TWI750626B - Bidirectional power device - Google Patents
Bidirectional power device Download PDFInfo
- Publication number
- TWI750626B TWI750626B TW109111360A TW109111360A TWI750626B TW I750626 B TWI750626 B TW I750626B TW 109111360 A TW109111360 A TW 109111360A TW 109111360 A TW109111360 A TW 109111360A TW I750626 B TWI750626 B TW I750626B
- Authority
- TW
- Taiwan
- Prior art keywords
- power device
- bidirectional power
- semiconductor layer
- region
- gate
- Prior art date
Links
- 230000002457 bidirectional effect Effects 0.000 title claims abstract description 175
- 239000004065 semiconductor Substances 0.000 claims abstract description 220
- 239000000758 substrate Substances 0.000 claims description 114
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 229910000679 solder Inorganic materials 0.000 claims description 20
- 238000002955 isolation Methods 0.000 claims description 12
- 239000012535 impurity Substances 0.000 claims description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 24
- 229910052710 silicon Inorganic materials 0.000 description 24
- 239000010703 silicon Substances 0.000 description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 230000003071 parasitic effect Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 229910052581 Si3N4 Chemical group 0.000 description 8
- 239000011521 glass Substances 0.000 description 8
- 238000004806 packaging method and process Methods 0.000 description 8
- 235000012239 silicon dioxide Nutrition 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 238000007599 discharging Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000000149 penetrating effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 4
- WPPDFTBPZNZZRP-UHFFFAOYSA-N aluminum copper Chemical compound [Al].[Cu] WPPDFTBPZNZZRP-UHFFFAOYSA-N 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 239000002131 composite material Chemical group 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 4
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 3
- -1 aluminum silicon copper Chemical compound 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000000873 masking effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910000789 Aluminium-silicon alloy Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7833—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
- H01L29/7834—Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
- H01L29/1041—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/107—Substrate region of field-effect devices
- H01L29/1075—Substrate region of field-effect devices of field-effect transistors
- H01L29/1079—Substrate region of field-effect devices of field-effect transistors with insulated gate
- H01L29/1087—Substrate region of field-effect devices of field-effect transistors with insulated gate characterised by the contact structure of the substrate region, e.g. for controlling or preventing bipolar effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7831—Field effect transistors with field effect produced by an insulated gate with multiple gate structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
- H01L29/0692—Surface layout
- H01L29/0696—Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
本發明涉及半導體製造技術領域,特別涉及一種雙向功率器件。 The invention relates to the technical field of semiconductor manufacturing, in particular to a bidirectional power device.
功率器件主要用於大功率的電源電路和控制電路中,例如作為開關元件或整流元件。在功率器件中,不同摻雜類型的摻雜區形成PN結,從而實現二極體或電晶體的功能。功率器件在應用中通常需要在高電壓下承載大電流。一方面,為了滿足高電壓應用的需求以及提高器件可靠性和壽命,功率器件需要具有高擊穿電壓。另一方面,為了降低功率器件自身的功耗和產生的熱量,功率器件需要具有低導通電阻。在電源電路中,經常會涉及到充電和放電,然後充電和放電過程中電流的流向不同,則要求功率器件具有雙向導通的功能。 Power devices are mainly used in high-power power supply circuits and control circuits, such as switching elements or rectifying elements. In power devices, doped regions of different doping types form PN junctions, thereby realizing the functions of diodes or transistors. Power devices are often required to carry large currents at high voltages in applications. On the one hand, to meet the demands of high-voltage applications and to improve device reliability and lifetime, power devices need to have high breakdown voltages. On the other hand, in order to reduce the power consumption and the generated heat of the power device itself, the power device needs to have a low on-resistance. In the power supply circuit, charging and discharging are often involved, and then the current flows in different directions during the charging and discharging process, so the power device is required to have the function of bidirectional conduction.
在美國專利US5612566和US6087740公開了雙向導通類型的功率器件。其中,該雙向功率器件包括襯底以及位於襯底上的第一輸出極和第二輸出極。襯底為P型襯底或者P型外延或者P型摻雜的阱區;兩個輸出極分別由輕摻雜N-區和以及位於輕摻雜N-區中的重摻雜N+區構成。在功率器件的導通狀態,當第一輸出極與襯底短接時,電流從第二輸出極流向第一輸出極;當第二輸出極與襯底短接時,電流從第一輸出極流向第二輸出極。 Bidirectional conduction type power devices are disclosed in US patents US5612566 and US6087740. Wherein, the bidirectional power device includes a substrate and a first output pole and a second output pole located on the substrate. The substrate is a P-type substrate or a P-type epitaxy or a P-type doped well region; the two output electrodes are respectively composed of a lightly doped N- region and a heavily doped N+ region located in the lightly doped N- region. In the conduction state of the power device, when the first output pole is shorted to the substrate, the current flows from the second output pole to the first output pole; when the second output pole is shorted to the substrate, the current flows from the first output pole to the second output pole.
然而,雙向功率器件的耐壓特性和導通電阻之間是一對衝突參數。雖然可以通過降低輕摻雜N-區的雜質濃度,提高擊穿電壓,獲得較好的耐壓特性。但是由於輕摻雜N-區的雜質濃度降低,導致導通電阻的增加,從而增加功耗。 However, there is a pair of conflicting parameters between the withstand voltage characteristics and on-resistance of bidirectional power devices. Although it is possible to increase the breakdown voltage by reducing the impurity concentration of the lightly doped N-region, better withstand voltage characteristics can be obtained. However, due to the reduced impurity concentration in the lightly doped N- region, the on-resistance increases, thereby increasing the power consumption.
在雙向功率器件中,仍然需要進一步改進以兼顧耐壓特性和導通電阻的要求。 In bidirectional power devices, further improvement is still required to take into account the requirements of withstand voltage characteristics and on-resistance.
鑒於上述問題,本發明的目的在於提供一種雙向功率器件,其中,溝道區鄰近溝槽下部的控制柵,通過溝槽的寬度控制溝道長度,減小導通電阻。 In view of the above problems, the purpose of the present invention is to provide a bidirectional power device, wherein the channel region is adjacent to the control gate at the lower part of the trench, and the channel length is controlled by the width of the trench to reduce the on-resistance.
根據本發明的第一方面,提供一種雙向功率器件,包括:半導體層;位於半導體層中的溝槽;位於所述溝槽側壁上的柵介質層;位於所述溝槽下部的控制柵;以及位於所述半導體層中且鄰近所述控制柵的溝道區;其中,所述控制柵與所述半導體層之間由所述柵介質層隔開。 According to a first aspect of the present invention, there is provided a bidirectional power device, comprising: a semiconductor layer; a trench in the semiconductor layer; a gate dielectric layer on the sidewall of the trench; a control gate at a lower portion of the trench; and A channel region located in the semiconductor layer and adjacent to the control gate; wherein, the control gate and the semiconductor layer are separated by the gate dielectric layer.
優選地,所述雙向功率器件還包括:位於所述溝槽上部的遮罩柵。 Preferably, the bidirectional power device further comprises: a mask gate located on the upper part of the trench.
優選地,所述雙向功率器件還包括:位於所述控制柵和所述遮罩柵之間的隔離層。 Preferably, the bidirectional power device further comprises: an isolation layer between the control gate and the shadow gate.
優選地,所述遮罩柵的長度為0.6~1.2um。 Preferably, the length of the shield grid is 0.6-1.2um.
優選地,所述控制柵和所述遮罩柵彼此接觸。 Preferably, the control gate and the shadow gate are in contact with each other.
優選地,所述遮罩柵的長度為0.4~0.8um。 Preferably, the length of the shield grid is 0.4~0.8um.
優選地,所述雙向功率器件還包括:位於溝槽側壁上的遮罩介質層,所述遮罩柵與所述半導體層之間由所述遮罩介質層隔開。 Preferably, the bidirectional power device further comprises: a masking dielectric layer located on the sidewall of the trench, and the masking gate and the semiconductor layer are separated by the masking dielectric layer.
優選地,所述遮罩介質層的厚度為0.1~0.25um。 Preferably, the thickness of the mask dielectric layer is 0.1-0.25um.
優選地,所述遮罩介質層的厚度大於或等於所述柵介質層的厚度。 Preferably, the thickness of the mask dielectric layer is greater than or equal to the thickness of the gate dielectric layer.
優選地,所述控制柵的寬度大於所述遮罩柵的寬度。 Preferably, the width of the control gate is larger than the width of the mask gate.
優選地,所述雙向功率器件還包括:位於所述半導體層中且鄰近所述遮罩柵的源區和漏區,所述源區和漏區從所述半導體層的第一表面延伸至與所述控制柵交疊。 Preferably, the bidirectional power device further comprises: a source region and a drain region located in the semiconductor layer and adjacent to the mask gate, the source region and the drain region extending from the first surface of the semiconductor layer to a The control gates overlap.
優選地,所述源區和漏區的長度大於所述遮罩柵和隔離層的長度之和,小於所述遮罩柵、隔離層以及所述控制柵的長度之和。 Preferably, the lengths of the source region and the drain region are greater than the sum of the lengths of the mask gate and the isolation layer, and less than the sum of the lengths of the mask gate, the isolation layer and the control gate.
優選地,所述源區和漏區的長度大於所述遮罩柵的長度,小於所述遮罩柵以及所述控制柵的長度之和。 Preferably, the length of the source region and the drain region is greater than the length of the mask gate, and less than the sum of the lengths of the mask gate and the control gate.
優選地,所述雙向功率器件還包括:位於所述溝槽上部的分壓介質層。 Preferably, the bidirectional power device further comprises: a voltage dividing dielectric layer located on the upper part of the trench.
優選地,所述雙向功率器件還包括:位於所述半導體層中且鄰近所述分壓介質層的源區和漏區,所述源區和漏區從所述半導體層的第一表面延伸至與所述控制柵交疊。 Preferably, the bidirectional power device further comprises: source and drain regions located in the semiconductor layer and adjacent to the voltage dividing dielectric layer, the source and drain regions extending from the first surface of the semiconductor layer to overlaps the control gate.
優選地,所述分壓介質層的長度大於0.3um。 Preferably, the length of the partial pressure medium layer is greater than 0.3um.
優選地,所述源區和漏區的長度大於所述分壓介質層的長度,小於所述分壓介質層和所述控制柵的長度。 Preferably, the length of the source region and the drain region is greater than the length of the voltage dividing dielectric layer, and less than the lengths of the voltage dividing dielectric layer and the control gate.
優選地,所述控制柵從所述半導體層的第一表面延伸至所述溝槽下部。 Preferably, the control gate extends from the first surface of the semiconductor layer to the lower portion of the trench.
優選地,所述雙向功率器件還包括:位於所述半導體層中且鄰近控制柵的源區和漏區,所述源區和漏區從所述半導體層的第一表面延伸至與所述溝槽下部的控制柵交疊。 Preferably, the bidirectional power device further comprises: source and drain regions located in the semiconductor layer and adjacent to the control gate, the source and drain regions extending from the first surface of the semiconductor layer to the trenches The control gates in the lower part of the trenches overlap.
優選地,所述源區和漏區在所述半導體層中延伸的長度為0.5~1.5um。 Preferably, the length of the source region and the drain region extending in the semiconductor layer is 0.5-1.5um.
優選地,所述溝槽的長度為1.2~2.2um,寬度為0.1~0.6um。 Preferably, the length of the groove is 1.2~2.2um, and the width is 0.1~0.6um.
優選地,所述半導體層的摻雜類型為第一摻雜類型,所述源區和漏區的摻雜類型為第二摻雜類型,所述溝道區的摻雜類型為第一摻雜類型或第二摻雜類型,第一摻雜類型和第二摻雜類型相反。 Preferably, the doping type of the semiconductor layer is the first doping type, the doping type of the source region and the drain region is the second doping type, and the doping type of the channel region is the first doping type type or second doping type, the first doping type and the second doping type are opposite.
優選地,所述半導體層選自半導體襯底本身、在半導體襯底上形成的外延層或者在半導體襯底中注入的阱區中的一種。 Preferably, the semiconductor layer is selected from one of the semiconductor substrate itself, an epitaxial layer formed on the semiconductor substrate, or a well region implanted in the semiconductor substrate.
優選地,所述雙向功率器件還包括:第一接觸,與所述源區相接觸以形成第一輸出電極;第二接觸,與所述漏區相接觸以形成第二輸出電極;第三接觸,與所述半導體層相接觸以形成襯底電極;第四接觸,與所述控制柵相接觸以形成柵電極。 Preferably, the bidirectional power device further comprises: a first contact, in contact with the source region to form a first output electrode; a second contact, in contact with the drain region to form a second output electrode; a third contact The fourth contact is in contact with the semiconductor layer to form a substrate electrode; the fourth contact is in contact with the control gate to form a gate electrode.
優選地,所述雙向功率器件還包括:第一引線區,位於所述源區內,其中,第一引線區的摻雜濃度大於所述源區的摻雜濃度;覆蓋介質層,位於所述半導體層的第一表面上;第一接觸孔,貫穿所述 覆蓋介質層延伸至所述源區;所述第一接觸通過第一接觸孔、第一引線區與所述源區相接觸。 Preferably, the bidirectional power device further comprises: a first lead region located in the source region, wherein the doping concentration of the first lead region is greater than the doping concentration of the source region; a cover dielectric layer located in the source region on the first surface of the semiconductor layer; the first contact hole penetrates the The cover dielectric layer extends to the source region; the first contact is in contact with the source region through a first contact hole and a first lead region.
優選地,所述雙向功率器件還包括:第二引線區,位於所述漏區內,其中,第二引線區的摻雜濃度大於所述漏區的摻雜濃度;第二接觸孔,貫穿所述覆蓋介質層延伸至所述漏區;所述第二接觸通過第二接觸孔、第二引線區與所述漏區相接觸。 Preferably, the bidirectional power device further comprises: a second lead region located in the drain region, wherein the doping concentration of the second lead region is greater than the doping concentration of the drain region; a second contact hole penetrating the drain region The cover dielectric layer extends to the drain region; the second contact is in contact with the drain region through a second contact hole and a second lead region.
優選地,所述雙向功率器件還包括:第三引線區,位於所述半導體層內且靠近所述半導體層的第一表面,其中,所述第三引線區的摻雜濃度大於半導體層的摻雜濃度;第三接觸孔,貫穿所述覆蓋介質層延伸至所述半導體層;所述第三接觸通過第三接觸孔、第三引線區與所述半導體層相接觸。 Preferably, the bidirectional power device further comprises: a third lead region located in the semiconductor layer and close to the first surface of the semiconductor layer, wherein the doping concentration of the third lead region is greater than that of the semiconductor layer impurity concentration; a third contact hole, extending through the cover dielectric layer to the semiconductor layer; the third contact is in contact with the semiconductor layer through the third contact hole and the third lead region.
優選地,所述雙向功率器件還包括:第四接觸孔,貫穿所述覆蓋介質層延伸至所述控制柵。 Preferably, the bidirectional power device further includes: a fourth contact hole extending through the cover dielectric layer to the control gate.
優選地,所述第三接觸位於所述半導體層的第二表面上。 Preferably, the third contact is on the second surface of the semiconductor layer.
優選地,所述雙向功率器件還包括:佈線層,所述佈線層包括第一佈線至第四佈線,分別通過多個導電孔與所述第一輸出電極、第二輸出電極、襯底電極以及柵電極電連接。 Preferably, the bidirectional power device further includes: a wiring layer, the wiring layer includes a first wiring to a fourth wiring, which are connected to the first output electrode, the second output electrode, the substrate electrode and the first output electrode, the second output electrode, the substrate electrode and the The gate electrode is electrically connected.
優選地,所述雙向功率器件還包括:多個金屬焊球,位於所述佈線層上,通過佈線層與所述第一輸出電極、第二輸出電極、襯底電極以及柵電極電連接。 Preferably, the bidirectional power device further comprises: a plurality of metal solder balls located on the wiring layer and electrically connected to the first output electrode, the second output electrode, the substrate electrode and the gate electrode through the wiring layer.
優選地,當所述雙向功率器件包括位於控制柵上的遮罩柵時,第四接觸還與所述遮罩柵電連接。 Preferably, when the bidirectional power device includes a shadow grid on the control gate, the fourth contact is also electrically connected to the shadow grid.
優選地,所述遮罩柵與所述半導體層或所述控制柵電連接。 Preferably, the mask gate is electrically connected to the semiconductor layer or the control gate.
優選地,在所述雙向功率器件導通時,所述襯底電極與第一輸出電極和第二輸出電極之一電連接實現電流方向的雙向選擇。 Preferably, when the bidirectional power device is turned on, the substrate electrode is electrically connected to one of the first output electrode and the second output electrode to realize bidirectional selection of current direction.
優選地,當所述襯底電極與所述第一輸出電極電連接時,電流從所述第二輸出電極流向所述第一輸出電極;當所述襯底電極與所述第二輸出電極電連接時,電流從所述第一輸出電極流向所述第二輸出 電極。 Preferably, when the substrate electrode is electrically connected to the first output electrode, current flows from the second output electrode to the first output electrode; when the substrate electrode is electrically connected to the second output electrode When connected, current flows from the first output electrode to the second output electrode.
根據本發明的第二方面,提供一種雙向功率器件,包括多個元胞結構,所述元胞結構為上述所述的雙向功率器件,多個元胞結構中的源區電連接在一起,多個元胞結構中的漏區電連接在一起。 According to a second aspect of the present invention, a bidirectional power device is provided, comprising a plurality of cell structures, wherein the cell structures are the above-mentioned bidirectional power device, the source regions in the plurality of cell structures are electrically connected together, and the plurality of cell structures are electrically connected together. The drain regions in each cell structure are electrically connected together.
本發明實施例提供的雙向功率器件,溝道區鄰近位於溝槽下部的控制柵,可以通過減小溝槽的寬度來減小溝道長度,進而減小溝道電阻。 In the bidirectional power device provided by the embodiment of the present invention, the channel region is adjacent to the control gate located at the lower part of the trench, and the channel length can be reduced by reducing the width of the trench, thereby reducing the channel resistance.
進一步地,在溝槽的下部和上部分別形成控制柵和遮罩柵,控制柵和遮罩柵彼此隔離,控制柵與半導體層之間由柵介質層隔開,遮罩柵和源區以及漏區之間由遮罩介質層隔開,在雙向功率器件截止時遮罩柵通過遮罩介質層耗盡源區和漏區的電荷,提高器件的耐壓特性;在雙向功率器件導通時,多個源區和漏區與半導體層提供低阻抗的導通路徑。 Further, a control gate and a mask gate are respectively formed in the lower part and the upper part of the trench, the control gate and the mask gate are isolated from each other, the control gate and the semiconductor layer are separated by a gate dielectric layer, the mask gate and the source region and The drain regions are separated by a mask dielectric layer. When the bidirectional power device is turned off, the mask gate depletes the charge of the source region and the drain region through the mask dielectric layer to improve the withstand voltage characteristics of the device; when the bidirectional power device is turned on, The multiple source and drain regions and the semiconductor layer provide a low-resistance conduction path.
進一步地,可以通過調整遮罩介質層的厚度、源區和漏區的摻雜濃度以及遮罩柵的長度來實現不同的閾值電壓。 Further, different threshold voltages can be achieved by adjusting the thickness of the mask dielectric layer, the doping concentrations of the source and drain regions, and the length of the mask gate.
進一步地,在溝槽的下部和上部分別形成控制柵和遮罩柵,控制柵和遮罩柵彼此接觸,控制柵與半導體層之間由柵介質層隔開,遮罩柵和源區以及漏區之間由遮罩介質層隔開,在雙向功率器件截止時遮罩柵通過遮罩介質層耗盡源區和漏區的電荷,提高器件的耐壓特性;在雙向功率器件導通時,源區和/或漏區與半導體層提供低阻抗的導通路徑。 Further, a control gate and a mask gate are respectively formed in the lower part and the upper part of the trench, the control gate and the mask gate are in contact with each other, the control gate and the semiconductor layer are separated by a gate dielectric layer, the mask gate and the source region and The drain regions are separated by a mask dielectric layer. When the bidirectional power device is turned off, the mask gate depletes the charge of the source region and the drain region through the mask dielectric layer to improve the withstand voltage characteristics of the device; when the bidirectional power device is turned on, The source and/or drain regions and the semiconductor layer provide a low-resistance conduction path.
進一步地,可以通過調整遮罩介質層的厚度、源區和漏區的摻雜濃度以及遮罩柵的長度來實現不同的閾值電壓。 Further, different threshold voltages can be achieved by adjusting the thickness of the mask dielectric layer, the doping concentrations of the source and drain regions, and the length of the mask gate.
進一步地,在溝槽的下部和上部分別形成控制柵和分壓介質層,該分壓介質層使得控制柵遠離源區和漏區。分壓介質層具有較高的介電常數,可以承受比半導體層更高的電場強度,隨著分壓介質層厚度的增加,承擔了縱向方向上源區和漏區上施加的高壓,提高雙向功率器件的耐壓特性。 Further, a control gate and a voltage dividing dielectric layer are respectively formed on the lower and upper parts of the trench, and the voltage dividing dielectric layer keeps the control gate away from the source region and the drain region. The partial pressure dielectric layer has a higher dielectric constant and can withstand a higher electric field strength than the semiconductor layer. With the increase of the thickness of the partial pressure dielectric layer, it bears the high voltage applied to the source and drain regions in the longitudinal direction, improving the bidirectional Withstand voltage characteristics of power devices.
進一步地,可以通過調整分壓介質層的厚度以及源區和 漏區的摻雜濃度來實現不同的閾值電壓。 Further, by adjusting the thickness of the partial pressure dielectric layer and the source region and The doping concentration of the drain region can achieve different threshold voltages.
進一步地,在雙向功率器件導通時,將所述襯底電極與第一輸出電極和第二輸出電極之一電連接實現電流方向的雙向選擇。當所述襯底電極與所述第一輸出電極電連接時,電流從所述第二輸出電極流向所述第一輸出電極;當所述襯底電極與所述第二輸出電極電連接時,電流從所述第一輸出電極流向所述第二輸出電極。 Further, when the bidirectional power device is turned on, the substrate electrode is electrically connected to one of the first output electrode and the second output electrode to realize bidirectional selection of the current direction. When the substrate electrode is electrically connected to the first output electrode, current flows from the second output electrode to the first output electrode; when the substrate electrode is electrically connected to the second output electrode, current flows from the second output electrode to the first output electrode; Current flows from the first output electrode to the second output electrode.
進一步地,溝槽內的控制柵從半導體層的第一表面延伸至溝槽下部,源區和漏區從半導體層的第一表面延伸至於溝槽下部的控制柵交疊。源區和漏區延伸的長度較長,使得源區和漏區在雙向功率器件截止時可以承擔縱向方向上源區和漏區上施加的高壓,提高雙向功率器件的耐壓特性。 Further, the control gate in the trench extends from the first surface of the semiconductor layer to the lower portion of the trench, and the source region and the drain region extend from the first surface of the semiconductor layer to overlap the control gate at the lower portion of the trench. The source region and the drain region have a longer extension length, so that the source region and the drain region can bear the high voltage applied to the source region and the drain region in the longitudinal direction when the bidirectional power device is turned off, thereby improving the withstand voltage characteristics of the bidirectional power device.
進一步地,可以通過調整柵介質層的厚度以及溝道區的摻雜濃度來實現不同的閾值電壓。 Further, different threshold voltages can be achieved by adjusting the thickness of the gate dielectric layer and the doping concentration of the channel region.
進一步地,通過佈線層將雙向功率器件的襯底電極、第一輸出電極、第二輸出電極以及柵電極引出至半導體襯底的表面,並在佈線層上形成金屬焊球。由於採用了植球的工藝,省略了傳統封裝的打線,減小了封裝的寄生電感和寄生電阻,減小雙向功率器件的封裝電阻;由於沒有塑封料的包封,使得散熱更加容易,減小功耗,提高雙向功率器件的可靠性和安全性。 Further, the substrate electrode, the first output electrode, the second output electrode and the gate electrode of the bidirectional power device are drawn out to the surface of the semiconductor substrate through the wiring layer, and metal solder balls are formed on the wiring layer. Due to the use of the ball-mounting process, the wire bonding of the traditional package is omitted, the parasitic inductance and parasitic resistance of the package are reduced, and the package resistance of the bidirectional power device is reduced; power consumption, improving the reliability and safety of bidirectional power devices.
進一步地,雙向功率器件可以由多個元胞結構組成,所有元胞結構的源區電連接在一起作為第一輸出電極,漏區電連接在一起作為第二輸出電極,通過增加元胞結構的數量,提高雙向功率器件的電流能力。 Further, the bidirectional power device can be composed of a plurality of cell structures, the source regions of all the cell structures are electrically connected together as the first output electrode, and the drain regions are electrically connected together as the second output electrode. quantity, improving the current capability of bidirectional power devices.
G:栅電極 G: Gate electrode
S1:第一輸出電極 S1: The first output electrode
S2:第二輸出電極 S2: The second output electrode
Sub:襯底、襯底電極 Sub: substrate, substrate electrode
D1,D2:體二極體 D1, D2: Body Diode
1:襯底 1: Substrate
2:遮罩柵 2: Shading grille
10:半導體層 10: Semiconductor layer
11:覆蓋介質層 11: Cover the dielectric layer
20:溝槽 20: Groove
20a:第一溝槽 20a: First groove
20b:第二溝槽 20b: Second groove
20c:第三溝槽 20c: Third groove
21:栅介質層 21: Gate dielectric layer
22:控制栅 22: Control grid
23:遮罩柵 23: Shading grid
24:隔離層 24: isolation layer
25:遮罩介質層 25: Mask dielectric layer
26:分壓介質層 26: Partial pressure dielectric layer
31:源區 31: Source area
32:漏區 32: Drain area
40:溝道區 40: Channel region
50:接觸孔 50: Contact hole
51:第一接觸孔 51: The first contact hole
52:第二接觸孔 52: The second contact hole
53:第三接觸孔 53: The third contact hole
54:第四接觸孔 54: Fourth contact hole
54a:控制栅22的接觸孔
54a: Contact hole of
54b:遮罩柵23的接觸孔
54b: Contact hole of the
60:金屬層 60: Metal layer
61:第一接觸 61: First Contact
62:第二接觸 62: Second Contact
63:第三接觸 63: Third Contact
64:第四接觸 64: Fourth Contact
70:佈線層 70: wiring layer
71:第一佈線 71: First wiring
72:第二佈線 72: Second wiring
73:第三佈線 73: Third wiring
74:第四佈線 74: Fourth wiring
80,81,82,83,84:金屬焊球 80, 81, 82, 83, 84: Metal solder balls
90:導電孔 90: Conductive hole
101:第三引線區 101: The third lead area
311:第一引線區 311: The first lead area
321:第二引線區 321: Second lead area
M1:第一金屬層 M1: first metal layer
M2:第二金屬層 M2: Second metal layer
M3:第三金屬層 M3: third metal layer
W1,W2:寬度 W1,W2: width
L1,L2,L3,L4,K:長度 L1,L2,L3,L4,K: length
AA’,BB’:線 AA',BB': line
第1圖示出了本發明實施例的雙向功率器件的電路示意圖。 Figure 1 shows a schematic circuit diagram of a bidirectional power device according to an embodiment of the present invention.
第2圖-第4圖分別示出了本發明第一實施例的雙向功率器件的不同剖面的截面圖和俯視圖。 FIG. 2 to FIG. 4 respectively show a cross-sectional view and a top view of different sections of the bidirectional power device according to the first embodiment of the present invention.
第5圖示出了本發明第一實施例的多個元胞結構的截面圖。 FIG. 5 shows a cross-sectional view of a plurality of cell structures according to the first embodiment of the present invention.
第6圖示出了本發明第二實施例的雙向功率器件的俯視圖。 FIG. 6 shows a top view of a bidirectional power device according to a second embodiment of the present invention.
第7圖示出了本發明第三實施例的雙向功率器件的截面圖。 FIG. 7 shows a cross-sectional view of a bidirectional power device according to a third embodiment of the present invention.
第8圖-第10圖分別示出了本發明第四實施例的雙向功率器件的不同剖面的截面圖和俯視圖。 FIG. 8 to FIG. 10 respectively show a cross-sectional view and a top view of different sections of the bidirectional power device according to the fourth embodiment of the present invention.
第11圖示出了本發明第四實施例的多個元胞結構的截面圖。 FIG. 11 shows a cross-sectional view of a plurality of cell structures of a fourth embodiment of the present invention.
第12圖示出了本發明第五實施例的雙向功率器件的截面圖。 FIG. 12 shows a cross-sectional view of a bidirectional power device according to a fifth embodiment of the present invention.
第13圖-第15圖分別示出了本發明第六實施例的雙向功率器件的不同剖面的截面圖和俯視圖。 13 to 15 respectively show a cross-sectional view and a top view of different sections of the bidirectional power device according to the sixth embodiment of the present invention.
第16圖示出了本發明第六實施例的多個元胞結構的截面圖。 FIG. 16 shows a cross-sectional view of a plurality of cell structures according to a sixth embodiment of the present invention.
第17圖示出了本發明第七實施例的雙向功率器件的截面圖。 FIG. 17 shows a cross-sectional view of a bidirectional power device according to a seventh embodiment of the present invention.
第18圖-第20圖分別示出了本發明第八實施例的雙向功率器件的不同剖面的截面圖和俯視圖。 FIG. 18 to FIG. 20 respectively show a cross-sectional view and a top view of different sections of the bidirectional power device according to the eighth embodiment of the present invention.
第21圖示出了本發明第八實施例的多個元胞結構的截面圖。 FIG. 21 shows a cross-sectional view of a plurality of cell structures according to an eighth embodiment of the present invention.
第22圖-第25圖分別示出了本發明第九實施例的雙向功率器件的截面圖。 22 to 25 respectively show cross-sectional views of the bidirectional power device according to the ninth embodiment of the present invention.
第26圖示出了本發明第九實施例的雙向功率器件的俯視圖。 FIG. 26 shows a top view of a bidirectional power device according to a ninth embodiment of the present invention.
第27圖示出了本發明第九實施例的雙向功率器件的封裝引腳示意圖。 FIG. 27 shows a schematic diagram of package pins of the bidirectional power device according to the ninth embodiment of the present invention.
第28圖示出了本發明第十實施例的雙向功率器件的截面圖。 FIG. 28 shows a cross-sectional view of a bidirectional power device according to a tenth embodiment of the present invention.
以下將參照圖式更詳細地描述本發明的各種實施例。在各個圖式中,相同的元件採用相同或類似的圖式標記來表示。為了清楚起見,圖式中的各個部分沒有按比例繪製。 Various embodiments of the present invention will be described in more detail below with reference to the accompanying drawings. In the various figures, the same elements are designated by the same or similar reference numerals. For the sake of clarity, various parts in the drawings have not been drawn to scale.
下面結合圖式和實施例,對本發明的具體實施方式作進一步詳細描述。 The specific embodiments of the present invention will be described in further detail below with reference to the drawings and examples.
第1圖示出了本發明實施例提供的雙向功率器件的電路示意圖,該雙向功率器件由一個電晶體形成,具有雙向導體功能。如第1圖所示,該雙向功率器件包括襯底Sub以及位於襯底Sub上的兩個輸出極S1和S2,以及兩個寄生的體二極體D1和D2。當輸出極S2和襯底Sub短接,柵極G施加高電壓時,電壓高於雙向功率器件的閾值電壓,雙向功率 器件導通,電流從輸出極S1流向輸出極S2;當輸出極S1和襯底Sub短接,柵極G施加高電壓時,電壓高於雙向功率器件的閾值電壓,雙向功率器件導通,電流從輸出極S2流向輸出極S1;當襯底Sub接零電壓,柵極G施加低電壓,電壓低於閾值電壓,雙向功率器件截止。 Figure 1 shows a schematic circuit diagram of a bidirectional power device provided by an embodiment of the present invention. The bidirectional power device is formed by a transistor and has a bidirectional conductor function. As shown in FIG. 1, the bidirectional power device includes a substrate Sub, two output poles S1 and S2 on the substrate Sub, and two parasitic body diodes D1 and D2. When the output pole S2 and the substrate Sub are short-circuited and a high voltage is applied to the gate G, the voltage is higher than the threshold voltage of the bidirectional power device, and the bidirectional power The device is turned on, and the current flows from the output pole S1 to the output pole S2; when the output pole S1 and the substrate Sub are short-circuited and a high voltage is applied to the gate G, the voltage is higher than the threshold voltage of the bidirectional power device, the bidirectional power device is turned on, and the current flows from the output The pole S2 flows to the output pole S1; when the substrate Sub is connected to zero voltage, a low voltage is applied to the gate G, and the voltage is lower than the threshold voltage, and the bidirectional power device is turned off.
第一實施例 first embodiment
第2圖-第4圖分別示出了本發明第一實施例的雙向功率器件的截面圖和俯視圖;其中,第2圖為第4圖所示俯視圖中沿AA’線獲取的截面圖,第3圖為第4圖所示俯視圖中沿BB’線獲取的截面圖。在該實施例中,雙向功率器件為溝槽型器件,可以是金屬氧化物半導體場效應電晶體(MOSFET)、IGBT器件或者二極體。在下文中,以N型MOSFET為例進行說明,然而,本發明並不限於此。 Figures 2 to 4 respectively show a cross-sectional view and a top view of the bidirectional power device according to the first embodiment of the present invention; wherein, Figure 2 is a cross-sectional view taken along the line AA' in the top view shown in Figure 4, Figure 3 is a cross-sectional view taken along the line BB' in the top view shown in Figure 4. In this embodiment, the bidirectional power device is a trench type device, which may be a metal oxide semiconductor field effect transistor (MOSFET), an IGBT device or a diode. Hereinafter, an N-type MOSFET is taken as an example for description, however, the present invention is not limited to this.
在第2圖中所示的雙向功率器件只包含了一個元胞結構的縱向結構示意圖,而實際產品當中,元胞結構的數量可以為一個或者多個。參見第2圖-第4圖,所述雙向功率器件包括半導體層10、位於所述半導體層10內的溝槽20,位於所述溝槽20側壁上的柵介質層21、位於所述溝槽20下部的控制柵22、位於所述溝槽20上部的遮罩柵23以及位於所述控制柵22和所述遮罩柵23之間的隔離層24。
The bidirectional power device shown in Figure 2 only contains a schematic diagram of the longitudinal structure of one cell structure, but in actual products, the number of cell structures can be one or more. Referring to FIG. 2 to FIG. 4, the bidirectional power device includes a
在本實施例中,半導體層10例如是半導體襯底本身,或者在半導體襯底上形成的外延層,或者在半導體襯底中注入的阱區。半導體層10的摻雜濃度為7E14~3E16cm-3。半導體層10例如為矽襯底、或者是在矽襯底上形成的外延層、或者是在矽襯底中形成的阱區,摻雜類型為P型,半導體層10與矽襯底的摻雜類型相同。半導體層10有相對的第一表面和第二表面。
In this embodiment, the
其中,所述控制柵22與所述半導體層10之間由所述柵介質層21隔開。
The
進一步地,所述雙向功率器件還包括位於溝槽20側壁上的遮罩介質層25,遮罩柵23與半導體層10之間由遮罩介質層25隔開。
Further, the bidirectional power device further includes a
在本實施例中,所述柵介質層21、隔離層24、遮罩介質層25的材料可以是二氧化矽或者氮化矽或者二氧化矽和氮化矽的複合結構,
三者的材料可以相同也可以不同。
In this embodiment, the materials of the
柵介質層21的厚度為200~1000埃,即0.02~0.1um,遮罩介質層25的厚度為1000~2500埃,即0.1~0.25um。遮罩介質層25的厚度大於或等於柵介質層21的厚度。
The thickness of the
控制柵22的寬度W1大於遮罩柵23的寬度W2,控制柵的長度L1小於遮罩柵23的長度L2。遮罩柵23的長度L2為0.6~1.2um。
The width W1 of the
進一步地,在半導體層10內形成沿縱向延伸的摻雜類型為N型的源區31和漏區32,其中,源區31和漏區32可以互換;以及在半導體層10內形成鄰近所述控制柵22的溝道區40。
Further, a
在本實施例中,所述半導體層10的摻雜類型為第一摻雜類型,所述源區31和漏區32的摻雜類型為第二摻雜類型,所述溝道區40的摻雜類型為第一摻雜類型或第二摻雜類型,第一摻雜類型和第二摻雜類型相反。
In this embodiment, the doping type of the
在本實施例中,所述源區31和漏區32從所述半導體層10的第一表面延伸至與所述控制柵22交疊。所述源區31和漏區32在所述半導體層10中延伸的長度K大於遮罩柵23在半導體層10中延伸的長度L2,優選地,大於所述遮罩柵23和隔離層24在半導體層10中延伸的長度之和L2+L3,但小於遮罩柵23、隔離層24以及控制柵22在半導體層10中延伸的長度之和L1+L2+L3,即L2+L3<K<L1+L2+L3。
In this embodiment, the
遮罩柵23與源區31和/或漏區32之間由遮罩介質層25隔開。在雙向功率器件截止時遮罩柵通過遮罩介質層耗盡源區和漏區的電荷,提高器件的耐壓特性;在雙向功率器件導通時,源區和漏區與半導體層提供低阻抗的導通路徑。由此可以調整遮罩介質層的厚度、源區和漏區的摻雜濃度以及遮罩柵的長度來實現不同的閾值電壓。
The
由於溝道區40鄰近位於溝槽20下部的控制柵22,可以通過減小溝槽的寬度來減小溝道長度,進而減小溝道電阻。
Since the
進一步地,在所述源區31和所述漏區32中形成第一引線區311和第二引線區321。其中,第一引線區311的摻雜類型與源區31的摻雜類型相同,且第一引線區311的摻雜濃度大於源區31的摻雜濃度。第
二引線區321的摻雜類型與漏區32的摻雜類型相同,且第二引線區321的摻雜濃度大於漏區32的摻雜濃度。
Further, a first
進一步地,在所述半導體層10中形成第三引線區101,所述第三引線區101靠近所述半導體層10的第一表面,其中,第三引線區101的摻雜類型與半導體層10的摻雜類型相同,且第三引線區101的摻雜濃度大於半導體層10的摻雜濃度。
Further, a third
進一步地,在半導體層10的第一表面上形成覆蓋介質層11以及形成貫穿覆蓋介質層11的接觸孔50,所述接觸孔50包括第一接觸孔51、第二接觸孔52、第三接觸孔53以及第四接觸孔54。其中,第一接觸孔51位於所述源區31上,貫穿所述覆蓋介質層11延伸至所述源區31,所述第二接觸孔位於所述漏區32上,貫穿所述覆蓋介質層11延伸至所述漏區32。
Further, a
第三接觸孔53位於所述溝槽20兩側貫穿所述覆蓋介質層11延伸至所述半導體層10。
The third contact holes 53 are located on both sides of the
第四接觸孔54位於所述溝槽20上,貫穿所述覆蓋介質層11延伸至所述溝槽20中的控制柵22和/或遮罩柵23。
The
在本實施例中,覆蓋介質層11可以是未摻雜的矽玻璃(USG)和摻雜硼磷的矽玻璃(BPSG)。
In this embodiment, the
在所述覆蓋介質層11上沉積金屬層60,金屬層60填充第一接觸孔51至第四接觸孔54分別形成第一接觸61至第四接觸64。第一接觸61通過第一接觸孔51、第一引線區311與所述源區31相接觸以形成第一輸出電極S1,第二接觸62通過第二接觸孔52、第二引線區321與所述漏區32相接觸以形成第二輸出電極S2,所述第三接觸63通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。如第3圖所示,第四接觸64經由第四接觸孔54與控制柵22和/或遮罩柵23相接觸以形成柵電極。如第4圖所示,第四接觸孔54包括控制柵22的接觸孔54a和遮罩柵23的接觸孔54b。在本實施例中,控制柵22和遮罩柵23連接在一起。
A
在本實施例中,金屬層60的材料可以為鈦和氮化鈦、鋁
銅、鋁矽銅或者鋁矽。
In this embodiment, the material of the
第2圖中一個元胞只包含了三個溝槽、一個源區和一個漏區,而實際產品當中,源區31和漏區32的數量不止一個。以第2圖所示的為例,三個溝槽結構分別為第一溝槽20a、第二溝槽20b和第三溝槽20c。其中,第一接觸61將源區31引出至半導體層10表面形成第一輸出電極S1,第二接觸62將漏區32引出至半導體層10表面形成第二輸出電極S2,第三接觸63將半導體層10引出形成襯底電極Sub,第四接觸64a和64b將溝槽20中的控制柵22以及遮罩柵23引出至半導體層10表面形成柵電極G,其中,控制柵22和遮罩柵23電連接在一起。第一溝槽20a和第三溝槽20c對稱設置在源區31和漏區32外。其中,第一輸出電極S1和第二輸出電極S2分別是源區31和漏區32引出至半導體層10表面形成的,兩者可以互換。當控制柵22上施加的電壓大於閾值電壓時,雙向功率器件導通,第二溝槽20b中的溝道區有電流流過,通過選擇其中一個輸出端電極與襯底電極連接,實現電流方向的選擇,例如,當第一輸出電極S1與襯底電極Sub連接時,電流從第二輸出電極S2流向第一輸出電極S1;當第二輸出電極S2與襯底電極Sub連接時,電流從第一輸出電極S1流向第二輸出電極S2。
One cell in Figure 2 only includes three trenches, one source region and one drain region, but in the actual product, the number of
當控制柵22上施加的電壓小於閾值電壓時,雙向功率器件截止,由於控制柵22和遮罩柵23電連接在一起,此時遮罩柵23上施加的電壓為低電壓,第一輸出電極S1和第二輸出電極S2上施加高電壓,在源區31、漏區32和遮罩柵23之間形成電壓差。第一溝槽20a和第三溝槽20c中的遮罩柵23通過遮罩介質層25在源區31和漏區32中感應出電荷,可以通過調整遮罩介質層25的厚度和材料以及源區31和漏區32的雜質濃度,最終完全耗盡源區和漏區,達到提高器件的耐壓的目的。同時由於源區31和漏區32的雜質濃度增加,也極大的減小了器件的電阻。
When the voltage applied on the
第5圖僅示出了兩個元胞結構的示意圖,多個第一接觸61連接在一起形成第一輸出電極S1,多個第二接觸62連接在一起形成第二輸出電極S2,以提高器件的電流能力。替代地,對於其他類型的雙向功率器件,通過增加元胞的數量,即選擇兩個及更多元胞結構並聯連接,可
以提高器件的電流能力。
FIG. 5 only shows a schematic diagram of two cell structures, a plurality of
第二實施例 Second Embodiment
本實施例與第一實施例採用基本相同的科技方案,不同之處在於,第一實施例中,控制柵22和遮罩柵23連接在一起,而本實施例中,遮罩柵23和半導體層10連接在一起,如第6圖所示,遮罩柵23的接觸孔54b與襯底電極的接觸孔53連接,使遮罩柵23和襯底電極Sub電連接在一起。
This embodiment adopts basically the same technical solution as the first embodiment, the difference lies in that, in the first embodiment, the
本實施例中,雙向功率器件的其餘部分與第一實施例基本相同,具體結構不再贅述。 In this embodiment, the rest of the bidirectional power device is basically the same as that of the first embodiment, and the specific structure will not be repeated.
第一實施例中控制柵22和遮罩柵23連接在一起,遮罩柵23和源區31和漏區32有交疊,存在寄生電容。當控制柵22和遮罩柵23的電壓升高時,對該寄生電容充電,雙向功率器件導通;當控制柵22和遮罩柵2的電壓降低時,該寄生電容放電,雙向功率器件截止。雙向功率器件進行高速開關的時候,該寄生電容的充放電時間會降低開關頻率,同時寄生電容充放電產生額外的功耗。
In the first embodiment, the
第二實施例中遮罩柵23和半導體層10連接在一起,遮罩柵23的電壓在器件開關過程中是固定的,可避免遮罩柵23電壓變化而帶來寄生電容的充放電,可以提高雙向功率器件的開關頻率,減少功耗。在某些要求雙向功率器件不僅要有盡可能低的電阻,還要有小的寄生電容的應用場合,可以做高速開關使用。
In the second embodiment, the
第三實施例 Third Embodiment
本實施例與第一實施例採用基本相同的技術方案,不同之處在於,第一實施例中,第三接觸63形成在半導體層10的第一表面上,通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。而本實施例中,第三接觸63形成在半導體層10的第二表面上,如第7圖所示。具體地,將雙向功率器件形成在摻雜濃度較高的襯底1上,然後在襯底1的背面蒸發金屬層形成第三接觸63。
This embodiment adopts basically the same technical solution as the first embodiment, the difference lies in that, in the first embodiment, the
第一實施例中,雙向功率器件的柵極、襯底電極、第一輸出電極和第二輸出電極均從半導體層10的第一表面引出,適合晶片級封
裝(CSP)。
In the first embodiment, the gate electrode, the substrate electrode, the first output electrode and the second output electrode of the bidirectional power device are all drawn from the first surface of the
第三實施例中,雙向功率器件的襯底電極從半導體層10的第二表面引出,既能適應傳統的器件封裝形式(例如SOP8、DIP8),同時增加了雙向功率器件的散熱能力。
In the third embodiment, the substrate electrode of the bidirectional power device is drawn out from the second surface of the
本實施例中,雙向功率器件的其餘部分與第一實施例基本相同,具體結構不再贅述。 In this embodiment, the rest of the bidirectional power device is basically the same as that of the first embodiment, and the specific structure will not be repeated.
第四實施例 Fourth Embodiment
第8圖-第10圖分別示出了本發明第四實施例的雙向功率器件的截面圖和俯視圖;其中,第8圖為第10圖所示俯視圖中沿AA’線獲取的截面圖,第9圖為第10圖所示俯視圖中沿BB’線獲取的截面圖。 Figures 8 to 10 respectively show a cross-sectional view and a top view of the bidirectional power device according to the fourth embodiment of the present invention; wherein, Figure 8 is a cross-sectional view taken along the line AA' in the top view shown in Figure 10, Fig. 9 is a cross-sectional view taken along the line BB' in the top view shown in Fig. 10 .
在第8圖中所示的雙向功率器件只包含了一個元胞的縱向結構示意圖,而實際產品當中,元胞結構的數量可以為一個或者多個。參見第8圖-第10圖, The bidirectional power device shown in Figure 8 only contains a schematic diagram of the longitudinal structure of one cell, but in an actual product, the number of cell structures can be one or more. See Figures 8-10,
所述雙向功率器件包括半導體層10、位於所述半導體層10內的溝槽20,位於所述溝槽20側壁上的柵介質層21、位於所述溝槽20下部的控制柵22、位於所述溝槽20上部的遮罩柵23。其中,控制柵22和遮罩柵23彼此接觸。
The bidirectional power device includes a
在本實施例中,半導體層10例如是半導體襯底本身,或者在半導體襯底上形成的外延層,或者在半導體襯底中注入的阱區。半導體層10的摻雜濃度為7E14~3E16cm-3。半導體層10例如為矽襯底、或者是在矽襯底上形成的外延層、或者是在矽襯底中形成的阱區,摻雜類型為P型,半導體層10與矽襯底的摻雜類型相同。半導體層10有相對的第一表面和第二表面。
In this embodiment, the
其中,所述控制柵22與所述半導體層10之間由所述柵介質層21隔開。
The
進一步地,所述雙向功率器件還包括位於溝槽20側壁上的遮罩介質層25,遮罩柵23與半導體層10之間由遮罩介質層25隔開。
Further, the bidirectional power device further includes a
在本實施例中,所述柵介質層21、遮罩介質層25的材料可以是二氧化矽或者氮化矽或者二氧化矽和氮化矽的複合結構,兩者的材
料可以相同也可以不同。
In this embodiment, the materials of the
柵介質層21的厚度為200~1000埃,遮罩介質層25的厚度為1000~2500埃,即0.1~0.25um。遮罩介質層25的厚度大於或等於柵介質層21的厚度。遮罩柵23的長度L2為0.4~0.8um。
The thickness of the
進一步地,在半導體層10內形成沿縱向延伸的摻雜類型為N型的源區31和漏區32,其中,源區31和漏區32可以互換;以及在半導體層10內形成鄰近所述控制柵22的溝道區40。
Further, a
在本實施例中,所述半導體層10的摻雜類型為第一摻雜類型,所述源區31和漏區32的摻雜類型為第二摻雜類型,所述溝道區40的摻雜類型為第一摻雜類型或第二摻雜類型,第一摻雜類型和第二摻雜類型相反。
In this embodiment, the doping type of the
在本實施例中,所述源區31和漏區32從所述半導體層10的第一表面延伸至與所述控制柵22交疊。所述源區31和漏區32在所述半導體層10中延伸的長度K大於遮罩柵23在半導體層10中延伸的長度L2,但小於遮罩柵23以及控制柵22在半導體層10中延伸的長度之和L1+L2,即L2<K<L1+L2。
In this embodiment, the
遮罩柵23與源區31和/或漏區32之間由遮罩介質層25隔開。在雙向功率器件截止時遮罩柵通過遮罩介質層耗盡源區和漏區的電荷,提高器件的耐壓特性;在雙向功率器件導通時,源區和漏區與半導體層提供低阻抗的導通路徑。由此可以調整遮罩介質層的厚度、源區和漏區的摻雜濃度以及遮罩柵的長度來實現不同的閾值電壓。
The
由於溝道區40鄰近位於溝槽20下部的控制柵22,可以通過減小溝槽的寬度來減小溝道長度,進而減小溝道電阻。
Since the
進一步地,在所述源區31和所述漏區32中形成第一引線區311和第二引線區321。其中,第一引線區311的摻雜類型與源區31的摻雜類型相同,且第一引線區311的摻雜濃度大於源區31的摻雜濃度。第二引線區321的摻雜類型與漏區32的摻雜類型相同,且第二引線區321的摻雜濃度大於漏區32的摻雜濃度。
Further, a first
進一步地,在所述半導體層10中形成第三引線區101,
所述第三引線區101靠近所述半導體層10的第一表面,其中,第三引線區101的摻雜類型與半導體層10的摻雜類型相同,且第三引線區101的摻雜濃度大於半導體層10的摻雜濃度。
Further, a third
進一步地,在半導體層10的第一表面上形成覆蓋介質層11以及形成貫穿覆蓋介質層11的接觸孔50,所述接觸孔50包括第一接觸孔51、第二接觸孔52、第三接觸孔53以及第四接觸孔54。其中,第一接觸孔51位於所述源區31上,貫穿所述覆蓋介質層11延伸至所述源區31,所述第二接觸孔位於所述漏區32上,貫穿所述覆蓋介質層11延伸至所述漏區32。
Further, a
第三接觸孔53位於所述溝槽20兩側貫穿所述覆蓋介質層11延伸至所述半導體層10。
The third contact holes 53 are located on both sides of the
第四接觸孔54位於所述溝槽20上,貫穿所述覆蓋介質層11延伸至所述溝槽20中的控制柵22和/或遮罩柵23。
The
在本實施例中,覆蓋介質層11可以是未摻雜的矽玻璃(USG)和摻雜硼磷的矽玻璃(BPSG)。
In this embodiment, the
在所述覆蓋介質層11上沉積金屬層60,金屬層60填充第一接觸孔51至第四接觸孔54分別形成第一接觸61至第四接觸64。第一接觸61通過第一接觸孔51、第一引線區311與所述源區31相接觸以形成第一輸出電極S1,第二接觸62通過第二接觸孔52、第二引線區321與所述漏區32相接觸以形成第二輸出電極S2,所述第三接觸63通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。如第9圖所示,第四接觸64經由第四接觸孔54與控制柵22和/或遮罩柵23相接觸以形成柵電極。
A
在本實施例中,金屬層60的材料可以為鈦和氮化鈦、鋁銅、鋁矽銅或者鋁矽。
In this embodiment, the material of the
第8圖中一個元胞只包含了三個溝槽、一個源區和一個漏區,而實際產品當中,源區31和漏區32的數量不止一個。以第8圖所示的為例,三個溝槽結構分別為第一溝槽20a、第二溝槽20b和第三溝槽20c。其中,第一接觸61將源區31引出至半導體層10表面形成第一輸出
電極S1,第二接觸62將漏區32引出至半導體層10表面形成第二輸出電極S2,第三接觸63將半導體層10引出形成襯底電極Sub,第四接觸64將控制柵22以及遮罩柵23引出至半導體層10表面形成柵電極G,其中,控制柵22和遮罩柵23電連接在一起。第一溝槽20a和第三溝槽20c對稱設定在源區31和漏區32外。其中,第一輸出電極S1和第二輸出電極S2分別是源區31和漏區32引出至半導體層10表面形成的,兩者可以互換。
One cell in Fig. 8 only includes three trenches, one source region and one drain region, but in the actual product, the number of
當控制柵22上施加的電壓大於閾值電壓時,雙向功率器件導通,僅源區31和漏區32之間的第二溝槽20b的溝道區有電流,通過選擇其中一個輸出端電極與襯底電極連接,實現電流方向的選擇,例如,當第一輸出電極S1與襯底電極Sub連接時,電流從第二輸出電極S2流向第一輸出電極S1;當第二輸出電極S2與襯底電極Sub連接時,電流從第一輸出電極S1流向第二輸出電極S2。
When the voltage applied to the
當控制柵22上施加的電壓小於閾值電壓時,雙向功率器件截止。由於控制柵22和遮罩柵23電連接在一起,此時遮罩柵23上施加的電壓為低電壓,第一輸出電極S1和第二輸出電極S2上施加高電壓,在源區31、漏區32和遮罩柵23之間形成電壓差。第一溝槽20a和第三溝槽20c中的遮罩柵23通過遮罩介質層25在源區31和漏區32中感應出電荷,可以通過調整遮罩介質層25的厚度和材料以及源區31和漏區32的雜質濃度,最終完全耗盡源區和漏區,達到提高器件的耐壓的目的。同時由於源區31和漏區32的雜質濃度增加,也極大的減小了器件的電阻。
When the voltage applied on the
第11圖僅示出了兩個元胞結構的示意圖,多個第一接觸61連接在一起形成第一輸出電極S1,多個第二接觸62連接在一起形成第二輸出電極S2,以提高器件的電流能力。替代地,對於其他類型的雙向功率器件,通過增加元胞的數量,即選擇兩個及更多元胞結構並聯連接,可以提高器件的電流能力。
FIG. 11 only shows a schematic diagram of two cell structures, a plurality of
第五實施例 Fifth Embodiment
本實施例與第四實施例採用基本相同的技術方案,不同之處在於,第四實施例中,第三接觸63形成在半導體層10的第一表面上,通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底
電極Sub。而本實施例中,第三接觸63形成在半導體層10的第二表面上,如第12圖所示。具體地,將雙向功率器件形成在摻雜濃度較高的襯底1上,然後在襯底1的背面蒸發金屬層形成第三接觸63。第四實施例中,雙向功率器件的柵極、襯底電極、第一輸出電極和第二輸出電極均從半導體層10的第一表面引出,適合晶片級封裝(CSP)。
This embodiment adopts basically the same technical solution as the fourth embodiment, the difference lies in that, in the fourth embodiment, the
第五實施例中,雙向功率器件的襯底電極從半導體層10的第二表面引出,既能適應傳統的器件封裝形式(例如SOP8、DIP8),同時增加了雙向功率器件的散熱能力。
In the fifth embodiment, the substrate electrode of the bidirectional power device is drawn out from the second surface of the
本實施例中,雙向功率器件的其餘部分與第四實施例基本相同,具體結構不再贅述。 In this embodiment, the rest of the bidirectional power device is basically the same as that of the fourth embodiment, and the specific structure will not be repeated.
第六實施例 Sixth Embodiment
第13圖-第15圖分別示出了本發明第六實施例的雙向功率器件的截面圖和俯視圖;其中,第13圖為第15圖所示俯視圖中沿AA’線獲取的截面圖,第14圖為第15圖所示俯視圖中沿BB’線獲取的截面圖。 Figures 13 to 15 respectively show a cross-sectional view and a top view of the bidirectional power device according to the sixth embodiment of the present invention; wherein, Figure 13 is a cross-sectional view taken along the line AA' in the top view shown in Figure 15, and the first Fig. 14 is a cross-sectional view taken along line BB' in the top view shown in Fig. 15 .
在第13圖中所示的雙向功率器件只包含了一個元胞的縱向結構示意圖,而實際產品當中,元胞結構的數量可以為一個或者多個。
參見第13圖-第15圖,所述雙向功率器件包括半導體層10、位於所述半導體層10內的溝槽20,位於所述溝槽20側壁上的柵介質層21、位於所述溝槽20下部的控制柵22、位於所述溝槽20上部的分壓介質層26。
The bidirectional power device shown in Figure 13 only contains a schematic diagram of the longitudinal structure of one cell, but in an actual product, the number of cell structures can be one or more.
Referring to FIG. 13 to FIG. 15, the bidirectional power device includes a
在本實施例中,半導體層10例如是半導體襯底本身,或者在半導體襯底上形成的外延層,或者在半導體襯底中注入的阱區。半導體層10的摻雜濃度為7E14~3E16cm-3。半導體層10例如為矽襯底、或者是在矽襯底上形成的外延層、或者是在矽襯底中形成的阱區,摻雜類型為P型,半導體層10與矽襯底的摻雜類型相同。半導體層10有相對的第一表面和第二表面。
In this embodiment, the
其中,所述控制柵22與所述半導體層10之間由所述柵介質層21隔開。
The
在本實施例中,柵介質層21、分壓介質層26的材料可以
是二氧化矽或者氮化矽或者二氧化矽和氮化矽的複合結構,兩者的材料可以相同也可以不同。
In this embodiment, the materials of the
柵介質層21的厚度為200~1000埃,分壓介質層26的長度至少大於0.3um。
The thickness of the
進一步地,在半導體層10內形成沿縱向延伸的摻雜類型為N型的源區31和漏區32,其中,源區31和漏區32可以互換;以及在半導體層10內形成鄰近所述控制柵22的溝道區40。
Further, a
在本實施例中,所述半導體層10的摻雜類型為第一摻雜類型,所述源區31和漏區32的摻雜類型為第二摻雜類型,所述溝道區40的摻雜類型為第一摻雜類型或第二摻雜類型,第一摻雜類型和第二摻雜類型相反。
In this embodiment, the doping type of the
在本實施例中,所述源區31和漏區32從所述半導體層10的第一表面延伸至與所述控制柵22交疊。所述源區31和漏區32在所述半導體層10中延伸的長度K大於所述分壓介質層26的長度L4,小於分壓介質層26和控制柵22在半導體層10中延伸的長度之和L1+L4。分壓介質層26使得控制柵22遠離源區31和漏區32。
In this embodiment, the
分壓介質層具有較高的介電常數,可以承受比半導體層更高的電場強度,隨著分壓介質層厚度的增加,承擔了縱向方向上源區和漏區上施加的高壓,提高雙向功率器件的耐壓特性。由此可以通過調整分壓介質層的厚度以及源區和漏區的摻雜濃度來實現不同的閾值電壓。 The partial pressure dielectric layer has a higher dielectric constant and can withstand a higher electric field strength than the semiconductor layer. With the increase of the thickness of the partial pressure dielectric layer, it bears the high voltage applied to the source and drain regions in the longitudinal direction, improving the bidirectional Withstand voltage characteristics of power devices. Therefore, different threshold voltages can be achieved by adjusting the thickness of the voltage dividing dielectric layer and the doping concentration of the source and drain regions.
由於溝道區40鄰近位於溝槽20下部的控制柵22,可以通過減小溝槽的寬度來減小溝道長度,進而減小溝道電阻。
Since the
進一步地,在所述源區31和所述漏區32中形成第一引線區311和第二引線區321。其中,第一引線區311的摻雜類型與源區31的摻雜類型相同,且第一引線區311的摻雜濃度大於源區31的摻雜濃度。第二引線區321的摻雜類型與漏區32的摻雜類型相同,且第二引線區321的摻雜濃度大於漏區32的摻雜濃度。
Further, a first
進一步地,在所述半導體層10中形成第三引線區101,所述第三引線區101靠近所述半導體層10的第一表面,其中,第三引線區
101的摻雜類型與半導體層10的摻雜類型相同,且第三引線區101的摻雜濃度大於半導體層10的摻雜濃度。
Further, a third
進一步地,在半導體層10的第一表面上形成覆蓋介質層11以及形成貫穿覆蓋介質層11的接觸孔50,所述接觸孔50包括第一接觸孔51、第二接觸孔52、第三接觸孔53以及第四接觸孔54。其中,第一接觸孔51位於所述源區31上,貫穿所述覆蓋介質層11延伸至所述源區31,所述第二接觸孔位於所述漏區32上,貫穿所述覆蓋介質層11延伸至所述漏區32。
Further, a
第三接觸孔53位於所述溝槽20兩側貫穿所述覆蓋介質層11延伸至所述半導體層10。
The third contact holes 53 are located on both sides of the
第四接觸孔54位於所述溝槽20上,貫穿所述覆蓋介質層11延伸至所述溝槽20中的控制柵22。
The
在本實施例中,覆蓋介質層11可以是未摻雜的矽玻璃(USG)和摻雜硼磷的矽玻璃(BPSG)。
In this embodiment, the
在所述覆蓋介質層11上沉積金屬層60,金屬層60填充第一接觸孔51至第四接觸孔54分別形成第一接觸61至第四接觸64。第一接觸61通過第一接觸孔51、第一引線區311與所述源區31相接觸以形成第一輸出電極S1,第二接觸62通過第二接觸孔52、第二引線區321與所述漏區32相接觸以形成第二輸出電極S2,所述第三接觸63通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。如第14圖所示,第四接觸64經由第四接觸孔54與控制柵22相接觸以形成柵電極。
A
在本實施例中,金屬層60的材料可以為鈦和氮化鈦、鋁銅、鋁矽銅或者鋁矽。
In this embodiment, the material of the
第13圖中一個元胞只包含了三個溝槽、一個源區和一個漏區,而實際產品當中,源區31和漏區32的數量不止一個。以第13圖所示的為例,
One cell in Figure 13 only includes three trenches, one source region and one drain region, but in the actual product, the number of
三個溝槽結構分別為第一溝槽20a、第二溝槽20b和第三溝槽20c。其中,第一接觸61將源區31引出至半導體層10表面形成第一
輸出電極S1,第二接觸62將漏區32引出至半導體層10表面形成第二輸出電極S2,第三接觸63將半導體層10引出形成襯底電極Sub,第四接觸64將控制柵22引出至半導體層10表面形成柵電極G。第一溝槽20a和第三溝槽20c對稱設定在源區31和漏區32外。其中,第一輸出電極S1和第二輸出電極S2分別是源區31和漏區32引出至半導體層10表面形成的,兩者可以互換。
The three trench structures are a
當控制柵22上施加的電壓大於閾值電壓時,雙向功率器件導通,第二溝槽20b中的溝道區有電流流過,通過選擇其中一個輸出端電極與襯底電極連接,實現電流方向的選擇,例如,當第一輸出電極S1與襯底電極Sub連接時,電流從第二輸出電極S2流向第一輸出電極S1;當第二輸出電極S2與襯底電極Sub連接時,電流從第一輸出電極S1流向第二輸出電極S2。
When the voltage applied to the
當控制柵22上施加的電壓小於閾值電壓時,雙向功率器件截止,第一輸出電極S1和第二輸出電極S2上施加高電壓,第一溝槽20a和第三溝槽20c中的分壓介質層26可以承受比半導體層更高的電場強度,隨著分壓介質層26的長度增加,承擔了源區31和漏區32上施加的高電壓,提高雙向功率器件的耐壓特性。
When the voltage applied on the
第16圖僅示出了兩個元胞結構的示意圖,多個第一接觸61連接在一起形成第一輸出電極S1,多個第二接觸62連接在一起形成第二輸出電極S2,以提高器件的電流能力。替代地,對於其他類型的雙向功率器件,通過增加元胞的數量,即選擇兩個及更多元胞結構並聯連接,可以提高器件的電流能力。
FIG. 16 only shows a schematic diagram of two cell structures, a plurality of
第七實施例 Seventh Embodiment
本實施例與第六實施例採用基本相同的技術方案,不同之處在於,第六實施例中,第三接觸63形成在半導體層10的第一表面上,通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。而本實施例中,第三接觸63形成在半導體層10的第二表面上,如第17圖所示。具體地,將雙向功率器件形成在摻雜濃度較高的襯底1上,然後在襯底1的背面蒸發金屬層形成第三接觸63。
This embodiment adopts basically the same technical solution as the sixth embodiment, the difference is that in the sixth embodiment, the
第六實施例中,雙向功率器件的柵極、襯底電極、第一輸出電極和第二輸出電極均從半導體層10的第一表面引出,適合晶片級封裝(CSP)。
In the sixth embodiment, the gate electrode, the substrate electrode, the first output electrode and the second output electrode of the bidirectional power device are all drawn from the first surface of the
第七實施例中,雙向功率器件的襯底電極從半導體層10的第二表面引出,既能適應傳統的器件封裝形式(例如SOP8、DIP8),同時增加了雙向功率器件的散熱能力。
In the seventh embodiment, the substrate electrode of the bidirectional power device is drawn from the second surface of the
本實施例中,雙向功率器件的其餘部分與第六實施例基本相同,具體結構不再贅述。 In this embodiment, the rest of the bidirectional power device is basically the same as that of the sixth embodiment, and the specific structure will not be repeated.
第八實施例 Eighth Embodiment
第18圖-第20圖分別示出了本發明第八實施例的雙向功率器件的截面圖和俯視圖;其中,第18圖為第20圖所示俯視圖中沿AA’線獲取的截面圖,第19圖為第20圖所示俯視圖中沿BB’線獲取的截面圖。 Figures 18 to 20 respectively show a cross-sectional view and a top view of the bidirectional power device according to the eighth embodiment of the present invention; wherein, Figure 18 is a cross-sectional view taken along the line AA' in the top view shown in Figure 20, and the first Fig. 19 is a cross-sectional view taken along the line BB' in the top view shown in Fig. 20 .
在第18圖中所示的雙向功率器件只包含了一個元胞的縱向結構示意圖,而實際產品當中,元胞結構的數量可以為一個或者多個。參見第18圖-第20圖,所述雙向功率器件包括半導體層10、位於所述半導體層10內的溝槽20,位於所述溝槽20側壁上的柵介質層21以及位於所述溝槽20內的控制柵22。
The bidirectional power device shown in Figure 18 only contains a schematic diagram of the longitudinal structure of one cell, but in an actual product, the number of cell structures can be one or more. Referring to FIG. 18 to FIG. 20 , the bidirectional power device includes a
在本實施例中,半導體層10例如是半導體襯底本身,或者在半導體襯底上形成的外延層,或者在半導體襯底中注入的阱區。半導體層10的摻雜濃度為7E14~3E16cm-3。半導體層10例如為矽襯底、或者是在矽襯底上形成的外延層、或者是在矽襯底中形成的阱區,摻雜類型為P型,半導體層10與矽襯底的摻雜類型相同。半導體層10有相對的第一表面和第二表面。
In this embodiment, the
其中,所述控制柵22從所述半導體層10的第一表面延伸至所述溝槽20下部,所述控制柵22與所述半導體層10之間由所述柵介質層21隔開。
Wherein, the
在本實施例中,柵介質層21、分壓介質層26的材料可以是二氧化矽或者氮化矽或者二氧化矽和氮化矽的複合結構,兩者的材料可
以相同也可以不同。溝槽20的寬度為0.1~0.6um,長度為1.2~2.2um。
In this embodiment, the materials of the
進一步地,在半導體層10內形成沿縱向延伸的摻雜類型為N型的源區31和漏區32,其中,源區31和漏區32可以互換;以及在半導體層10內形成鄰近所述溝槽下部的控制柵22的溝道區40。
Further, a
在本實施例中,所述半導體層10的摻雜類型為第一摻雜類型,所述源區31和漏區32的摻雜類型為第二摻雜類型,所述溝道區40的摻雜類型為第一摻雜類型或第二摻雜類型,第一摻雜類型和第二摻雜類型相反。
In this embodiment, the doping type of the
在本實施例中,所述源區31和漏區32從所述半導體層10的第一表面延伸至與所述溝槽下部的控制柵22交疊。所述源區31和漏區32在所述半導體層10中延伸的長度不超過溝槽20在半導體層10中延伸的長度。所述源區31和漏區32在所述半導體層10中延伸的長度為0.5~1.5um。
In this embodiment, the
溝槽20兩側的源區31和漏區32在半導體層中延伸的長度較長,與溝槽20下部的控制柵22交疊,在器件截止時,源區31和漏區32可以承擔了縱向方向上源區31和漏區32上施加的高壓,提高雙向功率器件的耐壓特性。
The
由於溝道區40鄰近位於所述溝槽20下部的控制柵22,可以通過減小溝槽的寬度來減小溝道長度,進而減小溝道電阻。
Since the
進一步地,可以通過調整柵介質層21的厚度以及溝道區40的摻雜濃度來實現不同的閾值電壓。
Further, different threshold voltages can be achieved by adjusting the thickness of the
進一步地,在所述源區31和所述漏區32中形成第一引線區311和第二引線區321。其中,第一引線區311的摻雜類型與源區31的摻雜類型相同,且第一引線區311的摻雜濃度大於源區31的摻雜濃度。第二引線區321的摻雜類型與漏區32的摻雜類型相同,且第二引線區321的摻雜濃度大於漏區32的摻雜濃度。
Further, a first
進一步地,在所述半導體層10中形成第三引線區101,所述第三引線區101靠近所述半導體層10的第一表面,其中,第三引線區101的摻雜類型與半導體層10的摻雜類型相同,且第三引線區101的摻雜
濃度大於半導體層10的摻雜濃度。
Further, a third
進一步地,在半導體層10的第一表面上形成覆蓋介質層11以及形成貫穿覆蓋介質層11的接觸孔50,所述接觸孔50包括第一接觸孔51、第二接觸孔52、第三接觸孔53以及第四接觸孔54。其中,第一接觸孔51位於所述源區31上,貫穿所述覆蓋介質層11延伸至所述源區31,所述第二接觸孔位於所述漏區32上,貫穿所述覆蓋介質層11延伸至所述漏區32。
Further, a covering
第三接觸孔53位於所述溝槽20兩側貫穿所述覆蓋介質層11延伸至所述半導體層10。
The third contact holes 53 are located on both sides of the
第四接觸孔54位於所述溝槽20上,貫穿所述覆蓋介質層11延伸至所述溝槽20中的控制柵22。
The
在本實施例中,覆蓋介質層11可以是未摻雜的矽玻璃(USG)和摻雜硼磷的矽玻璃(BPSG)。
In this embodiment, the
在所述覆蓋介質層11上沉積金屬層60,金屬層60填充第一接觸孔51至第四接觸孔54分別形成第一接觸61至第四接觸64。第一接觸61通過第一接觸孔51、第一引線區311與所述源區31相接觸以形成第一輸出電極S1,第二接觸62通過第二接觸孔52、第二引線區321與所述漏區32相接觸以形成第二輸出電極S2,所述第三接觸63通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。如第19圖所示,第四接觸64經由第四接觸孔54與控制柵22相接觸以形成柵電極。
A
在本實施例中,金屬層60的材料可以為鈦和氮化鈦、鋁銅、鋁矽銅或者鋁矽。
In this embodiment, the material of the
第18圖中一個元胞只包含了三個溝槽、一個源區和一個漏區,而實際產品當中,源區31和漏區32的數量不止一個。以第18圖所示的為例,
One cell in Figure 18 only includes three trenches, one source region and one drain region, but in the actual product, the number of
三個溝槽分別為第一溝槽20a、第二溝槽20b和第三溝槽20c。其中,第一接觸61將源區31引出至半導體層10表面形成第一輸出電極S1,第二接觸62將漏區32引出至半導體層10表面形成第二輸出電極
S2,第三接觸63將半導體層10引出形成襯底電極Sub,第四接觸64將控制柵22引出至半導體層10表面形成柵電極G。第一溝槽20a和第三溝槽20c對稱設定在源區31和漏區32外。其中,第一輸出電極S1和第二輸出電極S2分別是源區31和漏區32引出至半導體層10表面形成的,兩者可以互換。
The three trenches are a
當控制柵22上施加的電壓大於閾值電壓時,雙向功率器件導通,第二溝槽20b中的溝道區有電流流過,通過選擇其中一個輸出端電極與襯底電極連接,實現電流方向的選擇,例如,當第一輸出電極S1與襯底電極Sub連接時,電流從第二輸出電極S2流向第一輸出電極S1;當第二輸出電極S2與襯底電極Sub連接時,電流從第一輸出電極S1流向第二輸出電極S2。
When the voltage applied to the
當控制柵22上施加的電壓小於閾值電壓時,雙向功率器件截止,第一輸出電極S1和第二輸出電極S2上施加高電壓,隨著源區31和漏區32在半導體中延伸的長度增加,承擔了源區31和漏區32上施加的高電壓,提高雙向功率器件的耐壓特性。
When the voltage applied to the
第21圖僅示出了兩個元胞結構的示意圖,多個第一接觸61連接在一起形成第一輸出電極S1,多個第二接觸62連接在一起形成第二輸出電極S2,以提高器件的電流能力。替代地,對於其他類型的雙向功率器件,通過增加元胞的數量,即選擇兩個及更多元胞結構並聯連接,可以提高器件的電流能力。
FIG. 21 only shows a schematic diagram of two cell structures, a plurality of
第九實施例 Ninth Embodiment
本實施例與第一實施例、第四實施例、第六實施例以及第八實施例相比,本實施例還包括佈線層70和位於佈線層70上的多個金屬焊球80。
Compared with the first embodiment, the fourth embodiment, the sixth embodiment and the eighth embodiment, this embodiment further includes a wiring layer 70 and a plurality of
由於溝槽20的間距很小,溝槽結構引出的柵電極比較窄小,使得寄生電阻很大。為了減小寄生電阻,在第一實施例、第四實施例、第六實施例以及第八實施例提供的雙向功率器件上方增加佈線層70。
Since the distance between the
如第22圖-第26圖所示,佈線層70位於所述雙向功率器件的表面上,用於將第一接觸61、第二接觸62、第三接觸63和第四接觸
64形成的第一輸出電極S1、第二輸出電極S2、襯底電極Sub以及柵電極G引出至所述雙向功率器件表面。
As shown in FIGS. 22-26, the wiring layer 70 is located on the surface of the bidirectional power device, and is used to connect the
其中,第一接觸61、第二接觸62、第三接觸63和第四接觸64位於第一金屬層M1中,佈線層70位於第二金屬層M2中,第一金屬層M1和第二金屬層M2之間由覆蓋介質層11隔離。佈線層70與第一接觸61、第二接觸62、第三接觸63和第四接觸64通過多個導電孔90實現電連接。佈線層70包括第一佈線71、第二佈線72、第三佈線73和第四佈線74(圖中未示出),其中,第一佈線71與第一接觸61電連接;第二佈線72與第二接觸62電連接;第三佈線73與第三接觸63電連接;第四布線74與第四接觸64電連接。
Wherein, the
在本實施例中,佈線層70採用更寬的金屬線引出以減小金屬層的寄生電阻。 In this embodiment, wider metal lines are used to lead out the wiring layer 70 to reduce the parasitic resistance of the metal layer.
多個金屬焊球80,位於所述佈線層70上,通過佈線層70與所述第一輸出電極S1、第二輸出電極S2、襯底電極Sub以及柵電極G電連接。其中,金屬焊球80包括與所述第一輸出電極S1電連接的金屬焊球81、與所述第二輸出電極S2電連接的金屬焊球82、與所述襯底電極Sub電連接的金屬焊球83以及與所述柵電極G電連接的金屬焊球84(圖中未示出)。
A plurality of
在本實施例中,採用植球工藝在佈線層上形成多個金屬焊球80,完成晶片級封裝。金屬焊球81為第一輸出電極S1與外部電連接的焊盤引腳,金屬焊球82為第二輸出電極S2與外部電連接的焊盤引腳,金屬焊球83為襯底電極與外部電連接的焊盤引腳,金屬焊球84為柵電極與外部電連接的焊盤引腳。
In this embodiment, a plurality of
在一個優選地實施例中,金屬焊球80與佈線層70之間還形成有電鍍金屬層M3,使得金屬焊球80與佈線層70之間的結合更加牢固。
In a preferred embodiment, an electroplating metal layer M3 is further formed between the
第一輸出電極S1和第二輸出電極S2由於需要通過過大電流,囙此分佈了比較多的金屬焊球81和82,如第27圖所示,可以增加了雙向功率器件和外部系統之間的電流分佈。
Since the first output electrode S1 and the second output electrode S2 need to pass excessive current, more
第九實施例由於採用了植球的工藝,省略了傳統封裝的打線,減小了封裝的寄生電感和寄生電阻,減小雙向功率器件的封裝電阻;由於沒有塑封料的包封,使得散熱更加容易,減小功耗,提高雙向功率器件的可靠性和安全性。 Since the ninth embodiment adopts the ball-mounting process, the wire bonding of the traditional package is omitted, the parasitic inductance and parasitic resistance of the package are reduced, and the package resistance of the bidirectional power device is reduced. It is easy to reduce power consumption and improve the reliability and safety of bidirectional power devices.
第十實施例 Tenth Embodiment
本實施例與第八實施例採用基本相同的技術方案,不同之處在於,第八實施例中,第三接觸63形成在半導體層10的第一表面上,通過第三接觸孔53、第三引線區101與所述半導體層10相接觸以形成襯底電極Sub。而本實施例中,第三接觸63形成在半導體層10的第二表面上,如第28圖所示。具體地,將雙向功率器件形成在摻雜濃度較高的襯底1上,然後在襯底1的背面蒸發金屬層形成第三接觸63。
This embodiment adopts basically the same technical solution as the eighth embodiment, the difference lies in that, in the eighth embodiment, the
第八實施例中,雙向功率器件的柵極、襯底電極、第一輸出電極和第二輸出電極均從半導體層10的第一表面引出,適合晶片級封裝(CSP)。
In the eighth embodiment, the gate electrode, the substrate electrode, the first output electrode and the second output electrode of the bidirectional power device are all drawn out from the first surface of the
第十實施例中,雙向功率器件的襯底電極從半導體層10的第二表面引出,既能適應傳統的器件封裝形式(例如SOP8、DIP8),同時增加了雙向功率器件的散熱能力。
In the tenth embodiment, the substrate electrode of the bidirectional power device is drawn out from the second surface of the
本實施例中,雙向功率器件的其餘部分與第八實施例基本相同,具體結構不再贅述。 In this embodiment, the rest of the bidirectional power device is basically the same as that of the eighth embodiment, and the specific structure will not be repeated.
依照本發明的實施例如上文所述,這些實施例並沒有詳盡敘述所有的細節,也不限制該發明僅為所述的具體實施例。顯然,根據以上描述,可作很多的修改和變化。本說明書選取並具體描述這些實施例,是為了更好地解釋本發明的原理和實際應用,從而使所屬技術領域技術人員能很好地利用本發明以及在本發明基礎上的修改使用。本發明僅受申請專利範圍和等效物的限制。 Embodiments in accordance with the present invention are described above, but these embodiments do not exhaust all the details and do not limit the invention to only the specific embodiments described. Obviously, many modifications and variations are possible in light of the above description. This specification selects and specifically describes these embodiments in order to better explain the principle and practical application of the present invention, so that those skilled in the art can make good use of the present invention and modifications based on the present invention. The present invention is limited only by the scope of the claims and equivalents.
10:半導體層 10: Semiconductor layer
11:覆蓋介質層 11: Cover the dielectric layer
20a:第一溝槽 20a: First groove
20b:第二溝槽 20b: Second groove
20c:第三溝槽 20c: Third groove
21:栅介質層 21: Gate dielectric layer
22:控制栅 22: Control grid
23:遮罩柵 23: Shading grid
24:隔離層 24: isolation layer
25:遮罩介質層 25: Mask dielectric layer
31:源區 31: Source area
32:漏區 32: Drain area
40:溝道區 40: Channel region
51:第一接觸孔 51: The first contact hole
52:第二接觸孔 52: The second contact hole
53:第三接觸孔 53: The third contact hole
61:第一接觸 61: First Contact
62:第二接觸 62: Second Contact
63:第三接觸 63: Third Contact
101:第三引線區 101: The third lead area
311:第一引線區 311: The first lead area
321:第二引線區 321: Second lead area
W1,W2:寬度 W1,W2: width
L1,L2,L3,K:長度 L1,L2,L3,K: length
Claims (36)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910267738.7 | 2019-04-03 | ||
CN201910267738.7A CN111785771A (en) | 2019-04-03 | 2019-04-03 | Bidirectional power device |
Publications (2)
Publication Number | Publication Date |
---|---|
TW202034527A TW202034527A (en) | 2020-09-16 |
TWI750626B true TWI750626B (en) | 2021-12-21 |
Family
ID=72664899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109111360A TWI750626B (en) | 2019-04-03 | 2020-04-01 | Bidirectional power device |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN111785771A (en) |
TW (1) | TWI750626B (en) |
WO (1) | WO2020199705A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110137243B (en) * | 2019-04-03 | 2024-03-29 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
CN112309976B (en) * | 2020-10-27 | 2023-06-20 | 杭州士兰微电子股份有限公司 | Manufacturing method of bidirectional power device |
CN112309973B (en) * | 2020-10-27 | 2023-11-21 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
CN115101524B (en) * | 2020-10-27 | 2024-10-11 | 杭州士兰微电子股份有限公司 | Bidirectional power device |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465836B2 (en) * | 2001-03-29 | 2002-10-15 | Taiwan Semiconductor Manufacturing Co., Ltd | Vertical split gate field effect transistor (FET) device |
US7126188B2 (en) * | 2004-05-27 | 2006-10-24 | Skymedi Corporation | Vertical split gate memory cell and manufacturing method thereof |
US7659570B2 (en) * | 2005-05-09 | 2010-02-09 | Alpha & Omega Semiconductor Ltd. | Power MOSFET device structure for high frequency applications |
TWI497608B (en) * | 2012-03-13 | 2015-08-21 | Maxpower Semiconductor Inc | Gold - oxygen Half - efficiency Electro - crystal Structure and Process Method |
TWI509809B (en) * | 2012-12-21 | 2015-11-21 | Alpha & Omega Semiconductor | High density trench-based power mosfets with self-aligned active contacts and method for making such devices |
TWI544635B (en) * | 2014-03-20 | 2016-08-01 | 帥群微電子股份有限公司 | Trench power mosfet and manufacturing method thereof |
TWI567830B (en) * | 2015-07-31 | 2017-01-21 | 帥群微電子股份有限公司 | Trench power transistor structure and manufacturing method thereof |
TWI570917B (en) * | 2014-12-31 | 2017-02-11 | 帥群微電子股份有限公司 | Trench power mosfet and manufacturing method thereof |
TWI599041B (en) * | 2015-11-23 | 2017-09-11 | 節能元件控股有限公司 | Metal oxide semiconductor field effect transistor power device with bottom gate and method for the same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8507978B2 (en) * | 2011-06-16 | 2013-08-13 | Alpha And Omega Semiconductor Incorporated | Split-gate structure in trench-based silicon carbide power device |
EP3327791A1 (en) * | 2016-11-24 | 2018-05-30 | ABB Schweiz AG | Junction field-effect transistor |
CN109037337A (en) * | 2018-06-28 | 2018-12-18 | 华为技术有限公司 | A kind of power semiconductor and manufacturing method |
CN210224039U (en) * | 2019-04-03 | 2020-03-31 | 杭州士兰微电子股份有限公司 | Bidirectional power device |
CN110137242B (en) * | 2019-04-03 | 2024-02-23 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
CN110120416B (en) * | 2019-04-03 | 2024-02-23 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
CN110137243B (en) * | 2019-04-03 | 2024-03-29 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
CN110310982B (en) * | 2019-04-03 | 2024-08-16 | 杭州士兰微电子股份有限公司 | Bidirectional power device and manufacturing method thereof |
-
2019
- 2019-04-03 CN CN201910267738.7A patent/CN111785771A/en active Pending
-
2020
- 2020-01-07 WO PCT/CN2020/070760 patent/WO2020199705A1/en active Application Filing
- 2020-04-01 TW TW109111360A patent/TWI750626B/en active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6465836B2 (en) * | 2001-03-29 | 2002-10-15 | Taiwan Semiconductor Manufacturing Co., Ltd | Vertical split gate field effect transistor (FET) device |
US7126188B2 (en) * | 2004-05-27 | 2006-10-24 | Skymedi Corporation | Vertical split gate memory cell and manufacturing method thereof |
US7659570B2 (en) * | 2005-05-09 | 2010-02-09 | Alpha & Omega Semiconductor Ltd. | Power MOSFET device structure for high frequency applications |
TWI497608B (en) * | 2012-03-13 | 2015-08-21 | Maxpower Semiconductor Inc | Gold - oxygen Half - efficiency Electro - crystal Structure and Process Method |
TWI509809B (en) * | 2012-12-21 | 2015-11-21 | Alpha & Omega Semiconductor | High density trench-based power mosfets with self-aligned active contacts and method for making such devices |
TWI544635B (en) * | 2014-03-20 | 2016-08-01 | 帥群微電子股份有限公司 | Trench power mosfet and manufacturing method thereof |
TWI570917B (en) * | 2014-12-31 | 2017-02-11 | 帥群微電子股份有限公司 | Trench power mosfet and manufacturing method thereof |
TWI567830B (en) * | 2015-07-31 | 2017-01-21 | 帥群微電子股份有限公司 | Trench power transistor structure and manufacturing method thereof |
TWI599041B (en) * | 2015-11-23 | 2017-09-11 | 節能元件控股有限公司 | Metal oxide semiconductor field effect transistor power device with bottom gate and method for the same |
Non-Patent Citations (1)
Title |
---|
IEEE Electron device letters, (30) 4, 2009 * |
Also Published As
Publication number | Publication date |
---|---|
CN111785771A (en) | 2020-10-16 |
TW202034527A (en) | 2020-09-16 |
WO2020199705A1 (en) | 2020-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI750626B (en) | Bidirectional power device | |
US11462620B2 (en) | Semiconductor device having a transistor cell region and a termination region with needle-shaped field plate structures | |
WO2020199707A1 (en) | Bidirectional power device and manufacturing method therefor | |
WO2020199706A1 (en) | Bi-directional power device and fabrication method therefor | |
US8928071B2 (en) | Semiconductor device including a MOSFET and Schottky junction | |
US9437728B2 (en) | Semiconductor device | |
US9722036B2 (en) | Semiconductor device with field electrode structure | |
US20170309713A1 (en) | Semiconductor Device Having Stripe-Shaped Gate Structures and Spicular or Needle-Shaped Field Electrode Structures | |
JP7355526B2 (en) | semiconductor equipment | |
CN110120416B (en) | Bidirectional power device and manufacturing method thereof | |
CN210224039U (en) | Bidirectional power device | |
CN110310982B (en) | Bidirectional power device and manufacturing method thereof | |
US11322596B2 (en) | Semiconductor device including junction material in a trench and manufacturing method | |
CN209896064U (en) | Bidirectional power device | |
CN209912875U (en) | Bidirectional power device | |
CN210224040U (en) | Bidirectional power device | |
JP7515719B2 (en) | Silicon carbide semiconductor device | |
US11508841B2 (en) | Semiconductor device | |
JP2024007911A (en) | Semiconductor device | |
JP2024009372A (en) | Super-junction semiconductor device |