自旋軌道層中通過電流所引發的自旋偏極電子,注入至磁化方向未被固定之磁性層(此亦稱為自旋注入力矩),而對磁性層的磁矩給予自旋力矩,使磁性層的磁化方向做反轉,藉此而為之。因此,藉由在自旋軌道層中通過所定之閾值以上之電流,就可使上記磁性層的磁化方向反轉。此外,磁性記憶體元件的1/0之記錄,係可藉由改變電流之極性而為之。
首先,關於SOT-MRAM之結構、與SOT-MRAM之動作的細節,參照圖1來說明。圖1係為用來說明SOT-MRAM之結構及動作的說明圖,詳言之,圖1的左側係表示SOT-MRAM的1個磁性記憶體元件的基本結構,圖1的右側係表示電子自旋的狀態或自旋力矩的運作方式。此外,圖1的右側所示的虛線之圓柱係圖示了磁性記憶體元件10的磁性層100。
<1.2.SOT-MRAM之結構>   首先,參照圖1,說明SOT-MRAM之結構。如圖1的左側所示,SOT-MRAM係具有:往一方向延伸的自旋軌道層20、和被設在自旋軌道層20之上的磁性記憶體元件10。又,在磁性記憶體元件10,係在與自旋軌道層20銜接的面所對向的面,被連接有電極50。
往一方向延伸設置的自旋軌道層20,係由薄的金屬材料所形成。自旋軌道層20,係藉由使通過自旋軌道層20的電子發生自旋分極,以生成自旋偏極電子。自旋軌道層20,係藉由將已生成之自旋偏極電子注入至磁性記憶體元件10的後述之磁性層100,而對磁性層100之磁矩給予自旋力矩,就可使磁性層100的磁化方向反轉。
磁性記憶體元件10,係如圖1所示,具有絕緣層102是被2個磁性層100、104所夾住之結構,並被設在自旋軌道層20之上。具體而言,磁性記憶體元件10係具有,從銜接於自旋軌道層20之一側起依序層積:作為磁化方向會產生變化以記錄資訊之記錄層的磁性層100、絕緣層102、作為磁化方向為固定之參照層的磁性層104而成的層積結構。此外,作為參照層的磁性層104係作為,從作為記錄層的磁性層100讀出資訊的機構之一部分,而發揮機能。
亦即,磁性記憶體元件10,係亦可為所謂的穿隧接合元件。詳言之,磁性記憶體元件10,係在磁性層100、104之間被施加有電壓的情況下,藉由穿隧磁阻效應,就可在絕緣層102中,通過穿隧電流。此時,隨著磁性層100及磁性層104之每一者的磁化方向係為平行、還是反平行,絕緣層102的電阻會產生變化。又,與自旋軌道層20銜接的磁性層100的磁化方向,係可藉由從自旋軌道層20所被注入的自旋偏極電子來做控制,因此磁性記憶體元件10,係可隨著磁性層100的磁化方向及磁性層104的相對角度,來記錄資訊。
電極50,係與磁性記憶體元件10電性連接而被設置,從磁性記憶體元件10讀出資訊之際,會對磁性記憶體元件10通過電流。
亦即,在SOT-MRAM的磁性記憶體元件10中可以說成是,磁性層100係為了記錄資訊而發揮機能的領域,絕緣層102及磁性層104係作為為了將磁性層100中所被記錄之資訊予以讀出所需之機構而發揮機能的領域。
<1.3.SOT-MRAM的動作>   接下來,說明對上述的SOT-MRAM的資訊之記錄動作、及資訊之讀出動作。
(記錄動作)   如圖1的左側所示,在對SOT-MRAM的磁性記憶體元件10記錄資訊的情況下,沿著表示自旋軌道層20之延伸方向的箭頭900而往自旋軌道層20會有電流通過。此外,該當電流之方向係亦可為一方向,也可為逆方向。
通過了自旋軌道層20的電子,係如圖1的右側所示,會在自旋軌道層20之上下分極成不同的自旋方向。然後,在自旋軌道層20之上已經分極的自旋偏極電子800,會被注入至磁性記憶體元件10的磁性層100。因此,在磁性層100中,會因為所被注入的自旋偏極電子800,磁性層100之磁矩(磁化方向)600就會受到自旋力矩700。因此,在從自旋偏極電子800所受到的自旋力矩700超過了閾值的情況下,則磁性層100的磁矩600係會開始歲差運動,並反轉。如此,在SOT-MRAM中,藉由自旋軌道層20、與磁性記憶體元件10之磁性層100的自旋軌道相互作用,可使磁性層100的磁化方向反轉,可在該當磁性層100中記錄資訊。
(讀出動作)   又,如圖1的左側所示,在從SOT-MRAM的磁性記憶體元件10讀出資訊的情況下,沿著磁性記憶體元件10的層積方向會有電流通過。具體而言,係朝箭頭902所示的方向,從電極50通過磁性記憶體元件10而往自旋軌道層20會有電流流過。此外,該當電流之方向係亦可為一方向,也可為逆方向。
在磁性記憶體元件10中,係會根據夾住絕緣層102的磁性層100、104的磁化方向是平行還是反平行,藉由穿隧磁阻效應而導致絕緣層102之電阻產生變化。因此,在SOT-MRAM中,藉由測定磁性記憶體元件10的電阻,就可偵測磁性層100的磁化方向。因此,在SOT-MRAM中,藉由偵測磁性記憶體元件10的電阻,就可偵測磁性層100的磁化方向,基於其結果,而可從磁性層100讀出資訊。
再者,作為磁性層100是採用垂直磁化膜的情況下,則如圖1的右側所示,由於磁性層100的磁化方向與上記自旋偏極電子800的自旋之方向係為正交,因此自旋力矩700可無浪費地被給予至磁性層100的磁矩。因此,於SOT-MRAM中,例如反轉速度係可快到1nsec以下,具有反轉電流很少的此一特徵。又,由上述的說明可知,於SOT-MRAM中,資訊的記錄時與讀出時的電流之路徑係為彼此互異。
<<2.本揭露的技術背景>> <2.1.本揭露的技術背景>   而如之前所說明,關於SOT-MRAM所具有的磁性記憶體元件10的磁性層100,係可藉由面內磁化膜及垂直磁化膜之任意一方來形成。然而,為了更加提高記錄密度,將磁性記憶體元件10之形狀設成從基板之上方觀看為圓形,並且於此種形狀的磁性記憶體元件10中,將可獲得較強之異向性的垂直磁化膜,當作磁性層100來使用,較為理想。
然而,作為磁性層100是使用垂直磁化膜的情況下,則在自旋軌道層20中有電流通過的期間,使磁性層100的磁化方向旋轉的力,會持續對磁性層100作用。因此,為了使磁性層100的磁化方向朝所望之方向穩定地反轉,自旋軌道層20中所通過之電流的電流值與通過電流的時間寬(脈衝寬),必須嚴密地控制。
甚至,在將複數個磁性記憶體元件10予以集縮而成的磁性記憶體中,會因為製造參差,導致各磁性記憶體元件10的特性會有所參差。因此,為了使各磁性記憶體元件10所具有的磁性層100的磁化方向朝所望之方向穩定地反轉所需之電流的電流值及脈衝寬之最佳值,係會隨著每一磁性記憶體元件10而不同。由於如此原因,導致難以使1個磁性記憶體中所含之複數個磁性記憶體元件10的磁性層100的磁化方向都一致地反轉,其結果為,磁性記憶體的大容量化是有極限的。又,隨著磁性記憶體所被使用的環境之溫度等,上記最佳值會跟著改變,因此實際使用磁性記憶體之際,上述的電流值及脈衝寬難以做合適的控制。因此,磁性記憶體元件10的磁性層100沒有像是所望般地反轉,或者是做了非意圖地反轉,這類反轉錯誤之發生,是難以抑制的。
甚至,即使可對磁性記憶體元件10以最佳的電流值及脈衝寬來給予電流,並使磁性層100的磁化方向成功反轉的情況下,磁性層100的磁化方向仍不會立刻穩定下來。然後,會因為熱運動等,導致磁性層100的反轉方向變回去這類的反轉錯誤發生。
然後,參照圖2,說明磁性層100的磁化方向之反轉。圖2係表示對自旋軌道層給予了脈衝電流之後的磁性層100的磁化方向之時間變化之一例。詳言之,圖2係圖示了,在自旋軌道層20上層積了磁性層100的試料中,磁性層100的磁化方向之面內X軸方向上的磁化座標(mx)與垂直Z軸方向上的磁化座標(mz)之時間變化,在下方係圖示了,被給予至自旋軌道層20的電流脈衝之施加波形。
如圖2所示,藉由從被給予了脈衝電流之自旋軌道層20所給予的自旋力矩,磁性層100的磁化方向會在非常短的時間(1奈秒以下)發生磁化反轉(圖2中的mz)。然而,磁性層100的磁化方向,係在磁化反轉後,會因為反轉的反作用力,而在短暫的期間(數奈秒至數十奈秒),持續進行歲差運動(圖2中的mx)。然後,歲差運動中,由於能量是比穩定狀態還高,因此磁性層100的磁化方向,係有可能會因為熱運動等之影響而從反轉狀態變回反轉前之狀態。
於是,為了避免如上述的磁化方向之變回,使磁性層100的磁化方向穩定地反轉,考慮合併使用外部磁場與自旋轉移力矩。然而,若依據這些方法,則會導致磁性記憶體的消耗電力之增加,甚至也會導致磁性記憶體元件10的保磁力特性之劣化。
本發明人們,係有鑑於此種狀況,針對要能抑制反轉錯誤之發生,可實現穩定之磁化反轉的SOT-MRAM,不斷進行深入研究。在進行該當研究中,本發明人們係著眼於以下說明的磁性層100的磁異向性、磁制動常數會因為電壓而改變的現象,而終於創造出本揭露的一實施形態。以下說明本發明人們所著眼的現象。
<2.2.關於磁性層100的磁異向性、磁制動常數會因為電壓而改變的現象>   首先說明,一旦對強磁性體隔著絕緣體而施加電壓,則隨著所施加的電壓,強磁性體的磁異向性會改變,此事已為人知(參照非專利文獻2)。
然後,本發明人們再繼續研究下去發現,藉由如上述般地對強磁性體施加電壓,除了磁異向性會變化以外,強磁性體的磁制動常數也會變化。於是,本發明人們係想到了,藉由使自旋力矩所致的磁化方向之反轉所涉及的磁異向性及磁制動常數隨著電壓施加而產生變化,也許可以獲得穩定的磁化反轉。此外,此處所謂的磁制動常數,係為表示磁化運動之摩擦的阻尼常數等,磁制動常數越小,則表示磁化方向之反轉越容易。
於是,本發明人們係研究了,磁性記憶體元件中的電壓施加所致的垂直磁異向性(Hk)及磁制動常數(α)之變化。此處,作為試料的磁性記憶體元件係具有:在Ta所成之基底膜上,依序層積了膜厚1.2nm之CoFeB膜(對應於磁性層100)、膜厚2nm之MgO膜、膜厚3nm之CoFe膜、膜厚0.8nm之Ru膜、膜厚3nm之CoFe膜、及由Ru所成之保護膜而成的層積結構。此外,CoFeB膜係因為與MgO之界面異向性而成為垂直磁化膜,CoFe膜係為面內磁化膜。又,CoFeB膜的垂直磁異向性(Hk)及磁制動常數(α),係根據強磁性共鳴訊號而求出。圖3中圖示了,CoFeB膜(磁性層100)的垂直磁異向性(Hk)及磁制動常數(α)的電壓施加所致之變化之一例。於圖3中,橫軸係表示所被施加的電壓Va,左側的縱軸係表示垂直磁異向性(Hk),右側的縱軸係表示磁制動常數(α)。此外,關於所被施加的電壓係為,上記磁性記憶胞之上所被設置之電極的電壓是比被設在下方之電極的電壓還高的情況,表示是正方向。
如圖3所示可知,磁性記憶體元件的CoFeB膜(磁性層100)的垂直磁異向性(Hk)及磁制動常數(α),係隨著所施加的電壓而變化。詳言之,將電壓以正方向做施加的情況下,則垂直磁異向性(Hk)及磁氣控制常數(α)係會降低。又,將電壓以負方向做施加的情況下,則垂直磁異向性(Hk)及磁氣控制常數(α)係會提高。
因此,根據如此的研究結果,本發明人們係想到,藉由將電壓以正方向做施加,垂直磁異向性及磁氣控制常數會降低,因此能夠容易地進行磁化方向之反轉。又,本發明人們係想到,藉由相反地往負方向施加電壓,會使垂直磁異向性及磁氣控制常數上升,因此可減少磁化方向之搖擺(歲差運動),可將因熱運動等之影響而從反轉狀態變回反轉前之狀態的可能性,抑制成較低。
於是,本發明人們,係藉由利用此種電壓施加所致的磁異向性及磁制動常數之控制,而終於創造出,可抑制反轉錯誤之發生,可實現穩定之磁化反轉的本揭露之一實施形態。以下詳細說明如此的本揭露之一實施形態。
<<3.關於本揭露之一實施形態>> <3.1.磁性記憶體1的基本結構>   首先,參照圖4及圖5,說明本實施形態所述之磁性記憶體1的基本結構。圖4係本實施形態所述之磁性記憶體1之結構予以模式性表示的斜視圖,圖5係本實施形態所述的磁性記憶體元件10之結構予以模式性表示的剖面圖。
如圖4所示,本實施形態所述之磁性記憶體1的基本結構,係具有:自旋軌道層20、被設在自旋軌道層20之上的磁性記憶體元件10、被設在磁性記憶體元件10之上的電極層(電壓施加層)40。又,如圖5所示,磁性記憶體元件10係具有:被設在自旋軌道層20之上的磁性層100、被設在磁性層100之上的絕緣層102。又,作為磁性記憶體元件10的資訊讀出機構之一部分,在電極層40之下,設有磁性層(其他磁性層)104。
自旋軌道層20,係如之前所說明,藉由使通過自旋軌道層20的電子做自旋分極,而會生成自旋偏極電子,將已生成之自旋偏極電子,注入至磁性層100。
自旋軌道層20,係由薄到會讓通過的電子發生自旋分極之程度的極薄之導電材料來形成。因此,自旋軌道層20,係以自旋分極效率高的導電材料來形成較為理想,例如是以,由Al、Ti、V、Cr、Mn、Cu、Zn、Ag、Hf、Ta、W、Re、Pt、Au、Hg、Pb、Si、Ga、GaMn、及GaAs所成之群組中所選擇出來的至少1種以上之導電材料來形成,較為理想。又,自旋軌道層20中係還可添加,由Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Cd、In、Sb、Te、Hf、Ta、W、Re、Os、Ir、Pt、Ag、Au、Hg、Tl、Pb、Bi、Po、At、V、Cr、Mn、Fe、Co、Ni、P、S、Zn、Ga、Ge、As、Se、I、Lu、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、及Yb所成之群組中所選擇出來的至少1種以上之元素。甚至,在自旋軌道層20之下方還可設置基底層(圖示省略),來控制自旋軌道層20之配向。
磁性層100,係以強磁性體材料來形成,被設在自旋軌道層20之上。該當磁性層100的磁化方向,係未被固定,會隨著所記錄的資訊而變化。詳言之,磁性層100係被設置成,其磁化方向係會反轉成與後述的磁性層104的磁化方向平行或反平行之任一者。又,在磁性層100與自旋軌道層20之間,係設有金屬層(圖示省略)或薄的絕緣層(圖示省略)。
磁性層100係以例如,由Co、Fe、B、Al、Si、Mn、Ga、Ge、Ni、Cr及V所成之群組中所選擇出來的複數種元素加以組合之組成的強磁性體材料來形成,較為理想。又,磁性層100,係可由單層來構成,亦可由絕緣層與磁性層之層積體的方式來構成。
絕緣層102,係以絕緣體材料來形成,被設在磁性層100之上。此外,絕緣層102,係被夾在磁性層100、與後述的磁性層104之間,磁性記憶體元件10係可成為展現穿隧磁阻效應的穿隧接合元件而發揮機能。
絕緣層102係可由例如:MgO、Al2 O3 、SiO2 、SrTiO2 、AlLaO3 等之各種絕緣體來形成。又,絕緣層102是以MgO來形成的情況下,由於可使作為穿隧接合元件的磁性記憶體元件10之磁阻變化率(亦即MR比)變得較高,因此以MgO來形成,係為理想。
磁性層104,係以強磁性體材料來形成,被設在絕緣層102之上。磁性層104的磁化方向,係作為相對於磁性層100之磁化方向的基準,而被固定成所定方向。磁性層104,係由於是作為磁性記憶體元件10中所被記錄之資訊的基準,因此以磁化方向難以變化的強磁性體材料來形成,較為理想。例如,磁性層104,係亦可以用保磁力或磁性阻尼常數較大的強磁性材料來形成。又,磁性層104,係亦可以較厚的膜厚而被形成,藉此以使磁化方向難以變化。
例如,磁性層104係以例如,由Co、Fe、B、Al、Si、Mn、Ga、Ge、Ni、Cr及V所成之群組中所選擇出來的複數種元素加以組合之組成的強磁性體材料來形成,較為理想。此外,磁性層104,係可由單層來構成,亦可由絕緣層與磁性層之層積體的方式來構成。
電極層40,係為對磁性層100隔著絕緣層102而施加電壓的電極,被設在絕緣層102之上方,亦即磁性層104之上。又,電極層40係由非磁性金屬材料或磁性金屬材料所形成。此外,亦可藉由以磁性金屬來形成電極層40,而省略上述的磁性層104之形成。藉此,電極層40與磁性層100之間就可形成強磁性穿隧接合,可使磁性記憶體元件10成為展現穿隧磁阻效應的穿隧接合元件而發揮機能。因此,藉由使用電極層40,不只可對磁性層100施加電壓,還可從磁性記憶體元件10讀出資訊。
又,磁性層100的垂直磁異向性及磁制動常數的電壓所致之變化率之大小,係也包含其極性,會隨著磁性記憶體元件10之構成而變化,因此以使得變化率較大的方式,來選擇磁性記憶體元件10之各層的材料、膜厚,較為理想。又,同樣地,以使得變化率較大的方式,來選擇磁性記憶體元件10之大小、形狀等,較為理想。再者,電壓所致的磁性層100的垂直磁異向性之變化率之大小,係也會隨著磁性層100與絕緣層102之界面狀態而變化,因此以使得變化率較大的方式,來選擇磁性層100及絕緣層102之材料、加工等,較為理想。又,同樣地,以使得變化率較大的方式,來選擇被設在磁性層100之下的基底膜,較為理想。
此外,於磁性記憶體1中,係亦可複數具有上述的圖4的基本結構。此情況下,在1個自旋軌道層20之上,沿著自旋軌道層20的延伸方向(第1方向),設置複數個磁性記憶體元件10。又,在各磁性記憶體元件10上,為了對各磁性記憶體元件10的磁性層100施加電壓,分別設置對應的電極層40。例如,複數個電極層40,係沿著與自旋軌道層20之延伸方向正交之方向(第2方向)而延伸(參照圖8)。
又,磁性記憶體1係亦可具有如下的結構。例如,磁性記憶體1係具有,在基板上被矩陣狀配置的複數個磁性記憶體元件10。然後,於該當磁性記憶體1中,複數個自旋軌道層20,係作為沿著第1方向排列之複數個磁性記憶體元件10所成的磁性記憶體元件列之每一者所共通的自旋軌道層,而沿著第1方向而被延伸設置。又,複數個電極層40,係作為沿著第2方向排列之複數個磁性記憶體元件10所成的磁性記憶體元件行之每一者所共通的金屬層,而沿著第2方向而被延伸設置(參照圖10)。
如此,在1個自旋軌道層20上,設有複數個磁性記憶體元件10,就可實現設置有高密度之磁性記憶體元件10的磁性記憶體1。
此外,於本實施形態中,磁性記憶體1不限定於係圖8及圖10所示的結構,本實施形態所述之磁性記憶體1,係亦可具有更多的磁性記憶體元件10。
<3.2.磁性記憶體1之記錄方法>   接著,關於圖4所示的本實施形態所述之磁性記憶體1中的記錄方法,參照圖6來加以說明。圖6係用來說明圖4所示的磁性記憶體1之記錄方法的說明圖。詳言之,在圖6的下側係圖示了,對磁性記憶體元件10的自旋軌道層20所給予的脈衝電流及對電極層40所給予的脈衝電壓之施加波形。然後,在圖6的上側係圖示了,具有此種施加波形之電流及電壓被施加時,磁性記憶體元件10的磁性層100之面內X軸方向上的磁化座標(mx)與垂直方向(Z軸方向)上的磁化座標(mz)之時間變化。
於本實施形態中,係在記錄之際,如圖6的下側所示,使用電極層40,以使得磁性層100的磁異向性及磁制動常數降低的方式,將電極層40側是比磁性記憶體元件10之下側的電極還高的正方向之電壓(第1電壓),對磁性層100做施加。此外,於以下的說明中,會使磁性層100的磁異向性及磁制動常數降低的電壓之方向,稱作反轉促進方向。又,同時,在自旋軌道層20中,係通過脈衝狀之脈衝電流。然後,使用電極層40,晚於上記脈衝電流,或者是,在上記脈衝電流減少後,以使得磁性層100的磁異向性及磁制動常數上升的方式,將電極層40側是比磁性記憶體元件10之下側之電極還低的負方向之電壓(第2電壓),對磁性層100做施加。此外,於以下的說明中,會使磁性層100的磁異向性及磁制動常數上升的電壓之方向,稱作反轉抑制方向。
如圖6的上側所示可知,藉由電極層40將反轉促進方向之電壓對磁性層100做施加,相較於圖2的情況,磁性層100的磁化方向會迅速地反轉(圖6中的mz)。然後,如圖6的上側所示可知,在磁化方向反轉後,藉由電極層40將反轉抑制方向之電壓對磁性層100做施加,磁化反轉後的歲差運動就會迅速地收斂(圖6中的mx)。因此,若依據本實施形態,則可迅速地使磁化方向反轉,而且還可縮小磁化方向之搖擺(歲差運動),可將因熱運動等之影響導致從反轉狀態變回反轉前之狀態的可能性,抑制成較低。其結果為,若依據本實施形態,則可抑制反轉錯誤之發生,可使磁性記憶體元件10的磁性層100的磁化方向穩定地反轉。
又,圖6所示的例子,係為本實施形態所述之記錄方法之一例,本實施形態係可以包含其他變形例。以下,關於本實施形態所述之記錄方法之變形例1~3,參照圖7來說明。圖7係用來說明本揭露之一實施形態所述之磁性記憶體1之記錄方法之變形例的說明圖。
(變形例1)   變形例1,係如圖7的左側所示,在記錄之際,係在自旋軌道層20中通過脈衝電流。然後,使用電極層40,晚於上記脈衝電流,或者是,在上記脈衝電流減少後,將反轉抑制方向之電壓對磁性層100做施加。如此,藉由電極層40將反轉抑制方向之電壓(第3電壓)對磁性層100做施加,就可使磁化反轉後的歲差運動迅速地收斂。
(變形例2)   變形例2,係如圖7的中央所示,在記錄之際,對自旋軌道層20施加脈衝電流的同時,使用電極層40,將反轉促進方向之電壓,對磁性層100做施加。如此,藉由電極層40將反轉促進方向之電壓對磁性層100做施加,就可使磁性層100的磁化方向迅速地反轉。
(變形例3)   變形例3,係如圖7的右側所示,在記錄之際,對自旋軌道層20施加脈衝電流的同時,使用電極層40,將反轉促進方向之電壓,對磁性層100做施加。接著,在自旋軌道層20中,通過帶有與上記脈衝電流相反極性的負方向之脈衝電流,同時,使用電極層40而將反轉抑制方向之電壓,對磁性層100做施加。如此,對自旋軌道層20施加脈衝電流的同時,也藉由電極層40對磁性層100施加電壓,也可以使磁化反轉後的歲差運動迅速地收斂。
此外,所被施加的電流及電壓之極性,係可隨著磁性記憶體元件10之結構、材料等,而為顛倒。又,所被施加的電流及電壓之脈衝形狀,係亦可為方形波,也可為梯形,也可帶有某種程度的過沖。
<3.3.具有複數個磁性記憶體元件10的磁性記憶體1之記錄方法>   目前為止所說明的記錄方法,係為具有1個磁性記憶體元件10的磁性記憶體1中的記錄方法。然而,本實施形態所述之磁性記憶體1,係亦可具有複數個磁性記憶體元件10。即使對於此種磁性記憶體1,藉由控制對各磁性記憶體元件10所施加的電壓,也可對所望之磁性記憶體元件10,選擇性地記錄資訊。於是,關於此種磁性記憶體1之記錄方法,說明如下。
(記錄方法1)   有關具有複數個磁性記憶體元件10的磁性記憶體1之記錄方法,參照圖8及圖9來說明。圖8係具有本實施形態所述之磁性記憶體元件10的磁性記憶體1之結構予以模式性表示的斜視圖,圖9係用來說明圖8所示的磁性記憶體1之記錄方法的說明圖。詳言之,在圖9的上側係圖示了進行記錄的磁性記憶體元件10,在中段係圖示了自旋軌道層20的脈衝電流之施加波形,在下段係圖示了對複數個電極層40a、40b、40c(參照圖8)所施加的電壓Va、Vb、Vc之施加波形。
首先,如圖8,在1個自旋軌道層20之上,沿著自旋軌道層20的延伸方向,設置3個磁性記憶體元件10a、10b、10c。又,在各磁性記憶體元件10a、10b、10c上,係分別設有電極層40a、40b、40c。
於圖8所示的磁性記憶體1中,在只對磁性記憶體元件10a進行記錄的情況下,則如圖9的左側所示,在對自旋軌道層20施加脈衝電流的同時,藉由磁性記憶體元件10a所對應之電極層40a,將反轉促進方向之電壓(第4電壓),對磁性記憶體元件10a的磁性層100做施加。然後,晚於上記脈衝電流,或者是,在上記脈衝電流減少後,藉由電極層40a,將反轉抑制方向之電壓,對磁性記憶體元件10a的磁性層100做施加。藉此,可使磁性記憶體元件10a的磁性層100的磁化方向迅速地反轉,而且還可縮小磁化方向的歲差運動,可將因熱運動等之影響導致從反轉狀態變回反轉前之狀態的可能性,抑制成較低。其結果為,可使磁性記憶體元件10a的磁性層100的磁化方向穩定地反轉。
又,關於未進行記錄的磁性記憶體元件10b、10c,係在對電極層40a施加電壓的期間,使用對應之電極層40b、40c,將反轉抑制方向之電壓(第5電壓),對磁性記憶體元件10b、10c的磁性層100做施加。藉此,即使對磁性記憶體元件10b、10c的強磁性層100給予自旋力矩,仍會因為反轉抑制方向之電壓而導致磁性層100的磁化方向難以反轉,因此可防止非意圖性地在磁性記憶體元件10b、10c中記錄下資訊。亦即,若依據本實施形態,則可選擇性地只對所望之磁性記憶體元件10a記錄資訊。
此外,在只對圖8中的磁性記憶體元件10b、只對磁性記憶體元件10c、只對磁性記憶體元件10a、10b、及對磁性記憶體元件10a~10c進行記錄的情況下,係如圖9所示,只要和上述同樣地使用所對應之電極層40a~40c,將反轉促進方向之電壓或反轉抑制方向之電壓,對各磁性記憶體元件10a~10c的磁性層100做施加即可。此外,本實施形態中的電壓之施加波形,係不限定於圖9所示的例子,亦可為其他例。
(記錄方法2)   之先所說明的磁性記憶體1,係具有1個自旋軌道層20,但本實施形態所述之磁性記憶體1,係亦可具有複數個自旋軌道層20。即使對於此種磁性記憶體1,藉由控制對磁性記憶體元件10所施加的電壓,也可對所望之磁性記憶體元件10,選擇性地記錄資訊。於是,關於此種磁性記憶體1之記錄方法,參照圖10及圖11說明如下。圖10係具有本實施形態所述之磁性記憶體元件10的磁性記憶體1之結構予以模式性表示的斜視圖,圖11係用來說明圖10所示的磁性記憶體1之記錄方法的說明圖。詳言之,在圖11的上側係圖示了進行記錄的磁性記憶體元件10,在中段係圖示了自旋軌道層20a、20b、20c的脈衝電流ia、ib、ic之施加波形,在下段係圖示了對複數個電極層40a、40b、40c(參照圖10)所施加的電壓Va、Vb、Vc之施加波形。
首先,如圖10所示,磁性記憶體1係具有,在基板上被矩陣狀設置的9個磁性記憶體元件10a~10i。又,磁性記憶體1係具有:由複數個磁性記憶體元件10a~10c所成之磁性記憶體元件列所共通之自旋軌道層20a、由複數個磁性記憶體元件10d~10f所成之磁性記憶體元件列所共通之自旋軌道層20b、由複數個磁性記憶體元件10g~10i所成之磁性記憶體元件列所共通之自旋軌道層20c。然後,磁性記憶體1係具有:由複數個磁性記憶體元件10a、10d、10g所成之磁性記憶體元件行所共通之電極層40a、由複數個磁性記憶體元件10b、10e、10h所成之磁性記憶體元件行所共通之電極層40b、由複數個磁性記憶體元件10c、10f、10i所成之磁性記憶體元件行所共通之電極層40c。
於圖10所示的磁性記憶體1中,在只對磁性記憶體元件10e進行記錄時,係對磁性記憶體元件10e所對應之自旋軌道層20b施加脈衝電流,同時,使用磁性記憶體元件10e所對應之電極層40b,將反轉促進方向之電壓,對磁性記憶體元件10e的磁性層100做施加。然後,晚於上記脈衝電流,或者是,在上記脈衝電流減少後,使用電極層40b,將反轉抑制方向之電壓,對磁性記憶體元件10e的磁性層100做施加。藉此,可使磁性記憶體元件10e的強磁性層100的磁化方向迅速地反轉,而且還可縮小磁化方向的歲差運動,可將因熱運動等之影響導致從反轉狀態變回反轉前之狀態的可能性,抑制成較低。其結果為,可使磁性記憶體元件10e的磁性層100的磁化方向穩定地反轉。
又,至於未進行記錄的其他磁性記憶體元件10a~10d、10f~10i,係在對自旋軌道層20b及電極層40a施加電流及電壓的期間,對自旋軌道層20a、20c係不施加脈衝電流,然後還使用電極層40a、40c,將反轉抑制方向之電壓,對磁性記憶體元件10d、10g的磁性層100做施加。藉此,對未被施加電流之自旋軌道層20a、20b上的磁性記憶體元件10a~c、10g~10i的磁性層100係不會給予自旋力矩,因此這些磁性層100的磁化方向係不會反轉。然後,關於藉由自旋軌道層20b而被給予自旋力矩的磁性記憶體元件10d、10g的磁性層100,則由於有被施加反轉抑制方向之電壓,因此其磁化方向也不會反轉。亦即,若依據本實施形態,則可選擇性地只對所望之磁性記憶體元件10e記錄資訊。
又,在只對圖10的磁性記憶體元件10g、10h進行記錄的情況下,則只要如圖11的右側所示,對自旋軌道層20c、電極層40a~c施加電流及電壓即可。
亦即,若依據本實施形態,則藉由對對應之自旋軌道層20施加脈衝電流,同時,藉由對應之電極層40來施加反轉促進方向之電壓,就可對所望之磁性記憶體元件10進行記錄。又,關於不記錄的磁性記憶體元件10,藉由對應之電極層40來施加反轉抑制方向之電壓,就可防止錯誤地記錄資訊。
此外,在從圖10的磁性記憶體1讀出資訊之際,係只要進行使得磁性記憶體1內的欲讀出之磁性記憶體元件10所對應之自旋軌道層20上的全部的磁性記憶體元件10的磁性層100的磁化方向都反轉的這類動作,而在反轉的前後,偵測各磁性記憶體元件10之電阻變化即可。此情況下,藉由再次進行反轉動作,就可使各磁性記憶體元件10變回原本的記錄狀態(原本的磁化方向)。
<3.4.磁性記憶體1之製造方法>   接著,關於本揭露的實施形態所述之磁性記憶體1之製造方法,參照圖12A~圖18C來做說明。詳言之,圖12A~圖18A係為本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖,圖12B~圖18B係對應之平面圖中的B-B´剖面之剖面圖。又,圖18C係圖18A之平面圖中的C-C´剖面之剖面圖。
如圖12A及圖12B所示,在已被形成有電極(圖示省略)或選擇電晶體(圖示省略)等的基板200上,形成由導電材料所成之自旋軌道層300。詳言之,例如,作為自旋軌道層300,是形成膜厚5nm之W膜。
接著,如圖13A及圖13B所示,在上述的基板200上,層積磁性層400、絕緣層402及磁性層404。詳言之,例如,作為磁性層400,是形成由膜厚1.2nm之FeCoB膜、膜厚0.2nm之Ta膜、膜厚0.8nm之FeCoB膜、膜厚0.5nm之MgO膜所成之層積膜。此外,膜厚0.5nm之MgO膜係為,用來對磁性層400賦予垂直磁化所需之膜。又,作為絕緣層402,例如,係形成膜厚2nm之MgO膜。又,作為磁性層404係形成例如,由膜厚2nm之Ta膜、膜厚5nm之Ru膜、膜厚2nm之CoPt膜、膜厚0.8nm之Ru膜、膜厚0.2nm之W膜、膜厚1nm之FeCoB膜所成之層積膜。
然後,如圖14A及圖14B所示,將光阻圖案(圖示省略)當作遮罩來使用,以成為條紋狀的方式,將磁性層404、絕緣層402、磁性層400及自旋軌道層300,使用RIE(Reactive Ion Etching)等進行蝕刻加工。
然後,如圖15A及圖15B所示,在各條紋狀的層積結構之間,埋入絕緣膜202。此時,如圖15B所示,以覆蓋上記層積結構的方式,形成絕緣膜202。
接著,如圖16A及圖16B所示,以CMP (Chemical-Mechanical Polishing)進行平坦化,直到磁性層404的上面出現為止。
然後,如圖17A及圖17B所示,以覆蓋磁性層404及絕緣膜202的方式,形成電極層500。
然後,如圖18A~圖18C所示,以變成沿著與自旋軌道層300的延伸方向正交之方向而延伸的條紋狀的方式,將光阻圖案(圖示省略)當作遮罩來使用,將電極層500以RIE等進行蝕刻。此時,係蝕刻至自旋軌道層300為止。其後,藉由形成配線等,就可形成本實施形態所述之磁性記憶體1。
此外,本實施形態所述之磁性記憶體1,係可使用一般半導體裝置之製造時所使用的裝置、及條件,來加以製造。例如,本實施形態所述之磁性記憶體1,係可藉由適宜使用濺鍍法、CVD(Chemical Vapor Deposion)法、光微影法、蝕刻法、及CMP法等,來加以製造。
<<4.實施例>>   以上說明了本揭露之一實施形態之細節。接著,一面展示具體的實施例,一面更具體地說明本揭露之一實施形態之例子。此外,以下所示的實施例,係僅止於本揭露之一實施形態的一例,本揭露之一實施形態係不限定於下記的例子。
(實施例1)   首先,說明實施例1所述之磁性記憶體。實施例1所述之磁性記憶體,係具有:作為自旋軌道層20的膜厚5nm之W膜、作為磁性層100的膜厚1.5nm之FeCoB膜、作為絕緣層102的膜厚2nm之MgO膜、作為磁性層104及電極層40的膜厚1nm之FeCoB膜與膜厚5nm之TbFeCo膜所成之層積膜。再者,該當磁性記憶體,係在該當層積膜之上,具有作為保護膜的膜厚5nm之W膜。又,該當磁性記憶體所具有的磁性記憶體元件之大小,係為1μm見方。然後,於該當磁性記憶體1中,係將由SiO2 所成之絕緣膜埋入磁性記憶體元件之間,在磁性記憶體元件上形成配線等。此外,上記層積膜,係會與磁性層100之間形成強磁性穿隧接合,因此可根據磁性記憶體元件10之電阻值而將磁性記憶體元件10中所被記錄的資訊予以讀出。詳言之,實施例1所述之磁性記憶體的磁性記憶體元件之電阻,係在低電阻狀態下為60kΩ,在高電阻狀態下為1.1MΩ。
圖19中圖示了,於上述的實施例1所述之磁性記憶體中,將自旋軌道層20中所通過之脈衝電流設成20μA時,反轉錯誤對脈衝寬之比率(P)。此外,圖19所示的圖形係為,在未藉由磁性記憶體之電極層40來對磁性層100施加電壓之狀態下的結果。詳言之,圖19的橫軸係表示脈衝寬(PW),縱軸係表示反轉錯誤之比率(P)。此外,在以下的說明中,使磁性記憶體元件從高電阻狀態變化成低電阻狀態的情況下,令反轉錯誤之比率為PHL ,從低電阻狀態變化成高電阻狀態的情況下,令反轉錯誤之比率為PLH 。又,反轉錯誤之比率為1的情況下,表示磁性記憶體元件全部都未反轉,反轉錯誤之比率為0的情況下,表示磁性記憶體元件是如意圖般地反轉。
如圖19所示,藉由使脈衝寬(PW)做變化,確認到反轉錯誤之比率會有所變化,但無論是使磁性記憶體元件從高電阻狀態變化成低電阻狀態的情況下,還是使磁性記憶體元件從低電阻狀態變化成高電阻狀態的情況下,都無法使反轉錯誤之比率變成0。亦即可知,只控制脈衝寬(PW)的情況下,難以消除反轉錯誤。
接著,確認了實施例1所述之磁性記憶體的,電壓施加之效果。電壓施加之效果係藉由,對實施例1所述之磁性記憶體的各磁性記憶體元件,使用電極層40來施加電壓,使用強磁性共鳴來測定磁性記憶體元件的磁性層100的磁異向性(Hk)與磁制動常數(α)對電壓之變化,而評價之。其結果示於圖20。此外,於圖20中,橫軸係表示所被施加的電壓(Va),左側的縱軸係表示垂直磁異向性(Hk),右側的縱軸係表示磁制動常數(α)。此外,關於所被施加的電壓係為,上記磁性記憶胞之上所被設置之電極的電壓是比被設在下方之電極的電壓還高的情況,表示是正方向。
由圖20可知,垂直磁異向性(Hk)及磁制動常數(α),係隨著所施加的電壓而變化。詳言之,將電壓以正方向做施加的情況下,則垂直磁異向性(Hk)及磁氣控制常數(α)係會降低(反轉促進方向)。又,將電壓以負方向做施加的情況下,則垂直磁異向性(Hk)及磁氣控制常數(α)係會提高(反轉抑制方向)。
接著,針對電壓施加所致之反轉特性之變化,進行探討。圖21A及圖21B中係圖示,於實施例1所述之磁性記憶體1中,將施加電壓設成-1V或+1V,將自旋軌道層20中所通過之脈衝電流設成20μA時,反轉錯誤對脈衝寬之比率(P)。詳言之,圖21A係為將施加電壓設成-1V時(反轉抑制方向),圖21B係為將施加電壓設成+1V時(反轉促進方向)的結果。
如圖21A所示,在施加電壓為-1V的狀態下,於磁性記憶體元件中完全不會發生反轉。另一方面,如圖21B所示,在施加電壓+1V時,會發生反轉,反轉錯誤之比率(P),係在0.5附近變動。其原因是被認為,藉由將施加電壓朝正方向做施加,磁性記憶體元件的磁性層100的磁化方向變成容易反轉的緣故。
接著,於上述的實施例1所述之磁性記憶體中,在未對電極層40施加電壓的狀態下,在自旋軌道層20中通過脈衝電流,在該當脈衝電流減少後,對電極層40施加+1V之電壓時,探討反轉錯誤之比率(P)。此時,脈衝電流係為20μA,而改變了脈衝寬。此時所得的結果,示於圖22。
如圖22所示,在脈衝寬(PW)從0.4ns至0.5ns之範圍中,反轉錯誤之比率(P)為0,亦即沒有反轉錯誤。因此,確認到使用電極層40來施加電壓所致之效果。
接著,於上述的實施例1所述之磁性記憶體中,在對電極層40施加-1V之電壓的狀態下,在自旋軌道層20中通過脈衝電流,在該當脈衝電流減少後,對電極層40施加+1V之電壓時,探討反轉錯誤之比率(P)。此外,此時,脈衝電流係為20μA,而改變了脈衝寬。此時所得的結果,示於圖23。
如圖23所示,在與脈衝電流同時,且在脈衝電流減少後,藉由電極層40來施加極性不同的電壓,相較於圖22,在較廣的脈衝寬範圍中,反轉錯誤之比率(P)為0,亦即可知反轉錯誤被消除了。因此,確認到藉由控制電極層40之電壓,可減少反轉錯誤之效果。
(實施例2)   接著,探討在共通的自旋軌道層20中設置2個磁性記憶體元件時的實施例2。在實施例2中,是設置和上述的實施例1相同的磁性記憶體元件,將相鄰的磁性記憶體之間隔設成2μm。
然後,對共通的自旋軌道層20,將具有脈衝寬0.5nsec的脈衝電流(Iso),使電流值做變化而施加。又,對一方之磁性記憶體元件(元件1)的電極層40施加-1V的電壓,對另一方之磁性記憶體元件(元件2)的電極層40,則是在脈衝電流之施加時,施加+1V的電壓,在該當脈衝電流減少後,施加-1V的電壓。將如此所得的結果,示於圖24。此外,於圖24中,係橫軸係表示脈衝電流(Iso),縱軸係表示反轉錯誤之比率(P)。
如圖24所示可知,在元件1中係無反轉,在元件2中係不發生反轉錯誤地進行反轉的範圍(選擇動作範圍),係為存在。因此,若依據本實施形態,則可確認到,即使是被設在共通的自旋軌道層20上的複數個磁性記憶體元件,也能夠使所望之磁性記憶體元件穩定地,且選擇性地做反轉。
<<5.總結>>   若依據本揭露的實施形態,則可提供一種可抑制反轉錯誤,可進行穩定記錄的磁性記憶體。
此外,本實施形態所述之磁性記憶體1,係亦可與構成演算裝置等的半導體電路一起被搭載於同一半導體晶片而構成半導體裝置(System-on-a-Chip:SoC)。又,本實施形態所述之磁性記憶體1,係可安裝在可以搭載記憶裝置的各種電子機器中。例如,磁性記憶體1,係可搭載於各種行動機器(智慧型手機、平板PC(Personal Computer)等)、筆記型PC、可穿戴裝置、遊戲機器、音樂機器、視訊機器、或數位相機等各種電子機器中,來作為暫時記憶所需之記憶體,或是儲存體。
<<6.補充>>   以上雖然一面參照添附圖式一面詳細說明了本揭露的理想實施形態,但本揭露之技術範圍並非限定於所述例子。只要是本揭露之技術領域中具有通常知識者,自然可於申請專利範圍中所記載之技術思想的範疇內,想到各種變更例或修正例,而這些當然也都屬於本揭露的技術範圍。
又,本說明書中所記載之效果僅為說明或例示,並非限定。亦即,本揭露所述之技術,係亦可連同上記效果、或取代上記效果,而達成根據本說明書之記載而由當業者所自明的其他效果。
此外,如以下的構成也是屬於本揭露的技術範圍。   (1)   一種磁性記憶體,係   具備:   自旋軌道層,係因電流而產生自旋偏極電子;和   磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和   電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;   前記電壓施加層,係在前記自旋軌道層中有前記電流通過的同時,藉由對前記磁性層施加電壓,以使該當磁性層之磁異向性或者是磁制動常數產生變化。   (2)   如上記(1)所記載之磁性記憶體,其中,前記電壓施加層係還含有:與前記磁性層不同的其他磁性層。   (3)   如上記(1)或(2)所記載之磁性記憶體,其中,   前記自旋軌道層,係沿著第1方向而被延伸設置;   在前記自旋軌道層上,沿著前記第1方向而設置有複數個前記磁性記憶體元件;   設置有複數個前記電壓施加層,係對前記複數個磁性記憶體元件的前記磁性層之每一者,施加電壓。   (4)   一種磁性記憶體,係   具備:   複數個磁性記憶體元件,係被配置成矩陣狀,並分別具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和   複數個自旋軌道層,係對應於由沿著第1方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件列之每一者而被設置,並因電流而產生自旋偏極電子;和   複數個電壓施加層,係對應於由沿著與前記第1方向正交之第2方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件行之每一者而被設置,對前記各磁性記憶體元件行中所含之前記複數個磁性記憶體元件的前記磁性層之每一者,隔著前記絕緣層而施加電壓;   前記電壓施加層,係在前記自旋軌道層中有前記電流通過的同時,藉由對對應之前記磁性記憶體元件的前記磁性層施加電壓,以使該當磁性層之磁異向性或者是磁制動常數產生變化。   (5)   一種磁性記憶體之記錄方法,其中,   前記磁性記憶體係具有:   自旋軌道層,係因電流而產生自旋偏極電子;和   磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和   電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;   該磁性記憶體之記錄方法係含有以下步驟:   藉由前記電壓施加層,以使得前記磁性層的磁異向性會降低、或者是使磁制動常數會降低的方式,對前記磁性層施加第1電壓,同時,在前記自旋軌道層中通過電流。   (6)   如上記(5)所記載之磁性記憶體之記錄方法,其中,還含有以下步驟:   在晚於前記電流、或者是前記電流減少之後,藉由前記電壓施加層,將具有與前記第1電壓之極性相反之極性的第2電壓,對前記磁性層做施加。   (7)   一種磁性記憶體之記錄方法,其中,   前記磁性記憶體係具有:   自旋軌道層,係因電流而產生自旋偏極電子;和   磁性記憶體元件,係被設在前記自旋軌道層上,並具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和   電壓施加層,係隔著前記絕緣層而對前記磁性層施加電壓;   該磁性記憶體之記錄方法係含有以下步驟:   在前記自旋軌道層中通過電流;   在晚於前記電流、或者是前記電流減少之後,藉由前記電壓施加層,以使得前記磁性層的磁異向性會提高、或者是使磁制動常數會提高的方式,對前記磁性層施加第3電壓。   (8)   一種磁性記憶體之記錄方法,其中,   前記磁性記憶體係具有:   複數個磁性記憶體元件,係被配置成矩陣狀,並分別具有:由磁化方向會隨著所記錄之資訊而改變的磁性層及絕緣層所成之層積結構;和   複數個自旋軌道層,係對應於由沿著第1方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件列之每一者而被設置,並因電流而產生自旋偏極電子;和   複數個電壓施加層,係對應於由沿著與前記第1方向正交之第2方向排列的前記複數個磁性記憶體元件所成之磁性記憶體元件行之每一者而被設置,對前記各磁性記憶體元件行中所含之前記複數個磁性記憶體元件的前記磁性層之每一者,隔著前記絕緣層而施加電壓;   該磁性記憶體之記錄方法係含有以下步驟:   藉由控制由前記電壓施加層對前記磁性層所施加的電壓,來選擇要記錄資訊的前記磁性記憶體元件。   (9)   如上記(8)所記載之磁性記憶體之記錄方法,其中,   前記要記錄資訊之磁性記憶體元件之選擇,係   藉由前記要記錄資訊之磁性記憶體元件所對應之前記電壓施加層,以使得前記磁性層的磁異向性會降低、或者是使磁制動常數會降低的方式,施加第4電壓,同時,在前記要記錄資訊之磁性記憶體元件所對應之前記自旋軌道層中通過電流,藉此而為之。   (10)   如上記(9)所記載之磁性記憶體之記錄方法,其中,還含有以下步驟:   在前記要記錄資訊之磁性記憶體元件之選擇之際,藉由前記要記錄資訊之磁性記憶體元件以外之前記磁性記憶體元件所對應之前記電壓施加層,將具有與前記第4電壓之極性相反之極性的第5電壓,對前記磁性層做施加。
1‧‧‧磁性記憶體10‧‧‧磁性記憶體元件20、300‧‧‧自旋軌道層40‧‧‧電極層50‧‧‧電極100、104、400、404‧‧‧磁性層102、402‧‧‧絕緣層200‧‧‧基板202‧‧‧絕緣膜500‧‧‧電極層600‧‧‧磁矩700‧‧‧自旋力矩800‧‧‧自旋偏極電子900、902‧‧‧箭頭
[圖1]用來說明SOT-MRAM之結構及動作的說明圖。   [圖2]表示對自旋軌道層給予了脈衝電流之後的磁性層100的磁化方向之時間變化之一例。   [圖3]表示磁性層的垂直磁異向性(Hk)及磁制動常數(α)的電壓所致之變化之一例。   [圖4]本揭露之一實施形態所述之磁性記憶體1之結構予以模式性表示的斜視圖。   [圖5]本揭露之一實施形態所述之磁性記憶體元件10之結構予以模式性表示的剖面圖。   [圖6]用來說明圖4所示的磁性記憶體1之記錄方法的說明圖。   [圖7]用來說明圖4所示的磁性記憶體1之記錄方法之變形例的說明圖。   [圖8]具有本揭露之一實施形態所述之磁性記憶體元件10的磁性記憶體1之結構予以模式性表示的斜視圖(之1)。   [圖9]用來說明圖8所示的磁性記憶體1之記錄方法的說明圖。   [圖10]具有本揭露之一實施形態所述之磁性記憶體元件10的磁性記憶體1之結構予以模式性表示的斜視圖(之2)。   [圖11]用來說明圖10所示的磁性記憶體1之記錄方法的說明圖。   [圖12A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之1)。   [圖12B]沿著圖12A的B-B´做切斷時的剖面圖。   [圖13A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之2)。   [圖13B]沿著圖13A的B-B´做切斷時的剖面圖。   [圖14A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之3)。   [圖14B]沿著圖14A的B-B´做切斷時的剖面圖。   [圖15A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之4)。   [圖15B]沿著圖15A的B-B´做切斷時的剖面圖。   [圖16A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之5)。   [圖16B]沿著圖16A的B-B´做切斷時的剖面圖。   [圖17A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之6)。   [圖17B]沿著圖17A的B-B´做切斷時的剖面圖。   [圖18A]本揭露之一實施形態所述之磁性記憶體1之製造方法中的各工程的說明用平面圖(之7)。   [圖18B]沿著圖18A的B-B´做切斷時的剖面圖。   [圖18C]沿著圖18A的C-C´做切斷時的剖面圖。   [圖19]於實施例1所述之磁性記憶體1中,將自旋軌道層20中所通過之脈衝電流設成20μA時,反轉錯誤對脈衝寬之比率(P)的圖形。   [圖20]於實施例1所述之磁性記憶體1中,垂直磁異向性(Hk)及磁制動常數(α)對施加電壓之變化的圖形。   [圖21A]於實施例1所述之磁性記憶體1中,將施加電壓設成-1V,將自旋軌道層20中所通過之脈衝電流設成20μA時,反轉錯誤對脈衝寬之比率(P)的圖形。   [圖21B]於實施例1所述之磁性記憶體中,將施加電壓設成+1V,將自旋軌道層20中所通過之脈衝電流設成20μA時,反轉錯誤對脈衝寬之比率(P)的圖形。   [圖22]於實施例1所述之磁性記憶體中,在自旋軌道層20中通過了20μA之脈衝電流之後,施加+1V的施加電壓時,反轉錯誤對脈衝寬之比率(P)的圖形。   [圖23]於實施例1所述之磁性記憶體中,在自旋軌道層20中通過20μA之脈衝電流的同時施加-1V之施加電壓,在上記脈衝電流通過後施加+1V之施加電壓時,反轉錯誤對脈衝寬之比率(P)的圖形。   [圖24]於實施例2所述之磁性記憶體中,反轉錯誤對脈衝電流值(Iso)之比率(P)的圖形。

Claims (8)

  1. 一種磁性記憶體,係具備:自旋軌道層,係因電流而生成自旋偏極電子;和前記自旋軌道層上的磁性記憶體元件,係具有層積結構,其中,前記層積結構係由:第1磁性層,其磁化方向是基於所記錄之資訊而改變、及絕緣層所成;和電壓施加層;前記電壓施加層,係隔著前記絕緣層而對前記第1磁性層施加第1電壓,其中,前記第1電壓,係在前記自旋軌道層中有前記電流通過的同時,對前記第1磁性層而被施加,以使前記第1磁性層的磁異向性或者是前記第1磁性層的磁制動常數之至少1者降低;基於前記電流的減少,而將具有與前記第1電壓之極性相反之極性的第2電壓,對前記第1磁性層做施加。
  2. 如請求項1所記載之磁性記憶體,其中,前記電壓施加層係還含有:與前記第1磁性層不同的第2磁性層。
  3. 如請求項1所記載之磁性記憶體,其中,前記自旋軌道層,係沿著第1方向而延伸;前記磁性記憶體係還具備:前記自旋軌道層上的,沿著前記第1方向的複數個磁性記憶體元件;和複數個前記電壓施加層,係對前記複數個磁性記憶體元件的複數個磁性層之每一者,施加前記第1電壓。
  4. 一種磁性記憶體,係具備:複數個磁性記憶體元件,係被配置成矩陣狀,其中,前記複數個磁性記憶體元件之每一磁性記憶體元件係具有層積結構;前記層積結構係由:磁性層,其磁化方向是基於所記錄之資訊而改變、及絕緣層所成;和複數個自旋軌道層,其中,前記複數個自旋軌道層之每一自旋軌道層係被構成為,因電流而生成自旋偏極電子;前記複數個自旋軌道層之每一自旋軌道層係分別對應於,由前記複數個磁性記憶體元件之中的沿著第1方向的複數個第1磁性記憶體元件所成的磁性記憶體元件列之每一者;和 複數個電壓施加層,其中,前記複數個電壓施加層之每一電壓施加層係分別對應於,由前記複數個磁性記憶體元件之中的沿著與前記第1方向正交之第2方向的複數個第2磁性記憶體元件所成的磁性記憶體元件行之每一者;前記複數個電壓施加層之每一電壓施加層係被構成為:對前記各磁性記憶體元件行中的前記複數個磁性記憶體元件的各磁性記憶體元件的前記磁性層之每一者,分別隔著前記絕緣層而施加第1電壓,其中,前記第1電壓,係在前記複數個自旋軌道層之一自旋軌道層中有前記電流通過的同時,對對應之前記各磁性記憶體元件的前記磁性層而被施加,以使前記磁性層的磁異向性或者是前記磁性層的磁制動常數之至少1者降低;基於前記電流的減少,而將具有與前記第1電壓之極性相反之極性的第2電壓,對前記各磁性記憶體元件的前記磁性層做施加。
  5. 一種磁性記憶體之記錄方法,係含有以下步驟:藉由磁性記憶體的電壓施加層,來對前記磁性記憶體的磁性記憶體元件的磁性層施加第1電壓,以使前記磁性層的磁異向性或者是前記磁性層的磁制動常數之至少1者 降低,其中,前記磁性記憶體元件係具有,由:磁性層,其磁化方向是基於所記錄之資訊而改變、及絕緣層所成的層積結構;前記第1電壓,係隔著前記絕緣層而被施加至前記磁性層;在前記第1電壓被施加至前記磁性層的同時,在前記磁性記憶體的前記自旋軌道層中通過電流;藉由前記電壓施加層,基於前記電流的減少,而將具有與前記第1電壓之極性相反之極性的第2電壓,對前記磁性層做施加。
  6. 一種磁性記憶體之記錄方法,係含有以下步驟:在磁性記憶體的自旋軌道層中通過電流;和藉由磁性記憶體的電壓施加層,基於前記電流的減少,而對前記磁性記憶體的磁性記憶體元件的磁性層施加電壓,以使前記磁性層的磁異向性或者是前記磁性層的磁制動常數之至少1者提高;前記磁性記憶體元件係具有,由:磁性層,其磁化方向是基於所記錄之資訊而改變、及絕緣層所成的層積結構;前記電壓係隔著前記絕緣層而被施加。
  7. 一種磁性記憶體之記錄方法,係含有以下步驟:在磁性記憶體的自旋軌道層中通過電流;和藉由磁性記憶體的複數個磁性記憶體元件的第1磁性記憶體元件的複數個電壓施加層的第1電壓施加層,來控制對前記第1磁性記憶元件的磁性層所施加的電壓,以選擇要記錄資訊的前記第1磁性記憶體元件,其中,前記第1電壓,係在複數個自旋軌道層之一自旋軌道層中有電流通過的同時,被施加至前記磁性層,以使前記磁性層的磁異向性或者是前記磁性層的磁制動常數之至少1者降低;前記複數個磁性記憶體元件,係被配置成矩陣狀;前記複數個磁性記憶體元件之每一磁性記憶體元件係具有層積結構;前記層積結構係由:磁性層,其磁化方向是基於所記錄之資訊而改變、及絕緣層所成;前記第1電壓,係隔著前記絕緣層而被施加至前記磁性層;前記複數個自旋軌道層之每一自旋軌道層,係因電流而產生自旋偏極電子; 前記複數個自旋軌道層之每一自旋軌道層係分別對應於,由前記複數個磁性記憶體元件之中的沿著第1方向的複數個第1磁性記憶體元件所成的磁性記憶體元件列之每一者;前記複數個電壓施加層之每一電壓施加層係分別對應於,由前記複數個磁性記憶體元件之中的沿著與前記第1方向正交之第2方向的複數個第2磁性記憶體元件所成的磁性記憶體元件行之每一者;藉由前記第1電壓施加層,基於前記電流的減少,而控制對前記第1磁性記憶元件的前記磁性層所施加的,與前記第1電壓之極性相反之極性的第2電壓。
  8. 如請求項7所記載之磁性記憶體之記錄方法,其中,還含有以下步驟:為了前記第1磁性記憶體元件之選擇,藉由前記複數個磁性記憶體元件的第2磁性記憶體元件的複數個電壓施加層的第2電壓施加層,而將具有與前記第1電壓之極性相反之極性的第5電壓,施加至前記第2磁性記憶體元件的前記磁性層。
TW107105910A 2017-03-09 2018-02-22 磁性記憶體及磁性記憶體之記錄方法 TWI755488B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-044676 2017-03-09
JP2017044676A JP2018148157A (ja) 2017-03-09 2017-03-09 磁気メモリ及び磁気メモリの記録方法

Publications (2)

Publication Number Publication Date
TW201838097A TW201838097A (zh) 2018-10-16
TWI755488B true TWI755488B (zh) 2022-02-21

Family

ID=63449072

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107105910A TWI755488B (zh) 2017-03-09 2018-02-22 磁性記憶體及磁性記憶體之記錄方法

Country Status (6)

Country Link
US (1) US11069389B2 (zh)
JP (1) JP2018148157A (zh)
KR (1) KR102517214B1 (zh)
CN (1) CN110383462B (zh)
TW (1) TWI755488B (zh)
WO (1) WO2018163618A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095434B2 (ja) * 2017-08-22 2022-07-05 Tdk株式会社 スピン流磁気抵抗効果素子及び磁気メモリ
EP3809413B1 (en) 2019-10-16 2023-09-06 Korea University Research and Business Foundation Method of fabricating a spin-orbit torque-based switching device
US11289143B2 (en) * 2019-10-30 2022-03-29 Taiwan Semiconductor Manufacturing Co., Ltd. SOT-MRAM with shared selector
US11087791B1 (en) * 2020-05-05 2021-08-10 Western Digital Technologies, Inc. Data storage device with voltage-assisted magnetic recording (VAMR) for high density magnetic recording
CN112701215B (zh) * 2020-12-28 2023-01-06 西安交通大学 一种铁电辅助调控人工反铁磁固定层的sot-mram

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011435A1 (en) * 2014-07-17 2016-01-21 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US20160232959A1 (en) * 2015-02-09 2016-08-11 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980469B2 (en) * 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US9812184B2 (en) * 2007-10-31 2017-11-07 New York University Current induced spin-momentum transfer stack with dual insulating layers
CN104704564B (zh) * 2012-08-06 2017-05-31 康奈尔大学 磁性纳米结构中基于自旋霍尔扭矩效应的电栅控式三端子电路及装置
US9076537B2 (en) * 2012-08-26 2015-07-07 Samsung Electronics Co., Ltd. Method and system for providing a magnetic tunneling junction using spin-orbit interaction based switching and memories utilizing the magnetic tunneling junction
US9460397B2 (en) * 2013-10-04 2016-10-04 Samsung Electronics Co., Ltd. Quantum computing device spin transfer torque magnetic memory
US20170117027A1 (en) 2015-10-21 2017-04-27 HGST Netherlands B.V. Top pinned sot-mram architecture with in-stack selector
JP6258452B1 (ja) 2016-12-02 2018-01-10 株式会社東芝 磁気メモリ
US10347824B2 (en) * 2017-06-02 2019-07-09 Sandisk Technologies Llc Composite free layer for magnetoresistive random access memory
JP6416421B1 (ja) * 2017-09-21 2018-10-31 株式会社東芝 磁気メモリ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016011435A1 (en) * 2014-07-17 2016-01-21 Cornell University Circuits and devices based on enhanced spin hall effect for efficient spin transfer torque
US20160232959A1 (en) * 2015-02-09 2016-08-11 Qualcomm Incorporated Spin-orbit-torque magnetoresistive random access memory with voltage-controlled anisotropy

Also Published As

Publication number Publication date
US11069389B2 (en) 2021-07-20
CN110383462B (zh) 2023-10-31
TW201838097A (zh) 2018-10-16
KR102517214B1 (ko) 2023-04-04
CN110383462A (zh) 2019-10-25
WO2018163618A1 (ja) 2018-09-13
KR20190120226A (ko) 2019-10-23
JP2018148157A (ja) 2018-09-20
US20200020376A1 (en) 2020-01-16

Similar Documents

Publication Publication Date Title
TWI755488B (zh) 磁性記憶體及磁性記憶體之記錄方法
JP5768498B2 (ja) 記憶素子、記憶装置
TWI530945B (zh) Memory elements and memory devices
JP4380707B2 (ja) 記憶素子
JP2016225633A (ja) 外部強磁性バイアス膜を用いる電圧制御磁気異方性スイッチング装置
US10192600B2 (en) Storage element
CN106887247B (zh) 信息存储元件和存储装置
JP5782715B2 (ja) 記憶素子及び記憶装置
JP2009021352A (ja) 磁気記録素子及び磁気記録装置
JP2012235015A (ja) 記憶素子及び記憶装置
JP5062538B2 (ja) 磁気メモリー素子、その駆動方法及び不揮発性記憶装置
CN104662686A (zh) 存储元件、存储装置和磁头
US8929131B2 (en) Magnetic memory element and non-volatile storage device
US9299916B2 (en) Memory element and memory device
JP2012069958A (ja) 磁気記録素子
WO2009157101A1 (ja) 磁気メモリ素子とその駆動方法及び不揮発記憶装置
WO2013080437A1 (ja) 記憶素子、記憶装置
JP2010021584A (ja) 記憶素子、メモリ