TWI747607B - 形成絕緣層的墨水組成物、方法和觸控面板 - Google Patents

形成絕緣層的墨水組成物、方法和觸控面板 Download PDF

Info

Publication number
TWI747607B
TWI747607B TW109139475A TW109139475A TWI747607B TW I747607 B TWI747607 B TW I747607B TW 109139475 A TW109139475 A TW 109139475A TW 109139475 A TW109139475 A TW 109139475A TW I747607 B TWI747607 B TW I747607B
Authority
TW
Taiwan
Prior art keywords
insulating layer
ink
substrate
layer
ink composition
Prior art date
Application number
TW109139475A
Other languages
English (en)
Other versions
TW202219198A (zh
Inventor
陳龍賓
楊宜龍
陳威州
朱俊鴻
Original Assignee
大陸商宸鴻科技(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商宸鴻科技(廈門)有限公司 filed Critical 大陸商宸鴻科技(廈門)有限公司
Priority to TW109139475A priority Critical patent/TWI747607B/zh
Application granted granted Critical
Publication of TWI747607B publication Critical patent/TWI747607B/zh
Publication of TW202219198A publication Critical patent/TW202219198A/zh

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

一種形成絕緣層的墨水組成物,包括丙烯酸樹脂、丙烯酸酯單體、含氟硫醇化合物、矽烷偶聯劑、光固化劑以及溶劑,其中墨水組成物可用於噴墨製程中。使用墨水組成物形成的絕緣層在厚度為2μm下具有崩潰電壓大於800V,以及在頻率為100kHz下具有介電常數為2.0至4.0。

Description

形成絕緣層的墨水組成物、方法和觸控面板
本公開涉及形成絕緣層的墨水組成物、方法以及觸控面板。
在電子設備中,絕緣層提供必要的電性隔絕,並配合電子設備的設計,將絕緣層圖案化成適合的形狀。絕緣層的圖案化包括多個步驟,例如,將絕緣層的材料塗佈於基板上,利用具有圖案的遮罩曝光絕緣層,再透過顯影製程移除部分絕緣層,最後將圖案化的絕緣層以高溫進行烘烤,以得到在基板上的圖案化絕緣層。
本公開提供一種形成絕緣層的墨水組成物,包括丙烯酸樹脂、丙烯酸酯單體、含氟硫醇化合物、矽烷偶聯劑、光固化劑以及溶劑,其中墨水組成物用於噴墨製程。
本公開提供一種形成絕緣層的方法,包括將墨水組成物噴墨在基板上以形成墨水層、低溫固化墨水層以及使 用紫外光固化墨水層以形成絕緣層,其中墨水組成物包括丙烯酸樹脂、丙烯酸酯單體、含氟硫醇化合物、矽烷偶聯劑、光固化劑以及溶劑。
本公開提供一種使用上述方法製成的絕緣層。在本公開的一些實施例中,絕緣層在厚度為2μm下的崩潰電壓大於800V,絕緣層在頻率為100kHz下的介電常數為2.0至4.0。
本公開提供一種包括上述絕緣層的觸控面板。在本公開的一些實施例中,觸控面板包括基板、沿著第一方向設置於基板上的複數個第一感應電極、設置於基板上並電性連接第一感應電極的連接電極、沿著第二方向設置於基板上的複數個第二感應電極、設置於連接電極上的絕緣層以及設置於絕緣層上的橋接導線。其中第二方向不同於第一方向,第一感應電極和第二感應電極的垂直投影不重疊,橋接導線電性連接第二感應電極,絕緣層電性隔離第一感應電極和第二感應電極。
為了實現提及主題的不同特徵,以下公開內容提供了許多不同的實施例或示例。以下描述組件、操作、材料、配置等等的具體示例以簡化本公開。當然,這些僅僅是示例,而不是限制性的。其他組件、操作、材料、配置等等也在考慮中。例如,在以下的描述中,在第二特徵之上或上方形成第一特徵可以包括第一特徵和第二特徵以直接接觸形成的實施例,並且還可以包括在第一特徵和第二特徵之間形成附加特徵,使得第一特徵和第二特徵可以不直接接觸的實施例。另外,本公開可以在各種示例中重複參考數字和/或字母。此重複是為了簡單和清楚的目的,並且本身並不表示所討論的各種實施例和/或配置之間的關係。
此外,本文可以使用空間相對術語,諸如「在…下面」、「在…下方」、「偏低」、「在…上面」、「偏上」等,以便於描述一個元件或特徵與如圖所示的另一個元件或特徵的關係。除了圖中所示的取向之外,空間相對術語旨在包括使用或操作中的裝置的不同取向。裝置可以以其他方式定向(旋轉90度或在其他方向上),並且同樣可以相應地解釋在此使用的空間相對描述符號。
現今形成絕緣層的製程中,由於絕緣層溶液的成分特性,使得絕緣層需塗覆於基板並固化後,再以使用遮罩的微影製程(例如濕蝕刻)和高溫烘烤(例如溫度為150℃至250℃),來進行絕緣層的圖案化。在部分實施例中還需要經過照光(如照射紫外光)固化絕緣層的圖案。這些微影製程包括多步驟的蝕刻製程,需花費較多成本和時間,且高溫製程難以相容於可撓式基板,整體上限制較多。
本公開揭露的一種形成絕緣層的墨水組成物,可利用噴墨印刷直接形成圖案化的絕緣層於基板上,經過低溫固化後,無需遮罩、可直接進行紫外光固化。本公開所提供的絕緣層製程簡化了圖案化的步驟,也因為低溫製程而可用於可撓式基板,製程應用範圍較廣。
根據本公開的一些實施例,第1圖繪示了形成絕緣層的製程流程圖100,第2A至第2C圖繪示了製程流程圖100中各階段的示意截面圖。第1圖至第2C圖僅示例性繪示利用本公開提供之墨水組成物的製程,然而應理解,在製程之前、之中和之後加入其他步驟的替代性實施例,也在本公開的範圍內。
參考第1圖和第2A圖,透過噴墨(Ink-jet)製程(或可稱為噴塗製程)將墨水組成物塗佈於基板200上,以形成墨水層210。相應的製程繪示為第1圖中所示製程流程圖100的步驟110。
在一些實施例中,如第2A圖所示,墨水層210經噴墨製程形成在基板200上時可具有圖案化形狀,例如使用遮罩遮蔽基板200的部分區域再進行噴墨製程,因此不需在後續製程中利用額外的微影製程進行圖案化。在其他的實施例中,可將墨水組成物噴墨於整面基板200上,在後續製程中圖案化(例如乾蝕刻或濕蝕刻)以形成墨水層210。
基板200可應用於各種電子設備中,例如觸控面板。在一些實施例中,基板200可包括用於高溫製程的硬式基板,此類硬式基板例如為玻璃基板、晶圓、石英基板、碳化矽基板、陶瓷基板等。
在一些實施例中,基板200可為可撓式基板,適用於可彎曲的裝置中。在一些實施例中,基板200可包括用於低溫製程的可撓式基板,此類可撓式基板例如為聚對苯二甲酸乙二酯(Polyethylene Terephthalate,PET)、環狀烯烴聚合物(Cyclo Olefin Polymer,COP)、環狀烯烴共聚物(Cyclo Olefin Copolymer,COC)、聚碳酸酯(Polycarbonate,PC)、聚甲基丙烯酸甲酯(Poly(methyl methacrylate),PMMA)、聚醯亞胺(Polyimide,PI)、聚萘二甲酸乙二酯(Polyethylene Naphthalate,PEN)、聚偏二氟乙烯(Polyvinylidene Difluoride,PVDF)、聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)等。
形成墨水層210的墨水組成物包括丙烯酸樹脂(Acrylic resin)、丙烯酸酯單體(Acrylate monomer)、含氟硫醇化合物(Fluoro-Containing Thiol Compound)、矽烷偶聯劑(Silane Coupling agent)、光固化劑(Photoinitiator)和溶劑。
在一些實施例中,丙烯酸樹脂可包括可溶性的丙烯酸酯共聚物(acrylate copolymer)、可溶性的環氧丙烯酸樹脂(epoxyacrylate resin)等或上述組合。在一些實施例中,形成墨水層210的墨水組成物中丙烯酸樹脂的重量百分比濃度可介於約9wt%至約33wt%。
在一些實施例中,丙烯酸酯單體可包括二甲基丙烯酸酯(dimethacrylate)、三丙烯酸酯(triacrylate)、五丙烯酸酯、六丙烯酸酯等或上述組合。在一些實施例中,形成墨水層210的墨水組成物中丙烯酸酯單體的重量百分比濃度可介於約10wt%至約30wt%。
由於丙烯酸樹脂為高分子化合物,具有較高的黏度,若單獨做為墨水組成物,會使得墨水組成物的黏度太高而無法應用於噴墨製程中。相對地,丙烯酸酯單體為小分子化合物,具有較低的黏度,若單獨做為墨水組成物,則會使得墨水組成物的黏度太低而無法維持在基板200上的成膜特性或無法直接噴塗形成圖案化形狀。本公開的實施例中透過合適地調整形成墨水層210的墨水組成物,使墨水組成物可以具有適當的黏度而可直接應用於噴墨製程中。
進一步地說,墨水組成物中包括黏度高的丙烯酸樹 脂和黏度低的丙烯酸酯單體,藉由調整丙烯酸樹脂和丙烯酸酯單體的比例,例如讓墨水組成物中丙烯酸樹脂的重量百分比濃度約9wt%至約33wt%,墨水組成物中丙烯酸酯單體的重量百分比濃度約10wt%至約30wt%,使得墨水組成物在室溫下(例如25℃時)可具有黏度約5毫帕斯卡.秒(mPa.s)至約40mPa.s,以適用於噴墨印刷的設備中,因此可利用噴墨製程直接形成圖案化的墨水層210在基板200上。在一些實施例中,形成墨水層210之墨水組成物的表面張力可介於約20達因(dyne)至約42達因。
形成墨水層210的墨水組成物中包括光固化劑。在後續的紫外光固化製程中加入紫外光的照射,光固化劑因照射紫外光而產生自由基,自由基起始丙烯酸樹脂和丙烯酸酯單體的聚合反應,以形成固化後的絕緣層。在一些實施例中,光固化劑可包括IRGACURE®184、IRGACURE®1173、IRGACURE®2959、IRGACURE®127、IRGACURE®907、IRGACURE®379、IRGACURE®754、IRGACURE®OXE01、IRGACURE®OXE02、IRGACURE®TOP、IRGACURE®819、IRGACURE®784等或上述組合。在一些實施例中,形成墨水層210之墨水組成物中光固化劑的重量百分比濃度可介於約2wt%至約7wt%。
形成墨水層210的墨水組成物中包括含氟硫醇化合物和矽烷偶聯劑,兩者在墨水組成物中具有協同作用(synergism),使得墨水層210經後續固化後會具有較高的崩潰電壓(break down voltage)和較低的介電常數,細節將在後文中進一步描述。
形成墨水層210的墨水組成物中包括含氟硫醇化合物和矽烷偶聯劑。在一些實施例中,含氟硫醇化合物可包括氟烷硫醇(fluoroalkylthiol)、氟烷硫酚(fluoroalkylthiophenol)等或上述衍生物。在一些實施例中,矽烷偶聯劑可包括2-(3,4-環氧環己烷)乙基三甲氧基矽烷(2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane)、N-(2-胺乙基)-3-胺丙基三甲氧矽烷(N-(2-aminoethyl)-3-aminopropyltrimethoxysilane)、3-(甲基丙烯酰氧)丙基三甲氧基矽烷(3-(methacryloxy)propyltrimethoxysilane)等。
在一些實施例中,形成墨水層210的墨水組成物中含氟硫醇化合物的重量百分比濃度可介於約0.001wt%至約0.1wt%,矽烷偶聯劑的重量百分比濃度可介於約0. 1wt%至約1wt%。
形成墨水層210的墨水組成物包括可溶解上述組成化合物的溶劑,例如包括水、乙醇、異丙醇、丙酮、二丙酮醇、四氫呋喃、非質子性溶劑(例如N-甲基吡咯烷酮、二甲基甲醯胺、二甲基亞碸) 、丙二醇甲基醚醋酸酯、丙二醇單甲醚、3-甲氧基-1-丁醇、乙酸乙酯、環己酮、環戊酮等或上述組合。在一些實施例中,形成墨水層210之墨水組成物中溶劑的重量百分比濃度可介於約29wt%至約79wt%。
參考第1圖和第2B圖,透過低溫固化製程220(或可稱為第一次固化製程)形成固化墨水層212在基板200上,例如加熱形成固化墨水層212。相應的製程繪示為第1圖中所示製程流程圖100的步驟120。第2A圖中的墨水層210經過低溫固化製程220後,在基板200上形成固化墨水層212。
低溫固化製程220為低溫製程,在形成固化墨水層212的期間,不會因為高溫而對基板200造成變形或損傷,進而增加基板200的可選擇種類,例如上述提及的基板200之種類。在一些實施例中,低溫固化製程220的溫度小於基板200的最高製程溫度。一般而言,基板200的最高製程溫度大致上與基板200的玻璃轉換溫度(glass transition temperature,Tg)有關。
在一些實施例中,低溫固化製程220的溫度可小於或等於130℃。在一些實施例中,低溫固化製程220的溫度可介於約50℃至約130℃,此製程溫度範圍大致上低於電子工業所使用低溫塑料基板的最高製程溫度,例如PET的最高製程溫度約為120℃、PC的最高製程溫度約為130℃、PMMA的最高製程溫度約為110℃等。上述製成溫度範圍低於可耐高溫基板的最高製程溫度(例如玻璃基板的最高製程溫度約為500℃、PEN的最高製程溫度約為150℃),因此低溫固化製程220亦適用於上述基板。
在一些實施例中,低溫固化製程220為加熱基板200所在的空間或腔室,以形成固化墨水層212。在一些實施例中,低溫固化製程220為直接加熱基板200,以形成固化墨水層212。
固化墨水層212經過低溫固化製程220後已貼附在基板200上,且固化墨水層212的表面不具有沾黏性,使得固化墨水層212在進行後續紫外光固化製程前可進行其他步驟或是可以先暫時性地儲存起來,增加製程的靈活度。舉例而言,在一些實施例中,當基板200為可撓式基板的情況下,使基板200上的固化墨水層212隨具有可撓性的基板200預先形成捲狀而不破壞圖案化的形狀,以便於一同儲存,並可在之後將形成捲狀的基板200和固化墨水層212取出,進行軸對軸捲合(Roll-to-roll)加工的製程。
由於形成第2A圖中墨水層210的墨水組成物包括含氟硫醇化合物和矽烷偶聯劑,兩者在墨水組成物中具有協同作用,使得經過低溫固化後的固化墨水層212具有較高的崩潰電壓和較低的介電常數。在一些實施例中,具有上述特性的固化墨水層212可應用於電子元件中的絕緣物,例如電極之間的絕緣層,因此改良絕緣層的電絕緣表現。
參考第1圖和第2C圖,透過紫外光固化製程(或可稱為第二次固化製程)形成絕緣層214在基板200上。相應的製程繪示為第1圖中所示製程流程圖100的步驟130。結合參考第2B圖和第2C圖,固化墨水層212經過紫外光固化製程進一步固化之後,在基板200上形成絕緣層214。
在紫外光固化製程中,使用紫外光230照射固化墨水層212,使固化墨水層212中的光固化劑產生自由基,自由基催化丙烯酸樹脂和丙烯酸酯單體產生丙烯酸聚合物,並形成絕緣層214。在一些實施例中,紫外光230的能量可介於約50毫焦耳/平方公分至約6000毫焦耳/平方公分之間。
使用紫外光230固化後的絕緣層214中包括丙烯酸聚合物、含氟硫醇化合物和矽烷偶聯劑。如第2C圖所示,紫外光固化製程後的絕緣層214具有厚度T1和寬度W1。在一些實施例中,厚度T1可在範圍約1μm至約15μm,更特定而言,厚度T1可在範圍約2μm至約12μm。寬度W1配合噴墨製程的解析度,使得絕緣層214較為適用於大尺寸的裝置中,例如電視面板。在一些實施例中,寬度W1可大於或等於約40μm。
紫外光固化後絕緣層214的尺寸略小於紫外光固化前固化墨水層212的尺寸,紫外光固化前後的差異可使用收縮率表示,收縮率越小表示紫外光固化造成的形變越小。另一方面,絕緣層214的電特性(例如上述崩潰電壓、介電常數等特性)和固化墨水層212相同,亦即,第二次固化(即紫外光固化)僅是略為提高固化墨水層212的聚合特性,並稍微改變固化墨水層212的外觀尺寸,但不影響固化墨水層212的電特性。在一些實施例中,在紫外光固化後的絕緣層214和固化墨水層212相比,尺寸收縮率可小於約10%。
在一些實施例中,加熱固化(第一次固化)與紫外光固化(第二次固化)可同時進行,所得絕緣層214的電特性類似於上述實施例,而所得絕緣層214的收縮率則是噴墨成膜後的墨水層(即濕膜,類似於第2A圖中的墨水層210)與固化後絕緣層214的尺寸差異。在此類實施例中,絕緣層214的收縮率類似於上述收縮率,例如,收縮率小於約10%。
根據一些實施例,第3圖繪示不同實施例的絕緣層中電流與電壓的關係圖,以此說明不同實施例的絕緣層之崩潰電壓。在電流與電壓的關係圖中,隨著電壓增加到閾值時,電流會急速增加,此時的電壓閾值即稱為崩潰電壓(break down voltage)。
參考第3圖和下方表一,在曲線300所代表的比較例1中,形成絕緣層的墨水組成物類似於第2A圖中形成墨水層210的墨水組成物,但不包括含氟硫醇化合物和矽烷偶聯劑。在曲線310所代表的實施例1中,形成絕緣層的墨水組成物則與形成墨水層210的墨水組成物相同。在一些實施例中,比較例1的墨水組成需要較高的固化溫度,無法滿足塑料基板所需的低溫製程需求。
如第3圖所示,曲線300在電壓約800V時開始上升,而曲線310在電壓約1000V時開始上升。在曲線310的實施例1中,如表一所示,絕緣層在厚度為約1.88μm下,崩潰電壓約為938V,而絕緣層在測試頻率為約100kHz下的介電常數約為2.94。應理解,實施例1中的厚度僅為示例,並可依據不同實施例而包括其他厚度,例如2μm至12μm。由於實施例1的絕緣層中包括含氟硫醇化合物和矽烷偶聯劑,增加了絕緣層的崩潰電壓,降低了絕緣層的介電常數。
Figure 109139475-A0305-02-0015-1
崩潰電壓可代表絕緣層的電絕緣特性,崩潰電壓越高的絕緣層,具有越高的電絕緣效果,而越厚的絕緣層也具有越高的崩潰電壓。除了崩潰電壓,介電常數也常用來表示絕緣層的電絕緣特性,介電常數越小的絕緣層,具有越高的電絕緣效果。在一些實施例中,絕緣層在厚度為約2μm時(表一所製作的絕緣層厚度紀載為1.88μm,考慮製程公差、量測誤差等,可理解為說明書所述的厚度為約2μm的絕緣層),可具有崩潰電壓大於約800V(例如大於約850V、大於約900V、大於約950V或大於約1000V),絕緣層在頻率為約100kHz下的介電常數可在約2.0至5.0的範圍內,更特定而言,可在約2.0至約4.0的範圍內(例如約2.5、約3.0或約3.5)。
根據一些實施例,第4圖繪示觸控面板400的俯視圖,其中絕緣層430是利用本公開揭露的墨水組成物透過噴墨(噴塗)製程所形成。第5圖則根據第4圖中參考截面A-A,繪示觸控面板400的截面圖。
結合參考第4圖和第5圖,觸控面板400為單面架橋式(bridge)的觸控面板。在一些實施例中,「單面」是指在基板的一面製作透明導電層,例如銦錫氧化物(Indium Tin Oxide,ITO)、金屬奈米線層等。在一些實施例中,觸控面板400可包括基板405、第一感應電極410、連接電極415、第二感應電極420、絕緣層430和橋接導線440。然而應理解,包括其他組件之觸控面板400的替代性實施例,也在本公開的範圍內。
基板405包括類似於第2A圖中基板200的可撓式基板或硬式基板。形成第一感應電極410、連接電極415、第二感應電極420和橋接導線440的材料可包括氧化銦錫、金屬網格、金屬奈米線、石墨烯或其他透明導體。形成絕緣層430的材料包括本公開提供之墨水組成物。
本文所用的「金屬奈米線(metal nanowires)」為集合名詞,包括多個元素金屬、金屬合金或金屬化合物(包括金屬氧化物)的金屬線之集合,其中所含金屬奈米線的數量,並不影響本公開的保護範圍。單一金屬奈米線的至少一個截面尺寸(即截面的直徑)可小於約500 nm,較佳小於約100 nm,且更佳小於約50 nm。本文所稱為「線(wire)」的金屬奈米結構,主要具有高的縱橫比,例如介於約10至100000之間,更詳細地說,金屬奈米線的縱橫比(長度:截面的直徑)可大於約10,較佳大於約50,且更佳大於約100。金屬奈米線可以為任何金屬,包括(但不限於)銀、金、銅、鎳及鍍金的銀。而其他用語,諸如絲(silk)、纖維(fiber)、管(tube)等,若具有上述的尺寸及高縱橫比,亦為本公開所涵蓋的範疇。
金屬奈米線可包括奈米銀線(silver nanowires)、奈米金線(gold nanowires)或奈米銅線(copper nanowires)等。在一些實施例中,將具有金屬奈米線的分散液或漿料(ink)以塗佈方法成型於基板405上,並加以乾燥使金屬奈米線覆著於基板405的表面而成型為金屬奈米線層。而在上述的乾燥(固化)步驟之後,漿料中溶劑等物質揮發,而金屬奈米線以隨機的方式分佈於基板405的表面,且金屬奈米線可彼此接觸以提供連續電流路徑,進而形成導電網路(conductive network)。接著進行金屬奈米線層的圖案化以製作感測電路(例如第一感應電極410、連接電極415、第二感應電極420等)。
在其他的實施例中,可塗佈一膜層與金屬奈米線形成複合結構而具有某些特定的化學、機械及光學特性,例如提供金屬奈米線與基板405的黏著性,或是較佳的實體機械強度, 因此膜層又可稱作基質(matrix)。在又其他的實施例中,使用某些特定的聚合物製作膜層,使金屬奈米線具有額外的抗刮擦及磨損的表面保護,在此情形下,膜層又可稱作硬塗層(hard coat)或外塗層(overcoat),採用諸如聚丙烯酸酯、環氧樹脂、聚胺基甲酸酯、聚矽烷、聚矽氧、聚(矽-丙烯酸)等,可使金屬奈米線具有較高的表面強度以提高耐刮能力。另外,膜層中可添加紫外光穩定劑(UV stabilizers),以提高金屬奈米線的抗紫外線能力。然而,上述僅是說明膜層的其他附加功能或名稱的可能性,並非用於限制本公開。
形成在基板405上的第一感應電極410可以為任意形狀,並沿著第一方向D1排列。相鄰的第一感應電極410之間以連接電極415電性連接。形成在基板405上的第二感應電極420可以為任意形狀,並沿著第二方向D2排列。如第4圖所示,第一感應電極410和第二感應電極420在俯視圖中交錯排列,兩者的垂直投影並不重疊。
絕緣層430接著形成在連接電極415上。可使用本公開提供之墨水組成物和絕緣層的形成方法形成絕緣層430,即以低溫噴墨製程形成圖案化的絕緣層430。由於絕緣層430的低溫製程和圖案化不需蝕刻等特性,可避免對先形成的基板405、第一感應電極410和第二感應電極420造成損傷。
根據第一感應電極410和第二感應電極420的製程,可調整絕緣層430至合適的厚度。在一些實施例中,第一感應電極410和第二感應電極420為ITO材料所製成,絕緣層430的厚度可為約2μm。在其他的實施例中,第一感應電極410和第二感應電極420為奈米銀線材料所製成,絕緣層430的厚度可為約6μm。
橋接導線440形成在絕緣層430上,並電性連接相鄰的第二感應電極420。由於絕緣層430位於連接電極415和橋接導線440之間,且絕緣層430具有如前述的崩潰電壓和介電常數,使絕緣層430可電性隔離第一感應電極410和第二感應電極420。
本公開揭露一種形成絕緣層的方法,使用低溫噴墨製程直接形成圖案化的絕緣層,避免高溫或微影蝕刻對其他部件造成材料限制或損傷。形成絕緣層的墨水組成物包括丙烯酸樹脂和丙烯酸酯單體,使墨水組成物的黏度適合用於噴墨裝置。形成絕緣層的墨水組成物包括含氟硫醇化合物和矽烷偶聯劑,增加絕緣層的崩潰電壓並降低介電常數。
本公開揭露的絕緣層形成方法,可應用於各種電子設備製程中,例如形成觸控面板、可撓性面板、大尺寸裝置等。
前面概述一些實施例的特徵,使得本領域技術人員可更好地理解本公開的觀點。本領域技術人員應該理解,他們可以容易地使用本公開作為設計或修改其他製程和結構的基礎,以實現相同的目的和/或實現與本文介紹之實施例相同的優點。本領域技術人員還應該理解,這樣的等同構造不脫離本公開的精神和範圍,並且在不脫離本公開的精神和範圍的情況下,可以進行各種改變、替換和變更。
100:製程流程圖
110,120,130:步驟
200:基板
210:墨水層
212:固化墨水層
214:絕緣層
220:低溫固化製程
230:紫外光
300,310:曲線
400:觸控面板
405:基板
410:第一感應電極
415:連接電極
420:第二感應電極
430:絕緣層
440:橋接導線
A-A:參考截面
D1:第一方向
D2:第二方向
T1:厚度
W1:寬度
當結合附圖閱讀時,從以下詳細描述中可以最好地理解本公開的各方面。應注意,根據工業中的標準方法,各種特徵未按比例繪製。實際上,為了清楚地討論,可任意增加或減少各種特徵的尺寸。
第1圖根據一些實施例,繪示形成絕緣層的製程流程圖。
第2A圖至第2C圖根據一些實施例,繪示製程流程圖中各階段的示意截面圖。 第3圖根據一些實施例,繪示不同實施例的絕緣層中電流與電壓的關係圖。 第4圖根據一些實施例,繪示觸控面板的俯視圖。 第5圖根據第4圖中的參考截面,繪示觸控面板的截面圖。
國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無
100:製程流程圖
110,120,130:步驟

Claims (12)

  1. 一種形成絕緣層的墨水組成物,包括:一丙烯酸樹脂,其重量百分比濃度為9wt%至33wt%;一丙烯酸酯單體,其重量百分比濃度為10wt%至30wt%;一含氟硫醇化合物,其重量百分比濃度約0.001wt%至0.1wt%;一矽烷偶聯劑,其重量百分比濃度約0.1wt%至1wt%;一光固化劑;以及一溶劑,其中該墨水組成物用於噴墨製程。
  2. 如請求項1所述之墨水組成物,其中該墨水組成物的黏度在25℃時為5mPa.s至40mPa.s。
  3. 一種形成絕緣層的方法,包括:將一墨水組成物噴墨在一基板上以形成一墨水層,其中該墨水組成物包括:一丙烯酸樹脂,其重量百分比濃度為9wt%至33wt%;一丙烯酸酯單體,其重量百分比濃度為10wt%至30wt%;一含氟硫醇化合物,其重量百分比濃度約0.001wt%至0.1wt%; 一矽烷偶聯劑,其重量百分比濃度約0.1wt%至1wt%;一光固化劑;以及一溶劑;低溫固化該墨水層;以及使用紫外光固化該墨水層以形成一絕緣層。
  4. 如請求項3所述之方法,其中低溫固化該墨水層的溫度為50℃至130℃。
  5. 如請求項3所述之方法,其中該絕緣層與該墨水層相比的尺寸收縮率小於10%。
  6. 一種如請求項3所述之方法所製成的絕緣層。
  7. 如請求項6所述之絕緣層,其中該絕緣層在厚度為2μm下的崩潰電壓大於800V。
  8. 如請求項6所述之絕緣層,其中該絕緣層在頻率為100kHz下的介電常數為2.0至4.0。
  9. 如請求項6所述之絕緣層,其中該絕緣層的厚度為2μm至12μm。
  10. 一種包括如請求項6所述之絕緣層的觸控面板。
  11. 如請求項10所述之觸控面板,包括:一基板;複數個第一感應電極,沿著一第一方向設置於該基板上;一連接電極,設置於該基板上並電性連接該些第一感應電極;複數個第二感應電極,沿著一第二方向設置於該基板上,其中該第二方向不同於該第一方向,該些第一感應電極和該些第二感應電極的垂直投影不重疊;該絕緣層,設置於該連接電極上;以及一橋接導線,設置於該絕緣層上,其中該橋接導線電性連接該些第二感應電極,該絕緣層電性隔離該些第一感應電極和該些第二感應電極。
  12. 如請求項11所述之觸控面板,其中該些第一感應電極、該連接電極和該些第二感應電極包括奈米銀線層。
TW109139475A 2020-11-12 2020-11-12 形成絕緣層的墨水組成物、方法和觸控面板 TWI747607B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109139475A TWI747607B (zh) 2020-11-12 2020-11-12 形成絕緣層的墨水組成物、方法和觸控面板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109139475A TWI747607B (zh) 2020-11-12 2020-11-12 形成絕緣層的墨水組成物、方法和觸控面板

Publications (2)

Publication Number Publication Date
TWI747607B true TWI747607B (zh) 2021-11-21
TW202219198A TW202219198A (zh) 2022-05-16

Family

ID=79907547

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109139475A TWI747607B (zh) 2020-11-12 2020-11-12 形成絕緣層的墨水組成物、方法和觸控面板

Country Status (1)

Country Link
TW (1) TWI747607B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522315A (zh) * 2006-10-11 2009-09-02 禾逊专业化学公司 辐射可固化油墨
CN102321407A (zh) * 2011-09-06 2012-01-18 南昌航空大学 一种电子束固化印铁油墨
CN103571404A (zh) * 2012-07-31 2014-02-12 日东电工株式会社 辐射线固化型粘合剂、辐射线固化型粘合剂层、辐射线固化型粘合片以及层叠体
CN107614607A (zh) * 2015-05-21 2018-01-19 太阳化学公司 超疏水性的可uv固化涂料
TW201842064A (zh) * 2017-03-02 2018-12-01 日商捷恩智股份有限公司 熱硬化性樹脂組成物、硬化膜、帶硬化膜基板、電子零件及噴墨用墨水組成物
CN111410735A (zh) * 2019-01-08 2020-07-14 上海深竹化工科技有限公司 一种水溶性含氟嵌段聚合物、制备方法及其用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101522315A (zh) * 2006-10-11 2009-09-02 禾逊专业化学公司 辐射可固化油墨
CN102321407A (zh) * 2011-09-06 2012-01-18 南昌航空大学 一种电子束固化印铁油墨
CN103571404A (zh) * 2012-07-31 2014-02-12 日东电工株式会社 辐射线固化型粘合剂、辐射线固化型粘合剂层、辐射线固化型粘合片以及层叠体
CN107614607A (zh) * 2015-05-21 2018-01-19 太阳化学公司 超疏水性的可uv固化涂料
TW201842064A (zh) * 2017-03-02 2018-12-01 日商捷恩智股份有限公司 熱硬化性樹脂組成物、硬化膜、帶硬化膜基板、電子零件及噴墨用墨水組成物
CN111410735A (zh) * 2019-01-08 2020-07-14 上海深竹化工科技有限公司 一种水溶性含氟嵌段聚合物、制备方法及其用途

Also Published As

Publication number Publication date
TW202219198A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
US11106130B2 (en) Direct patterning method for a touch panel and touch panel thereof
US20150000960A1 (en) Composite Conductive Films with Enhanced Surface Hardness
JP5749207B2 (ja) 透明導電膜積層体及びタッチパネル
JP5952119B2 (ja) 導電性部材およびその製造方法
KR101143304B1 (ko) 탄소나노튜브 전도층의 접착성이 향상된 기판 및 그의 제조 방법
JP6264367B2 (ja) 透明導電性フィルム及びこれを備えたタッチパネル並びに表示デバイス
TWI749832B (zh) 蝕刻液、觸控面板及其製作方法
KR20160005960A (ko) 투명 전극 복합체
TWI740406B (zh) 具自組裝保護層之導電結構及自組裝塗層組合物
CN107850958B (zh) 图案化外覆层
JPWO2019009101A1 (ja) 導電膜の製造方法、それを用いた電界効果型トランジスタの製造方法および無線通信装置の製造方法
TWI747607B (zh) 形成絕緣層的墨水組成物、方法和觸控面板
KR101542702B1 (ko) 투명 접착제용 조성물 및 이를 제조하는 방법
KR101588287B1 (ko) 나노 물질 패턴의 제조방법
KR101588290B1 (ko) 나노 물질 패턴의 제조방법
KR102120040B1 (ko) 무에칭­인쇄형 마이크로 전극의 패턴을 형성하는 방법
US20220187953A1 (en) Ink component and method for forming insulation layer and touch panel
JP2009140790A (ja) 導電体およびその製造方法
CN114479559A (zh) 形成绝缘层的墨水组成物、方法和触控面板
KR102004026B1 (ko) 투명 도전체 및 이를 포함하는 디스플레이 장치
KR101573052B1 (ko) 나노 물질 패턴의 제조방법
TW201802829A (zh) 透明導電性膜及觸控面板
JP2013039739A (ja) 透明積層体及び透明積層体の製造方法
US9147791B1 (en) Method for fabrication pattern of nano material
KR20150030295A (ko) 탄소나노튜브를 사용한 투명 전도성 필름 및 그 제조방법