TWI749086B - 使用於電漿處理裝置之阻抗匹配的方法 - Google Patents

使用於電漿處理裝置之阻抗匹配的方法 Download PDF

Info

Publication number
TWI749086B
TWI749086B TW106135592A TW106135592A TWI749086B TW I749086 B TWI749086 B TW I749086B TW 106135592 A TW106135592 A TW 106135592A TW 106135592 A TW106135592 A TW 106135592A TW I749086 B TWI749086 B TW I749086B
Authority
TW
Taiwan
Prior art keywords
modulation
average value
radio frequency
period
power supply
Prior art date
Application number
TW106135592A
Other languages
English (en)
Other versions
TW201828781A (zh
Inventor
永海幸一
山田紀和
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW201828781A publication Critical patent/TW201828781A/zh
Application granted granted Critical
Publication of TWI749086B publication Critical patent/TWI749086B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本發明之課題係比較簡單地實現電漿處理裝置之第一匹配器及第二匹配器之匹配動作。 在一實施形態中,電漿處理裝置之第一射頻電源及第二射頻電源各自選擇地輸出連續波、調變波及雙重調變波。在一實施形態之方法中,決定第一射頻電源之負載側阻抗的第一平均值及決定第二射頻電源之負載側阻抗的第二平均值係依據由第一射頻電源輸出之第一射頻及由第二射頻電源輸出之第二射頻,使用2個平均化方法中之任一平均化方法來求得。依據該等第一平均值及第二平均值,進行第一匹配器及第二匹配器之阻抗匹配。

Description

使用於電漿處理裝置之阻抗匹配的方法
本發明係關於使用於電漿處理裝置之阻抗匹配的方法。
在製造半導體裝置等之電子裝置時,對被處理體進行例如電漿蝕刻之電漿處理。電漿處理使用電漿處理裝置。
電漿處理裝置一般具有腔室本體、第一電極、第二電極、第一射頻電源、第一匹配器、第二射頻電源及第二匹配器。腔室本體提供其內部空間作為腔室。第一電極及第二電極配置成使腔室內之空間介於其間。第二電極係下部電極且包含在被加工物載於其上之載置台中。第一射頻電源產生電漿產生用之第一射頻。第一射頻供給至第一電極及第二電極中之一電極。第二射頻電源產生離子引入用之第二射頻。第二射頻供給至第二電極。在電漿處理裝置中,為使第一射頻電源之輸出阻抗與其負載側之阻抗匹配,調整第一匹配器之可變電抗元件。此外,為使第二射頻電源之輸出阻抗與其負載側之阻抗匹配,調整第二匹配器之可變電抗元件。在電漿處理裝置中,供給至腔室之氣體藉由第一電極與第二電極間產生之射頻電場而解離,並藉由離子或自由基等之活性種來處理被加工物。
在電漿處理裝置中,有時由第一射頻電源及第二射頻電源中之至少一射頻電源供給調變其位準之射頻。即,有時利用調變其位準之調變波,使交互之2個期間中的一期間的位準比另一期間的位準低。在電漿處理裝置中利用射頻之技術記載在下述專利文獻1至3中。 [先前技術文獻] [專利文獻]
[專利文獻1]日本特開2009-71292號公報 [專利文獻2]日本特開2009-33080號公報 [專利文獻3]日本特開2012-9544號公報
[發明所欲解決的問題]
在電漿處理裝置中,考慮各種組合作為由第一射頻電源輸出之第一射頻與由第二射頻電源輸出之第二射頻的組合。例如,在第一組合中,第一射頻係調變波且第二射頻係連續波。在第二組合中,第一射頻係連續波且第二射頻係調變波。在第三組合中,第一射頻及第二射頻雙方均為調變波。在第三組合中,第一射頻及第二射頻之調變頻率相同或互不相同。
如上所述,在1個電漿處理裝置中選擇地使用多數組合作為第一射頻及第二射頻之組合時,使用於各第一匹配器及第二匹配器之匹配動作的阻抗運算複雜化。因此,對第一射頻及第二射頻之各種組合,要求實現使用於第一匹配器及第二匹配器之匹配動作的比較簡單的阻抗運算。 [解決問題的手段]
在一態樣中,提供使用於電漿處理裝置之阻抗匹配的方法。電漿處理裝置具有腔室本體、第一電極及第二電極、第一射頻電源、第二射頻電源、第一供電線、第二供電線、第一匹配器及第二匹配器。第一電極及第二電極設置成使腔室本體內之空間介於其間。第一射頻電源係輸出電漿產生用之第一射頻的電源。第一射頻具有第一基本頻率。第二射頻電源係輸出離子引入用之第二射頻的電源。第二射頻具有比第一基本頻率低之第二基本頻率。第一供電線電性連接第一電極或第二電極與第一射頻電源。第二供電線電性連接第二電極與第二射頻電源。第一匹配器係組配成調整第一射頻電源之負載側阻抗。第二匹配器係組配成調整第二射頻電源之負載側阻抗。
第一射頻電源係組配成選擇地輸出具有第一基本頻率之第一連續波、第一調變波及第一雙重調變波中之一波作為第一射頻。第一調變波係藉由使用第一調變來調變具有第一基本頻率之連續波的位準而產生。第一調變係調變連續波之位準,使按調變頻率交互反覆之2個期間中之一期間的位準比該2個期間中之另一期間的位準高的調變。第一雙重調變波係藉由使用第二調變來調變具有第一基本頻率之連續波的位準而產生。第二調變係調變連續波之位準,使按第一調變頻率交互反覆之2個期間中之一期間與按比該第一調變頻率低之第二調變頻率交互反覆之2個期間中之一期間重複的期間的位準比按該第一調變頻率交互反覆之2個期間中之另一期間及按該第二調變頻率交互反覆之2個期間中之另一期間的位準高的調變。第二射頻電源係組配成選擇地輸出具有第二基本頻率之第二連續波、藉由使用第一調變來調變具有第二基本頻率之連續波而產生的第二調變波、及藉由使用第二調變來調變具有第二基本頻率之連續波而產生的第二雙重調變波中的一波作為第二射頻。
一態樣之方法包含以下步驟:(i)實行平均化處理之步驟,求得第一射頻電源之負載側阻抗的第一平均值或包含第一供電線上之電壓平均值及電流平均值的第一平均值群、及第二射頻電源之負載側阻抗的第二平均值或包含第二供電線上之電壓平均值及電流平均值的第二平均值群;(ii)求得第一移動平均值及第二移動平均值之步驟,該第一移動平均值係由藉由實行平均化處理之步驟求得之預定個第一平均值或預定個第一平均值群求得的第一射頻電源之負載側阻抗的移動平均值,第二移動平均值係由藉由實行平均化處理之步驟求得之預定個第二平均值或預定個第二平均值群求得的第二射頻電源之負載側阻抗的移動平均值;及(iii)調整第一匹配器之可變電抗元件及第二匹配器之可變電抗元件,使第一移動平均值及第二移動平均值接近匹配點。
用於產生第一射頻及第二射頻之最低調變頻率只使用於產生由第一射頻電源及第二射頻電源中之一射頻電源輸出的射頻時,由在按該最低調變頻率交互反覆之2個期間中之一期間中多數時點的該一射頻電源之負載側阻抗求得平均值,並由在按該最低調變頻率交互反覆之2個期間雙方中多數時點的另一射頻電源之負載側阻抗求得平均值,藉此求得第一平均值及第二平均值,或者,求得在按該最低調變頻率交互反覆之2個期間中之一期間的多數時點,第一供電線及第二供電線中用於傳送來自該一射頻電源之射頻的一供電線上的電流平均值及電壓平均值,並求得在按該最低調變頻率交互反覆之2個期間雙方中多數時點的另一供電線上的電流平均值及電壓平均值,藉此求得第一平均值群及第二平均值群。
用於產生第一射頻及第二射頻之最低調變頻率共用於產生該第一射頻及該第二射頻時,由在按該最低調變頻率規定之第一射頻調變周期中之2個期間中的一期間中多數時點的第一射頻電源之負載側阻抗求得第一平均值,並由在按該最低調變頻率規定之第二射頻調變周期中之2個期間中的一期間中多數時點的第二射頻電源之負載側阻抗求得第二平均值,或者,由在按該最低調變頻率規定之第一射頻調變周期中之2個期間中的一期間中多數時點的第一供電線上之電壓及電流求得第一平均值群,並由在按該最低調變頻率規定之第二射頻調變周期中之2個期間中的一期間中多數時點的第二供電線上之電壓及電流求得第二平均值群。
在一態樣之方法中,由預定個第一平均值或預定個第一平均值群求得第一移動平均值,並由預定個第二平均值或預定個第二平均值群求得第二移動平均值。第一匹配器之可變電抗元件的調整係依據第一移動平均值來進行,且第二匹配器之可變電抗元件的調整係依據第二移動平均值來進行。在該方法中,依據用於產生第一射頻及第二射頻之最低調變頻率是否共用於產生第一射頻及第二射頻,對算出第一平均值或第一平均值群及第二平均值或第二平均值群選擇地使用關於參照之期間進行不同選擇的2個平均化處理中的一平均化處理。即,對第一射頻之調變及第二射頻之調變的各種組合,只藉由2個平均化處理,求得第一平均值或第一平均值群及第二平均值或第二平均值群。因此,實現使用於第一匹配器及第二匹配器之匹配動作的比較簡單的阻抗運算。
在一實施形態中,第一射頻電源輸出第一調變波,第二射頻電源輸出第二雙重調變波,且用於產生第一調變波之調變頻率與用於產生第二雙重調變波之第一調變頻率相同時,由按用於產生第二雙重調變波之第二調變頻率規定的調變周期包含的多數調變周期,即藉由用於產生第一調變波之調變頻率規定的該多數調變周期之各調變周期中第一射頻電源之負載側阻抗的多數平均值求得第一平均值,或者,由該多數調變周期之各調變周期中第一供電線上之電流的多數平均值及電壓的多數平均值求得第一平均值群。依據該實施形態,可更高精度地求得藉由第一平均值表示之第一射頻電源的負載側阻抗或藉由第一平均值群表示之第一供電線上的電壓及電流。
在一實施形態中,第一射頻電源輸出第一雙重調變波,第二射頻電源輸出與第一雙重調變波同步之第二調變波,且用於產生第一雙重調變波之第二調變頻率與用於產生第二調變波之調變頻率相同時,第一平均值係由按用於產生第一雙重調變波之第二調變頻率規定的調變周期包含的多數調變周期,即藉由用於產生第一雙重調變波之第一調變頻率規定的該多數調變周期之各調變周期中第一射頻電源之負載側阻抗的多數平均值求得第一平均值,或者,由該多數調變周期之各調變周期中第一供電線上之電流的平均值及電壓的平均值求得第一平均值群。依據該實施形態,可更高精度地求得藉由第一平均值表示之第一射頻電源的負載側阻抗或藉由第一平均值群表示之第一供電線上的電壓平均值及電流平均值。
在一實施形態中,第一射頻電源輸出第一雙重調變波,第二射頻電源輸出與第一雙重調變波同步之第二調變波,且用於產生第一雙重調變波之第二調變頻率與用於產生第二調變波之調變頻率相同時,由在藉由用於產生第一雙重調變波之第二調變頻率規定之調變周期內的2個期間中之一期間與藉由用於產生第二調變波之調變頻率規定之對應調變周期內的2個期間中之一期間重複的期間中,第一射頻電源的負載側阻抗求得第一平均值,或者,由在藉由用於產生第一雙重調變波之第二調變頻率規定之調變周期內的2個期間中之一期間與藉由用於產生第二調變波之調變頻率規定之對應調變周期內的2個期間中之一期間重複的期間中,第一供電線上之電壓及電流求得第一平均值群。
在一實施形態中,調變第一射頻,使在按用於第一調變之調變頻率交互反覆的2個期間中之一期間或按用於第二調變之第一調變頻率交互反覆的2個期間中之一期間包含的不同多數期間具有不同位準。在該實施形態中,由該多數期間之各期間中第一射頻電源之負載側阻抗的多數平均值求得第一平均值,或者,由該多數期間之各期間中第一供電線上之電壓的多數平均值及電流的多數平均值求得第一平均值群。依據該實施形態,即使在調變周期中之2個期間中的一期間中變更第一射頻之位準,亦可更高精度地求得藉由第一平均值表示之第一射頻電源的負載側阻抗或藉由第一平均值群表示之第一供電線上的電壓平均值及電流的平均值。 [發明的功效]
如以上說明地,對第一射頻及第二射頻之各種組合,可實現使用於第一匹配器及第二匹配器之匹配動作的比較簡單的阻抗運算。
以下,參照圖式詳細地說明各種實施形態。此外,在各圖式中對相同或相當之部分附加相同之符號。
圖1係顯示一實施形態之使用於電漿處理裝置之阻抗匹配的方法的流程圖。圖1所示之方法MT係使用於使電漿處理裝置之第一射頻電源的負載側阻抗及第二射頻電源的負載側阻抗與匹配點一致或接近的方法。
圖2係概略地顯示可使用圖1所示方法之一實施形態的電漿處理裝置的圖。圖2所示之電漿處理裝置1係電容耦合型之電漿處理裝置。電漿處理裝置1具有腔室本體10。腔室本體10具有大致圓筒形狀。腔室本體10提供其內部空間作為腔室10c。腔室本體10係由鋁等之材料形成。在腔室本體10之內壁面實施陽極氧化處理。此外,腔室本體10接地。
絕緣板12設置在腔室本體10之底部上。絕緣板12係由例如陶瓷形成。支持台14設置在該絕緣板12上。支持台14具有大致圓柱形狀。感受器16設置在該支持台14上。感受器16係由鋁等之導電性材料形成且構成下部電極,即第二電極。
靜電吸盤18設置在感受器16上。靜電吸盤18具有絕緣層及設於該絕緣層內之電極20。靜電吸盤18之電極20透過開關22電性連接於直流電源24。該靜電吸盤18藉由來自直流電源24之直流電壓產生靜電吸附力,並可藉由靜電吸附力保持載置在該靜電吸盤18上之被加工物W。被加工物W可具有例如如晶圓之大致圓盤形狀。聚焦環26配置在靜電吸盤18之周圍且在感受器16上。此外,圓筒狀之內壁構件28安裝在感受器16及支持台14之外周面上。該內壁構件28係由例如石英形成。
支持台14之內部形成流路30。流路30例如相對朝垂直方向延伸之中心軸線渦卷狀地延伸。冷媒cw(例如,冷卻水)由設於腔室本體10外部之冷卻器單元透過配管32a供給至該流路30。供給至流路30之冷媒cw透過配管32b回收至冷卻器單元。藉由冷卻器單元調整該冷媒之溫度,可調整被加工物W之溫度。此外,在電漿處理裝置1中,透過氣體供給線34供給之傳熱氣體(例如,He氣)可供給至靜電吸盤18之上面與被加工物W之背面間。
導體44(例如,供電棒)連接於感受器16。射頻電源36(第一射頻電源)透過匹配器40(第一匹配器)連接於該導體44,且射頻電源38(第二射頻電源)透過匹配器42(第二匹配器)連接於該導體44。射頻電源36輸出電漿產生用之第一射頻,即射頻RF1。射頻RF1係具有第一基本頻率,即基本頻率fB1 之射頻。基本頻率fB1 係例如100MHz。射頻電源38輸出使用於由電漿植入離子至被加工物W中的第二射頻,即射頻RF2。射頻RF2係具有第二基本頻率,即基本頻率fB2 之射頻。基本頻率fB2 係例如13.56MHz。
匹配器40及導體44構成將來自射頻電源36之射頻RF1傳送至感受器16的第一供電線,即供電線43之一部份。匹配器42及導體44構成將來自射頻電源38之射頻RF2傳送至感受器16的第二供電線,即供電線45之一部份。
第一電極,即上部電極46設置在腔室本體10之頂部。產生電漿之腔室本體10c內的空間PS介於上部電極46與感受器16之間。上部電極46包含頂板48及支持體50。多數氣體噴出孔48a形成在頂板48中。頂板48係由例如SiC等之矽系材料形成。支持體50係可分離地支持頂板48之構件並由鋁形成,且在其表面實施陽極氧化處理。
氣體緩衝室52形成在支持體50之內部。此外,多數孔50a形成在支持體50中。多數孔50a由氣體緩衝室52朝下方延伸並連通於氣體噴出孔48a。一個以上之氣體源56透過氣體供給管54連接於氣體緩衝室52。一個以上之氣體源56透過質量流控制器等一個以上之流量控制器58中對應的流量控制器及一個以上之閥60中對應的閥連接於氣體緩衝室52。來自一個以上之氣體源56之各氣體源的氣體藉由對應之流量控制器58調整其流量後,導入氣體緩衝室52中。導入氣體緩衝室52之氣體由多數氣體噴出孔48a噴出至空間PS中。
感受器16與腔室本體10之側壁間及支持台14與腔室本體10之側壁間形成在平面圖中環狀之空間,該空間之底部連接於腔室本體10之排氣口62。連通於排氣口62之排氣管64連接於腔室本體10之底部。該排氣管64連接於排氣裝置66。排氣裝置66具有壓力控制器及渦輪分子泵等之真空泵。排氣裝置66使腔室10c減壓。此外,使用於搬入及搬出被加工物W之通路68形成在腔室本體10之側壁中。使用於開關通路68之閘閥70安裝在腔室本體10之側壁上。
電漿處理裝置1更具有主控制部72。主控制部72係例如電腦裝置且具有處理器及記憶體等之記憶裝置。記憶裝置記憶記憶藉由處理器實行之軟體(程式)及程式庫資訊。主控制部72依據該軟體及程式庫資訊,控制電漿處理裝置1之各部,例如射頻電源36、38、匹配器40、42、一個以上之流量控制器58、一個以上之閥60、排氣裝置66等的各個動作及該電漿處理裝置1之裝置全體的動作。
藉由該電漿處理裝置1進行電漿處理時,首先,開啟閘閥70,經由通路68將被加工物W搬入腔室本體10內。搬入腔室本體10內之被加工物W載置在靜電吸盤18上。接著,導入來自一個以上之氣體源中選擇之氣體源的氣體至腔室10c中並使排氣裝置66動作而使腔室10c減壓。進一步,供給來自射頻電源36之射頻RF1至感受器16並供給來自射頻電源38之射頻RF2至感受器16。然後,施加來自直流電源24之直流電壓至靜電吸盤18之電極20並藉由靜電吸盤18保持被加工物W。接著,藉由形成在感受器16與上部電極46間之射頻電荷激發供給至腔室本體10內之氣體。藉由來自如此產生之電漿的自由基及/或離子處理被加工物W。
以下,參照圖3至圖9,說明由射頻電源36輸出之射頻RF1及由射頻電源38輸出之射頻RF2。圖3至圖9分別係例示在第一至第七模式中輸出之第一射頻及第二射頻的圖。
在電漿處理裝置1中,射頻電源36選擇地輸出第一連續波(連續波CW1)、第一調變波(調變波MW1)及第一雙重調變波(雙重調變波DW1)中之一波,作為射頻RF1。如圖4所示地,連續波CW1係具有基本頻率fB1 且連續地具有一定之位準(功率)的射頻。
調變波MW1係藉由第一調變來調變具有基本頻率fB1 之連續波的位準而產生的調變波。第一調變調變連續波之位準(功率),使按調變頻率交互反覆之2個期間中之一期間(以下,一期間有時稱為「高位準期間」)的位準(功率)比該2個期間中之另一期間的位準(功率)高。
如圖3、圖5、圖6、圖7及圖8所示地,交互反覆之2個期間P1a 、P1b 中之期間P1a 之調變波MW1的位準比另一期間P1b 之調變波MW1的位準高。期間P1b 之調變波MW1的位準可為零。此外,調變波MW1之調變頻率fM1 係調變周期P1 之倒數,且調變周期P1 包含一個期間P1a 及連接於該期間P1a 之期間P1b 。調變頻率fM1 係比基本頻率fB1 低之頻率。
雙重調變波DW1係藉由第二調變來調變具有基本頻率fB1 之連續波的位準而產生的調變波。第二調變調變連續波之位準(功率),使按第一調變頻率交互反覆之2個期間中之一期間(以下,一期間有時稱為「高位準期間」)與按比該第一調變頻率低之第二調變頻率交互反覆之2個期間中之一期間(以下,一期間有時稱為「高位準期間」)重複之期間的位準(功率)比按該第一調變頻率交互反覆之2個期間中之另一期間及按該第二調變頻率交互反覆之2個期間中之另一期間的位準(功率)高。
如圖9所示地,交互反覆之2個期間P11a 與P11b 中之一期間P11a 及交互反覆之2個期間P12a 與P12b 中之一期間P12a 重複的期間的雙重調變波DW1位準比期間P11b 及期間P12b 中的雙重調變波DW1位準高。期間P11b 及期間P12b 的雙重調變波DW1位準可為零。此外,雙重調變波DW1之第一調變頻率fD11 係調變周期P11 之倒數,且調變周期P11 包含一個期間P11a 及連接於該期間P11a 之期間P11b 。雙重調變波DW1之第二調變頻率fD12 係調變周期P12 之倒數,且調變周期P12 包含一個期間P12a 及連接於該期間P12a 之期間P12b 。第二調變頻率fD12 比第一調變頻率fD11 低。此外,第一調變頻率fD11 及第二調變頻率fD12 係比基本頻率fB2 低之頻率。
射頻電源38選擇地輸出第二連續波(連續波CW2)、第二調變波(調變波MW2)及第二雙重調變波(雙重調變波DW2)中之一波,作為射頻RF2。如圖3所示地,連續波CW2係具有基本頻率fB2 之連續波。
調變波MW2係藉由第一調變來調變具有基本頻率fB2 之連續波的位準而產生的調變波。如圖4、圖5、圖6、圖7及圖9所示地,交互反覆之2個期間P2a 、P2b 中之一期間P2a 之調變波MW2的位準比另一期間P2b 之該調變波MW2的位準高。期間P2b 之調變波MW2的位準可為零。此外,調變波MW2之調變頻率fM2 係調變周期P2 之倒數,且調變周期P2 包含一個期間P2a 及連接於該期間P2a 之期間P2b 。調變頻率fM2 係比基本頻率fB2 低之頻率。
雙重調變波DW2係藉由第二調變來調變具有基本頻率fB2 之連續波的位準而產生的調變波。如圖8所示地,交互反覆之2個期間P21a 與P21b 中之一期間P21a 及交互反覆之2個期間P22a 與P22b 中之一期間P22a 重複的期間的雙重調變波DW2位準比期間P21b 及期間P22b 中的雙重調變波DW2位準高。期間P21b 及期間P22b 的雙重調變波DW2位準可為零。此外,雙重調變波DW2之第一調變頻率fD21 係調變周期P21 之倒數,且調變周期P21 包含一個期間P21a 及連接於該期間P21a 之期間P21b 。雙重調變波DW2之第二調變頻率fD22 係調變周期P22 之倒數,且調變周期P22 包含一個期間P22a 及連接於該期間P22a 之期間P22b 。第二調變頻率fD22 比第一調變頻率fD21 低。此外,第一調變頻率fD21 及第二調變頻率fD22 係比基本頻率fB2 低之頻率。
如圖3所示地,在第一模式中,射頻電源36輸出調變波MW1且射頻電源38輸出連續波CW2。如圖4所示地,在第二模式中,射頻電源36輸出連續波CW1且射頻電源38輸出調變波MW2。
如圖5所示地,在第三模式中,射頻電源36輸出調變波MW1且射頻電源38輸出調變波MW2。在第三模式中,調變頻率fM1 比調變頻率fM2 高且係例如10kHz以上。
如圖6所示地,在第四模式中,射頻電源36輸出調變波MW1且射頻電源38輸出調變波MW2。在第四模式中,調變頻率fM1 與調變頻率fM2 相同且係例如10Hz以上。在第四模式中,調變波MW1與調變波MW2同步。如圖7所示地,在第五模式中,射頻電源36輸出調變波MW1且射頻電源38輸出調變波MW2。在第五模式中,調變頻率fM1 與調變頻率fM2 相同且係例如10Hz以上。在第五模式中,調變波MW1與調變波MW2非同步。即,調變波MW1之調變周期P1 與調變波MW2之調變周期P2 間具有相位差。在一例中,如圖7所示地,調變周期P2 由調變周期P1 之途中開始且該調變周期P2 在該調變周期P1 結束後結束。
如圖8所示地,在第六模式中,射頻電源36輸出調變波MW1且射頻電源38輸出雙重調變波DW2。在第六模式中,調變頻率fM1 與調變頻率fM2 相同且係例如10kHz以上。在第六模式中,調變波MW1與雙重調變波DW2同步。即,在第六模式中,調變周期P1 與調變周期P21 同步。此外,期間P1a 與期間P21a 同步且期間P1b 與期間P21b 亦同步。
如圖9所示地,在第七模式中,射頻電源36輸出雙重調變波DW1且射頻電源38輸出調變波MW2。在第七模式中,第二調變頻率fD12 與調變頻率fM2 相同。在第七模式中,調變波MW1與雙重調變波DW2同步。即,在第七模式中,調變周期P2 與調變頻率P12 同步。此外,期間P12a 與期間P2a 同步且期間P12b 與期間P2b 亦同步。
以下,參照圖10至圖20詳細地說明射頻電源36、射頻電源38、匹配器40及匹配器42。圖10係例示第一射頻電源之結構及第一匹配器之結構的圖。圖11係例示第一匹配器之阻抗感測器結構的圖。圖12係例示第二射頻電源之結構及第二匹配器之結構的圖。圖13係例示第二匹配器之阻抗感測器結構的圖。圖14至圖20分別係與阻抗之監測期間一起顯示第一至第七模式中之第一射頻及第二射頻的圖。
如圖10所示地,在一實施形態中,射頻電源36具有震盪器36a、功率放大器36b、功率感測器36c及電源控制部36e。電源控制部36e係由CPU等之處理器構成,且利用由主控制部72提供之信號及由功率感測器36c提供之信號,分別提供控制信號至震盪器36a、功率放大器36b及功率感測器36c,以便控制震盪器36a、功率放大器36b及功率感測器36c。
由主控制部72提供至電源控制部36e之信號包含基本頻率特定信號、模式特定信號及參數特定信號。基本頻率特定信號特定基本頻率fB1 。模式特定信號特定上述第一至第七模式中使用之模式。參數特定信號特定與射頻RF1之位準設定或位準之調變相關的各種參數。具體而言,射頻RF1係連續波CW1時,參數特定信號特定連續波CW1之位準(功率)。射頻RF1係調變波MW1時,參數特定信號特定調變波MW1之相位;調變頻率fM1 ;調變周期P1 中期間P1a 佔有之比例,即負載比;期間P1a 中之調變波MW1的位準(功率);及期間P1b 中之調變波MW1的位準(功率)。射頻RF1係雙重調變波DW1時,參數特定信號特定第一調變頻率fD11 ;調變周期P11 中期間P11a 佔有之比例,即負載比;第二調變頻率fD12 ;調變周期P12 中期間P12a 佔有之比例,即負載比;期間P11a 與期間P12a 重複之期間之雙重調變波DW1的位準(功率);期間P11b 與期間P12b 中之雙重調變波DW1的位準(功率)。
電源控制部36e控制震盪器36a輸出由基本頻率特定信號特定之基本頻率fB1 的射頻。震盪器36a之輸出連接於功率放大器36b之輸入。電源控制部36e依據藉由模式特定信號特定之模式及藉由參數特定信號特定之各種參數來控制功率放大器36b,以便設定或調變藉由震盪器36a輸出之射頻的位準。藉此,由功率放大器36b輸出連續波CW1、調變波MW1或雙重調變波DW1作為射頻RF1。
功率放大器36b之輸出透過功率感測器36c連接於供電線43。功率感測器36c具有方向性耦合器、進行波功率檢測部及反射波功率檢測部。方向性耦合器提供射頻RF1之進行波的一部份至進行波功率檢測部,並提供反射波至反射波功率檢測部。由電源控制部36e提供特定基本頻率fB1 之頻率特定信號至功率感測器36c。進行波功率檢測部產生進行波之全頻率成分中基本頻率fB1 之成分的功率測量值,即進行波功率測量值。進行波功率測量值提供至電源控制部36e用於功率回饋。
反射波檢測部產生反射波之全頻率成分中基本頻率fB1 成分之功率的測量值,即第一反射波功率測量值及反射波之全頻率成分之全功率的測量值,即第二反射波功率測量值。第一反射波功率測量值提供至主控制部72用於監測顯示。第二反射波功率測量值提供至電源控制部36e用於保護功率放大器36b。
電源控制部36e在射頻電源36輸出調變波MW1時,發送與調變波MW1之位準(功率)的調變同步地調變其位準的脈衝信號至匹配器40之匹配控制器40c。電源控制部36e在射頻電源36輸出雙重調變波DW1時,發送與雙重調變波DW1之位準(功率)的調變同步地調變其位準的脈衝信號至匹配器40之匹配控制器40c。
匹配器40具有匹配電路40a、阻抗感測器40b、匹配控制器40c及致動器40d與40e。匹配電路40a包含可變電抗元件40g與40h。可變電抗元件40g與40h係例如可變電容器。此外,匹配電路40a亦可更包含電感器等。
匹配控制器40c係由CPU等之處理器構成且在主控制部72之控制下動作。匹配控制器40c控制致動器40d與40e,使射頻電源36之負載側阻抗與匹配點一致或接近,因此可調整各可變電抗元件40g與40h之電抗。致動器40d與40e係例如馬達。
匹配控制器40c提供特定射頻電源36負載側阻抗之監測期間的期間特定信號至阻抗感測器40b。因此,在一實施形態中,由電源控制部36e提供上述脈衝信號至匹配控制器40c。此外,由主控制部72提供模式特定信號及參數特定信號至匹配控制器40c。匹配控制器40c使用提供之脈衝信號、模式特定信號及參數特定信號,產生期間特定信號。
具體而言,匹配控制器40c由模式特定信號判定用於產生射頻RF1及射頻RF2之最低調變頻率是否共用於產生射頻RF1及射頻RF2。換言之,匹配控制器40c在使用第一模式、第二模式、第三模式及第六模式中之任一模式時,為用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2。另一方面,在使用第四模式、第五模式及第七模式中之任一模式時,判定為用於產生射頻RF1及射頻RF2之最低調變頻率共用於產生射頻RF1及射頻RF2。
用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2,且該最低調變頻率只使用於產生由射頻電源36輸出之射頻RF1時,匹配控制器40c產生在按該最低調變頻率交互反覆之2個期間中的一期間(高位準期間)內設定監測期間的期間特定信號。此外,用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2,且該最低調變頻率只使用於產生由射頻電源38輸出之射頻RF2時,匹配控制器40c產生在按該最低調變頻率交互反覆之2個期間的各期間中設定監測期間的期間特定信號。
在第一模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 ,且如圖14所示地,監測期間P61 設定在期間P1a 內。監測期間P61 可為在期間P1a 內由該期間P1a 之開始時點預定時間長之期間以外的期間。
在第二模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM2 ,且如圖15所示地,監測期間P621 設定在期間P2a 內且監測期間P622 設定在期間P2b 內。監測期間P621 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。監測期間P622 可為在期間P2b 內由該期間P2b 之開始時點預定時間長之期間以外的期間。
在第三模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM2 ,且如圖16所示地,監測期間P631 設定在期間P2a 內且監測期間P632 設定在期間P2b 內。監測期間P631 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。監測期間P632 可為在期間P2b 內由該期間P2b 之開始時點預定時間長之期間以外的期間。
在第六模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係第二調變頻率fD22 ,且如圖19所示地,監測期間P661 設定在期間P22a 內且監測期間P662 設定在期間P22b 內。監測期間P661 可為在期間P22a 內由該期間P22a 之開始時點預定時間長之期間以外的期間。監測期間P662 可為在期間P22b 內由該期間P22b 之開始時點預定時間長之期間以外的期間。此外,阻抗感測器40b之濾波器106A及濾波器108A可用高比率實行取樣時,監測期間P663 亦可設定在監測期間P661 及監測期間P662 內。各監測期間P663 可為在期間P1a 內由該期間P1a 之開始時點預定時間長之期間以外的期間。監測期間P663 可在期間特定信號中指定。
用於產生射頻RF1及射頻RF2之最低調變頻率共用於產生射頻RF1及射頻RF2時,匹配控制器40c產生在按該最低調變頻率交互反覆之2個期間中的一期間(高位準期間)內設定監測期間的期間特定信號。
在第四模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 及調變頻率fM2 ,且如圖17所示地,監測期間P64 設定在期間P1a 內。監測期間P64 可為在期間P1a 內由該期間P1a 之開始時點預定時間長之期間以外的期間。
在第五模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 及調變頻率fM2 ,且如圖18所示地,監測期間P65 設定在期間P1a 內。監測期間P65 可為在期間P1a 內由該期間P1a 之開始時點預定時間長之期間以外的期間。
在第七模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係第二調變頻率fD12 及調變頻率fM2 ,且如圖20所示地,監測期間P67 設定在期間P12a 內。監測期間P67 可為在期間P12a 內由該期間P12a 之開始時點預定時間長之期間以外的期間。此外,阻抗感測器40b之濾波器106A及濾波器108A可用高比率實行取樣時,多數監測期間P671 亦可設定在監測期間P67 內。各監測期間P671 可為在期間P11a 內由該期間P11a 之開始時點預定時間長之期間以外的期間。監測期間P671 可在期間特定信號中指定。
如圖11所示地,阻抗感測器40b具有電流檢測器102A、電壓檢測器104A、濾波器106A、濾波器108A、平均值運算器110A、平均值運算器112A、平均值運算器114A、平均值運算器116A、移動平均值運算器118A、移動平均值運算器120A及阻抗運算器122A。此外,阻抗感測器40b亦可沒有平均值運算器114A及平均值運算器116A。
電壓檢測器104A檢測在供電線43上傳送之射頻RF1的電壓波形,並輸出表示該電壓波形之電壓波形類比信號。該電壓波形類比信號輸入濾波器106A。濾波器106A由輸入之電壓波形類比信號擷取基本頻率fB1 之成分,接著,藉由實行擷取之成分的取樣,產生過濾電壓波形信號。濾波器106A可由例如FPGA(現場可規劃閘陣列)構成。
由濾波器106A產生之過濾電壓波形信號輸出至平均值運算器110A。由匹配控制器40c提供上述期間特定信號至平均值運算器110A。平均值運算器110A單獨地或與平均值運算器114A合作地求得藉由期間特定信號特定之監測期間中供電線43上之電壓的平均值VA1。平均值VA1係第一平均值群包含之電壓的平均值。
在第一模式中,平均值運算器110A算出各調變周期P1 內之監測期間P61 中過濾電壓波形信號之電壓的平均值VA1。在第二模式中,平均值運算器110A算出各調變周期P2 內之監測期間P621 及監測期間P622 中過濾電壓波形信號之電壓的平均值VA1。在第三模式中,平均值運算器110A算出各調變周期P2 內之監測期間P631 及監測期間P632 中過濾電壓波形信號之電壓的平均值VA1。在第四模式中,平均值運算器110A算出各調變周期P1 內之監測期間P64 中過濾電壓波形信號之電壓的平均值VA1。在第五模式中,平均值運算器110A算出各調變周期P1 內之監測期間P65 中過濾電壓波形信號之電壓的平均值VA1。
在第六模式中,平均值運算器110A算出各調變周期P22 內之監測期間P661 及監測期間P662 中過濾電壓波形信號之電壓的平均值VA1。此外,平均值運算器110A亦可求得設定在監測期間P661 內之多數監測期間P663 的各監測期間中過濾電壓波形信號之電壓的多數平均值VA11及設定在監測期間P662 內之多數監測期間P663 的各監測期間中過濾電壓波形信號之電壓的多數平均值VA12,且平均值運算器114A求得該等平均值VA11及平均值VA12之平均值作為平均值VA1。
在第七模式中,平均值運算器110A算出各調變周期P12 內之監測期間P67 中過濾電壓波形信號之電壓的平均值VA1。此外,平均值運算器110A亦可求得設定在監測期間P67 內之多數監測期間P671 的各監測期間中過濾電壓波形信號之電壓的多數平均值VA17,且平均值運算器114A求得多數平均值VA17之平均值作為平均值VA1。平均值運算器110A及平均值運算器114A可由例如FPGA構成。
按與用於產生射頻RF1及射頻RF2之最低調變頻率相同的頻率周期地求得平均值VA1。移動平均值運算器118A由周期地求得之預定個(多數)平均值VA1求得移動平均值VMA1。移動平均值運算器118A可由例如一般之CPU構成。移動平均值VMA1輸出至阻抗運算器122A。
電流檢測器102A檢測在供電線43上傳送之射頻RF1的電流波形,並輸出表示該電流波形之電流波形類比信號。該電流波形類比信號輸入濾波器108A。濾波器108A由輸入之電流波形類比信號擷取基本頻率fB1 之成分,接著,藉由實行擷取之成分的取樣,產生過濾電流波形信號。濾波器108A可由例如FPGA(現場可規劃閘陣列)構成。
由濾波器108A產生之過濾電流波形信號輸出至平均值運算器112A。由匹配控制器40c提供上述期間特定信號至平均值運算器112A。平均值運算器112A單獨地或與平均值運算器116A合作地求得藉由期間特定信號特定之監測期間中供電線43上之電流的平均值IA1。平均值IA1係第一平均值群包含之電流的平均值。
在第一模式中,平均值運算器112A算出各調變周期P1 內之監測期間P61 中過濾電流波形信號之電流的平均值IA1。在第二模式中,平均值運算器112A算出各調變周期P2 內之監測期間P621 及監測期間P622 中過濾電流波形信號之電流的平均值IA1。在第三模式中,平均值運算器112A算出各調變周期P2 內之監測期間P631 及監測期間P632 中過濾電流波形信號之電流的平均值IA1。在第四模式中,平均值運算器112A算出各調變周期P1 內之監測期間P64 中過濾電流波形信號之電流的平均值IA1。在第五模式中,平均值運算器112A算出各調變周期P1 內之監測期間P65 中過濾電流波形信號之電流的平均值IA1。
在第六模式中,平均值運算器112A算出各調變周期P22 內之監測期間P661 及監測期間P662 中過濾電流波形信號之電流的平均值IA1。此外,平均值運算器112A亦可求得設定在監測期間P661 內之多數監測期間P663 的各監測期間中過濾電流波形信號之電流的多數平均值IA11及設定在監測期間P662 內之多數監測期間P663 的各監測期間中過濾電流波形信號之電流的多數平均值IA12,且平均值運算器116A求得該等平均值IA11及平均值IA12之平均值作為平均值IA1。
在第七模式中,平均值運算器112A算出各調變周期P12 內之監測期間P67 中過濾電流波形信號之電流的平均值IA1。此外,平均值運算器112A亦可求得設定在監測期間P67 內之多數監測期間P671 的各監測期間中過濾電流波形信號之電流的多數平均值IA17,且平均值運算器116A求得多數平均值IA17之平均值作為平均值IA1。平均值運算器112A及平均值運算器116A可由例如FPGA構成。
按與用於產生射頻RF1及射頻RF2之最低調變頻率相同的頻率周期地求得平均值IA1。移動平均值運算器120A由周期地求得之預定個(多數)平均值IA1求得移動平均值IMA1。移動平均值運算器120A可由例如一般之CPU構成。移動平均值IMA1輸出至阻抗運算器122A。
阻抗運算器122A由移動平均值IMA1及移動平均值VMA1求得射頻電源36之負載側阻抗的第一移動平均值。第一移動平均值包含絕對值及相位成分。由阻抗運算器122A求得之第一移動平均值輸出至匹配控制器40c。匹配控制器40c使用第一移動平均值進行阻抗匹配。具體而言,匹配控制器40c透過致動器40d與40e調整各可變電抗元件40g與40h之電抗,使藉由第一移動平均值特定之射頻電源36的負載側阻抗與匹配點接近或一致。
如圖12所示地,在一實施形態中,射頻電源38具有震盪器38a、功率放大器38b、功率感測器38c及電源控制部38e。電源控制部38e係由CPU等之處理器構成,且利用由主控制部72提供之信號及由功率感測器38c提供之信號,分別提供控制信號至震盪器38a、功率放大器38b及功率感測器38c,以便控制震盪器38a、功率放大器38b及功率感測器38c。
由主控制部72提供至電源控制部38e之信號包含基本頻率特定信號、模式特定信號及參數特定信號。基本頻率特定信號特定基本頻率fB1 。模式特定信號特定上述第一至第七模式中使用之模式。參數特定信號特定與射頻RF2之位準設定或位準之調變相關的各種參數。具體而言,射頻RF2係連續波CW2時,參數特定信號特定連續波CW2之位準(功率)。射頻RF2係調變波MW2時,參數特定信號特定調變波MW2之相位;調變頻率fM2 ;調變周期P2 中期間P2a 佔有之比例,即負載比;期間P2a 中之調變波MW2的位準(功率);及期間P2b 中之調變波MW2的位準(功率)。射頻RF2係雙重調變波DW2時,參數特定信號特定第一調變頻率fD21 ;調變周期P21 中期間P21a 佔有之比例,即負載比;第二調變頻率fD22 ;調變周期P22 中期間P22a 佔有之比例,即負載比;期間P21a 與期間P22a 重複之期間之雙重調變波DW1的位準(功率);期間P21b 與期間P22b 中之雙重調變波DW1的位準(功率)。
電源控制部38e控制震盪器38a輸出由基本頻率特定信號特定之基本頻率fB2 的射頻。震盪器38a之輸出連接於功率放大器38b之輸入。電源控制部38e依據藉由模式特定信號特定之模式及藉由參數特定信號特定之各種參數來控制功率放大器38b,以便設定或調變藉由震盪器38a輸出之射頻的位準。藉此,由功率放大器38b輸出連續波CW1、調變波MW1或雙重調變波DW1作為射頻RF1。
功率放大器38b之輸出透過功率感測器38c連接於供電線45。功率感測器38c具有方向性耦合器、進行波功率檢測部及反射波功率檢測部。方向性耦合器提供射頻RF2之進行波的一部份至進行波功率檢測部,並提供反射波至反射波功率檢測部。由電源控制部38e提供特定基本頻率fB2 之頻率特定信號至功率感測器38c。進行波功率檢測部產生進行波之全頻率成分中基本頻率fB2 之成分的功率測量值,即進行波功率測量值。進行波功率測量值提供至電源控制部38e用於功率回饋。
反射波檢測部產生反射波之全頻率成分中基本頻率fB2 成分之功率的測量值,即第三反射波功率測量值及反射波之全頻率成分之全功率的測量值,即第四反射波功率測量值。第三反射波功率測量值提供至主控制部72用於監測顯示。第四反射波功率測量值提供至電源控制部38e用於保護功率放大器38b。
電源控制部38e在射頻電源38輸出調變波MW2時,發送與調變波MW2之位準(功率)的調變同步地調變其位準的脈衝信號至匹配器42至匹配控制器42c。電源控制部38e在射頻電源38輸出雙重調變波DW2時,發送與雙重調變波DW2之位準(功率)的調變同步地調變其位準的脈衝信號至匹配器42之匹配控制器42c。
匹配器42具有匹配電路42a、阻抗感測器42b、匹配控制器42c及致動器42d與42e。匹配電路42a包含可變電抗元件42g與42h。可變電抗元件42g與42h係例如可變電容器。此外,匹配電路42a亦可更包含電感器等。
匹配控制器42c係由CPU等之處理器構成且在主控制部72之控制下動作。匹配控制器42c控制致動器42d與42e,使射頻電源38之負載側阻抗與匹配點一致或接近,因此可調整各可變電抗元件42g與42h之電抗。致動器42d與42e係例如馬達。
匹配控制器42c提供特定射頻電源38負載側阻抗之監測期間的期間特定信號至阻抗感測器42b。因此,在一實施形態中,由電源控制部38e提供上述脈衝信號至匹配控制器42c。此外,由主控制部72提供模式特定信號及參數特定信號至匹配控制器42c。匹配控制器42c使用提供之脈衝信號、模式特定信號及參數特定信號,產生期間特定信號。
具體而言,匹配控制器42c由模式特定信號判定用於產生射頻RF1及射頻RF2之最低調變頻率是否共用於產生射頻RF1及射頻RF2。換言之,匹配控制器42c在使用第一模式、第二模式、第三模式及第六模式中之任一模式時,判定為用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2。另一方面,在使用第四模式、第五模式及第七模式中之任一模式時,判定為用於產生射頻RF1及射頻RF2之最低調變頻率共用於產生射頻RF1及射頻RF2。
用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2,且該最低調變頻率只使用於產生由射頻電源38輸出之射頻RF2時,匹配控制器42c產生在按該最低調變頻率交互反覆之2個期間中的一期間(高位準期間)內設定監測期間的期間特定信號。此外,用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2,且該最低調變頻率只使用於產生由射頻電源36輸出之射頻RF1時,匹配控制器42c產生在按該最低調變頻率交互反覆之2個期間的各期間中設定監測期間的期間特定信號。
在第一模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 ,且如圖14所示地,監測期間P811 設定在期間P1a 內且監測期間P812 設定在期間P1b 內。監測期間P811 可為在期間P1a 內由該期間P1a 之開始時點預定時間長之期間以外的期間。監測期間P812 可為在期間P1b 內由該期間P1b 之開始時點預定時間長之期間以外的期間。
在第二模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM2 ,且如圖15所示地,監測期間P82 設定在期間P2a 內。監測期間P82 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。
在第三模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM2 ,且如圖16所示地,監測期間P83 設定在期間P2a 內。監測期間P83 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。
在第六模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係第二調變頻率fD22 ,且如圖19所示地,監測期間P86 設定在期間P22a 內。在一實施形態中,監測期間P86 設定在期間P22a 內之一個期間P21a 內。監測期間P86 可為在該一個期間P21a 內由該期間P21a 之開始時點預定時間長之期間以外的期間。此外,監測期間P86 亦可設定在期間P22a 內之多數期間P21a 的各期間中。
用於產生射頻RF1及射頻RF2之最低調變頻率共用於產生射頻RF1及射頻RF2時,匹配控制器42c產生在按該最低調變頻率交互反覆之2個期間中的一期間(高位準期間)內設定監測期間的期間特定信號。
在第四模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 及調變頻率fM2 ,且如圖17所示地,監測期間P84 設定在期間P2a 內。監測期間P84 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。
在第五模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係調變頻率fM1 及調變頻率fM2 ,且如圖18所示地,監測期間P85 設定在期間P2a 內。監測期間P85 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。
在第七模式中,用於產生射頻RF1及射頻RF2之最低調變頻率係第二調變頻率fD12 及調變頻率fM2 ,且如圖20所示地,監測期間P87 設定在期間P2a 內。監測期間P87 可為在期間P2a 內由該期間P2a 之開始時點預定時間長之期間以外的期間。
如圖13所示地,阻抗感測器42b具有電流檢測器102B、電壓檢測器104B、濾波器106B、濾波器108B、平均值運算器110B、平均值運算器112B、平均值運算器114B、平均值運算器116B、移動平均值運算器118B、移動平均值運算器120B及阻抗運算器122B。此外,阻抗感測器42b亦可沒有平均值運算器114B及平均值運算器116B。
電壓檢測器104B檢測在供電線45上傳送之射頻RF2的電壓波形,並輸出表示該電壓波形之電壓波形類比信號。該電壓波形類比信號輸入濾波器106B。濾波器106B由輸入之電壓波形類比信號擷取基本頻率fB2 之成分,接著,藉由實行擷取之成分的取樣,產生過濾電壓波形信號。濾波器106B可由例如FPGA(現場可規劃閘陣列)構成。
由濾波器106B產生之過濾電壓波形信號輸出至平均值運算器110B。由匹配控制器40c提供上述期間特定信號至平均值運算器110B。平均值運算器110B單獨地或與平均值運算器114B合作地求得藉由期間特定信號特定之監測期間中供電線45上之電壓的平均值VA2。平均值VA2係第二平均值群包含之電壓的平均值。
在第一模式中,平均值運算器110B算出各調變周期P1 內之監測期間P811 及監測期間P812 中過濾電壓波形信號之電壓的平均值VA2。在第二模式中,平均值運算器110B算出各調變周期P2 內之監測期間P82 中過濾電壓波形信號之電壓的平均值VA2。在第三模式中,平均值運算器110B算出各調變周期P2 內之監測期間P83 中過濾電壓波形信號之電壓的平均值VA2。在第四模式中,平均值運算器110B算出各調變周期P2 內之監測期間P84 中過濾電壓波形信號之電壓的平均值VA2。在第五模式中,平均值運算器110B算出各調變周期P2 內之監測期間P85 中過濾電壓波形信號之電壓的平均值VA2。
在第六模式中,平均值運算器110B算出各調變周期P22 內之監測期間P86 中過濾電壓波形信號之電壓的平均值VA2。此外,平均值運算器110B亦可求得多數監測期間P86 設定於各調變周期P22 內時,該多數監測期間P86 之各監測期間中過濾電壓波形信號之電壓的多數平均值VA26,且平均值運算器114B求得求得之多數平均值VA26之平均值作為平均值VA2。在第七模式中,平均值運算器110B算出各調變頻率P2 內之監測期間P87 中過濾電壓波形信號之電壓的平均值VA2。
按與用於產生射頻RF1及射頻RF2之最低調變頻率相同的頻率周期地求得平均值VA2。移動平均值運算器118B由周期地求得之預定個(多數)平均值VA2求得移動平均值VMA2。移動平均值運算器118B可由例如一般之CPU構成。移動平均值VMA2輸出至阻抗運算器122B。
電流檢測器102B檢測在供電線45上傳送之射頻RF2的電流波形,並輸出表示該電流波形之電流波形類比信號。該電流波形類比信號輸入濾波器108B。濾波器108B由輸入之電流波形類比信號擷取基本頻率fB2 之成分,接著,藉由實行擷取之成分的取樣,產生過濾電流波形信號。濾波器108B可由例如FPGA(現場可規劃閘陣列)構成。
由濾波器108B產生之過濾電流波形信號輸出至平均值運算器112B。由匹配控制器42c提供上述期間特定信號至平均值運算器112B。平均值運算器112B單獨地或與平均值運算器116B合作地求得藉由期間特定信號特定之監測期間中供電線45上之電流的平均值IA2。平均值IA2係第二平均值群包含之電流的平均值。
在第一模式中,平均值運算器112B算出各調變周期P1 內之監測期間P811 及監測期間P812 中過濾電流波形信號之電流的平均值IA2。在第二模式中,平均值運算器112B算出各調變周期P2 內之監測期間P82 中過濾電流波形信號之電流的平均值IA2。在第三模式中,平均值運算器112B算出各調變周期P2 內之監測期間P83 中過濾電流波形信號之電流的平均值IA2。在第四模式中,平均值運算器112B算出各調變周期P2 內之監測期間P84 中過濾電流波形信號之電流的平均值IA2。在第五模式中,平均值運算器112B算出各調變周期P2 內之監測期間P85 中過濾電流波形信號之電流的平均值IA2。
在第六模式中,平均值運算器112B算出各調變周期P22 內之監測期間P86 中過濾電流波形信號之電流的平均值IA2。此外,平均值運算器112B亦可求得多數監測期間P86 設定於各調變周期P22 內時,該多數監測期間P86 之各監測期間中過濾電流波形信號之電流的多數平均值IA26,且平均值運算器116B求得求得之多數平均值IA26的平均值作為平均值IA2。在第七模式中,平均值運算器112B算出各調變頻率P2 內之監測期間P87 中過濾電流波形信號之電流的平均值IA2。
按與用於產生射頻RF1及射頻RF2之最低調變頻率相同的頻率周期地求得平均值IA2。移動平均值運算器120B由周期地求得之預定個(多數)平均值IA2求得移動平均值IMA2。移動平均值運算器120B可由例如一般之CPU構成。移動平均值IMA2輸出至阻抗運算器122B。
阻抗運算器122B由移動平均值IMA2及移動平均值VMA2求得射頻電源38之負載側阻抗的第二移動平均值。第二移動平均值包含絕對值及相位成分。由阻抗運算器122B求得之第二移動平均值輸出至匹配控制器42c。匹配控制器42c使用第二移動平均值進行阻抗匹配。具體而言,匹配控制器42c透過致動器42d與42e調整各可變電抗元件42g與42h之電抗,使藉由第二移動平均值特定之射頻電源38的負載側阻抗與匹配點接近或一致。
以下,再參照圖1。如圖1所示地,在方法MT中,實行步驟ST1。在步驟ST1中,判定最低調變頻率是否共用於產生射頻RF1及射頻RF2。步驟ST1之判定係藉由匹配控制器40c及匹配控制器42c實行。在一例中,匹配控制器40c及匹配控制器42c在使用第一模式、第二模式、第三模式及第六模式中之任一模式時,判定為用於產生射頻RF1及射頻RF2之最低調變頻率未共用於產生射頻RF1及射頻RF2。另一方面,匹配控制器40c及匹配控制器42c在使用第四模式、第五模式及第七模式中之任一模式時,判定為用於產生射頻RF1及射頻RF2之最低調變頻率共用於在產生射頻RF1及射頻RF2。
最低調變頻率未共用於產生射頻RF1及射頻RF2時,即,用於產生射頻RF1及射頻RF2之最低調變頻率只使用於產生由射頻電源36及射頻電源38中之一射頻電源輸出的射頻時,在步驟ST2中,周期地實行第一平均化處理之平均值運算。
在第一平均化處理中,求得在按該最低調變頻率交互反覆之2個期間中之一期間(高位準期間)中多數時點,由供電線43及供電線45中用於傳送來自一射頻電源之射頻的一供電線上的電流平均值及電壓平均值。此外,在第一平均化處理中,求得在按該最低調變頻率交互反覆之2個期間雙方中多數時點的另一供電線上之電流平均值及電壓平均值。藉此,求得第一平均值群(平均值VA1與平均值IA1)及第二平均值群(平均值VA2與平均值IA2)。
具體而言,在第一模式中,如圖14所示地,算出設定在各調變周期P1 內之期間P1a 內的監測期間P61 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,在第一模式中,算出設定在各調變周期P1 內之期間P1a 內的監測期間P811 及設定在期間P1b 內的監測期間P812 中供電線45上之電壓的平均值VA2及電流的平均值IA2。
在第二模式中,如圖15所示地,算出設定在各調變周期P2 內之期間P2a 內的監測期間P621 及設定在期間P2b 內的監測期間P622 中供電線43上的電壓平均值VA1及電流平均值IA1。此外,在第二模式中,算出設定在各調變周期P2 內之期間P2a 內的監測期間P82 中供電線45上的電壓平均值VA2及電流平均值IA2。
在第三模式中,如圖16所示地,算出設定在各調變周期P2 內之期間P2a 內的監測期間P631 及設定在期間P2b 內的監測期間P632 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,在第三模式中,算出設定在各調變周期P2 內之期間P2a 內的監測期間P83 中供電線45上之電壓的平均值VA2及電流的平均值IA2。
在第六模式中,如圖19所示地,算出設定在各調變周期P22 內之期間P22a 內的監測期間P661 及設定在期間P22b 內的監測期間P662 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,亦可由設定於監測期間P661 及監測期間P662 雙方之多數監測期間P663 的各監測期間中供電線43上之電壓的多數平均值求得平均值VA1,且由該多數監測期間P663 的各監測期間中供電線43上之電流的多數平均值求得平均值IA1。另外,在第六模式中,算出設定在各調變周期P22 內之期間P22a 內的監測期間P86 中供電線45上之電壓平均值VA2及電流平均值IA2。再者,多數監測期間P86 設定在各調變周期P22 內之期間P22a 內時,由該多數監測期間P86 之各監測期間中供電線45上之電壓的多數平均值求得平均值VA2,且由該多數監測期間P86 之各監測期間中供電線45上之電流的多數平均值求得平均值IA2。
接著,在步驟ST3中,由預定個第一平均值群求得射頻電源36之負載側阻抗的第一移動平均值,且由預定個第二平均值群求得射頻電源38之負載側阻抗的第二移動平均值。接著,在步驟ST4中,調整匹配器40之各可變電抗元件40g與40h的電抗,使藉由第一移動平均值特定之射頻電源36的負載側阻抗與匹配點接近或一致。此外,調整匹配器42之各可變電抗元件42g與42h的電抗,使藉由第二移動平均值特定之射頻電源38的負載側阻抗與匹配點接近或一致。反覆實行步驟ST2至步驟ST4直到在步驟ST5中判定為結束使用射頻RF1及射頻RF2。
最低調變頻率共用於產生射頻RF1及射頻RF2時,在步驟ST6中,周期地實行第二平均化處理之平均值運算。在第二平均化處理中,求得在按該最低調變頻率規定之射頻RF1調變周期中的2個期間中之一期間(高位準期間)中多數時點的供電線43上之電壓的平均值及電流的平均值,且求得在按該最低調變頻率規定之射頻RF2調變周期中的2個期間中之一期間(高位準期間)中多數時點的供電線45上電壓的平均值及電流的平均值。藉此,求得第一平均值群(平均值VA1與平均值IA1)及第二平均值群(平均值VA2與平均值IA2)。
具體而言,在第四模式中,如圖17所示地,算出設定在各調變周期P1 內之期間P1a 內的監測期間P64 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,在第四模式中,算出設定在各調變周期P2 內之期間P2a 內的監測期間P84 中供電線45上之電壓的平均值VA2及電流的平均值IA2。
在第五模式中,如圖18所示地,算出設定在各調變周期P1 內之期間P1a 內的監測期間P65 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,在第五模式中,算出設定在各調變周期P2 內之期間P2a 內的監測期間P85 中供電線45上之電壓的平均值VA2及電流的平均值IA2。
在第七模式中,如圖20所示地,算出設定在各調變周期P12 內之期間P12a 內的監測期間P67 中供電線43上之電壓的平均值VA1及電流的平均值IA1。此外,由設定在監測期間P67 內之多數監測期間P671 的各監測期間中供電線43上之電壓的多數平均值求得平均值VA1,且由該多數監測期間P671 之各監測期間中供電線43上之電流的多數平均值求得平均值IA1。另外,設定在第七模式中,算出設定在各調變周期P2 內之期間P2a 內的監測期間P87 中供電線45上之電壓的平均值VA2及電流的平均值IA2。
接著在步驟ST7中,與步驟ST3同樣地,由預定個第一平均值群求得射頻電源36之負載側阻抗的第一移動平均值,且由預定個第二平均值群求得射頻電源38之負載側阻抗的第二移動平均值。接著,在步驟ST8中,與步驟ST4同樣地,調整匹配器40之各可變電抗元件40g與40h的電抗,使藉由第一移動平均值特定之射頻電源36的負載側阻抗與匹配點接近或一致。此外,調整匹配器42之各可變電抗元件42g與42h的電抗,使藉由第二移動平均值特定之射頻電源38的負載側阻抗與匹配點接近或一致。反覆實行步驟ST6至步驟ST8直到在步驟ST9中判定為結束使用射頻RF1及射頻RF2。
在方法MT中,如上所述,依據用於產生射頻RF1及射頻RF2之最低調變頻率是否共用於產生射頻RF1及射頻RF2,對算出第一平均值及第二平均值群選擇地使用關於參照之期間進行不同選擇的2個平均化處理中的一平均化處理。即,對第一射頻之調變及第二射頻之調變的各種組合,只藉由2個平均化處理,求得第一平均值或第一平均值群及第二平均值或第二平均值群。因此,可實現使用於匹配器40及匹配器42之匹配動作的比較簡單的阻抗運算。
此外,由多數監測期間P663 之各監測期間中供電線43上之電壓的多數平均值及電流的多數平均值求得平均值VA1及平均值IA1時,可更高精度地求得藉由第一平均值群(平均值VA1及平均值IA1)表示之第一供電線上的電壓平均值及電流的平均值。
此外,由多數監測期間P671 之各監測期間中供電線43上之電壓的多數平均值及電流的多數平均值求得平均值VA1及平均值IA1時,可更高精度地求得藉由第一平均值群(平均值VA1及平均值IA1)表示之第一供電線上的電壓平均值及電流的平均值。
另外,在上述實施形態中,使用包含電壓平均值VA1及電流平均值IA1之第一平均值群及包含電壓平均值VA2及電流平均值IA2之第二平均值群。但是,亦可關於第一至第七模式之各模式求得上述監測期間中射頻電源36之負載側阻抗的平均值作為第一平均值,且關於第一至第七模式之各模式求得上述監測期間中射頻電源38之負載側阻抗的平均值作為第二平均值。接著,由預定個第一平均值求得第一移動平均值並由預定個第二平均值求得第二移動平均值。
使用第一平均值及第二平均值時,阻抗感測器40b具有:阻抗運算器,其由濾波器106A輸出之過濾電壓波形信號及濾波器108A輸出之過濾電流波形信號運算射頻電源36之負載側阻抗;平均值運算器,其運算由該阻抗運算器輸出之阻抗的監測期間之平均值(第一平均值);及移動平均值運算器,其由該平均值運算器輸出之預定個平均值(第一平均值)求得移動平均值(第一移動平均值)。此外,阻抗感測器42b具有:阻抗運算器,其由濾波器106B輸出之過濾電壓波形信號及濾波器108B輸出之過濾電流波形信號運算射頻電源38之負載側阻抗;平均值運算器,其運算由該阻抗運算器輸出之阻抗的監測期間之平均值(第二平均值);及移動平均值運算器,其由該平均值運算器輸出之預定個平均值(第二平均值)求得移動平均值(第二移動平均值)。
以下,參照圖21。圖21係顯示第七模式中之第一射頻及第二射頻的變形例的圖。即使射頻RF1之調變周期與射頻RF2之調變周期同步,有時在射頻RF1之該調變周期中佔有高位準期間之負載比亦不同。此時,射頻RF1之調變周期內的高位準期間結束時點與射頻RF2之調變周期內的高位準期間結束時點不同。例如在第七模式中,如圖21所示地,雖然射頻RF1(雙重調變波DW1)之第二調變頻率fD12 與射頻RF2(調變波MW2)之調變頻率fM2 相同,且射頻RF1之調變周期P12 與射頻RF2之調變周期P2 同步,但調變周期P12 內之期間P12a 的結束時點與調變周期P2 內之期間P2a 的結束時點不一致。在如圖21所示之狀況中,監測期間P67 設定在期間P12a 與對應之期間P2a 重複的期間內。即,求得期間P12a 與對應之期間P2a 重複的期間中的第一平均值或第一平均值群。此外,不限於第七模式,射頻RF1之調變周期與射頻RF2之調變周期同步且射頻RF1之該調變周期內的高位準期間結束時點與射頻RF2之該調變周期內的對應高位準期間結束時點不同時,監測期間可設定在射頻RF1之該調變周期內的高位準期間與射頻RF2之該調變周期內的對應高位準期間重複的期間內。
以下,參照圖22。圖22係顯示第七模式中之第一射頻及第二射頻的另一變形例的圖。在圖22所示之射頻RF1(雙重調變波DW1)中,設定在期間P11a 內之多數期間P1n 的各期間中該射頻RF1之位準(功率)互不相同。在圖22所示之狀況中,可由設定在多數期間P1n 之各期間中的多數監測期間P75 之各監測期間中供電線43上之電壓的多數平均值及電流的多數平均值,算出第一平均值群(平均值VA1及平均值IA1)。或者,亦可由多數監測期間P75 之各監測期間中射頻電源36之負載側阻抗的多數平均值算出第一平均值。如此,亦可使用設定在高位準期間內之多數期間的各期間中位準互異的射頻RF1。此外,可由設定在高位準期間內之多數期間的多數監測期間之各監測期間中供電線43上之電壓的多數平均值及電流的多數平均值求得第一平均值群,或者,由多數監測期間之各監測期間中射頻電源36之負載阻抗的多數平均值求得第一平均值。在此情形中,可更高精度地求得藉由第一平均值表示之射頻電源36的負載側阻抗或藉由第一平均值群表示之供電線43上的電壓及電流。
以上,雖然說明了各種實施形態,但不限於上述實施形態而可構成各種變形態樣。例如,射頻電源36亦可透過匹配器40連接於上部電極46。
此外,移動平均值VMA1、IMA1、VMA2、IMA2、由射頻電源36之負載側阻抗的預定個平均值求得的第一移動平均值及由射頻電源38之負載側阻抗的預定個平均值求得的第二移動平均值的算出方法可為單純移動平均、加權移動平均、指數移動平均等之任意移動平均值算出方法。另外,各匹配器40及匹配器42之匹配電路可實現高速匹配動作時,亦可使用對用以算出移動平均值之預定個平均值中最接近地求得的平均值使用最大加權的加權移動平均及指數移動平均。可實現高速匹配動作之匹配電路可舉例如藉由開關元件(例如場效應元件)切換多數電容器中在匹配電路中具有機能之電容器個數的匹配電路。
1‧‧‧電漿處理裝置10‧‧‧腔室本體10c‧‧‧腔室12‧‧‧絕緣板14‧‧‧支持台16‧‧‧感受器18‧‧‧靜電吸盤20‧‧‧電極22‧‧‧開關24‧‧‧直流電源26‧‧‧聚焦環28‧‧‧內壁構件30‧‧‧流路32a、32b‧‧‧配管34‧‧‧氣體供給線36、38‧‧‧射頻電源36a、38a‧‧‧震盪器36b、38b‧‧‧功率放大器36c、38c‧‧‧功率感測器36e、38e‧‧‧電源控制部40、42‧‧‧匹配器40a、42a‧‧‧匹配電路40b、42b‧‧‧阻抗感測器40c、42c‧‧‧匹配控制器40d、40e、42d、42e‧‧‧致動器40f、40g、42f、42g‧‧‧可變電抗元件43、45‧‧‧供電線44‧‧‧導體46‧‧‧上部電極48‧‧‧頂板48a‧‧‧氣體噴出孔50‧‧‧支持體50a‧‧‧孔52‧‧‧氣體緩衝室54‧‧‧氣體供給管56‧‧‧氣體源58‧‧‧流量控制器60‧‧‧閥62‧‧‧排氣口64‧‧‧排氣管66‧‧‧排氣裝置68‧‧‧通路70‧‧‧閘閥72‧‧‧主控制部102A、102B‧‧‧電流檢測器104A、104B‧‧‧電壓檢測器106A、106B、108A、108B‧‧‧濾波器110A、110B、112A、112B、114A、114B、116A、116B‧‧‧平均值運算器118A、118B、120A、120B‧‧‧移動平均值運算器122A、122B‧‧‧阻抗運算器cw‧‧‧冷媒CW1、CW2‧‧‧連續波DW1、DW2‧‧‧雙重調變波 fB1、fB2‧‧‧基本頻率 fD11、fD21‧‧‧第一調變頻率 fD12、fD22‧‧‧第二調變頻率 fM1、fM2‧‧‧調變頻率 IA1、IA2、IA11、IA12、IA17、IA26‧‧‧平均值 IMA1、IMA2‧‧‧移動平均值 MT‧‧‧方法 MW1、MW2‧‧‧調變波 P1、P2、P11、P12、P21、P22‧‧‧調變周期 P1a、P1b、P2a、P2b、P1n、P11a、P11b、P12a、P12b、P21a、P21b、P22a、P22b‧‧‧期間 P61、P64、P65、P67、P75、P82、P83、P84、P85、P86、P87、P621、P622、P631、P632、P661、P662、P663、P671、P811、P812‧‧‧監測期間 PS‧‧‧空間RF1、RF2‧‧‧射頻ST1~ST9‧‧‧步驟VA1、VA2、VA11、VA12、VA17、VA26‧‧‧平均值VMA1、VMA2‧‧‧移動平均值W‧‧‧被加工物
[圖1]係顯示一實施形態之使用於電漿處理裝置之阻抗匹配的方法的流程圖。 [圖2]係概略地顯示可使用圖1所示方法之一實施形態的電漿處理裝置的圖。 [圖3]係例示在第一模式中輸出之第一射頻及第二射頻的圖。 [圖4]係例示在第二模式中輸出之第一射頻及第二射頻的圖。 [圖5]係例示在第三模式中輸出之第一射頻及第二射頻的圖。 [圖6]係例示在第四模式中輸出之第一射頻及第二射頻的圖。 [圖7]係例示在第五模式中輸出之第一射頻及第二射頻的圖。 [圖8]係例示在第六模式中輸出之第一射頻及第二射頻的圖。 [圖9]係例示在第七模式中輸出之第一射頻及第二射頻的圖。 [圖10]係例示第一射頻電源之結構及第一匹配器之結構的圖。 [圖11]係例示第一匹配器之阻抗感測器結構的圖。 [圖12]係例示第二射頻電源之結構及第二匹配器之結構的圖。 [圖13]係例示第二匹配器之阻抗感測器結構的圖。 [圖14]係與阻抗之監測期間一起顯示第一模式中之第一射頻及第二射頻的圖。 [圖15]係與阻抗之監測期間一起顯示第二模式中之第一射頻及第二射頻的圖。 [圖16]係與阻抗之監測期間一起顯示第三模式中之第一射頻及第二射頻的圖。 [圖17]係與阻抗之監測期間一起顯示第四模式中之第一射頻及第二射頻的圖。 [圖18]係與阻抗之監測期間一起顯示第五模式中之第一射頻及第二射頻的圖。 [圖19]係與阻抗之監測期間一起顯示第六模式中之第一射頻及第二射頻的圖。 [圖20]係與阻抗之監測期間一起顯示第七模式中之第一射頻及第二射頻的圖。 [圖21]係顯示第七模式中之第一射頻及第二射頻的變形例的圖。 [圖22]係顯示第七模式中之第一射頻及第二射頻的另一變形例的圖。
MT‧‧‧方法
ST1~ST9‧‧‧步驟

Claims (5)

  1. 一種使用於電漿處理裝置之阻抗匹配的方法,該電漿處理裝置具有:腔室本體;第一電極及第二電極,其設置成使該腔室本體內之空間介於其間;第一射頻電源,係輸出電漿產生用之第一射頻的第一射頻電源,且該第一射頻具有第一基本頻率;第二射頻電源,係輸出離子引入用之第二射頻的第二射頻電源,且該第二射頻具有比該第一基本頻率低之第二基本頻率;第一供電線,其電性連接該第一電極或該第二電極與該第一射頻電源;第二供電線,其電性連接該第二電極與該第二射頻電源;第一匹配器,其使用於調整該第一射頻電源之負載側阻抗;及第二匹配器,其使用於調整該第二射頻電源之負載側阻抗,該第一射頻電源係組配成選擇地輸出以下波中之一波作為該第一射頻:第一連續波,其具有該第一基本頻率;第一調變波,其藉由使用第一調變來調變具有該第一基本頻率之連續波的位準而產生,該第一調變調變連續波之位準,使按調變頻率交互反覆之2個期間中之一期間的位準比該2個期間中之另一期間的位準高;及第一雙重調變波,其藉由使用第二調變來調變具有該第一基本頻率之連續波的位準而產生,該第二調變調變連續波之位準,使按第一調變頻率交互反覆之2個期間中之一期間與按比該第一調變頻率低之第二調變頻率交互反覆之2個期間中之一期間重複的期間的位準比按該第一調變頻率交互反覆之該2個期間 中之另一期間及按該第二調變頻率交互反覆之該2個期間中之另一期間的位準高,該第二射頻電源係組配成選擇地輸出以下波中之一波作為第二射頻:第二連續波,其具有第二基本頻率;第二調變波,其藉由使用該第一調變來調變具有該第二基本頻率之連續波而產生;及第二雙重調變波,其藉由使用該第二調變來調變具有該第二基本頻率之連續波而產生,該方法包含以下步驟:實行平均化處理之步驟,求得該第一射頻電源之負載側阻抗的第一平均值或包含該第一供電線上之電壓平均值及電流平均值的第一平均值群、及該第二射頻電源之負載側阻抗的第二平均值或包含該第二供電線上之電壓平均值及電流平均值的第二平均值群;求得第一移動平均值及第二移動平均值之步驟,該第一移動平均值係由藉由實行平均化處理之該步驟求得之預定個第一平均值或預定個第一平均值群求得的該第一射頻電源之負載側阻抗的移動平均值,該第二移動平均值係由藉由實行平均化處理之該步驟求得之預定個第二平均值或預定個第二平均值群求得的該第二射頻電源之負載側阻抗的移動平均值;及調整該第一匹配器之可變電抗元件及該第二匹配器之可變電抗元件,使該第一移動平均值及該第二移動平均值接近匹配點,在實行平均化處理之該步驟中,用於產生該第一射頻及該第二射頻之最低調變頻率只使用於產生由該第一射頻電源及該第二射頻電源中之一射頻電源輸出的射頻時, 由在按該最低調變頻率交互反覆之該2個期間中之該一期間中多數時點的該一射頻電源之負載側阻抗求得平均值,並由在按該最低調變頻率交互反覆之該2個期間雙方中多數時點的另一射頻電源之負載側阻抗求得平均值,藉此求得該第一平均值及該第二平均值,或者求得在按該最低調變頻率交互反覆之該2個期間中之該一期間的多數時點,該第一供電線及該第二供電線中用於傳送來自該一射頻電源之射頻的一供電線上的電流平均值及電壓平均值,並求得在按該最低調變頻率交互反覆之2個期間雙方中多數時點的另一供電線上的電流平均值及電壓平均值,藉此求得該第一平均值群及該第二平均值群,用於產生該第一射頻及該第二射頻之最低調變頻率共用於產生該第一射頻及該第二射頻時,由在按該最低調變頻率規定之該第一射頻調變周期中之該2個期間中為高位準期間的該一期間中多數時點的該第一射頻電源之負載側阻抗求得該第一平均值,並由在按該最低調變頻率規定之該第二射頻調變周期中之該2個期間中為高位準期間的該一期間中多數時點的該第二射頻電源之負載側阻抗求得該第二平均值,或者由在按該最低調變頻率規定之該第一射頻調變周期中之該2個期間中為高位準期間的該一期間中多數時點的該第一供電線上之電壓及電流求得該第一平均值群,並由在按該最低調變頻率規定之該第二射頻調變周期中之該2個期間中為高位準期間的該一期間中多數時點的該第二供電線上之電壓及電流求得該第二平均值群。
  2. 如申請專利範圍第1項之使用於電漿處理裝置之阻抗匹配的方法,其中該第一射頻電源輸出該第一調變波,該第二射頻電源輸出該第二雙重調變波,且用 於產生該第一調變波之調變頻率與用於產生該第二雙重調變波之該第一調變頻率相同時,由按用於產生該第二雙重調變波之該第二調變頻率規定的調變周期包含的多數調變周期,即藉由用於產生該第一調變波之調變頻率規定的該多數調變周期之各調變周期中該第一射頻電源之負載側阻抗的平均值求得該第一平均值,或者,由該多數調變周期之各調變周期中該第一供電線上之電流的多數平均值及電壓的多數平均值求得該第一平均值群。
  3. 如申請專利範圍第1項之使用於電漿處理裝置之阻抗匹配的方法,其中該第一射頻電源輸出該第一雙重調變波,該第二射頻電源輸出與該第一雙重調變波同步之該第二調變波,且用於產生該第一雙重調變波之該第二調變頻率與用於產生該第二調變波之調變頻率相同時,由按用於產生該第一雙重調變波之該第二調變頻率規定的調變周期包含的多數調變周期,即藉由用於產生該第一雙重調變波之該第一調變頻率規定的該多數調變周期之各調變周期中該第一射頻電源之負載側阻抗的多數平均值求得該第一平均值,或者,由該多數調變周期之各調變周期中該第一供電線上之電流的平均值及電壓的平均值求得該第一平均值群。
  4. 如申請專利範圍第1或3項之使用於電漿處理裝置之阻抗匹配的方法,其中該第一射頻電源輸出該第一雙重調變波,該第二射頻電源輸出與該第一雙重調變波同步之該第二調變波,且用於產生該第一雙重調變波之該第二調變頻率與用於產生該第二調變波之調變頻率相同時,由在藉由用於產生該第一雙重調變波之該第二調變頻率規定之調變周期內的該2個期間中之該一期間與藉由用於產生該第二調變波之該調變頻率規定之對應調變周期內的該2個期間中之該一期間重複的期間中,該第一射頻電源的負載側阻抗求得該第一平均值,或者, 由在藉由用於產生該第一雙重調變波之該第二調變頻率規定之調變周期內的該2個期間中之該一期間與藉由用於產生該第二調變波之該調變頻率規定之對應調變周期內的該2個期間中之該一期間重複的期間中,該第一供電線上之電壓及電流求得該第一平均值群。
  5. 如申請專利範圍第1至3項中任一項之使用於電漿處理裝置之阻抗匹配的方法,其中調變該第一射頻,使在按用於該第一調變之調變頻率交互反覆的該2個期間中之該一期間或按用於該第二調變之該第一調變頻率交互反覆的該2個期間中之該一期間包含的不同多數期間具有不同位準,由該多數期間之各期間中該第一射頻電源之負載側阻抗的多數平均值求得該第一平均值,或者,由該多數期間之各期間中該第一供電線上之電壓的多數平均值及電流的多數平均值求得該第一平均值群。
TW106135592A 2016-10-26 2017-10-18 使用於電漿處理裝置之阻抗匹配的方法 TWI749086B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-209701 2016-10-26
JP2016209701A JP6770868B2 (ja) 2016-10-26 2016-10-26 プラズマ処理装置のインピーダンス整合のための方法

Publications (2)

Publication Number Publication Date
TW201828781A TW201828781A (zh) 2018-08-01
TWI749086B true TWI749086B (zh) 2021-12-11

Family

ID=61971536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106135592A TWI749086B (zh) 2016-10-26 2017-10-18 使用於電漿處理裝置之阻抗匹配的方法

Country Status (5)

Country Link
US (1) US10250217B2 (zh)
JP (1) JP6770868B2 (zh)
KR (1) KR102375578B1 (zh)
CN (2) CN107993915B (zh)
TW (1) TWI749086B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11209478B2 (en) 2018-04-03 2021-12-28 Applied Materials, Inc. Pulse system verification
JP6846387B2 (ja) * 2018-06-22 2021-03-24 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
US10854427B2 (en) * 2018-08-30 2020-12-01 Applied Materials, Inc. Radio frequency (RF) pulsing impedance tuning with multiplier mode
US11817312B2 (en) 2018-10-29 2023-11-14 Applied Materials, Inc. Delayed pulsing for plasma processing of wafers
US11361947B2 (en) 2019-01-09 2022-06-14 Tokyo Electron Limited Apparatus for plasma processing and method of etching
JP7297795B2 (ja) * 2019-01-09 2023-06-26 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法
JP6797273B2 (ja) * 2019-02-05 2020-12-09 東京エレクトロン株式会社 プラズマ処理装置
JP7122268B2 (ja) * 2019-02-05 2022-08-19 東京エレクトロン株式会社 プラズマ処理装置
CN111524782B (zh) * 2019-02-05 2023-07-25 东京毅力科创株式会社 等离子体处理装置
US11177115B2 (en) * 2019-06-03 2021-11-16 Applied Materials, Inc. Dual-level pulse tuning
US11315757B2 (en) 2019-08-13 2022-04-26 Mks Instruments, Inc. Method and apparatus to enhance sheath formation, evolution and pulse to pulse stability in RF powered plasma applications
US11545341B2 (en) 2019-10-02 2023-01-03 Samsung Electronics Co., Ltd. Plasma etching method and semiconductor device fabrication method including the same
JP7278466B2 (ja) * 2020-01-30 2023-05-19 株式会社日立ハイテク プラズマ処理装置、およびプラズマ処理方法
JP7386093B2 (ja) 2020-02-19 2023-11-24 東京エレクトロン株式会社 プラズマ処理装置及び整合方法
JP7291091B2 (ja) * 2020-03-16 2023-06-14 株式会社京三製作所 高周波電源装置及びその出力制御方法
KR20230133885A (ko) 2021-01-29 2023-09-19 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 소스 고주파 전력의 소스 주파수를제어하는 방법
KR20230133339A (ko) * 2021-01-29 2023-09-19 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치 및 소스 고주파 전력의 소스 주파수를제어하는 방법
KR20230073917A (ko) 2021-11-19 2023-05-26 주식회사 뉴파워 프라즈마 앰프 보호 기능을 구비한 고주파 전력 공급 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033080A (ja) * 2006-10-06 2009-02-12 Tokyo Electron Ltd プラズマエッチング装置、プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
JP2009071292A (ja) * 2007-08-17 2009-04-02 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法及び記憶媒体
JP2012009544A (ja) * 2010-06-23 2012-01-12 Tokyo Electron Ltd 基板処理方法
US8710926B2 (en) * 2005-10-31 2014-04-29 Mks Instruments, Inc. Radio frequency power delivery system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562190B1 (en) * 2000-10-06 2003-05-13 Lam Research Corporation System, apparatus, and method for processing wafer using single frequency RF power in plasma processing chamber
JP5319150B2 (ja) * 2008-03-31 2013-10-16 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法及びコンピュータ読み取り可能な記憶媒体
JP2010238881A (ja) * 2009-03-31 2010-10-21 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP5864879B2 (ja) * 2011-03-31 2016-02-17 東京エレクトロン株式会社 基板処理装置及びその制御方法
JP5977509B2 (ja) * 2011-12-09 2016-08-24 東京エレクトロン株式会社 プラズマ処理方法及びプラズマ処理装置
JP5867701B2 (ja) * 2011-12-15 2016-02-24 東京エレクトロン株式会社 プラズマ処理装置
JP5808012B2 (ja) * 2011-12-27 2015-11-10 東京エレクトロン株式会社 プラズマ処理装置
JP6162016B2 (ja) * 2013-10-09 2017-07-12 東京エレクトロン株式会社 プラズマ処理装置
JP5701958B2 (ja) * 2013-10-15 2015-04-15 東京エレクトロン株式会社 基板処理装置
JP6374647B2 (ja) * 2013-11-05 2018-08-15 東京エレクトロン株式会社 プラズマ処理装置
JP6312405B2 (ja) * 2013-11-05 2018-04-18 東京エレクトロン株式会社 プラズマ処理装置
CN103632927B (zh) * 2013-12-19 2016-03-16 中微半导体设备(上海)有限公司 等离子体刻蚀系统的阻抗匹配方法
JP6512962B2 (ja) * 2014-09-17 2019-05-15 東京エレクトロン株式会社 プラズマ処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8710926B2 (en) * 2005-10-31 2014-04-29 Mks Instruments, Inc. Radio frequency power delivery system
JP2009033080A (ja) * 2006-10-06 2009-02-12 Tokyo Electron Ltd プラズマエッチング装置、プラズマエッチング方法およびコンピュータ読取可能な記憶媒体
JP2009071292A (ja) * 2007-08-17 2009-04-02 Tokyo Electron Ltd プラズマ処理装置、プラズマ処理方法及び記憶媒体
JP2012009544A (ja) * 2010-06-23 2012-01-12 Tokyo Electron Ltd 基板処理方法

Also Published As

Publication number Publication date
CN107993915A (zh) 2018-05-04
US20180115299A1 (en) 2018-04-26
CN110718441B (zh) 2022-01-04
CN107993915B (zh) 2019-12-20
TW201828781A (zh) 2018-08-01
CN110718441A (zh) 2020-01-21
JP2018073904A (ja) 2018-05-10
KR20180045808A (ko) 2018-05-04
KR102375578B1 (ko) 2022-03-17
JP6770868B2 (ja) 2020-10-21
US10250217B2 (en) 2019-04-02

Similar Documents

Publication Publication Date Title
TWI749086B (zh) 使用於電漿處理裝置之阻抗匹配的方法
JP6392266B2 (ja) プラズマ処理方法及びプラズマ処理装置
TWI711083B (zh) 電漿處理裝置之阻抗匹配用的方法
TWI614807B (zh) 電漿處理裝置
TWI601182B (zh) Plasma processing apparatus and plasma processing method
KR102222933B1 (ko) 플라즈마 처리 방법
US10037868B2 (en) Plasma processing apparatus
KR101938151B1 (ko) 플라스마 처리 장치 및 플라스마 처리 방법
JP6602581B2 (ja) プラズマ処理装置およびプラズマ処理方法
TWI718272B (zh) 電漿處理方法
US20240170258A1 (en) Plasma processing system and plasma processing method
TWI695403B (zh) 電漿處理方法及電漿處理裝置
JP2020177756A (ja) プラズマ処理装置