TWI736621B - 圖案描繪裝置及圖案描繪方法 - Google Patents

圖案描繪裝置及圖案描繪方法 Download PDF

Info

Publication number
TWI736621B
TWI736621B TW106115404A TW106115404A TWI736621B TW I736621 B TWI736621 B TW I736621B TW 106115404 A TW106115404 A TW 106115404A TW 106115404 A TW106115404 A TW 106115404A TW I736621 B TWI736621 B TW I736621B
Authority
TW
Taiwan
Prior art keywords
substrate
light
scanning
pattern
light beam
Prior art date
Application number
TW106115404A
Other languages
English (en)
Other versions
TW201826035A (zh
Inventor
加藤正紀
中山修一
Original Assignee
日商尼康股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商尼康股份有限公司 filed Critical 日商尼康股份有限公司
Publication of TW201826035A publication Critical patent/TW201826035A/zh
Application granted granted Critical
Publication of TWI736621B publication Critical patent/TWI736621B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70808Construction details, e.g. housing, load-lock, seals or windows for passing light in or out of apparatus
    • G03F7/70825Mounting of individual elements, e.g. mounts, holders or supports
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

本發明之圖案描繪裝置(EX)具備:位置計測部(MU),其計測應藉由複數個描繪單元(Un)描繪之基板(P)上之被曝光區域之位置;第1調整構件(HVP),其係為了使利用描繪單元(Un)之各者描繪之圖案相對於被曝光區域之位置誤差減少,而根據利用位置計測部(MU)計測出之位置對基於描繪單元(Un)之各者之光點(SP)之位置於基板(P)之移動中於第2方向上進行調整;及第2調整構件(AOM1),其係為了使利用描繪單元(Un)之各者描繪之圖案於第2方向上之接合誤差減少,而對基於描繪單元(Un)之各者之光點(SP)之位置於基板(P)之移動中以高於第1調整構件(HVP)之響應性在第2方向上進行調整。

Description

圖案描繪裝置及圖案描繪方法
本發明係關於一種使照射至被照射體上之光點掃描而描繪圖案之圖案描繪裝置及圖案描繪方法。
作為使用旋轉多面鏡之描繪裝置,例如已知有一種圖像形成裝置,該圖像形成裝置如日本專利特開2008-200964號公報所揭示般,具備複數個具有多面鏡之雷射曝光部,藉由多面鏡使曝光光束掃描之主掃描方向上之掃描區域之一部分(端部)重疊,由來自複數個雷射曝光部之曝光光束分擔地描繪圖像。於日本專利特開2008-200964號公報之裝置中,為了減少於在掃描區域之端部重疊之區域曝光光束因多面鏡之複數個反射面之面傾斜之差異而於與主掃描方向正交之副掃描方向上偏移的情況,而於使複數個雷射曝光部之各者之多面鏡之旋轉同步時,以於由1個多面鏡描繪之圖像與由另一個多面鏡描繪之圖像之重疊區域圖像之副掃描方向之偏移變少的方式,調整2個多面鏡之反射面之組合(旋轉方向之角度相位)。又,於日本專利特開2008-200964號公報中亦揭示有如下內容,即,設置使包含多面鏡之雷射曝光部機械地沿副掃描方向移動之機構,以減少圖像之重疊區域之偏移之方式進行調整。
本發明之第1態樣係一種圖案描繪裝置,其係使以光點之形式聚光於基板上之描繪光束於第1方向上掃描而描繪圖案的描繪單元於上述第1方向上配置有複數個,藉由上述基板之與上述第1方向交叉之第2方向上之移動,而將利用複數個上述描繪單元描繪之圖案於上述第1方向上接合而進行描繪,且具備:位置計測部,其計測應藉由上述複數個描繪單元描繪之上述基板上之被曝光區域之位置;第1調整構件,其係為了使利用上述描繪單元之各者描繪之圖案相對於上述被曝光區域之位置誤差減少,而根據利用上述位置計測部計測出之位置對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中於上述第2方向上進行調整;及第2調整構件,其係為了使利用上述描繪單元之各者描繪之圖案於上述第2方向上之接合誤差減少,而對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中以高於上述第1調整構件之響應性於上述第2方向上進行調整。
本發明之第2態樣係一種圖案描繪方法,其係使自沿第1方向配置之複數個描繪單元之各者投射之描繪光束之光點於基板上於上述第1方向上進行掃描,並使上述基板於與上述第1方向交叉之第2方向上移動,將利用上述複數個描繪單元之各者描繪之圖案於上述第1方向上接合而進行描繪,且包含:計測階段,其係於上述基板之移動中檢測形成於上述基板之基準圖案之位置,而計測上述基板上之被曝光區域之位置;第1調整階段,其係為了根據上述計測階段中計測出之位置使利用上述描繪單 元之各者描繪之圖案對準上述被曝光區域,而對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中於上述第2方向上進行調整;及第2調整階段,其係為了使利用上述描繪單元之各者描繪之圖案於上述第2方向上之接合誤差減少,而對基於上述描繪單元之各者之上述光點之位置較上述第1調整階段更微細地於上述第2方向上進行調整。
本發明之第3態樣係一種圖案描繪裝置,其具備:旋轉多面鏡,其使根據應描繪於基板上之圖案進行強度調變後之描繪光束於主掃描方向上進行一維掃描;及掃描用光學系統,其將已進行一維掃描之上述描繪光束以光點之形式聚光於上述基板上;且藉由上述光點之上述主掃描方向之掃描、及上述基板與上述光點之與上述主掃描方向交叉之副掃描方向上之相對移動而於上述基板上描繪圖案,且具備:機械光學之第1調整構件,其係為了對在上述主掃描方向上進行一維掃描之上述光點於上述副掃描方向上調整位置,而配置於入射至上述旋轉多面鏡之前之上述描繪光束之光路中或自上述旋轉多面鏡至上述基板之上述描繪光束之光路中;及光電性之第2調整構件,其係為了對在上述主掃描方向上進行一維掃描之上述光點於上述副掃描方向上調整位置,而配置於入射至上述旋轉多面鏡之前之上述描繪光束之光路中且上述第1調整構件之近前之光路中。
10‧‧‧器件製造系統
12‧‧‧基板搬送機構
14‧‧‧曝光頭
16‧‧‧控制裝置
20‧‧‧脈衝光產生部
20H‧‧‧射出窗
22‧‧‧控制電路
22a‧‧‧訊號產生部
30、32‧‧‧DFB半導體雷射元件
34、38、BS1~BS6、BSn‧‧‧偏振分光鏡
35‧‧‧脈衝光源部
36、KDn、ODn、OS1~OS6、OSn‧‧‧光電元件
36a、102A‧‧‧驅動電路
40、TR1、TR2、TR3‧‧‧吸收體
42‧‧‧激發光源
42a‧‧‧光纖
44‧‧‧組合器
46‧‧‧光纖光放大器
46a‧‧‧射出端
48、50‧‧‧波長轉換光學元件
60‧‧‧時脈產生部
100‧‧‧多面鏡驅動控制部
102‧‧‧選擇元件驅動控制部
102A1‧‧‧局部振盪電路
102A2‧‧‧混合電路
102A3‧‧‧放大電路
102S‧‧‧基準振盪器
104‧‧‧光束控制裝置
106‧‧‧標記位置檢測部
108‧‧‧旋轉位置檢測部
110‧‧‧整體倍率設定部
112‧‧‧局部倍率設定部
114‧‧‧描繪資料輸出部
116‧‧‧曝光控制部
200‧‧‧時脈訊號產生部
202‧‧‧修正點指定部
204‧‧‧時脈切換部
212‧‧‧分頻計數器電路
214‧‧‧移位脈衝輸出部
AM11~AM14、AM21~AM24、AM1m、AM2m‧‧‧對準顯微鏡
AODs‧‧‧聲光偏轉元件
AOM1~AOM6、AOMn‧‧‧選擇用光學元件
AXa、AXc、AXe、AXf、AXj、AXm‧‧‧光軸
AXp‧‧‧旋轉軸
AXo、AXm'‧‧‧中心軸
BDU‧‧‧光束切換部
BE‧‧‧擴束器
Be1、CD0~CD6‧‧‧聚光透鏡
Be1'‧‧‧凹透鏡系統
Be2、CL1~CL6‧‧‧準直透鏡
BSCa、BSCb‧‧‧像素移位脈衝
CK0~CK49‧‧‧時脈訊號
CG1、CG2‧‧‧透鏡
CL1a‧‧‧準直器透鏡
CMgn‧‧‧局部倍率修正資訊
CN1a~CN4a、CN1b~CN4b‧‧‧計數器電路
CPP‧‧‧修正點
CS‧‧‧移位脈衝
CYa、CYb‧‧‧柱面透鏡
De01~De49‧‧‧延遲電路
Dh‧‧‧間隔
DP、DT‧‧‧光檢測器
DR‧‧‧旋轉滾筒
DU‧‧‧伺服控制系統
E‧‧‧設置面
ECV‧‧‧調溫室
EJp、EJm‧‧‧電極
EN1a~EN4a、EN1b~EN4b‧‧‧編碼器
EPC‧‧‧邊緣位置控制器
EX‧‧‧曝光裝置
f1、f2‧‧‧焦距
FA‧‧‧場光圈
FR1‧‧‧供給捲筒
FR2‧‧‧回收捲筒
FSS‧‧‧修正訊號
FT‧‧‧f θ透鏡
G10‧‧‧光學透鏡系統
GL、GLa、GLb、GLc‧‧‧透鏡元件
GTa‧‧‧閘電路
HF1~HF6、HGa、HGb‧‧‧驅動訊號
Idc‧‧‧一致訊號
IM1~IM6‧‧‧單元側入射鏡
IUB‧‧‧支持構件
LB1~LB6、LB1'、LBa、LBb、LBn、Lse‧‧‧光束
LP1~LP6‧‧‧入射允許訊號
Le1~Le6‧‧‧照射中心軸
LSa、LSb‧‧‧光源裝置
LTC、LTC1、LTC2‧‧‧時脈訊號
Lx1~Lx4‧‧‧設置方位線
M1~M15‧‧‧反射鏡
MK1~MK4‧‧‧對準標記
MU‧‧‧基底層計測部
Nv‧‧‧修正位置資訊
OM‧‧‧鏡
OP1~OP6‧‧‧原點感測器
opa‧‧‧光束送光系統
opb‧‧‧光束受光系統
P‧‧‧基板
PA‧‧‧孔徑光闌
Pdf‧‧‧偏轉位置
Pep‧‧‧聚光位置
Pip、Pip'‧‧‧面
PM‧‧‧多面鏡
Poc‧‧‧中心面
POL‧‧‧伸縮資訊
PP、PP1、PP2‧‧‧圖案
PR1、PR2、PR3、PR4‧‧‧處理裝置
psp‧‧‧偏振分割面
pu‧‧‧面
Px、Py、Pxy‧‧‧尺寸
QW‧‧‧λ/4波片
R1~R3‧‧‧驅動輥
RM‧‧‧旋轉驅動源
RP、RPa、IM1a‧‧‧反射面
RT1、RT2‧‧‧張力調整輥
S1、S2‧‧‧種光
SBa、SBb‧‧‧描繪位元串資料
SDa、SDb‧‧‧標度部
Sft‧‧‧長桿
SFTa、SFTb‧‧‧光束移相器部
SL1~SL6‧‧‧描繪線
SP、SP'‧‧‧光點
SQ1~SQ6‧‧‧描繪允許訊號
SR‧‧‧移位光學構件
Sr1、Sr2、HVP、HVPx、HVPy‧‧‧平行平板
SU1、SU2‧‧‧防振單元
Sx、Sy‧‧‧旋轉中心軸
SZ1~SZ6‧‧‧原點訊號
TH1~TH6‧‧‧開口部
TMg‧‧‧整體倍率修正資訊
Ton‧‧‧接通時間
Ts‧‧‧時間
U1~U6、Un‧‧‧掃描單元
Vw11~Vw14、Vw21~Vw24‧‧‧觀察區域
W‧‧‧被曝光區域
ZZ‧‧‧原點標記
η‧‧‧角度
圖1係表示包含對基板實施曝光處理之第1實施形態之圖案曝光裝置之器件製造系統之概略構成的圖。
圖2係表示圖1之曝光裝置之構成之構成圖。
圖3係表示於圖2所示之旋轉滾筒捲繞有基板之狀態之詳細圖。
圖4係表示於基板上掃描之光點之描繪線及形成於基板上之對準標記的圖。
圖5係表示圖2所示之掃描單元之光學構成之圖。
圖6係圖2所示之光束切換部之構成圖。
圖7係表示圖2所示之光源裝置之構成之圖。
圖8係表示圖7所示之光源裝置內之訊號產生部產生之時脈訊號及描繪位元串資料與自偏振分光鏡射出之光束之關係的時序圖。
圖9係表示圖2所示之曝光裝置之電氣控制系統之構成之方塊圖。
圖10係表示自圖5所示之掃描單元內之原點感測器輸出之原點訊號及圖9所示之選擇元件驅動控制部根據原點訊號生成之入射允許訊號的時序圖。
圖11係表示圖2所示之光源裝置內之訊號產生部之構成之方塊圖。
圖12係表示自圖11所示之訊號產生部之各部輸出之訊號之時序圖。
圖13A係對未進行局部倍率修正之情形時描繪之圖案進行說明之圖,圖13B係對依據圖12所示之時序圖進行局部倍率修正(縮小)之情形時描繪之圖案說明的圖。
圖14係表示代替第1實施形態中之選擇用光學元件而設置之變形例1之光束切換部之構成的圖。
圖15係表示將圖6所示之光束切換部中之選擇用光學元件置換為圖14之變形例1之情形時之變形例2之光束切換部之構成的圖。
圖16係表示組入至圖15所示之變形例2之光束切換部之光束移相器之 詳細之光學配置的圖。
圖17A表示作為變形例3代替選擇用光學元件而使用之稜鏡狀之光電元件,圖17B係表示其他光電元件之例之圖。
圖18係詳細地表示第2實施形態中之光源裝置之脈衝光產生部內之波長轉換部之構成的圖。
圖19係表示第2實施形態中之自光源裝置至最初之選擇用光學元件之光束之光路的圖。
圖20係表示第2實施形態中之自選擇用光學元件至下一段選擇用光學元件之光路及選擇用光學元件之驅動電路之構成的圖。
圖21係對第2實施形態中之選擇用光學元件之後之選擇用之單元側入射鏡中之光束選擇與光束移位之情況進行說明的圖。
圖22係對第2實施形態中之自多面鏡至基板之光束之動作進行說明的圖。
圖23係表示第3實施形態中之掃描單元之具體構成之圖。
圖24A係對藉由圖23所示之掃描單元內所設置之平行平板調整光束位置之情況進行說明的圖,且係表示平行平板之相互平行之入射面與射出面相對於光束之中心線(主光線)呈90度之狀態的圖,圖24B係對藉由圖23所示之掃描單元內所設置之平行平板調整光束位置之情況進行說明的圖,且係表示平行平板之相互平行之入射面與射出面相對於光束之中心線(主光線)自90度傾斜之狀態的圖。
圖25係表示第4實施形態中之控制圖案描繪裝置之控制裝置之概略構成的方塊圖。
圖26係模式性地放大表示圖23所示之掃描單元(描繪單元)內之光路之一部分光路中之光束之狀態的圖。
圖27係表示自圖23所示之掃描單元(描繪單元)之多面鏡至基板之光學系統配置的圖。
針對本發明之態樣之圖案描繪裝置及圖案描繪方法,一面揭示較佳之實施形態並參照隨附圖式,一面於下文進行詳細說明。再者,本發明之態樣並不限定於該等實施形態,亦包含施加多種變更或改良所得者。即,以下所記載之構成要素包含發明所屬技術領域中具有通常知識者可容易地設想者、實質上相同者,以下所記載之構成要素可適當進行組合。又,可於不脫離本發明之主旨之範圍內進行構成要素之各種省略、置換或變更。
[第1實施形態]
圖1係表示包含第1實施形態之對基板(被照射體)P實施曝光處理之曝光裝置EX之器件製造系統10之概略構成的圖。再者,於以下之說明中,只要不預先特別指出,則設定將重力方向設為Z方向之XYZ正交座標系統,按照圖示之箭頭說明X方向、Y方向、及Z方向。
器件製造系統10係對基板P實施特定之處理(曝光處理等)而製造電子器件的系統(基板處理裝置)。器件製造系統10係例如構築有製造作為電子器件之軟性顯示器、膜狀之觸控面板、液晶顯示面板用之膜狀之彩色濾光片、軟性配線、或軟性感測器等之製造線的製造系統。以下, 作為電子器件,以軟性顯示器為前提進行說明。作為軟性顯示器,有例如有機EL顯示器、液晶顯示器等。器件製造系統10具有如下所謂卷對卷(Roll To Roll)方式之構造:自將可撓性之薄片狀之基板(薄片基板)P捲繞成捲筒狀之供給捲筒FR1送出基板P,對送出之基板P連續實施各種處理之後,利用回收捲筒FR2捲取各種處理後之基板P。基板P具有基板P之移動方向(搬送方向)成為長邊方向(長條)且寬度方向成為短邊方向(短條)的帶狀形狀。於第1實施形態中,表示膜狀之基板P至少經過處理裝置(第1處理裝置)PR1、處理裝置(第2處理裝置)PR2、曝光裝置(第3處理裝置)EX、處理裝置(第4處理裝置)PR3、及處理裝置(第5處理裝置)PR4而捲取至回收捲筒FR2之例。
再者,於本第1實施形態中,X方向係於水平面內基板P自供給捲筒FR1朝向回收捲筒FR2之方向(搬送方向)。Y方向係於水平面內與X方向正交之方向,且為基板P之寬度方向(短條方向)。Z方向係與X方向及Y方向正交之方向(上方向),與重力作用之方向平行。
基板P例如使用樹脂膜、或由不鏽鋼等金屬或合金所構成之箔(金屬薄片)等。作為樹脂膜之材質,例如,亦可使用包含聚乙烯樹脂、聚丙烯樹脂、聚酯樹脂、伸乙基乙烯基共聚物樹脂、聚氯乙烯樹脂、纖維素樹脂、聚醯胺樹脂、聚醯亞胺樹脂、聚碳酸酯樹脂、聚苯乙烯樹脂、及乙酸乙烯酯樹脂中之至少1種以上者。又,基板P之厚度或剛性(楊氏模數)只要為通過器件製造系統10之搬送路徑時不於基板P產生由屈曲所致之折痕或不可逆之皺褶般的範圍即可。作為基板P之母材,厚度為25μm~200μm左右之PET(聚對苯二甲酸乙二酯)或PEN(聚萘二甲酸乙二酯) 等之膜係較佳之薄片基板之典型。
基板P有時於利用處理裝置PR1、處理裝置PR2、曝光裝置EX、處理裝置PR3、及處理裝置PR4實施之各處理中受到熱,因此,較佳為選定熱膨脹係數不明顯大之材質之基板P。例如,可藉由將無機填料混合至樹脂膜中而抑制熱膨脹係數。無機填料亦可為例如氧化鈦、氧化鋅、氧化鋁、或氧化矽等。又,基板P可為利用浮式法等製造之厚度100μm左右之極薄玻璃之單層體,亦可為於該極薄玻璃貼合上述樹脂膜、箔等而成之積層體。
且說,基板P之可撓性(flexibility)係指即便對基板P施加自重程度之力亦能夠不剪切或不斷裂地使該基板P彎曲的性質。又,藉由自重程度之力而彎曲之性質亦包含於可撓性。又,可撓性之程度根據基板P之材質、大小、厚度、成膜於基板P上之層構造、溫度、或濕度等之環境等而改變。總之,於將基板P正確地捲繞於本第1實施形態之器件製造系統10內之搬送路徑上所設置之各種搬送用輥、旋轉滾筒等搬送方向轉換用之構件的情形時,只要能夠不屈曲而留下折痕或者不破損(產生破裂或裂紋)地順利地搬送基板P,則可稱為可撓性之範圍。
處理裝置PR1係一面將自供給捲筒FR1搬送而來之基板P朝向處理裝置PR2以特定之速度沿著沿長條方向之搬送方向(+X方向)搬送,一面對基板P進行塗佈處理的塗佈裝置。處理裝置PR1對基板P之表面選擇性地或者均勻地塗佈感光性功能液。表面塗佈有該感光性功能液之基板P朝向處理裝置PR2搬送。
處理裝置PR2係一面將自處理裝置PR1搬送而來之基板P 朝向曝光裝置EX以特定之速度沿搬送方向(+X方向)搬送,一面對基板P進行乾燥處理的乾燥裝置。處理裝置PR2係藉由向基板P之表面吹送熱風或乾燥空氣等乾燥用空氣(暖風)之鼓風機、紅外線光源、陶瓷加熱器等將感光性功能液中包含之溶劑或水去除,而使感光性功能液乾燥。藉此,於基板P之表面選擇性地或者均勻地形成成為感光性功能層(光感應層)之膜。再者,亦可藉由將乾膜貼附於基板P之表面而於基板P之表面形成感光性功能層。於該情形時,代替處理裝置PR1及處理裝置PR2而設置將乾膜貼附於基板P之貼附裝置(處理裝置)即可。
此處,該感光性功能液(層)之典型者為光阻劑(液狀或乾膜狀),作為無須進行顯影處理之材料,有受紫外線照射之部分之親疏液性改質之感光性矽烷耦合劑(SAM)、或於受紫外線照射之部分鍍覆還原基暴露之感光性還原劑等。於使用感光性矽烷耦合劑作為感光性功能液(層)之情形時,基板P上之利用紫外線曝光後之圖案部分自疏液性改質為親液性。因此,藉由在成為親液性之部分上選擇塗佈含有導電性墨水(含有銀或銅等導電性奈米粒子之墨水)或半導體材料之液體等,而可形成構成薄膜電晶體(TFT)等之電極、半導體、成為絕緣或連接用之配線之圖案層。於使用感光性還原劑作為感光性功能液(層)之情形時,於基板P上之利用紫外線曝光後之圖案部分鍍覆還原基暴露。因此,於曝光後立即將基板P浸漬於包含鈀離子等之鍍覆液中固定時間,藉此,形成(析出)鈀之圖案層。此種鍍覆處理為加成法(additive)之製程,除此以外,亦可以作為減成法(subtractive)之製程之蝕刻處理為前提。於該情形時,搬送至曝光裝置EX之基板P亦可為將母材設為PET或PEN並於其表面整面或選擇性地 蒸鍍鋁(Al)或銅(Cu)等之金屬性薄膜,進而於其上積層光阻劑層所得者。於本第1實施形態中,使用感光性還原劑作為感光性功能液(層)。
曝光裝置EX係一面將自處理裝置PR2搬送而來之基板P朝向處理裝置PR3以特定之速度沿搬送方向(+X方向)搬送,一面對基板P進行曝光處理的處理裝置。曝光裝置EX對基板P之表面(感光性功能層之表面、即感光面)照射與電子器件用之圖案(例如,構成電子器件之TFT之電極或配線等之圖案)對應之光圖案。藉此,於感光性功能層形成與上述圖案對應之潛像(改質部)。
於本第1實施形態中,曝光裝置EX係不使用遮罩之直描方式之曝光裝置、所謂光柵掃描方式之曝光裝置(圖案描繪裝置)。將於下文進行詳細說明,曝光裝置EX係一面將基板P朝+X方向(副掃描之方向)搬送,一面使曝光用之脈衝狀之光束LB(脈衝光束)之光點SP於基板P之被照射面(感光面)上沿特定之掃描方向(Y方向)一維地進行掃描(主掃描),並且根據圖案資料(描繪資料、圖案資訊)對光點SP之強度快速地進行調變(接通/斷開)。藉此,將與電子器件、電路或配線等之特定圖案對應之光圖案描繪曝光於基板P之被照射面。即,藉由基板P之副掃描與光點SP之主掃描,使光點SP於基板P之被照射面上相對地進行二維掃描,而將特定之圖案描繪曝光於基板P。又,由於基板P沿著搬送方向(+X方向)搬送,故而藉由曝光裝置EX曝光圖案之被曝光區域W係沿著基板P之長條方向隔開特定間隔設置複數個(參照圖4)。由於在該被曝光區域W形成電子器件,故而被曝光區域W亦為器件形成區域。再者,電子器件係藉由將複數個圖案層(形成有圖案之層)重疊而構成,因此,亦可藉由曝 光裝置EX曝光與各層對應之圖案。
處理裝置PR3係一面將自曝光裝置EX搬送而來之基板P朝向處理裝置PR4以特定之速度沿搬送方向(+X方向)搬送,一面對基板P進行濕式處理的濕式處理裝置。於本第1實施形態中,處理裝置PR3對基板P進行作為濕式處理之一種之鍍覆處理。即,將基板P浸漬於貯存於處理槽之鍍覆液中特定時間。藉此,於感光性功能層之表面析出(形成)與潛像對應之圖案層。即,根據基板P之感光性功能層上之光點SP之照射部分與非照射部分之差異,於基板P上選擇性地形成特定材料(例如鈀),此成為圖案層。
再者,於使用感光性矽烷耦合劑作為感光性功能層之情形時,藉由處理裝置PR3進行作為濕式處理之一種之液體(例如,含有導電性墨水等之液體)之塗佈處理或鍍覆處理。即便於該情形時,亦於感光性功能層之表面形成與潛像對應之圖案層。即,根據基板P之感光性功能層之光點SP之照射部分與被照射部分之差異,於基板P上選擇性地形成特定材料(例如導電性墨水或鈀等),此成為圖案層。又,於採用光阻劑作為感光性功能層之情形時,藉由處理裝置PR3進行作為濕式處理之一種之顯影處理。於該情形時,藉由該顯影處理而於感光性功能層(光阻劑)形成與潛像對應之圖案。
處理裝置PR4係一面將自處理裝置PR3搬送而來之基板P朝向回收捲筒FR2以特定之速度沿搬送方向(+X方向)搬送,一面對基板P進行清洗‧乾燥處理的清洗‧乾燥裝置。處理裝置PR4係對經實施濕式處理之基板P利用純水進行清洗,其後,於玻璃轉移溫度以下進行乾燥直至 基板P之含水率成為特定值以下為止。
再者於使用感光性矽烷耦合劑作為感光性功能層之情形時,處理裝置PR4亦可為對基板P進行退火處理與乾燥處理之退火‧乾燥裝置。退火處理係為了鞏固所塗佈之導電性墨水中含有之奈米粒子彼此之電性結合,而將例如來自閃光燈之高亮度之脈衝光照射至基板P。於採用光阻劑作為感光性功能層之情形時,亦可於處理裝置PR4與回收捲筒FR2之間設置進行蝕刻處理之處理裝置(濕式處理裝置)PR5、及對經實施蝕刻處理之基板P進行清洗‧乾燥處理之處理裝置(清洗‧乾燥裝置)PR6。藉此,於採用光阻劑作為感光性功能層之情形時,藉由實施蝕刻處理而於基板P形成圖案層。即,根據基板P之感光性功能層之光點SP之照射部分與被照射部分之差異,於基板P上選擇性地形成特定材料(例如鋁(Al)或銅(Cu)等),此成為圖案層。處理裝置PR5、PR6具有針對搬送而來之基板P將基板P朝向回收捲筒FR2以特定之速度沿搬送方向(+X方向)搬送的功能。複數個處理裝置PR1~PR4(視需要亦包含處理裝置PR5、PR6)將基板P朝+X方向搬送之功能構成為基板搬送裝置。
如此,經實施各處理之基板P由回收捲筒FR2回收。經過器件製造系統10之至少各處理而於基板P上形成1個圖案層。如上所述,電子器件係藉由將複數個圖案層重疊而構成,因此,為了生成電子器件,必須經過如圖1所示之器件製造系統10之各處理至少2次。因此,可藉由將捲取有基板P之回收捲筒FR2作為供給捲筒FR1安裝至另一器件製造系統10而積層圖案層。重複如上所述之動作而形成電子器件。處理後之基板P成為複數個電子器件隔開特定之間隔沿著基板P之長條方向相連之狀 態。即,基板P成為用於獲取複數個之基板。
回收有以相連狀態形成有電子器件之基板P之回收捲筒FR2亦可安裝於未圖示之切割裝置。安裝有回收捲筒FR2之切割裝置係藉由將處理後之基板P以電子器件(作為器件形成區域之被曝光區域W)為單位進行分割(切割),而形成複數個成為單片之電子器件。基板P之尺寸係例如寬度方向(成為短條之方向)之尺寸為10cm~2m左右,長度方向(成為長條之方向)之尺寸為10m以上。再者,基板P之尺寸並不限定於上述尺寸。
圖2係表示曝光裝置EX之構成之構成圖。曝光裝置EX收納於調溫室ECV內。該調溫室ECV係藉由將內部保持為特定之溫度、特定之濕度,而抑制內部所搬送之基板P之由溫度引起之形狀變化,並且設定為考慮基板P之吸濕性或伴隨搬送而產生之靜電之帶電等之濕度。調溫室ECV介隔被動或主動之防振單元SU1、SU2設置於製造工廠之設置面E。防振單元SU1、SU2減少來自設置面E之振動。該設置面E可為工廠之地板面本身,亦可為為了形成水平面而專用地設置於地板面上之設置基座(底座)上之面。曝光裝置EX至少具備基板搬送機構12、相同構成之2個光源裝置(光源)LS(LSa、LSb)、光束切換部(包含光電偏轉裝置)BDU、曝光頭(掃描裝置)14、控制裝置16、複數個對準顯微鏡AM1m、AM2m(再者,m=1、2、3、4)、及複數個編碼器ENja、ENjb(再者,j=1、2、3、4)。控制裝置(控制部)16對曝光裝置EX之各部進行控制。該控制裝置16包含電腦及記錄有程式之記錄媒體等,藉由該電腦執行程式而作為本第1實施形態之控制裝置16發揮功能。
基板搬送機構12係構成器件製造系統10之上述基板搬送裝置之一部分者,將自處理裝置PR2搬送之基板P於曝光裝置EX內以特定之速度搬送之後,以特定之速度送出至處理裝置PR3。由該基板搬送機構12規定於曝光裝置EX內搬送之基板P之搬送路徑。基板搬送機構12係自基板P之搬送方向之上游側(-X方向側)依次具有邊緣位置控制器EPC、驅動輥R1、張力調整輥RT1、旋轉滾筒(圓筒滾筒)DR、張力調整輥RT2、驅動輥R2、及驅動輥R3。
邊緣位置控制器EPC對自處理裝置PR2搬送之基板P之寬度方向(Y方向且基板P之短條方向)上之位置進行調整。即,邊緣位置控制器EPC以如下方式使基板P於寬度方向上移動而調整基板P之寬度方向上之位置,即,以施加有特定之張力之狀態搬送之基板P之寬度方向之端部(邊緣)之位置相對於目標位置控制在±十數μm~數十μm左右之範圍(容許範圍)。邊緣位置控制器EPC具有供基板P以施加有特定之張力之狀態架設之輥、及檢測基板P之寬度方向之端部(邊緣)之位置之未圖示之邊緣感測器(端部檢測部)。邊緣位置控制器EPC係基於上述邊緣感測器檢測出之檢測訊號,使邊緣位置控制器EPC之上述輥於Y方向上移動,而調整基板P之寬度方向上之位置。驅動輥(夾輥)R1係一面保持自邊緣位置控制器EPC搬送之基板P之正反兩面一面旋轉,而將基板P朝向旋轉滾筒DR搬送。再者,邊緣位置控制器EPC亦可以捲繞至旋轉滾筒DR之基板P之長條方向相對於旋轉滾筒DR之中心軸AXo始終正交的方式與基板P之寬度方向上之位置適當調整,並且以修正基板P之前進方向上之傾斜誤差的方式,適當調整邊緣位置控制器EPC之上述輥之旋轉軸與Y軸之平行 度。
旋轉滾筒DR具有沿Y方向延伸並且沿與重力作用之方向交叉之方向延伸的中心軸AXo、及自中心軸AXo起為固定半徑之圓筒狀之外周面。旋轉滾筒DR係按照該外周面(圓周面)使基板P之一部分於長條方向彎曲成圓筒面狀而支持(保持),並且以中心軸AXo為中心進行旋轉而將基板P朝+X方向搬送。旋轉滾筒DR係於其外周面支持供來自曝光頭14之光束LB(光點SP)投射之基板P上之區域(部分)。旋轉滾筒DR係自與形成電子器件之面(形成有感光面之側之面)為相反側之面(背面)側支持(密接保持)基板P。於旋轉滾筒DR之Y方向之兩側,設置有以旋轉滾筒DR繞中心軸AXo旋轉之方式利用環狀之軸承支持之長桿Sft。該長桿Sft係藉由被賦予來自由控制裝置16控制之未圖示之旋轉驅動源(例如馬達或減速機構等)之轉矩而繞中心軸AXo以固定之旋轉速度旋轉。再者,為方便起見,將包含中心軸AXo且與YZ平面平行之平面稱為中心面Poc。
驅動輥(夾輥)R2、R3係沿著基板P之搬送方向(+X方向)隔開特定之間隔配置,對曝光後之基板P賦予特定之鬆弛(遊隙)。驅動輥R2、R3係與驅動輥R1同樣地,一面保持基板P之正反兩面一面旋轉,將基板P朝向處理裝置PR3搬送。張力調整輥RT1、RT2朝著-Z方向被施力,對捲繞並支持於旋轉滾筒DR之基板P於長條方向上施加特定之張力。藉此,使對掛於旋轉滾筒DR之基板P賦予之長條方向之張力穩定化於特定之範圍內。控制裝置16係藉由控制未圖示之旋轉驅動源(例如馬達或減速機等)而使驅動輥R1~R3旋轉。再者,驅動輥R1~R3之旋轉軸、及張力調整輥RT1、RT2之旋轉軸係與旋轉滾筒DR之中心軸AXo平行。
光源裝置LS(LSa、LSb)產生並射出脈衝狀之光束(脈衝光束、脈衝光、雷射)LB。該光束LB係於370nm以下之波長頻帶具有峰值波長之紫外線光,將光束LB之發光頻率(振盪頻率、特定頻率)設為Fa。光源裝置LS(LSa、LSb)射出之光束LB經由光束切換部BDU而入射至曝光頭14。光源裝置LS(LSa、LSb)依據控制裝置16之控制,以發光頻率Fa發光並射出光束LB。該光源裝置LS(LSa、LSb)之構成將於下文進行詳細說明,於第1實施形態中,由產生紅外波長區域之脈衝光之半導體雷射元件、光纖放大器、將經放大之紅外波長區域之脈衝光轉換為紫外波長區域之脈衝光之波長轉換元件(諧波產生元件)等構成,設為使用獲得振盪頻率Fa為數百MHz且1脈衝光之發光時間為微微秒左右之高亮度之紫外線之脈衝光的光纖放大器雷射光源(諧波雷射光源)。再者,為了將來自光源裝置LSa之光束LB與來自光源裝置LSb之光束LB加以區別,有時以LBa表示來自光源裝置LSa之光束LB,以LBb表示來自光源裝置LSb之光束LB。
光束切換部BDU係使來自2個光源裝置LS(LSa、LSb)之光束LB(LBa、LBb)入射至構成曝光頭14之複數個掃描單元Un(再者,n=1、2、…、6)中之2個掃描單元Un,並且對光束LB(LBa、LBb)入射之掃描單元Un進行切換。詳細而言,光束切換部BDU係使來自光源裝置LSa之光束LBa入射至3個掃描單元U1~U3中之1個掃描單元Un,使來自光源裝置LSb之光束LBb入射至3個掃描單元U4~U6中之1個掃描單元Un。又,光束切換部BDU係於掃描單元U1~U3中切換光束LBa入射之掃描單元Un,並於掃描單元U4~U6中切換光束LBb入射之掃描單元Un。
光束切換部BDU係以光束LBn入射至進行光點SP之掃描之掃描單元(描繪單元)Un之方式,切換光束LBa、LBb入射之掃描單元Un。即,光束切換部BDU使來自光源裝置LSa之光束LBa入射至掃描單元U1~U3中進行光點SP之掃描之1個掃描單元Un。同樣地,光束切換部BDU使來自光源裝置LSb之光束LBb入射至掃描單元U4~U6中進行光點SP之掃描之1個掃描單元Un。關於該光束切換部BDU,將於下文進行詳細說明。再者,關於掃描單元U1~U3,進行光點SP之掃描之掃描單元Un按照U1→U2→U3之順序進行切換,關於掃描單元U4~U6,進行光點SP之掃描之掃描單元Un按照U4→U5→U6之順序進行切換。再者,以上之光束切換部BDU或光源裝置LS(LSa、LSb)之構成揭示於例如國際公開第2015/166910號說明書中,將於下文參照圖6、圖7進行詳細敍述。
曝光頭14成為排列有相同構成之複數個掃描單元Un(U1~U6)之所謂多光束型之曝光頭。曝光頭14係藉由複數個掃描單元Un(U1~U6)對利用旋轉滾筒DR之外周面(圓周面)支持之基板P之一部分描繪圖案。由於曝光頭14對基板P反覆進行電子器件用之圖案曝光,故而曝光圖案之被曝光區域(電子器件形成區域)W沿著基板P之長條方向隔開特定之間隔而設置有複數個(參照圖4)。複數個掃描單元Un(U1~U6)係以特定之配置關係配置。複數個掃描單元Un(U1~U6)係隔著中心面Poc於基板P之搬送方向上交錯排列地配置成2行。第奇數個掃描單元U1、U3、U5係配置於相對於中心面Poc為基板P之搬送方向之上游側(-X方向側),且沿著Y方向分開特定之間隔而配置成1行。第偶數個掃描單元U2、U4、U6係配置於相對於中心面Poc為基板P之搬送方向之下游側(+X方 向側),且沿著Y方向分開特定之間隔而配置成1行。第奇數個掃描單元U1、U3、U5與第偶數個掃描單元U2、U4、U6於XZ面內觀察時相對於中心面Poc對稱地設置。
各掃描單元Un(U1~U6)係將來自光源裝置LS(LSa、LSb)之光束LB以於基板P之被照射面上收斂成光點SP之方式投射,並且藉由旋轉之多面鏡PM(參照圖5)使該光點SP一維地進行掃描。藉由該等各掃描單元Un(U1~U6)之多面鏡(偏轉構件)PM,使光點SP於基板P之被照射面上一維地進行掃描。藉由該光點SP之掃描,於基板P上(基板P之被照射面上)規定描繪相當於1條線之圖案之直線之描繪線(掃描線)SLn(再者,n=1、2、…、6)。關於該掃描單元Un之構成,將於下文進行詳細說明。
掃描單元U1使光點SP沿著描繪線SL1掃描,同樣地,掃描單元U2~U6使光點SP沿著描繪線SL2~SL6掃描。複數個掃描單元Un(U1~U6)之描繪線SLn(SL1~SL6)如圖3、圖4所示,設定為於Y方向(基板P之寬度方向、主掃描方向)上不相互分離而接合。再者,有時將經由光束切換部BDU而入射至掃描單元Un之來自光源裝置LS(LSa、LSb)之光束LB表示為LBn。而且,有時以LB1表示入射至掃描單元U1之光束LBn,同樣地,以LB2~LB6表示入射至掃描單元U2~U6之光束LBn。該描繪線SLn(SL1~SL6)表示藉由掃描單元Un(U1~U6)進行掃描之光束LBn(LB1~LB6)之光點SP之掃描軌跡。入射至掃描單元Un之光束LBn亦可為朝特定之方向偏振後之直線偏振光(P偏振光或S偏振光)之光束,於本第1實施形態中,設為P偏振光之光束。
如圖4所示,以複數個掃描單元Un(U1~U6)全體覆蓋被曝光區域W之寬度方向之全部之方式,使各掃描單元Un(U1~U6)分擔掃描區域。藉此,各掃描單元Un(U1~U6)可對在基板P之寬度方向上分割之複數個區域(描繪範圍)中之每一個描繪圖案。例如,若將1個掃描單元Un之Y方向之掃描長度(描繪線SLn之長度)設為20~60mm左右,則藉由將第奇數個掃描單元U1、U3、U5之3個與第偶數個掃描單元U2、U4、U6之3個即共計6個掃描單元Un沿Y方向配置,而將能夠描繪之Y方向之寬度擴大至120~360mm左右。各描繪線SLn(SL1~SL6)之長度(描繪範圍之長度)原則上設為相同。即,沿著描繪線SL1~SL6之各者掃描之光束LBn之光點SP之掃描距離原則上設為相同。再者,於欲擴大被曝光區域W之寬度之情形時,可藉由延長描繪線SLn本身之長度或者增加沿Y方向配置之掃描單元Un之數量而應對。
再者,實際之各描繪線SLn(SL1~SL6)設定為略短於光點SP於被照射面上實際能夠掃描之最大長度(最大掃描長度)。例如,若將主掃描方向(Y方向)之描繪倍率為初始值(無倍率修正)之情形時能夠進行圖案描繪之描繪線SLn之掃描長度設為30mm,則光點SP於被照射面上之最大掃描長度係於描繪線SLn之描繪開始點(掃描開始點)側與描繪結束點(掃描結束點)側分別具有0.5mm左右之餘量而設定為31mm左右。藉由如此般設定,可於光點SP之最大掃描長度31mm之範圍內對30mm之描繪線SLn之位置於主掃描方向上進行微調整或者對描繪倍率進行微調整。光點SP之最大掃描長度並不限定於31mm,主要由掃描單元Un內之設置於多面鏡(旋轉多面鏡)PM之後之f θ透鏡FT(參照圖5)之口徑決 定。
複數個描繪線SLn(SL1~SL6)係隔著中心面Poc於旋轉滾筒DR之圓周方向上交錯排列地配置成2行。第奇數條描繪線SL1、SL3、SL5位於相對於中心面Poc為基板P之搬送方向之上游側(-X方向側)之基板P之被照射面上。第偶數條描繪線SL2、SL4、SL6位於相對於中心面Poc為基板P之搬送方向之下游側(+X方向側)之基板P之被照射面上。描繪線SL1~SL6係與基板P之寬度方向、即旋轉滾筒DR之中心軸AXo大致平行。
描繪線SL1、SL3、SL5係沿著基板P之寬度方向(主掃描方向)隔開特定之間隔而於直線上配置成1行。描繪線SL2、SL4、SL6亦同樣地,沿著基板P之寬度方向(主掃描方向)隔開特定之間隔而於直線狀配置成1行。此時,描繪線SL2於基板P之寬度方向上配置於描繪線SL1與描繪線SL3之間。同樣地,描繪線SL3於基板P之寬度方向上配置於描繪線SL2與描繪線SL4之間。描繪線SL4於基板P之寬度方向上配置於描繪線SL3與描繪線SL5之間,描繪線SL5於基板P之寬度方向上配置於描繪線SL4與描繪線SL6之間。如此,複數個描繪線SLn(SL1~SL6)係於Y方向(主掃描方向)上相互錯開地配置。
沿著第奇數條描繪線SL1、SL3、SL5之各者進行掃描之光束LB1、LB3、LB5之光點SP之主掃描方向成為一維之方向,且成為相同方向。沿著第偶數條描繪線SL2、SL4、SL6之各者進行掃描之光束LB2、LB4、LB6之光點SP之主掃描方向成為一維之方向,且成為相同方向。沿著該描繪線SL1、SL3、SL5進行掃描之光束LB1、LB3、LB5之光點SP之 主掃描方向與沿著描繪線SL2、SL4、SL6進行掃描之光束LB2、LB4、LB6之光點SP之主掃描方向亦可相互為相反方向。於本第1實施形態中,沿著描繪線SL1、SL3、SL5進行掃描之光束LB1、LB3、LB5之光點SP之主掃描方向為-Y方向。又,沿著描繪線SL2、SL4、SL6進行掃描之光束LB2、LB4、LB6之光點SP之主掃描方向為+Y方向。藉此,描繪線SL1、SL3、SL5之描繪開始點側之端部與描繪線SL2、SL4、SL6之描繪開始點側之端部係於Y方向上鄰接或者局部重疊。又,描繪線SL3、SL5之描繪結束點側之端部與描繪線SL2、SL4之描繪結束點側之端部係於Y方向上鄰接或者局部重疊。以使於Y方向上相鄰之描繪線SLn之端部彼此局部重疊之方式配置各描繪線SLn的情形時,例如,較佳為相對於各描繪線SLn之長度,包含描繪開始點或描繪結束點在內於Y方向上以百分之幾以下之範圍重疊。再者,使描繪線SLn於Y方向上接合係指使描繪線SLn之端部彼此於Y方向上鄰接(密接)或局部重疊。
再者,描繪線SLn之副掃描方向之寬度(X方向之尺寸)係與光點SP之大小(直徑)
Figure 106115404-A0202-12-0021-30
對應之粗細。例如,於光點SP之大小(尺寸)
Figure 106115404-A0202-12-0021-31
為3μm之情形時,描繪線SLn之寬度亦成為3μm。光點SP亦可以特定之長度(例如,設為光點SP之大小
Figure 106115404-A0202-12-0021-32
之1/2)重疊地沿著描繪線SLn投射。又,於使在Y方向上相鄰之描繪線SLn(例如,描繪線SL1與描繪線SL2)彼此相互接合之情形時,亦可以特定之長度(例如,光點SP之大小
Figure 106115404-A0202-12-0021-33
之1/2)重疊。
於本第1實施形態之情形時,來自光源裝置LS(LSa、LSb)之光束LB(LBa、LBb)為脈衝光,因此,於主掃描之期間投射至描繪線 SLn上之光點SP根據光束LB(LBa、LBb)之振盪頻率Fa(例如400MHz)而變得離散。因此,必須使藉由光束LB之1脈衝光而投射之光點SP與藉由接下來之1脈衝光而投射之光點SP於主掃描方向上重疊。其重疊之量係根據光點SP之大小
Figure 106115404-A0202-12-0022-34
、光點SP之掃描速度(主掃描之速度)Vs、及光束LB之振盪頻率Fa而設定。光點SP之有效之大小
Figure 106115404-A0202-12-0022-35
係於光點SP之強度分佈以高斯分佈近似之情形時,以光點SP之峰值強度之1/e2(或1/2)決定。於本第1實施形態中,以光點SP以相對於有效之大小(尺寸)
Figure 106115404-A0202-12-0022-36
Figure 106115404-A0202-12-0022-37
×1/2左右重疊的方式,設定光點SP之掃描速度Vs及振盪頻率Fa。因此,光點SP之沿著主掃描方向之投射間隔成為
Figure 106115404-A0202-12-0022-38
/2。因此,較理想為以如下方式設定,即,於副掃描方向(與描繪線SLn正交之方向)上,於沿著描繪線SLn之光點SP之1次掃描與下一次掃描之間,基板P亦以光點SP之有效之大小
Figure 106115404-A0202-12-0022-39
之大致1/2之距離移動。又,對基板P上之感光性功能層之曝光量之設定可藉由調整光束LB(脈衝光)之峰值而實現,但於無法提高光束LB之強度之狀況下欲增大曝光量之情形時,藉由光點SP之主掃描方向之掃描速度Vs之降低、光束LB之振盪頻率Fa之增大、或基板P之副掃描方向之搬送速度Vt之降低等之任一個,使光點SP之主掃描方向或副掃描方向上之重疊量增加即可。光點SP之主掃描方向之掃描速度Vs係與多面鏡PM之轉數(旋轉速度Vp)成比例地加速。
各掃描單元Un(U1~U6)係以至少於XZ平面內各光束LBn朝向旋轉滾筒DR之中心軸AXo前進的方式,朝向基板P照射各光束LBn。藉此,自各掃描單元Un(U1~U6)朝向基板P前進之光束LBn之光路(光束中心軸)係於XZ平面內與基板P之被照射面之法線平行。又,各掃描單 元Un(U1~U6)係以對描繪線SLn(SL1~SL6)照射之光束LBn於與YZ平面平行之面內相對於基板P之被照射面垂直的方式,朝向基板P照射光束LBn。即,於被照射面上之光點SP之主掃描方向上,投射至基板P之光束LBn(LB1~LB6)以遠心之狀態進行掃描。此處,將通過由各掃描單元Un(U1~U6)規定之特定之描繪線SLn(SL1~SL6)之各中點且與基板P之被照射面垂直的線(或者亦稱為光軸)稱為照射中心軸Len(Le1~Le6)。
該等各照射中心軸Len(Le1~Le6)成為於XZ平面內將描繪線SL1~SL6與中心軸AXo連結之線。第奇數個掃描單元U1、U3、U5之各自之照射中心軸Le1、Le3、Le5係於XZ平面內成為相同方向,第偶數個掃描單元U2、U4、U6之各自之照射中心軸Le2、Le4、Le6係於XZ平面內成為相同方向。又,照射中心軸Le1、Le3、Le5與照射中心軸Le2、Le4、Le6係以於XZ平面內相對於中心面Poc而角度成為±θ 1的方式設定(參照圖2)。
圖2所示之複數個對準顯微鏡AM1m(AM11~AM14)、AM2m(AM21~AM24)係用以檢測圖4所示之形成於基板P之複數個對準標記MKm(MK1~MK4)者,沿著Y方向設置有複數個(本第1實施形態中為4個)。複數個對準標記MKm(MK1~MK4)係用以使對基板P之被照射面上之被曝光區域W描繪之特定之圖案與基板P相對地對準位置(對準)之基準標記。複數個對準顯微鏡AM1m(AM11~AM14)、AM2m(AM21~AM24)係於利用旋轉滾筒DR之外周面(圓周面)支持之基板P上檢測複數個對準標記MKm(MK1~MK4)。複數個對準顯微鏡AM1m(AM11~AM14)係設置於較基於來自曝光頭14之光束LBn(LB1~LB6)之光點SP 之基板P上之被照射區域(由描繪線SL1~SL6包圍之區域)更靠基板P之搬送方向之上游側(-X方向側)。又,複數個對準顯微鏡AM2m(AM21~AM24)係設置於較基於來自曝光頭14之光束LBn(LB1~LB6)之光點SP之基板P上之被照射區域(由描繪線SL1~SL6包圍之區域)更靠基板P之搬送方向之下游側(+X方向側)。
對準顯微鏡AM1m(AM11~AM14)、AM2m(AM21~AM24)具有:光源,其向基板P投射對準用之照明光;觀察光學系統(包含物鏡),其獲得基板P之表面之包含對準標記MKm之局部區域(觀察區域)Vw1m(Vw11~Vw14)、Vw2m(Vw21~Vw24)之放大像;及CCD、CMOS等攝像元件,其於基板P於搬送方向上移動之期間,利用與基板P之搬送速度Vt對應之高速快門拍攝上述放大像。複數個對準顯微鏡AM1m(AM11~AM14)、AM2m(AM21~AM24)之各者所拍攝到之攝像訊號(圖像資料)被發送至控制裝置16。控制裝置16之標記位置檢測部106(參照圖9)係藉由進行該發送來之複數個攝像訊號之圖像解析,而檢測基板P上之對準標記MKm(MK1~MK4)之位置(標記位置資訊)。再者,對準用之照明光係相對於基板P上之感光性功能層幾乎不具有感度之波長區域之光、例如波長500~800nm左右之光。
複數個對準標記MK1~MK4設置於各被曝光區域W之周圍。對準標記MK1、MK4係於被曝光區域W之基板P之寬度方向之兩側,沿著基板P之長條方向以固定之間隔Dh形成有複數個。對準標記MK1形成於基板P之寬度方向之-Y方向側,對準標記MK4形成於基板P之寬度方向之+Y方向側。此種對準標記MK1、MK4係以如下方式配置,即,於基 板P未受到較大之張力或者未受到熱製程而變形之狀態下,於基板P之長條方向(X方向)上位於同一位置。進而,對準標記MK2、MK3係沿著基板P之寬度方向(短條方向)形成於對準標記MK1與對準標記MK4之間且被曝光區域W之+X方向側與-X方向側之空白部。對準標記MK2、MK3形成於被曝光區域W與被曝光區域W之間。對準標記MK2形成於基板P之寬度方向之-Y方向側,對準標記MK3形成於基板P之+Y方向側。
進而,排列於基板P之-Y方向側之端部之對準標記MK1與空白部之對準標記MK2之Y方向之間隔、空白部之對準標記MK2與對準標記MK3之Y方向之間隔、及排列於基板P之+Y方向側之端部之對準標記MK4與空白部之對準標記MK3之Y方向之間隔均設定為相同距離。該等對準標記MKm(MK1~MK4)亦可於形成第1層圖案層時一同形成。例如,亦可於曝光第1層之圖案時,於曝光圖案之被曝光區域W之周圍亦一同曝光對準標記用之圖案。再者,對準標記MKm亦可形成於被曝光區域W內。例如,亦可於被曝光區域W內沿著被曝光區域W之輪廓而形成。又,亦可將形成於被曝光區域W內之電子器件之圖案中之特定位置之圖案部分、或特定形狀之部分用作對準標記MKm。
對準顯微鏡AM11、AM21如圖4所示,係以拍攝存在於物鏡之觀察區域(檢測區域)Vw11、Vw21內之對準標記MK1之方式配置。同樣地,對準顯微鏡AM12~AM14、AM22~AM24係以拍攝存在於物鏡之觀察區域Vw12~Vw14、Vw22~Vw24內之對準標記MK2~MK4之方式配置。因此,複數個對準顯微鏡AM11~AM14、AM21~AM24係對應於複數個對準標記MK1~MK4之位置,自基板P之-Y方向側按照AM11~AM14、 AM21~AM24之順序沿著基板P之寬度方向設置。再者,於圖3中,省略對準顯微鏡AM2m(AM21~AM24)之觀察區域Vw2m(Vw21~Vw24)之圖示。
複數個對準顯微鏡AM1m(AM11~AM14)係以於X方向上曝光位置(描繪線SL1~SL6)與觀察區域Vw1m(Vw11~Vw14)之距離較被曝光區域W之X方向之長度短的方式設置。複數個對準顯微鏡AM2m(AM21~AM24)亦同樣地,以於X方向上曝光位置(描繪線SL1~SL6)與觀察區域Vw2m(Vw21~Vw24)之距離較被曝光區域W之X方向之長度短的方式設置。再者,於Y方向上設置之對準顯微鏡AM1m、AM2m之數量可根據基板P之寬度方向上形成之對準標記MKm之數量變更。又,各觀察區域Vw1m(Vw11~Vw14)、Vw2m(Vw21~Vw24)之基板P之被照射面上之大小係根據對準標記MK1~MK4之大小或對準精度(位置計測精度)而設定,為100~500μm見方左右之大小。
如圖3所示,於旋轉滾筒DR之兩端部,設置有遍及旋轉滾筒DR之外周面之圓周方向之整體形成為環狀且具有刻度的標度部SDa、SDb。該標度部SDa、SDb係於旋轉滾筒DR之外周面之圓周方向以固定之間距(例如20μm)刻有凹狀或凸狀之柵線的繞射光柵,構成為增量型之標度。該標度部SDa、SDb係繞中心軸AXo與旋轉滾筒DR一體地旋轉。作為對標度部SDa、SDb進行讀取之標度讀取頭之複數個編碼器ENja、ENjb(再者,j=1、2、3、4)係以與該標度部SDa、SDb對向之方式設置(參照圖2、圖3)。再者,於圖3中,省略編碼器EN4a、EN4b之圖示。
編碼器ENja、ENjb係光學性地檢測旋轉滾筒DR之旋轉角 度位置者。與設置於旋轉滾筒DR之-Y方向側之端部之標度部SDa對向地設置有4個編碼器ENja(EN1a、EN2a、EN3a、EN4a)。同樣地,與設置於旋轉滾筒DR之+Y方向側之端部之標度部SDb對向地設置有4個編碼器ENjb(EN1b、EN2b、EN3b、EN4b)。
編碼器EN1a、EN1b係設置於相對於中心面Poc為基板P之搬送方向之上游側(-X方向側),且配置於設置方位線Lx1上(參照圖2、圖3)。設置方位線Lx1成為於XZ平面內將編碼器EN1a、EN1b之計測用之光束於標度部SDa、SDb上之投射位置(讀取位置)與中心軸AXo連結的線。又,設置方位線Lx1成為於XZ平面內將各對準顯微鏡AM1m(AM11~AM14)之觀察區域Vw1m(Vw11~Vw14)與中心軸AXo連結的線。即,複數個對準顯微鏡AM1m(AM11~AM14)亦配置於設置方位線Lx1上。
編碼器EN2a、EN2b係設置於相對於中心面Poc為基板P之搬送方向之上游側(-X方向側),且設置於較編碼器EN1a、EN1b更靠基板P之搬送方向之下游側(+X方向側)。編碼器EN2a、EN2b配置於設置方位線Lx2上(參照圖2、圖3)。設置方位線Lx2成為於XZ平面內將編碼器EN2a、EN2b之計測用之光束於標度部SDa、SDb上之投射位置(讀取位置)與中心軸AXo連結的線。該設置方位線Lx2係於XZ平面內與照射中心軸Le1、Le3、Le5成為同角度位置而重合。
編碼器EN3a、EN3b係設置於相對於中心面Poc為基板P之搬送方向之下游側(+X方向側),且配置於設置方位線Lx3上(參照圖2、圖3)。設置方位線Lx3成為於XZ平面內將編碼器EN3a、EN3b之計測用之光束於標度部SDa、SDb上之投射位置(讀取位置)與中心軸AXo連結的 線。該設置方位線Lx3係於XZ平面內與照射中心軸Le2、Le4、Le6成為同角度位置而重合。因此,設置方位線Lx2與設置方位線Lx3係以於XZ平面內相對於中心面Poc而角度成為±θ 1之方式設定(參照圖2)。
編碼器EN4a、EN4b係設置於較編碼器EN3a、EN3b更靠基板P之搬送方向之下游側(+X方向側),且配置於設置方位線Lx4上(參照圖2)。設置方位線Lx4成為於XZ平面內將編碼器EN4a、EN4b之計測用之光束於標度部SDa、SDb上之投射位置(讀取位置)與中心軸AXo連結的線。又,設置方位線Lx4成為於XZ平面內將各對準顯微鏡AM2m(AM21~AM24)之觀察區域Vw2m(Vw21~Vw24)與中心軸AXo連結的線。即,複數個對準顯微鏡AM2m(AM21~AM24)亦配置於設置方位線Lx4上。該設置方位線Lx1與設置方位線Lx4係以於XZ平面內相對於中心面Poc而角度成為±θ 2之方式設定(參照圖2)。
各編碼器ENja(EN1a~EN4a)、ENjb(EN1b~EN4b)係朝向標度部SDa、SDb投射計測用之光束,並對其反射光束(繞射光)進行光電檢測,藉此,將作為脈衝訊號之檢測訊號輸出至控制裝置16。控制裝置16之旋轉位置檢測部108(參照圖9)係藉由對其檢測訊號(脈衝訊號)進行計數而以次微米之解析度計測旋轉滾筒DR之旋轉角度位置及角度變化。亦能夠根據該旋轉滾筒DR之角度變化而計測基板P之搬送速度Vt。旋轉位置檢測部108對來自各編碼器ENja(EN1a~EN4a)、ENjb(EN1b~EN4b)之檢測訊號分別個別地進行計數。
具體而言,旋轉位置檢測部108具有複數個計數器電路CNja(CN1a~CN4a)、CNjb(CN1b~CN4b)。計數器電路CN1a對來自編碼器 EN1a之檢測訊號進行計數,計數器電路CN1b對來自編碼器EN1b之檢測訊號進行計數。同樣地,計數器電路CN2a~CN4a、CN2b~CN4b對來自編碼器EN2a~EN4a、EN2b~EN4b之檢測訊號進行計數。該等各計數器電路CNja(CN1a~CN4a)、CNjb(CN1b~CN4b)係於各編碼器ENja(EN1a~EN4a)、ENjb(EN1b~EN4b)檢測形成於標度部SDa、SDb之圓周方向之一部分之圖3所示之原點標記(原點圖案)ZZ時,將與檢測出原點標記ZZ之編碼器ENja、ENjb對應之計數值重設為0。
該計數器電路CN1a、CN1b之計數值之任一個或其平均值用作設置方位線Lx1上之旋轉滾筒DR之旋轉角度位置,計數器電路CN2a、CN2b之計數值之任一個或平均值用作設置方位線Lx2上之旋轉滾筒DR之旋轉角度位置。同樣地,計數器電路CN3a、CN3b之計數值之任一個或平均值用作設置方位線Lx3上之旋轉滾筒DR之旋轉角度位置,計數器電路CN4a、CN4b之計數值之任一個或其平均值用作設置方位線Lx4上之旋轉滾筒DR之旋轉角度位置。再者,除因旋轉滾筒DR之製造誤差等而導致旋轉滾筒DR相對於中心軸AXo偏心地旋轉之情形以外,原則上,計數器電路CN1a、CN1b之計數值相同。同樣地,計數器電路CN2a、CN2b之計數值亦相同,計數器電路CN3a、CN3b之計數值、計數器電路CN4a、CN4b之計數值亦分別相同。
如上所述,對準顯微鏡AM1m(AM11~AM14)與編碼器EN1a、EN1b係配置於設置方位線Lx1上,對準顯微鏡AM2m(AM21~AM24)與編碼器EN4a、EN4b係配置於設置方位線Lx4上。因此,可根據基於複數個對準顯微鏡AM1m(AM11~AM14)所拍攝到之複數個攝像訊號之標記位 置檢測部106之圖像解析進行的對準標記MKm(MK1~MK4)之位置檢測、及對準顯微鏡AM1m所拍攝到之瞬間之旋轉滾筒DR之旋轉角度位置之資訊(基於編碼器EN1a、EN1b之計數值),而高精度地計測設置方位線Lx1上之基板P之位置。同樣地,可根據基於複數個對準顯微鏡AM2m(AM21~AM24)所拍攝到之複數個攝像訊號之標記位置檢測部106之圖像解析進行的對準標記MKm(MK1~MK4)之位置檢測、及對準顯微鏡AM2m所拍攝到之瞬間之旋轉滾筒DR之旋轉角度位置之資訊(基於編碼器EN4a、EN4b之計數值),而高精度地計測設置方位線Lx4上之基板P之位置。
又,來自編碼器EN1a、EN1b之檢測訊號之計數值、來自編碼器EN2a、EN2b之檢測訊號之計數值、來自編碼器EN3a、EN3b之檢測訊號之計數值、及來自編碼器EN4a、EN4b之檢測訊號之計數值係於各編碼器ENja、ENjb檢測出原點標記ZZ之瞬間重設為零。因此,於將基於編碼器EN1a、EN1b之計數值為第1值(例如100)時之捲繞於旋轉滾筒DR之基板P之設置方位線Lx1上之位置設為第1位置的情形時,於基板P上之第1位置搬送至設置方位線Lx2上之位置(描繪線SL1、SL3、SL5之位置)時,基於編碼器EN2a、EN2b之計數值成為第1值(例如100)。同樣地,於基板P上之第1位置搬送至設置方位線Lx3上之位置(描繪線SL2、SL4、SL6之位置)時,基於編碼器EN3a、EN3b之檢測訊號之計數值成為第1值(例如100)。同樣地,於基板P上之第1位置搬送至設置方位線Lx4上之位置時,基於編碼器EN4a、EN4b之檢測訊號之計數值成為第1值(例如100)。
且說,基板P捲繞於較旋轉滾筒DR之兩端之標度部SDa、SDb更靠內側。於圖2中,將標度部SDa、SDb之外周面之自中心軸AXo 起之半徑設定為較旋轉滾筒DR之外周面之自中心軸AXo起之半徑小。然而,亦可如圖3所示,將標度部SDa、SDb之外周面設定為與捲繞於旋轉滾筒DR之基板P之外周面成為同一面。即,亦可以標度部SDa、SDb之外周面之自中心軸AXo起之半徑(距離)與捲繞於旋轉滾筒DR之基板P之外周面(被照射面)之自中心軸AXo起之半徑(距離)相同的方式設定。藉此,各編碼器ENja(EN1a~EN4a)、ENjb(EN1b~EN4b)可於與捲繞於旋轉滾筒DR之基板P之被照射面相同之徑向之位置上檢測標度部SDa、SDb。因此,可使因編碼器ENja、ENjb之計測位置與處理位置(描繪線SL1~SL6)於旋轉滾筒DR之徑向上不同而產生之阿貝誤差減小。
但是,由於作為被照射體之基板P之厚度為十數μm~數百μm而相差較大,故而難以使標度部SDa、SDb之外周面之半徑與捲繞於旋轉滾筒DR之基板P之外周面之半徑始終相同。因此,於圖3所示之標度部SDa、SDb之情形時,以其外周面(標度面)之半徑與旋轉滾筒DR之外周面之半徑一致之方式設定。進而,亦可利用個別之圓盤構成標度部SDa、SDb,並將該圓盤(標度圓盤)同軸地安裝於旋轉滾筒DR之長桿Sft。於該情形時,亦較佳為預先以阿貝誤差控制在容許值內之程度使標度圓盤之外周面(標度面)之半徑與旋轉滾筒DR之外周面之半徑一致。
根據以上內容,根據藉由對準顯微鏡AM1m(AM11~AM14)檢測出之對準標記MKm(MK1~MK4)之基板P上之位置、及基於編碼器EN1a、EN1b之計數值(計數器電路CN1a、CN1b之計數值之任一個或平均值),由控制裝置16決定基板P之長條方向(X方向)上之被曝光區域W之描繪曝光之開始位置。再者,由於被曝光區域W之X方向之長度預先已 知,故而控制裝置16每當檢測出特定個數之對準標記MKm(MK1~MK4)時,便決定為描繪曝光之開始位置。而且,於將曝光開始位置已決定時之基於編碼器EN1a、EN1b之計數值設為第1值(例如100)之情形時,於基於編碼器EN2a、EN2b之計數值成為第1值(例如100)時,基板P之長條方向上之被曝光區域W之描繪曝光之開始位置位於描繪線SL1、SL3、SL5上。因此,掃描單元U1、U3、U5可根據編碼器EN2a、EN2b之計數值開始光點SP之掃描。又,於基於編碼器EN3a、EN3b之計數值成為第1值(例如100)時,基板P之長條方向上之被曝光區域W之描繪曝光之開始位置位於描繪線SL2、SL4、SL6上。因此,掃描單元U2、U4、U6可根據編碼器EN3a、EN3b之計數值開始光點SP之掃描。
且說,於圖2中,通常係藉由張力調整輥RT1、RT2對基板P於長條方向上賦予特定之張力,而基板P一面密接於旋轉滾筒DR,一面與旋轉滾筒DR之旋轉同時地搬送。但是,有可能因旋轉滾筒DR之旋轉速度Vp較快或者張力調整輥RT1、RT2對基板P賦予之張力變得過低或變得過高等原因而導致產生基板P相對於旋轉滾筒DR之滑動。於不產生基板P相對於旋轉滾筒DR之滑動之狀態時,於基於編碼器EN4a、4b之計數值成為與對準顯微鏡AM1m拍攝到對準標記MKmA(某特定之對準標記MKm)之瞬間之基於編碼器EN1a、EN1b之計數值(例如150)相同之值的情形時,藉由對準顯微鏡AM2m檢測出該對準標記MKmA。
然而,於產生基板P相對於旋轉滾筒DR之滑動之情形時,即便基於編碼器EN4a、EN4b之計數值成為與對準顯微鏡AM1m拍攝到對準標記MKmA之瞬間之基於編碼器EN1a、EN1b之計數值(例如150)相 同的值,藉由對準顯微鏡AM2m亦檢測不出該對準標記MKmA。於該情形時,基於編碼器EN4a、EN4b之計數值例如超過150之後,藉由對準顯微鏡AM2m檢測出對準標記MKmA。因此,可根據對準顯微鏡AM1m拍攝到對準標記MKmA之瞬間之基於編碼器EN1a、EN1b之計數值、及對準顯微鏡AM2m拍攝到對準標記MKmA之瞬間之編碼器EN4a、EN4b之計數值,求出相對於基板P之滑動量。如此,藉由追加設置該對準顯微鏡AM2m及編碼器EN4a、EN4b,而可測定基板P之滑動量。
其次,參照圖5對掃描單元Un(U1~U6)之光學構成進行說明。再者,各掃描單元Un(U1~U6)具有相同之構成,因此,僅對掃描單元(描繪單元)U1進行說明,關於其他掃描單元Un,省略其說明。又,於圖5中,將與照射中心軸Len(Le1)平行之方向設為Zt方向,將位於與Zt方向正交之平面上且基板P自處理裝置PR2經過曝光裝置EX朝向處理裝置PR3的方向設為Xt方向,將位於與Zt方向正交之平面上且與Xt方向正交之方向設為Yt方向。即,圖5之Xt、Yt、Zt之三維座標係使圖2之X、Y、Z之三維座標以Y軸為中心以Z軸方向成為與照射中心軸Len(Le1)平行之方式旋轉所得的三維座標。
如圖5所示,於掃描單元U1內,沿著自光束LB1之入射位置至被照射面(基板P)之光束LB1之前進方向,設置有反射鏡M10、擴束器BE、反射鏡M11、偏振分光鏡BS1、反射鏡M12、移位光學構件(透光性之平行平板)SR、偏轉調整光學構件(稜鏡)DP、場光圈FA、反射鏡M13、λ/4波片QW、柱面透鏡CYa、反射鏡M14、多面鏡PM、f θ透鏡FT、反射鏡M15、柱面透鏡CYb。進而,於掃描單元U1內,設置有檢測掃 描單元U1可開始描繪之時序之原點感測器(原點檢測器)OP1、以及用以經由偏振分光鏡BS1檢測來自被照射面(基板P)之反射光之光學透鏡系統G10及光檢測器DT。
入射至掃描單元U1之光束LB1係朝向-Zt方向前進,並入射至相對於XtYt平面傾斜45°之反射鏡M10。以入射至該掃描單元U1之光束LB1之軸線與照射中心軸Le1成為同軸之方式入射至反射鏡M10。反射鏡M10係作為使光束LB1入射至掃描單元U1之入射光學構件發揮功能,使已入射之光束LB1沿著與Xt軸平行地設定之光軸AXa,朝向自反射鏡M10朝-Xt方向分離之反射鏡M11朝-Xt方向反射。因此,光軸AXa係於與XtZt平面平行之面內與照射中心軸Le1正交。於反射鏡M10反射後之光束LB1係透過沿著光軸AXa配置之擴束器BE而反射至反射鏡M11。擴束器BE使透過之光束LB1之直徑擴大。擴束器BE具有聚光透鏡Be1、及使藉由聚光透鏡Be1收斂之後發散之光束LB1為平行光之準直透鏡Be2。
反射鏡M11係相對於YtZt平面傾斜45°地配置,使已入射之光束LB1(光軸AXa)朝向偏振分光鏡BS1朝-Yt方向反射。相對於反射鏡M11朝-Yt方向分離而設置之偏振分光鏡BS1之偏振分離面係相對於YtZt平面傾斜45°地配置,係使P偏振光之光束反射且使朝與P偏振光正交之方向偏振後之直線偏振光(S偏振光)之光束透過者。由於入射至掃描單元U1之光束LB1為P偏振光之光束,故而偏振分光鏡BS1將來自反射鏡M11之光束LB1朝-Xt方向反射並朝反射鏡M12側導引。
反射鏡M12係相對於XtYt平面傾斜45°地配置,使已入射之光束LB1朝向自反射鏡M12朝向朝-Zt方向分離之反射鏡M13朝-Zt方向 反射。於反射鏡M12反射後之光束LB1係沿著與Zt軸平行之光軸AXc通過移位光學構件SR、偏轉調整光學構件DP、及場光圈(視場光闌)FA而入射至反射鏡M13。移位光學構件SR係於與光束LB1之前進方向(光軸AXc)正交之平面(XtYt平面)內,二維地調整光束LB1之剖面內之中心位置。移位光學構件SR係由沿著光軸AXc配置之2塊石英之平行平板Sr1、Sr2構成,平行平板Sr1可繞Xt軸傾斜,平行平板Sr2可繞Yt軸傾斜。藉由該平行平板Sr1、Sr2分別繞Xt軸、Yt軸傾斜,而於與光束LB1之前進方向正交之XtYt平面內,將光束LB1之中心之位置二維地移位微小量。該平行平板Sr1、Sr2係於控制裝置16之控制下,藉由未圖示之致動器(驅動部)而驅動。移位光學構件SR中之平行平板Sr2係作為使投射至基板P上之光束LB1之光點SP於副掃描方向(圖4中之X方向)上以例如光點SP之大小
Figure 106115404-A0202-12-0035-40
、或像素大小之數倍~十數倍之範圍移位的機械光學之光束位置調整構件(第1調整構件、第1調整光學構件)發揮功能。
偏轉調整光學構件DP係對在反射鏡M12反射後通過移位光學構件SR之光束LB1相對於光軸AXc之傾斜進行微調整者。偏轉調整光學構件DP係由沿著光軸AXc配置之2個楔狀之稜鏡Dp1、Dp2構成,稜鏡Dp1、Dp2之各者設置成可獨立地以光軸AXc為中心旋轉360°。藉由調整2個稜鏡Dp1、Dp2之旋轉角度位置,而進行到達至反射鏡M13之光束LB1之軸線與光軸AXc之找平、或到達至基板P之被照射面之光束LB1之軸線與照射中心軸Le1之找平。再者,藉由2個稜鏡Dp1、Dp2偏轉調整後之光束LB1有於與光束LB1之剖面平行之面內橫向移位之情形,該橫向移位可藉由上文之移位光學構件SR而恢復為原狀。該稜鏡Dp1、Dp2係於控制裝 置16之控制下,藉由未圖示之致動器(驅動部)而驅動。
如此,通過移位光學構件SR與偏轉調整光學構件DP後之光束LB1係透過場光圈FA之圓形開口並到達至反射鏡M13。場光圈FA之圓形開口係將於擴束器BE擴大後之光束LB1之剖面內之強度分佈之周邊部(基礎部分)截止(遮蔽)的光闌。若將場光圈FA之圓形開口設為口徑可調整之可變虹彩光闌,則可調整光點SP之強度(亮度)。
反射鏡M13係相對於XtYt平面傾斜45°地配置,使已入射之光束LB1朝向反射鏡M14朝+Xt方向反射。於反射鏡M13反射後之光束LB1係經由λ/4波片QW及柱面透鏡CYa而入射至反射鏡M14。反射鏡M14將已入射之光束LB1朝向多面鏡(旋轉多面鏡、掃描用偏轉構件)PM反射。多面鏡PM將已入射之光束LB1朝向具有與Xt軸平行之光軸AXf之f θ透鏡FT朝+Xt方向側反射。多面鏡PM係為了使光束LB1之光點SP於基板P之被照射面上掃描,而使已入射之光束LB1於與XtYt平面平行之面內一維地偏轉(反射)。具體而言,多面鏡PM具有沿Zt軸方向延伸之旋轉軸AXp、及繞旋轉軸AXp形成之複數個反射面RP(本實施形態中,將反射面RP之數量Np設為8)。可藉由使該多面鏡PM以旋轉軸AXp為中心朝特定之旋轉方向旋轉而使照射至反射面RP之脈衝狀之光束LB1之反射角連續地變化。藉此,藉由1個反射面RP使光束LB1之反射方向偏轉,可使照射至基板P之被照射面上之光束LB1之光點SP沿著主掃描方向(基板P之寬度方向、Yt方向)進行掃描。
即,可藉由1個反射面RP使光束LB1之光點SP沿著主掃描方向進行掃描。因此,藉由多面鏡PM之1周旋轉而光點SP於基板P之 被照射面上掃描之描繪線SL1之數量最大成為與反射面RP之數量相同之8條。多面鏡PM係於控制裝置16之控制下,藉由旋轉驅動源(例如馬達或減速機構等)RM而以固定之速度旋轉。如上文所說明般,描繪線SL1之有效長度(例如30mm)設定為可藉由該多面鏡PM使光點SP進行掃描之最大掃描長度(例如31mm)以下之長度,於初始設定時(設計上),於最大掃描長度之中央設定描繪線SL1之中心點(照射中心軸Le1通過之點)。
柱面透鏡CYa係於與多面鏡PM之主掃描方向(旋轉方向)正交之非掃描方向(Zt方向)上,將已入射之光束LB1收斂至多面鏡PM之反射面RP上。即,柱面透鏡CYa係將光束LB1於反射面RP上收斂成沿與XtYt平面平行之方向延伸之長條狀(長橢圓狀)。藉由母線與Yt方向平行之柱面透鏡CYa、及下述之柱面透鏡CYb,即便存在反射面RP相對於Zt方向傾斜之情形(反射面RP相對於XtYt平面之法線之傾斜),亦可抑制其影響。即,即便多面鏡PM之各反射面RP自與旋轉軸AXp平行之狀態略微傾斜,亦可抑制照射至基板P之被照射面上之光束LB1(描繪線SL1)之照射位置於Xt方向上偏移。
具有沿Xt軸方向延伸之光軸AXf之f θ透鏡(掃描用透鏡系統)FT係將藉由多面鏡PM反射後之光束LB1以於XtYt平面內成為與光軸AXf平行之方式投射至反射鏡M15的遠心系之掃描透鏡。光束LB1朝向f θ透鏡FT之入射角θ根據多面鏡PM之旋轉角(θ/2)而改變。f θ透鏡FT係將光束LB1經由反射鏡M15及柱面透鏡CYb投射至與其入射角θ成比例之基板P之被照射面上之像高位置。若將焦距設為fo,將像高位置設為y,則f θ透鏡FT係以滿足y=fo×θ之關係(畸變像差)之方式設計。 因此,藉由該f θ透鏡FT,可使光束LB1於Yt方向(Y方向)上準確地等速地進行掃描。於光束LB1朝向f θ透鏡FT之入射角θ為0度時,入射至f θ透鏡FT之光束LB1沿著光軸AXf上前進。
反射鏡M15將來自f θ透鏡FT之光束LB1以通過柱面透鏡CYb之方式朝向基板P朝-Zt方向反射。藉由f θ透鏡FT及母線與Yt方向平行之柱面透鏡CYb,而投射至基板P之光束LB1於基板P之被照射面上收斂為直徑數μm左右(例如3μm)之微小之光點SP。又,投射至基板P之被照射面上之光點SP藉由多面鏡PM而根據沿Yt方向延伸之描繪線SL1進行一維掃描。再者,f θ透鏡FT之光軸AXf與照射中心軸Le1位於同一平面上,該平面與XtZt平面平行。因此,於光軸AXf上前進之光束LB1藉由反射鏡M15而朝-Zt方向反射,與照射中心軸Le1成為同軸而投射至基板P。於本第1實施形態中,至少f θ透鏡FT作為將藉由多面鏡PM偏轉後之光束LB1投射至基板P之被照射面之投射光學系統發揮功能。又,至少反射構件(反射鏡M11~M15)及偏振分光鏡BS1係作為使自反射鏡M10至基板P之光束LB1之光路彎折之光路偏轉構件發揮功能。可藉由該光路偏轉構件使入射至反射鏡M10之光束LB1之入射軸與照射中心軸Le1為大致同軸。於XtZt平面內,通過掃描單元U1內之光束LB1係於通過大致U字狀或
Figure 106115404-A0202-12-0038-41
字狀之光路後,朝-Zt方向前進而投射至基板P。
藉由如此般於基板P沿X方向搬送之狀態下利用各掃描單元Un(U1~U6)使光束LBn(LB1~LB6)之光點SP於主掃描方向(Y方向)上一維地進行掃描,而可使光點SP於基板P之被照射面上相對地進行二維掃描。
再者,作為一例,將描繪線SLn(SL1~SL6)之有效之長度設為30mm,使光點SP一面每次以有效之大小
Figure 106115404-A0202-12-0039-42
為3μm之脈衝狀之光點SP之1/2、即1.5μm重疊一面沿著描繪線SLn(SL1~SL6)照射至基板P之被照射面上的情形時,光點SP以1.5μm之間隔照射。因此,藉由1次掃描而照射之光點SP之脈衝數成為20000(=30〔mm〕/1.5〔μm〕)。又,若設為於副掃描方向上光點SP之掃描亦以1.5μm之間隔進行,則基板P之副掃描方向之傳送速度(搬送速度)Vt〔mm/sec〕係於將沿著描繪線SLn之1次之掃描開始(描繪開始)時間點與下一掃描開始時間點之時間差設為Tpx〔μsec〕時,成為1.5〔μm〕/Tpx〔μsec〕。該時間差Tpx係8反射面RP之多面鏡PM旋轉1面量(45度=360度/8)之時間。於該情形時,必須以多面鏡PM之1周旋轉之時間成為8×Tpx〔μsec〕之方式設定。
另一方面,於多面鏡PM之1反射面RP反射後之光束LB1有效地入射至f θ透鏡FT之最大入射角度(與光點SP之最大掃描長度對應)係根據f θ透鏡FT之焦距與最大掃描長度、以及入射至多面鏡PM之1反射面RP之光束LB1之主掃描方向之粗細(數值孔徑:NA)而大致決定。作為一例,於8反射面RP之多面鏡PM之情形時,相當於1反射面RP之旋轉角度45度中有助於實際掃描之旋轉角度α之比率(掃描效率)係以α/45度表示。於本第1實施形態中,由於將有助於實際掃描之旋轉角度α設為15度,故而掃描效率成為1/3(=15度/45度),f θ透鏡FT之最大入射角成為30度(以光軸AXf為中心±15度)。因此,使光點SP以描繪線SLn之最大掃描長度(例如31mm)進行掃描所需之時間Ts〔μsec〕成為Ts=Tpx×掃描效率。由於將本第1實施形態中之描繪線SLn(SL1~SL6)之 有效之掃描長度設為30mm,故而沿著該描繪線SLn之光點SP之1次掃描之掃描時間Tsp〔μsec〕成為Tsp=Ts×30〔mm〕/31〔mm〕。因此,必須於該時間Tsp之期間照射20000個光點SP(脈衝光),因此,來自光源裝置LS(LSa、LSb)之光束LB之發光頻率(振盪頻率)Fa成為Fa≒20000/Tsp〔μsec〕。
圖5所示之原點感測器OP1係於多面鏡PM之反射面RP之旋轉位置到達至基於反射面RP之光點SP之掃描可開始之特定位置時,產生原點訊號SZ1。換言之,原點感測器OP1係於接下來進行光點SP之掃描之反射面RP之角度成為特定之角度位置時產生原點訊號SZ1。由於多面鏡PM具有8個反射面RP,故而原點感測器OP1係於多面鏡PM旋轉1周之期間,8次輸出原點訊號SZ1。該原點感測器OP1所產生之原點訊號SZ1被發送至控制裝置16。原點感測器OP1產生原點訊號SZ1後經過延遲時間Td1之後,開始光點SP之沿著描繪線SL1之掃描。即,該原點訊號SZ1成為表示基於掃描單元U1之光點SP之描繪開始時序(掃描開始時序)的資訊。
原點感測器OP1具有:光束送光系統opa,其對反射面RP射出相對於基板P之感光性功能層為非感光性之波長區域之雷射光束Bga;及光束受光系統opb,其接收於反射面RP反射後之雷射光束Bga之反射光束Bgb並產生原點訊號SZ1。雖未圖示,但光束送光系統opa具有射出雷射光束Bga之光源、及將光源發出之雷射光束Bga投射至反射面RP之光學構件(反射鏡或透鏡等)。雖未圖示,但光束受光系統opb具有:受光部,其包含接收所接收之反射光束Bgb並轉換為電氣訊號之光電轉換元件;及 光學構件(反射鏡或透鏡等),其將於反射面RP反射後之反射光束Bgb向上述受光部導引。光束送光系統opa與光束受光系統opb係設置於如下位置,即,於多面鏡PM之旋轉位置到達至基於反射面RP之光點SP之掃描即將開始之前之特定位置時,光束受光系統opb可接收光束送光系統opa所射出之雷射光束Bga之反射光束Bgb。再者,以OP2~OP6表示設置於掃描單元U2~U6之原點感測器OPn,以SZ2~SZ6表示利用原點感測器OP2~OP6產生之原點訊號SZn。控制裝置16係基於該原點訊號SZn(SZ1~SZ6),對哪一掃描單元Un接下來進行光點SP之掃描進行管理。又,有時以Td2~Td6表示原點訊號SZ2~SZ6產生後至使利用掃描單元U2~U6進行之沿著描繪線SL2~SL6之光點SP之掃描開始為止的延遲時間Tdn。
圖5所示之光檢測器DT具有對已入射之光進行光電轉換之光電轉換元件。於旋轉滾筒DR之表面形成有預先所決定之基準圖案。形成有該基準圖案之旋轉滾筒DR上之部分係由相對於光束LB1之波長區域略低之反射率(10~50%)之素材構成,未形成基準圖案之旋轉滾筒DR上之其他部分係由反射率為10%以下之材料或吸收光之材料構成。因此,若於未捲繞有基板P之狀態(或通過基板P之透明部之狀態)下自掃描單元U1對旋轉滾筒DR之形成有基準圖案之區域照射光束LB1之光點SP,則其反射光通過柱面透鏡CYb、反射鏡M15、f θ透鏡FT、多面鏡PM、反射鏡M14、柱面透鏡CYa、λ/4波片QW、反射鏡M13、場光圈FA、偏轉調整光學構件DP、移位光學構件SR、及反射鏡M12而入射至偏振分光鏡BS1。此處,於偏振分光鏡BS1與基板P之間、具體而言反射鏡M13與柱面透鏡CYa之間設置有λ/4波片QW。藉此,照射至基板P之光束LB1係藉由該 λ/4波片QW而自P偏振光轉換為圓偏振光之光束LB1,自基板P入射至偏振分光鏡BS1之反射光係藉由該λ/4波片QW而自圓偏振光轉換為S偏振光。因此,來自基板P之反射光透過偏振分光鏡BS1而經由光學透鏡系統G10入射至光檢測器DT。
此時,於脈衝狀之光束LB1連續地入射至掃描單元U1之狀態下,使旋轉滾筒DR旋轉而掃描單元U1使光點SP進行掃描,藉此,於旋轉滾筒DR之外周面二維地照射光點SP。因此,可藉由光檢測器DT獲取形成於旋轉滾筒DR之基準圖案之圖像訊號(與反射強度對應之光電訊號)。
具體而言,對自光檢測器DT輸出之光電訊號之強度變化藉由響應用於光束LB1(光點SP)之脈衝發光之時脈訊號LTC(利用光源裝置LS產生)進行數位取樣而以Yt方向之一維之圖像資料之形式獲取。進而,響應計測描繪線SL1上之旋轉滾筒DR之旋轉角度位置之編碼器EN2a、EN2b之計測值,每隔副掃描方向之固定距離(例如,光點SP之大小
Figure 106115404-A0202-12-0042-43
之1/2)將Yt方向之一維之圖像資料沿Xt方向排列,藉此,可獲取旋轉滾筒DR之表面之二維之圖像資訊。控制裝置16係基於該所獲取之旋轉滾筒DR之基準圖案之二維之圖像資訊,計測掃描單元U1之描繪線SL1之傾斜。該描繪線SL1之傾斜可為各掃描單元Un(U1~U6)間之相對之傾斜,亦可為相對於旋轉滾筒DR之中心軸AXo之傾斜(絕對傾斜)。再者,當然,亦可同樣地計測各描繪線SL2~SL6之傾斜。再者,藉由對利用光檢測器DT所獲得之基準圖案之二維之圖像資訊進行解析,除各描繪線SL2~SL6之傾斜誤差以外,可進行各描繪線SL2~SL6之描繪開始點或描繪結束點之位置誤差之確認、各描繪線SL2~SL6之接合誤差之確認等,可實現各掃描單元 Un(U1~U6)之校準。
複數個掃描單元Un(U1~U6)係以複數個掃描單元Un(U1~U6)之各者可繞照射中心軸Len(Le1~Le6)轉動(旋轉)之方式,保持於未圖示之本體框架。若該等各掃描單元Un(U1~U6)繞照射中心軸Len(Le1~Le6)轉動,則各描繪線SLn(SL1~SL6)亦於基板P之被照射面上繞照射中心軸Len(Le1~Le6)轉動。因此,各描繪線SLn(SL1~SL6)相對於Y方向傾斜。即便於各掃描單元Un(U1~U6)繞照射中心軸Len(Le1~Le6)轉動之情形時,通過各掃描單元Un(U1~U6)內之光束LBn(LB1~LB6)與各掃描單元Un(U1~U6)內之光學構件之相對之位置關係亦不變。因此,各掃描單元Un(U1~U6)可使光點SP於基板P之被照射面上沿著轉動後之描繪線SLn(SL1~SL6)進行掃描。該等各掃描單元Un(U1~U6)之繞照射中心軸Len(Le1~Le6)之轉動係於控制裝置16之控制下,藉由未圖示之致動器而進行。
因此,控制裝置16係根據計測到之各描繪線SLn之傾斜,使掃描單元Un(U1~U6)繞照射中心軸Len(Le1~Le6)轉動,藉此,可保持複數個描繪線SLn(SL1~SL6)之平行狀態。又,於根據使用對準顯微鏡AM1m、AM2m檢測出之對準標記MKm之位置,而基板P或被曝光區域W產生應變(變形)之情形時,產生相應於此使要描繪之圖案亦產生應變之必要性。因此,控制裝置16係於判斷為基板P或被曝光區域W產生應變(變形)之情形時,使掃描單元Un(U1~U6)繞照射中心軸Len(Le1~Le6)轉動,藉此,相應於基板P或被曝光區域W之應變(變形)而使各描繪線SLn相對於Y方向微少地傾斜。此時,於本實施形態中,如下文所 說明般,可進行使沿著各描繪線SLn描繪之圖案根據所指定之倍率(例如ppm級別)伸縮般之控制、或使各描繪線SLn個別地於副掃描方向(圖5中之Xt方向)上微少地移位之控制。
再者,即便掃描單元Un之照射中心軸Len與掃描單元Un實際轉動之軸(轉動中心軸)不完全一致,只要於特定之容許範圍內兩者為同軸即可。該特定之容許範圍係以如下方式設定,即,使掃描單元Un以角度θ sm轉動時之實際之描繪線SLn之描繪開始點(或描繪結束點)與假設照射中心軸Len與轉動中心軸完全一致時使掃描單元Un以特定之角度θ sm轉動時之設計上之描繪線SLn之描繪開始點(或描繪結束點)的差分量於光點SP之主掃描方向上成為特定之距離(例如光點SP之大小
Figure 106115404-A0202-12-0044-44
)以內。又,即便實際入射至掃描單元Un之光束LBn之光軸與掃描單元Un之轉動中心軸不完全一致,只要於上述特定之容許範圍內為同軸即可。
圖6係光束切換部BDU之構成圖。光束切換部BDU具有複數個選擇用光學元件AOMn(AOM1~AOM6)、複數個聚光透鏡CD1~CD6、複數個反射鏡M1~M14、複數個單元側入射鏡IM1~IM6(IMn)、複數個準直透鏡CL1~CL6、及吸收體TR1、TR2。選擇用光學元件AOMn(AOM1~AOM6)係相對於光束LB(LBa、LBb)具有透過性者,係以超音波訊號驅動之聲光調變元件(AOM:Acousto-Optic Modulator)。該等光學構件(選擇用光學元件AOM1~AOM6、聚光透鏡CD1~CD6、反射鏡M1~M14、單元側入射鏡IM1~IM6、準直透鏡CL1~CL6、及吸收體TR1、TR2)係由板狀之支持構件IUB支持。該支持構件IUB係於複數個掃描單元Un(U1~U6)之上方(+Z方向側),自下方(-Z方向側)支持該等光學構件。因此, 支持構件IUB亦具備將成為發熱源之選擇用光學元件AOMn(AOM1~AOM6)與複數個掃描單元Un(U1~U6)之間隔熱之功能。
來自光源裝置LSa之光束LBa係藉由反射鏡M1~M6使其光路彎曲成曲折狀而導引至吸收體TR1。又,來自光源裝置LSb之光束LBb亦同樣地,藉由反射鏡M7~M14使其光路彎曲成曲折狀而導引至吸收體TR2。以下,以選擇用光學元件AOMn(AOM1~AOM6)均為斷開狀態(未施加超音波訊號之狀態)之情形進行詳細敍述。
來自光源裝置LSa之光束LBa(例如直徑為1mm以下之平行光束)係與Y軸平行地朝+Y方向前進並通過聚光透鏡CD1而入射至反射鏡M1。於反射鏡M1朝-X方向反射後之光束LBa係直接透過配置於聚光透鏡CD1之焦點位置(光束腰位置)之第1選擇用光學元件AOM1,藉由準直透鏡CL1而再次成為平行光束,並到達至反射鏡M2。於反射鏡M2朝+Y方向反射後之光束LBa係於通過聚光透鏡CD2後,於反射鏡M3朝+X方向反射。
於反射鏡M3朝+X方向反射後之光束LBa係直接透過配置於聚光透鏡CD2之焦點位置(光束腰位置)之第2選擇用光學元件AOM2,藉由準直透鏡CL2而再次成為平行光束,並到達至反射鏡M4。於反射鏡M4朝+Y方向反射後之光束LBa係於通過聚光透鏡CD3後,於反射鏡M5朝-X方向反射。於反射鏡M5朝-X方向反射後之光束LBa係直接透過配置於聚光透鏡CD3之焦點位置(光束腰位置)之第3選擇用光學元件AOM3,藉由準直透鏡CL3而再次成為平行光束,並到達至反射鏡M6。於反射鏡M6朝+Y方向反射後之光束LBa入射至吸收體TR1。該吸收體TR1係為了 抑制光束LBa向外部洩漏而吸收光束LBa之光收集器。
來自光源裝置LSb之光束LBb(例如直徑為1mm以下之平行光束)係與Y軸平行地朝+Y方向前進並入射至反射鏡M13,於反射鏡M13朝+X方向反射後之光束LBb於反射鏡M14朝+Y方向反射。於反射鏡M14朝+Y方向反射後之光束LBb係於通過聚光透鏡CD4後,於反射鏡M7朝+X方向反射。於反射鏡M7朝+X方向反射後之光束LBb係直接透過配置於聚光透鏡CD4之焦點位置(光束腰位置)之第4選擇用光學元件AOM4,藉由準直透鏡CL4而再次成為平行光束,並到達至反射鏡M8。於反射鏡M8朝+Y方向反射後之光束LBb係於通過聚光透鏡CD5後,於反射鏡M9朝-X方向反射。
於反射鏡M9朝-X方向反射後之光束LBb係直接透過配置於聚光透鏡CD5之焦點位置(光束腰位置)之第5選擇用光學元件AOM5,藉由準直透鏡CL5而再次成為平行光束,並到達至反射鏡M10。於反射鏡M10朝+Y方向反射後之光束LBb係於通過聚光透鏡CD6後,於反射鏡M11朝+X方向反射。於反射鏡M11朝+X方向反射後之光束LBb係直接透過配置於聚光透鏡CD6之焦點位置(光束腰位置)之第6選擇用光學元件AOM6,藉由準直透鏡CL6而再次成為平行光束,並到達至反射鏡M12。於反射鏡M12朝-Y方向反射後之光束LBb入射至吸收體TR2。該吸收體TR2係為了抑制光束LBb向外部洩漏而吸收光束LBb之光收集器。
如上所述,選擇用光學元件AOM1~AOM3係以使來自光源裝置LSa之光束LBa依次透過之方式沿著光束LBa之前進方向串聯配置。又,選擇用光學元件AOM1~AOM3係以藉由聚光透鏡CD1~CD3與準直透 鏡CL1~CL3而於各選擇用光學元件AOM1~AOM3之內部形成光束LBa之光束腰的方式配置。藉此,使入射至選擇用光學元件(聲光調變元件)AOM1~AOM3之光束LBa之直徑減小而提高繞射效率,並且提高響應性。同樣地,選擇用光學元件AOM4~AOM6係以使來自光源裝置LSb之光束LBb依次透過之方式沿著光束LBb之前進方向串聯配置。又,選擇用光學元件AOM4~AOM6係以藉由聚光透鏡CD4~CD6與準直透鏡CL4~CL6而於各選擇用光學元件AOM4~AOM6之內部形成光束LBb之光束腰的方式配置。藉此,使入射至選擇用光學元件(聲光調變元件)AOM4~AOM6之光束LBb之直徑減小而提高繞射效率,並且提高響應性。
各選擇用光學元件AOMn(AOM1~AOM6)若被施加超音波訊號(高頻訊號),則產生使已入射之光束(0次光)LB(LBa、LBb)以與高頻之頻率對應之繞射角繞射所得之1次繞射光作為射出光束(光束LBn)。於本第1實施形態中,將自複數個選擇用光學元件AOMn(AOM1~AOM6)之各者以1次繞射光之形式射出之光束LBn設為光束LB1~LB6,各選擇用光學元件AOMn(AOM1~AOM6)係作為發揮使來自光源裝置LSa、LSb之光束LB(LBa、LBb)之光路偏轉之功能者進行處理。但是,實際之聲光調變元件由於1次繞射光之產生效率為0次光之80%左右,故而利用各選擇用光學元件AOMn(AOM1~AOM6)之各者偏轉後之光束LBn(LB1~LB6)與原先之光束LB(LBa、LBb)相比強度降低。又,於選擇用光學元件AOMn(AOM1~AOM6)之任一個為接通狀態時,不繞射而直線前進之0次光殘存20%左右,但其最終被吸收體TR1、TR2吸收。
如圖6所示,複數個選擇用光學元件AOMn(AOM1~AOM6) 之各者係以使經偏轉之1次繞射光即光束LBn(LB1~LB6)相對於入射之光束LB(LBa、LBb)朝-Z方向偏轉的方式設置。自選擇用光學元件AOMn(AOM1~AOM6)之各者偏轉後射出之光束LBn(LB1~LB6)係投射至設置於與選擇用光學元件AOMn(AOM1~AOM6)之各者相距特定距離之位置之單元側入射鏡IM1~IM6,然後朝-Z方向以與照射中心軸Le1~Le6成為同軸之方式反射。於單元側入射鏡IM1~IM6(以下,亦簡稱為鏡IM1~IM6)反射後之光束LB1~LB6係通過形成於支持構件IUB之開口部TH1~TH6之各者,以沿著照射中心軸Le1~Le6之方式入射至掃描單元Un(U1~U6)之各者。
再者,選擇用光學元件AOMn係藉由超音波而於透過構件中之特定方向上產生折射率之週期性之疏密變化的繞射光柵,因此,於入射光束LB(LBa、LBb)為直線偏振光(P偏振光或S偏振光)之情形時,其偏振方向與繞射光柵之週期方向係以1次繞射光之產生效率(繞射效率)成為最高之方式設定。如圖6般,各選擇用光學元件AOMn以使已入射之光束LB(LBa、LBs)朝-Z方向繞射偏轉之方式設置的情形時,由於選擇用光學元件AOMn內生成之繞射光柵之週期方向亦為-Z方向,故而以與之匹配之方式設定(調整)來自光源裝置LS(LSa、LSb)之光束LB之偏振方向。
亦可使用各選擇用光學元件AOMn(AOM1~AOM6)之構成、功能、作用等相互相同者。複數個選擇用光學元件AOMn(AOM1~AOM6)係根據來自控制裝置16之驅動訊號(高頻訊號)之接通/斷開,而進行/不進行使已入射之光束LB(LBa、LBb)繞射所得之繞射光之產生。 例如,選擇用光學元件AOM1係於未被施加來自控制裝置16之驅動訊號(高頻訊號)而為斷開狀態時,使已入射之來自光源裝置LSa之光束LBa不繞射而透過。因此,透過選擇用光學元件AOM1後之光束LBa係透過準直透鏡CL1而入射至反射鏡M2。另一方面,選擇用光學元件AOM1係於被施加來自控制裝置16之驅動訊號(高頻訊號)而為接通狀態時,使已入射之光束LBa繞射並朝向鏡IM1。即,選擇用光學元件AOM1根據該驅動訊號而進行切換。鏡IM1選擇藉由選擇用光學元件AOM1繞射後之1次繞射光即光束LB1並使其朝掃描單元U1側反射。於選擇用之鏡IM1反射後之光束LB1係通過支持構件IUB之開口部TH1沿著照射中心軸Le1而入射至掃描單元U1。因此,鏡IM1係以已反射之光束LB1之光軸與照射中心軸Le1成為同軸之方式,使已入射之光束LB1反射。又,於選擇用光學元件AOM1為接通狀態時,直接透過選擇用光學元件AOM1之光束LB之0次光(入射光束之20%左右之強度)係透過之後之準直透鏡CL1~CL3、聚光透鏡CD2~CD3、反射鏡M2~M6、及選擇用光學元件AOM2~AOM3而到達至吸收體TR1。
同樣地,選擇用光學元件AOM2、AOM3係於未被施加來自控制裝置16之驅動訊號(高頻訊號)而為斷開狀態時,不使已入射之光束LBa(0次光)繞射而使其朝準直透鏡CL2、CL3側(反射鏡M4、M6側)透過。另一方面,選擇用光學元件AOM2、AOM3係於被施加來自控制裝置16之驅動訊號而為接通狀態時,使已入射之光束LBa之1次繞射光即光束LB2、LB3朝向鏡IM2、IM3。該鏡IM2、IM3使藉由選擇用光學元件AOM2、AOM3繞射後之光束LB2、LB3朝掃描單元U2、U3側反射。於鏡IM2、IM3 反射後之光束LB2、LB3係通過支持構件IUB之開口部TH2、TH3而與照射中心軸Le2、Le3成為同軸地入射至掃描單元U2、U3。
如此,控制裝置16係藉由將應對選擇用光學元件AOM1~AOM3之各者施加之驅動訊號(高頻訊號)設為接通/斷開(高/低),而對選擇用光學元件AOM1~AOM3之任一個進行切換,對光束LBa朝向後續之選擇用光學元件AOM2、AOM3或吸收體TR1還是經偏轉之光束LB1~LB3之1個朝向對應之掃描單元U1~U3進行切換。
又,選擇用光學元件AOM4係於未被施加來自控制裝置16之驅動訊號(高頻訊號)而為斷開狀態時,不使已入射之來自光源裝置LSb之光束LBb繞射而使其朝準直透鏡CL4側(反射鏡M8側)透過。另一方面,選擇用光學元件AOM4係於被施加來自控制裝置16之驅動訊號而為接通狀態時,使已入射之光束LBb之1次繞射光即光束LB4朝向鏡IM4。該鏡IM4使藉由選擇用光學元件AOM4繞射後之光束LB4朝掃描單元U4側反射。於鏡IM4反射後之光束LB4係與照射中心軸Le4成為同軸地通過支持構件IUB之開口部TH4而入射至掃描單元U4。
同樣地,選擇用光學元件AOM5、AOM6係於未被施加來自控制裝置16之驅動訊號(高頻訊號)而為斷開狀態時,不使已入射之光束LBb繞射而使其朝準直透鏡CL5、CL6側(反射鏡M10、M12側)透過。另一方面,選擇用光學元件AOM5、AOM6係於被施加來自控制裝置16之驅動訊號而為接通狀態時,使已入射之光束LBb之1次繞射光即光束LB5、LB6朝向鏡IM5、IM6。該鏡IM5、IM6使藉由選擇用光學元件AOM5、AOM6繞射後之光束LB5、LB6朝掃描單元U5、U6側反射。於鏡IM5、IM6反射 後之光束LB5、LB6係與照射中心軸Le5、Le6成為同軸地通過支持構件IUB之開口部TH5、TH6之各者而入射至掃描單元U5、U6。
如此,控制裝置16係藉由將應對選擇用光學元件AOM4~AOM6之各者施加之驅動訊號(高頻訊號)設為接通/斷開(高/低),而對選擇用光學元件AOM4~AOM6之任一個進行切換,對光束LBb朝向後續之選擇用光學元件AOM5、AOM6或吸收體TR2還是經偏轉之光束LB4~LB6之1個朝向對應之掃描單元U4~U6進行切換。
如上所述,光束切換部BDU藉由具備沿著來自光源裝置LSa之光束LBa之前進方向串聯配置之複數個選擇用光學元件AOMn(AOM1~AOM3),可切換光束LBa之光路而選擇光束LBn(LB1~LB3)入射之1個掃描單元Un(U1~U3)。因此,可使來自光源裝置LSa之光束LBa之1次繞射光即光束LBn(LB1~LB3)依次入射至3個掃描單元Un(U1~U3)之各者。例如,於欲使光束LB1入射至掃描單元U1之情形時,控制裝置16僅將複數個選擇用光學元件AOM1~AOM3中之選擇用光學元件AOM1設為接通狀態即可,於欲使光束LB3入射至掃描單元U3之情形時,僅將選擇用光學元件AOM3設為接通狀態即可。
同樣地,光束切換部BDU藉由具備沿著來自光源裝置LSb之光束LBb之前進方向串聯配置之複數個選擇用光學元件AOMn(AOM4~AOM6),可切換光束LBb之光路而選擇光束LBn(LB4~LB6)入射之1個掃描單元Un(U4~U6)。因此,可使來自光源裝置LSb之光束LBb之1次繞射光即光束LBn(LB4~LB6)依次入射至3個掃描單元Un(U4~U6)之各者。例如,於欲使光束LB4入射至掃描單元U4之情形時,控制裝置 16僅將複數個選擇用光學元件AOM4~AOM6中之選擇用光學元件AOM4設為接通狀態即可,於欲使光束LB6入射至掃描單元U6之情形時,僅將選擇用光學元件AOM6設為接通狀態即可。
該等複數個選擇用光學元件AOMn(AOM1~AOM6)係對應於複數個掃描單元Un(U1~U6)而設置,對是否使光束LBn入射至對應之掃描單元Un進行切換。再者,於本第1實施形態中,將選擇用光學元件AOM1~AOM3稱為第1光學元件模組,將選擇用光學元件AOM4~AOM6稱為第2光學元件模組。又,將與第1光學元件模組之選擇用光學元件AOM1~AOM3對應之掃描單元U1~U3稱為第1掃描模組,將與第2光學元件模組之選擇用光學元件AOM4~AOM6對應之掃描單元U4~U6稱為第2掃描模組。因此,於第1掃描模組之任一個掃描單元Un與第2掃描模組之任一個掃描單元Un,並行地進行光點SP之掃描。
如上所述,於本第1實施形態中,將掃描單元Un之多面鏡PM之有助於實際掃描之旋轉角度α設為15度,因此,掃描效率成為1/3。因此,例如,於1個掃描單元Un旋轉相當於1反射面RP之角度(45度)之期間,可進行光點SP之掃描之角度成為15度,於除此以外之角度範圍(30度),無法進行光點SP之掃描,而其間入射至多面鏡PM之光束LBn浪費。因此,於某1個掃描單元Un之多面鏡PM之旋轉角度成為無助於實際掃描之角度之期間,可藉由使光束LBn入射至除此以外之其他掃描單元Un,而利用其他掃描單元Un之多面鏡PM進行光點SP之掃描。由於多面鏡PM之掃描效率為1/3,故而可於某1個掃描單元Un使光點SP進行掃描後至進行下一次掃描之前之期間,將光束LBn分配至除此以外之2個掃描 單元Un而進行光點SP之掃描。因此,本第1實施形態將複數個掃描單元Un(U1~U6)分為2個組(掃描模組),將3個掃描單元U1~U3設為第1掃描模組,將3個掃描單元U4~U6設為第2掃描模組。
藉此,例如,於掃描單元U1之多面鏡PM旋轉45度(相當於1反射面RP)之期間,可使光束LBn(LB1~LB3)依次入射至3個掃描單元U1~U3之任一個。因此,掃描單元U1~U3之各者可使來自光源裝置LSa之光束LBa不浪費地依次進行光點SP之掃描。同樣地,於掃描單元U4之多面鏡PM旋轉45度(相當於1反射面RP)之期間,可使光束LBn(LB4~LB6)依次入射至3個掃描單元U4~U6之任一個。因此,掃描單元U4~U6可使來自光源裝置LSb之光束LBb不浪費地依次進行光點SP之掃描。再者,於各掃描單元Un開始光點SP之掃描後至開始下一次掃描之前之期間,多面鏡PM恰好旋轉相當於1反射面RP之角度(45度)。
於本第1實施形態中,各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之各者係按照特定之順序進行光點SP之掃描,因此,與此對應地,控制裝置16係將各光學元件模組之3個選擇用光學元件AOMn(AOM1~AOM3、AOM4~AOM6)按照特定之順序切換為接通,依次切換光束LBn(LB1~LB3、LB4~LB6)入射之掃描單元Un(U1~U3、U4~U6)。例如,於各掃描模組之3個掃描單元U1~U3、U4~U6之進行光點SP之掃描之順序成為U1→U2→U3、U4→U5→U6的情形時,控制裝置16係將各光學元件模組之3個選擇用光學元件AOMn(AOM1~AOM3、AOM4~AOM6)按照AOM1→AOM2→AOM3、AOM4→AOM5→AOM6之順序切換為接通,按照U1→U2→U3、U4→U5→U6之順序切換光束LBn入射之掃描單元Un。
再者,為了於多面鏡PM旋轉相當於1反射面RP之角度(45度)之期間,各掃描模組之3個掃描單元Un(U1~U3、U4~U6)依次進行光點SP之掃描,而各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之各多面鏡PM必須滿足如下條件進行旋轉。該條件係指各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之各多面鏡PM必須以成為相同之旋轉速度Vp之方式進行同步控制,並且以各多面鏡PM之旋轉角度位置(各反射面RP之角度位置)成為特定之相位關係之方式進行同步控制。將各掃描模組之3個掃描單元Un之多面鏡PM之旋轉速度Vp相同地進行旋轉稱為同步旋轉。
圖7係表示光源裝置(脈衝光源裝置、脈衝雷射裝置)LSa(LSb)之構成之圖。作為光纖雷射裝置之光源裝置LSa(LSb)具備脈衝光產生部20與控制電路22。脈衝光產生部20具有DFB半導體雷射元件30、32、偏振分光鏡34、作為描繪用光調變器之光電元件(強度調變部)36、該光電元件36之驅動電路36a、偏振分光鏡38、吸收體40、激發光源42、組合器44、光纖光放大器46、波長轉換光學元件48、50、及複數個透鏡元件GL。控制電路22具有產生時脈訊號LTC及像素移位脈衝BSC之訊號產生部22a。再者,為了將自光源裝置LSa之訊號產生部22a輸出之像素移位脈衝BSC與自光源裝置LSb之訊號產生部22a輸出之像素移位脈衝BSC加以區別,而有時以BSCa表示來自光源裝置LSa之像素移位脈衝BSC,以BSCb表示來自光源裝置LSb之像素移位脈衝BSC。
DFB半導體雷射元件(第1固體雷射元件)30係與未圖示之Q開關等之脈衝波之截取系統協同地,以作為特定頻率之振盪頻率Fa(例 如400MHz)產生俊銳(峻銳)或尖銳之脈衝狀之種光(脈衝光束、光束)S1,DFB半導體雷射元件(第2固體雷射元件)32係以作為特定頻率之振盪頻率Fa(例如400MHz)產生緩慢(於時間上寬泛)之脈衝狀之種光(脈衝光束、光束)S2。DFB半導體雷射元件30產生之種光S1與DFB半導體雷射元件32產生之種光S2係發光時序同步。種光S1、S2係每1脈衝之能量均大致相同,但偏振光狀態互不相同,峰值強度係種光S1較強。該種光S1與種光S2係直線偏振光之光,其偏振方向相互正交。於本第1實施形態中,將DFB半導體雷射元件30產生之種光S1之偏振光狀態設為S偏振光,將DFB半導體雷射元件32產生之種光S2之偏振光狀態設為P偏振光而進行說明。該種光S1、S2係紅外波長區域之光。
控制電路22係以響應自訊號產生部22a發送來之時脈訊號LTC之時脈脈衝發出種光S1、S2的方式控制DFB半導體雷射元件30、32。藉此,該DFB半導體雷射元件30、32係響應時脈訊號LTC之各時脈脈衝(振盪頻率Fa),以特定頻率(振盪頻率)Fa發出種光S1、S2。該控制電路22由控制裝置16進行控制。將該時脈訊號LTC之時脈脈衝之週期(=1/Fa)稱為基準週期Ta。由DFB半導體雷射元件30、32產生之種光S1、S2被導引至偏振分光鏡34。
再者,該成為基準時脈訊號之時脈訊號LTC係成為用以指定點陣狀之圖案資料之記憶電路中之列方向之位址的供給至各計數器部之像素移位脈衝BSC(BSCa、BSCb)之基準者,將於下文進行詳細敍述。又,自控制裝置16對訊號產生部22a輸入用於進行基板P之被照射面上之描繪線SLn之整體倍率修正的整體倍率修正資訊TMg、及用於進行描繪線SLn 之局部倍率修正之局部倍率修正資訊CMgn(CMg1~CMg6)。藉此,可對以基板P之被照射面上之描繪線SLn描繪之圖案之長度(圖案描繪長度)進行微調整,將於下文進行詳細說明。該圖案描繪長度之伸縮(掃描長度之微調整)可於描繪線SLn之最大掃描長度(例如31mm)內以例如±1000ppm左右之範圍進行。再者,本第1實施形態中之整體倍率修正若簡單地進行說明,則係指於描繪資料上之1像素(1位元)中包含之光點之數量保持固定之狀態下,一律對沿著主掃描方向投射之光點SP之投射間隔(即,光點之振盪頻率)進行微調整,藉此,將描繪線SLn整體之掃描方向之描繪倍率修正為一樣。又,本第1實施形態中之局部倍率修正若簡單地進行說明,則係指以位於1描繪線上設定之離散之複數個修正點之各者之1像素(1位元)為對象,使該修正點之像素中之光點SP之主掃描方向之間隔自標準之間隔(例如光點SP之大小
Figure 106115404-A0202-12-0056-45
之1/2)略微增減,藉此,使描繪於基板上之各修正點處之像素之大小於主掃描方向上略微伸縮。
偏振分光鏡34係使S偏振光之光透過且使P偏振光之光反射者,將DFB半導體雷射元件30產生之種光S1與DFB半導體雷射元件32產生之種光S2導引至光電元件36。詳細而言,偏振分光鏡34係藉由使DFB半導體雷射元件30產生之S偏振光之種光S1透過而將種光S1導引至光電元件36。又,偏振分光鏡34係藉由使DFB半導體雷射元件32產生之P偏振光之種光S2反射而將種光S2導引至光電元件36。DFB半導體雷射元件30、32、及偏振分光鏡34構成生成種光S1、S2之脈衝光源部35。
光電元件(強度調變部)36係相對於種光S1、S2具有透過性者,例如,使用光電調變器(EOM:Electro-Optic Modulator)。光電元件 36係響應描繪位元串資料SBa(SBb)之高/低狀態,藉由驅動電路36a切換種光S1、S2之偏振光狀態者。描繪位元串資料SBa係基於與掃描單元U1~U3之各者應曝光之圖案對應之圖案資料(位元圖案)而生成者,描繪位元串資料SBb係基於與掃描單元U4~U6之各者應曝光之圖案對應之圖案資料(位元圖案)而生成者。因此,描繪位元串資料SBa輸入至光源裝置LSa之驅動電路36a,描繪位元串資料SBb輸入至光源裝置LSb之驅動電路36a。來自DFB半導體雷射元件30、DFB半導體雷射元件32之各者之種光S1、S2係波長區域為800nm以上而較長,因此,作為光電元件36,可使用偏振光狀態之切換響應性為GHz程度者。
圖案資料(描繪資料)係針對每一掃描單元Un而設置,係對藉由各掃描單元Un描繪之圖案利用根據光點SP之大小
Figure 106115404-A0202-12-0057-46
設定之尺寸Pxy之像素進行分割,以與上述圖案對應之邏輯資訊(像素資料)表示複數個像素之各個者。即,該圖案資料係由以將沿著光點SP之主掃描方向(Y方向)之方向設為列方向且將沿著基板P之副搬送方向(X方向)之方向設為行方向之方式二維地分解後之複數個像素之邏輯資訊構成的點陣圖資料。該像素之邏輯資訊係「0」或「1」之1位元之資料。「0」之邏輯資訊係指將照射至基板P之光點SP之強度設為低位準(非描繪),「1」之邏輯資訊係指將照射至基板P上之光點SP之強度設為高位準(描繪)。再者,將像素之尺寸Pxy之主掃描方向(Y方向)之尺寸設為Py,將副掃描方向(X方向)之尺寸設為Px。
圖案資料之1行量之像素之邏輯資訊係與1條描繪線SLn(SL1~SL6)對應者。因此,1行量之像素之數量可根據基板P之被照射面 上之像素之尺寸Pxy與描繪線SLn之長度決定。該1像素之尺寸Pxy設定為與光點SP之大小
Figure 106115404-A0202-12-0058-47
為相同程度或者光點SP之大小
Figure 106115404-A0202-12-0058-48
以上,例如,於光點SP之有效之大小
Figure 106115404-A0202-12-0058-49
為3μm之情形時,1像素之尺寸Pxy設定為約3μm見方以上。根據1行量之像素之邏輯資訊,對沿著1條描繪線SLn(SL1~SL6)投射至基板P之光點SP之強度進行調變。將該1行量之像素之邏輯資訊稱為串列資料DLn。即,圖案資料係串列資料DLn沿行方向排列而成之點陣圖資料。以DL1表示掃描單元U1之圖案資料之串列資料DLn,同樣地,以DL2~DL6表示掃描單元U2~U6之圖案資料之串列資料DLn。
又,掃描模組之3個掃描單元U1~U3(U4~U6)係按照特定之順序重複逐次進行光點SP之掃描之動作,因此,與此對應地,掃描模組之3個掃描單元U1~U3(U4~U6)之圖案資料之串列資料DL1~DL3(DL4~DL6)亦按照特定之順序輸出至光源裝置LSa(LSb)之驅動電路36a。將依次輸出至光源裝置LSa之驅動電路36a之串列資料DL1~DL3稱為描繪位元串資料SBa,將依次輸出至光源裝置LSb之驅動電路36a之串列資料DL4~DL6稱為描繪位元串資料SBb。
例如,於第1掃描模組中進行光點SP之掃描之掃描單元Un之順序為U1→U2→U3之情形時,以如下方式,即,首先,將1行量之串列資料DL1輸出至光源裝置LSa之驅動電路36a,繼而,將1行量之串列資料DL2輸出至光源裝置LSa之驅動電路36a,將構成描繪位元串資料SBa之1行量之串列資料DL1~DL3按照DL1→DL2→DL3之順序輸出至光源裝置LSa之驅動電路36a。其後,將下一行之串列資料DL1~DL3按照DL1→DL2→DL3之順序作為描繪位元串資料SBa輸出至光源裝置LSa之驅動電路 36a。同樣地,於第2掃描模組中進行光點SP之掃描之掃描單元Un之順序為U4→U5→U6之情形時,以如下方式,即,首先,將1行量之串列資料DL4輸出至光源裝置LSb之驅動電路36a,繼而,將1行量之串列資料DL5輸出至光源裝置LSb之驅動電路36a,將構成描繪位元串資料SBb之1行量之串列資料DL4~DL6按照DL4→DL5→DL6之順序輸出至光源裝置LSb之驅動電路36a。其後,將下一行之串列資料DL4~DL6按照DL4→DL5→DL6之順序作為描繪位元串資料SBb輸出至光源裝置LSb之驅動電路36a。關於將描繪位元串資料SBa(SBb)輸出至該光源裝置LSa(LSb)之驅動電路36a之具體構成,將於下文詳細地進行說明。
於輸入至驅動電路36a之描繪位元串資料SBa(SBb)之1像素量之邏輯資訊為低(「0」)狀態時,光電元件36不改變種光S1、S2之偏振光狀態而直接導引至偏振分光鏡38。另一方面,於輸入至驅動電路36a之描繪位元串資料SBa(SBb)之1像素量之邏輯資訊為高(「1」)狀態時,光電元件36改變已入射之種光S1、S2之偏振光狀態,即,將偏振方向改變90度而導引至偏振分光鏡38。藉由如此般驅動電路36a基於描繪位元串資料SBa(SBb)驅動光電元件36,而光電元件36係於描繪位元串資料SBa(SBb)之像素之邏輯資訊為高狀態(「1」)時,將S偏振光之種光S1轉換為P偏振光之種光S1,將P偏振光之種光S2轉換為S偏振光之種光S2。
偏振分光鏡38係使P偏振光之光透過並經由透鏡元件GL而導引至組合器44,使S偏振光之光反射而導引至吸收體40者。以光束Lse表示透過該偏振分光鏡38之光(種光)。該脈衝狀之光束Lse之振盪頻率成為Fa。激發光源42產生激發光,該產生之激發光通過光纖42a而導引 至組合器44。組合器44係將自偏振分光鏡38照射之光束Lse與激發光合成,並輸出至光纖光放大器46。光纖光放大器46摻雜有由激發光激發之雷射介質。因此,於供經合成之光束Lse及激發光傳輸之光纖光放大器46內,雷射介質被激發光激發,藉此,將作為種光之光束Lse放大。作為光纖光放大器46內摻雜之雷射介質,使用鉺(Er)、鐿(Yb)、銩(Tm)等稀土類元素。該經放大之光束Lse係自光纖光放大器46之射出端46a伴有特定之發散角而輻射,藉由透鏡元件GL進行收斂或準直並入射至波長轉換光學元件48。
波長轉換光學元件(第1波長轉換光學元件)48係藉由第2諧波產生(Second Harmonic Generation:SHG)而將已入射之光束Lse(波長λ)轉換為波長為λ之1/2之第2諧波。作為波長轉換光學元件48,較佳地使用作為準相位匹配(Quasi Phase Matching:QPM)晶體之PPLN(Periodically Poled LiNbO3)晶體。再者,亦可使用PPLT(Periodically Poled LiTaO3)晶體等。
波長轉換光學元件(第2波長轉換光學元件)50係藉由波長轉換光學元件48轉換所得之第2諧波(波長λ/2)與未被波長轉換光學元件48轉換而殘留之種光(波長λ)之和頻產生(Sum Frequency Generation:SFG),而產生波長為λ之1/3之第3諧波。該第3諧波成為於370mm以下之波長頻帶(例如355nm)具有峰值波長之紫外線光(光束LB)。
如圖8所示,於對驅動電路36a施加之描繪位元串資料SBa(SBb)之1像素量之邏輯資訊為低(「0」)之情形時,光電元件(強度調變部)36不改變已入射之種光S1、S2之偏振光狀態而直接導引至偏振分光 鏡38。因此,透過偏振分光鏡38之光束Lse成為種光S2。因此,自光源裝置LSa(LSb)最終輸出之P偏振光之LBa(LBb)具有與來自DFB半導體雷射元件32之種光S2相同之振盪分佈(時間特性)。即,於該情形時,光束LBa(LBb)成為脈衝之峰值強度較低且於時間上寬泛之鈍化之特性。光纖光放大器46係對於此種峰值強度較低之種光S2之放大效率較低,因此,自光源裝置LSa(LSb)射出之光束LBa(LBb)成為未被放大至曝光所需之能量之光。因此,就曝光之觀點而言,實質上成為與光源裝置LSa(LSb)未射出光束LBa(LBb)相同之結果。即,照射至基板P之光點SP之強度成為低位準。但是,於未進行圖案之曝光之期間(非曝光期間),源於種光S2之紫外線區域之光束LBa(LBb)雖然為微小之強度但仍持續照射。因此,於描繪線SL1~SL6長時間維持位於基板P上之相同位置之狀態之情形(例如,因搬送系統之故障而導致基板P停止之情形等)時,較佳為於光源裝置LSa(LSb)之光束LBa(LBb)之射出窗(省略圖示)設置可動擋板而將射出窗關閉。
另一方面,如圖8所示,於對驅動電路36a施加之描繪位元串資料SBa(SBb)之1像素量之邏輯資訊為高(「1」)之情形時,光電元件(強度調變部)36改變已入射之種光S1、S2之偏振光狀態並導引至偏振分光鏡38。因此,透過偏振分光鏡38之光束Lse成為種光S1。因此,自光源裝置LSa(LSb)射出之光束LBa(LBb)成為源於來自DFB半導體雷射元件30之種光S1而生成者。來自DFB半導體雷射元件30之種光S1由於峰值強度較強,故而藉由光纖光放大器46有效率地放大,從而自光源裝置LSa(LSb)輸出之P偏振光之光束LBa(LBb)具有基板P之曝光所需之能量。 即,照射至基板P之光點SP之強度成為高位準。
如此,於光源裝置LSa(LSb)內設置有作為描繪用光調變器之光電元件36,因此,藉由控制1個光電元件(強度調變部)36,而可使藉由掃描模組之3個掃描單元U1~U3(U4~U6)進行掃描之光點SP之強度根據應描繪之圖案調變。因此,自光源裝置LSa(LSb)射出之光束LBa(LBb)成為經強度調變之描繪光束。
再者,於圖7之構成中,亦考慮省略DFB半導體雷射元件32及偏振分光鏡34,僅將來自DFB半導體雷射元件30之種光S1藉由基於圖案資料(描繪位元串資料SBa、SBb、或串列資料DLn)之光電元件36之偏振光狀態之切換而呈爆炸波狀導光至光纖光放大器46。然而,若採用該構成,則種光S1朝向光纖光放大器46之入射週期性根據應描繪之圖案而較大地變亂。即,若於來自DFB半導體雷射元件30之種光S1不入射至光纖光放大器46之狀態持續後,種光S1入射至光纖光放大器46,則產生如下問題:剛入射後之種光S1以比通常時大之放大率放大,自光纖光放大器46以數脈衝量產生具有規定以上之較大之強度之光束(巨脈衝)。因此,於本第1實施形態中,作為較佳之態樣,於種光S1不入射至光纖光放大器46之期間,使來自DFB半導體雷射元件32之種光S2(峰值強度較低之寬脈衝光)入射至光纖光放大器46,藉此,解決如上所述之問題。
又,對光電元件36進行切換,但亦可基於圖案資料(描繪位元串資料SBa、SBb、或串列資料DLn)驅動DFB半導體雷射元件30、32。於該情形時,該DFB半導體雷射元件30、32作為描繪用光調變器(強度調變部)發揮功能。即,控制電路22係基於描繪位元串資料SBa(DL1 ~DL3)、SBb(DL4~DL6),控制DFB半導體雷射元件30、32,以特定頻率Fa選擇性地(擇一地)產生呈脈衝狀振盪之種光S1、S2。於該情形時,無需偏振分光鏡34、38、光電元件36、及吸收體40,自DFB半導體雷射元件30、32之任一者選擇性地脈衝振盪之種光S1、S2之一者直接入射至組合器44。此時,控制電路22係以來自DFB半導體雷射元件30之種光S1與來自DFB半導體雷射元件32之種光S2不同時入射至光纖光放大器46的方式,控制各DFB半導體雷射元件30、32之驅動。即,於將各光束LBn之光點SP照射至基板P之情形時,以僅種光S1入射至光纖光放大器46之方式控制DFB半導體雷射元件30。又,於不將各光束LBn之光點SP照射至基板P(使光點SP之強度極低)之情形時,以僅種光S2入射至光纖光放大器46之方式控制DFB半導體雷射元件32。如此,是否對基板P照射光束LBn係根據像素之邏輯資訊(高/低)而決定。又,該情形時之種光S1、S2之偏振光狀態均可為P偏振光。
此處,光源裝置LSa(LSb)係以如下方式射出光束LBa(LBb),即,於光點SP之掃描中,針對基板P之被照射面上之尺寸Pxy之1像素,光點SP沿著主掃描方向投射N個(於本第1實施形態中,設為N=2)。自該光源裝置LSa(LSb)射出之光束LBa(LBb)係響應訊號產生部22a產生之時脈訊號LTC之時脈脈衝而產生。因此,為了針對尺寸Pxy之1像素而將光點SP投射N個(N亦可為2以上之整數),於將主掃描方向上之光點SP相對於基板P之相對之掃描速度設為Vs時,訊號產生部22a必須以由Pxy/(N×Vs)或Py/(N×Vs)決定之基準週期Ta(=1/Fa)產生時脈訊號LTC之時脈脈衝。例如,若將有效之描繪線SLn之長度設為30mm, 將1次之掃描時間Tsp設為約50μsec,則光點SP之掃描速度Vs成為約600m/sec。而且,於像素之尺寸Pxy(Px及Py)為與光點SP之有效之大小相同之3μm且N為2之情形時,成為基準週期Ta=3μm/(2×600m/sec)=0.0025μsec,其頻率Fa(=1/Ta)成為400MHz。
該局部倍率修正資訊CMgn(CMg1~CMg6)之修正位置資訊(設定值)Nv可任意地變更,係根據描繪線SLn之倍率而適當設定。例如,亦可以位於描繪線SLn上之修正像素成為1個之方式設定修正位置資訊Nv。藉由整體倍率修正資訊TMg,亦能夠使描繪線SL伸縮,但局部倍率修正可進行更細微且微小之倍率修正。例如,於振盪頻率Fa為400MHz且描繪線SLn之掃描長度(描繪範圍)之初始值設為30mm之情形時,藉由整體倍率修正資訊TMg使描繪線SLn之掃描長度伸縮或伸長15μm(比率500ppm)時,必須使振盪頻率Fa增大或減小約0.2MHz(比率500ppm),而其調整較難。又,即便能夠進行調整,亦具有固定之延遲(時間常數)而切換為調整後之振盪頻率Fa,因此,其間無法獲得所希望之倍率。進而,於描繪倍率之修正比設定為500ppm以下、例如數ppm~數十ppm左右之情形時,與改變光源裝置LSa(LSb)之振盪頻率Fa之整體倍率修正方式相比,增減離散之修正像素中之光點數之局部倍率修正方式可簡單地進行解析度較高之修正。當然,若併用整體倍率修正方式與局部倍率修正方式之兩者,則獲得可對應於較大之描繪倍率之修正比並且實現高解析度之修正的優點。
圖9係表示曝光裝置EX之電氣構成之方塊圖。曝光裝置EX之控制裝置16具有多面鏡驅動控制部100、選擇元件驅動控制部102、 光束控制裝置104、標記位置檢測部106、及旋轉位置檢測部108。再者,各掃描單元Un(U1~U6)之原點感測器OPn(OP1~OP6)所輸出之原點訊號SZn(SZ1~SZ6)輸入至多面鏡驅動控制部100及選擇元件驅動控制部102。再者,於圖9所示之例中,表示來自光源裝置LSa(LSb)之光束LBa(LBb)藉由選擇用光學元件AOM2(AOM5)繞射而其1次繞射光即光束LB2(LB5)入射至掃描單元U2(U5)的狀態。
多面鏡驅動控制部100驅動控制各掃描單元Un(U1~U6)之多面鏡PM之旋轉。多面鏡驅動控制部100具有使各掃描單元Un(U1~U6)之多面鏡PM驅動之旋轉驅動源(馬達或減速機等)RM,藉由驅動控制該馬達之旋轉而驅動控制多面鏡PM之旋轉。多面鏡驅動控制部100係以各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之多面鏡PM之旋轉角度位置成為特定之相位關係的方式,使各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之多面鏡PM之各者同步旋轉。即,多面鏡驅動控制部100係以如下方式控制複數個掃描單元Un(U1~U6)之多面鏡PM之旋轉,即,各掃描模組之3個掃描單元Un(U1~U3、U4~U6)之多面鏡PM之旋轉速度(轉數)Vp彼此相同,且旋轉角度位置之相位每次以固定之角度量偏移。再者,各掃描單元Un(U1~U6)之多面鏡PM之旋轉速度Vp全部設為相同。
於本第1實施形態中,如上所述,將有助於實際掃描之多面鏡PM之旋轉角度α設為15度,因此,反射面RP為8個之八邊形之多面鏡PM之掃描效率成為1/3。於第1掃描模組中,基於3個掃描單元Un之光點SP之掃描按照U1→U2→U3之順序進行。因此,以於該3個掃描單元 U1~U3之各者之多面鏡PM之旋轉角度位置之相位按照該順序每次偏移15度之狀態下等速旋轉的方式,藉由多面鏡驅動控制部100對掃描單元U1~U3之各者之多面鏡PM進行同步控制。又,於第2掃描模組中,基於3個掃描單元Un之光點SP之掃描按照U4→U5→U6之順序進行。因此,以於3個掃描單元U4~U6之各者之多面鏡PM之旋轉角度位置之相位按照該順序每次偏移15度之狀態下等速旋轉的方式,藉由多面鏡驅動控制部100對掃描單元U4~U6之各者之多面鏡PM進行同步控制。
具體而言,如圖10所示,多面鏡驅動控制部100例如針對第1掃描模組,以如下方式控制掃描單元U2之多面鏡PM之旋轉相位,即,以來自掃描單元U1之原點感測器OP1之原點訊號SZ1為基準,來自掃描單元U2之原點感測器OP2之原點訊號SZ2延遲時間Ts而產生。多面鏡驅動控制部100係以如下方式控制掃描單元U3之多面鏡PM之旋轉相位,即,以原點訊號SZ1為基準,來自掃描單元U3之原點感測器OP3之原點訊號SZ3延遲2×時間Ts而產生。該時間Ts係多面鏡PM旋轉15度之時間(光點SP之最大掃描時間)。藉此,成為各掃描單元U1~U3之各者之多面鏡PM之旋轉角度位置之相位差按照U1、U2、U3之順序每次偏移15度之狀態。因此,第1掃描模組之3個掃描單元U1~U3可按照U1→U2→U3之順序進行光點SP之掃描。
關於第2掃描模組,亦同樣地,多面鏡驅動控制部100例如以如下方式控制掃描單元U5之多面鏡PM之旋轉相位,即,以來自掃描單元U4之原點感測器OP4之原點訊號SZ4為基準,來自掃描單元U5之原點感測器OP5之原點訊號SZ5延遲時間Ts而產生。多面鏡驅動控制部100以 如下方式控制掃描單元U6之多面鏡PM之旋轉相位,即,以原點訊號SZ4為基準,來自掃描單元U6之原點感測器OP6之原點訊號SZ6延遲2×時間Ts而產生。藉此,成為各掃描單元U4~U6之各者之多面鏡PM之旋轉角度位置之相位按照U4、U5、U6之順序每次偏移15度之狀態。因此,第2掃描模組之3個掃描單元Un(U4~U6)可按照U4→U5→U6之順序進行光點SP之掃描。
選擇元件驅動控制部(光束切換驅動控制部)102係控制光束切換部BDU之各光學元件模組之選擇用光學元件AOMn(AOM1~AOM3、AOM4~AOM6),於各掃描模組之1個掃描單元Un開始光點SP之掃描後至開始下一次掃描之前,將來自光源裝置LS(LSa、LSb)之光束LB(LBa、LBb)依序分配至各掃描模組之3個掃描單元Un(U1~U3、U4~U6)。再者,於1個掃描單元Un開始光點SP之掃描後至開始下一次掃描之前,多面鏡PM旋轉45度,其時間間隔成為時間Tpx(=3×Ts)。
具體而言,選擇元件驅動控制部102係於產生原點訊號SZn(SZ1~SZ6)時,產生原點訊號SZn之後,以固定時間(接通時間Ton)對與產生原點訊號SZn(SZ1~SZ6)之掃描單元Un(U1~U6)對應之選擇用光學元件AOMn(AOM1~AOM6)施加驅動訊號(高頻訊號)HFn(HF1~HF6)。藉此,被施加有驅動訊號(高頻訊號)HFn之選擇用光學元件AOMn以接通時間Ton成為接通狀態,可使光束LBn入射至對應之掃描單元Un。又,由於使光束LBn入射至產生原點訊號SZn之掃描單元Un,故而可使光束LBn入射至能夠進行光點SP之掃描之掃描單元Un。再者,該接通時間Ton係時間Ts以下之時間。
第1掃描模組之3個掃描單元U1~U3中產生之原點訊號SZ1~SZ3係以時間Ts間隔按照SZ1→SZ2→SZ3之順序產生。因此,對第1光學元件模組之各選擇用光學元件AOM1~AOM3,以時間Ts間隔按照AOM1→AOM2→AOM3之順序以接通時間Ton施加驅動訊號(高頻訊號)HF1~HF3。因此,第1光學元件模組(AOM1~AOM3)能夠以時間Ts間隔按照U1→U2→U3之順序切換來自光源裝置LSa之光束LBn(LB1~LB3)入射之1個掃描單元Un。藉此,進行光點SP之掃描之掃描單元Un以時間Ts間隔按照U1→U2→U3之順序進行切換。又,於掃描單元U1開始光點SP之掃描後至開始下一次掃描之前之時間(Tpx=3×Ts),可使來自光源裝置LSa之光束LBn(LB1~LB3)依序入射至3個掃描單元Un(U1~U3)之任一個。
同樣地,第2掃描模組之3個掃描單元U4~U6中產生之原點訊號SZ4~SZ6係以時間Ts間隔按照SZ4→SZ5→SZ6之順序產生。因此,對第2光學元件模組之各選擇用光學元件AOM4~AOM6,以時間Ts間隔按照AOM4→AOM5→AOM6之順序以接通時間Ton施加驅動訊號(高頻訊號)HF4~HF6。因此,第2光學元件模組(AOM4~AOM6)能夠以時間Ts間隔按照U4→U5→U6之順序切換來自光源裝置LSb之光束LBn(LB4~LB6)入射之1個掃描單元Un。藉此,進行光點SP之掃描之掃描單元Un以時間Ts間隔按照U4→U5→U6之順序進行切換。又,於掃描單元U4開始光點SP之掃描後至開始下一次掃描之前之時間(Tpx=3×Ts),可使來自光源裝置LSb之光束LBn(LB4~LB6)依序入射至3個掃描單元Un(U4~U6)之任一個。
若對選擇元件驅動控制部102更詳細地進行說明,則選擇元件驅動控制部102係於產生原點訊號SZn(SZ1~SZ6)時,如圖10所示,產生原點訊號SZn(SZ1~SZ6)之後,以固定時間(接通時間Ton)生成成為H(高)之複數個入射允許訊號LPn(LP1~LP6)。該等複數個入射允許訊號LPn(LP1~LP6)係允許使對應之選擇用光學元件AOMn(AOM1~AOM6)為接通狀態之訊號。即,入射允許訊號LPn(LP1~LP6)係允許光束LBn(LB1~LB6)入射至對應之掃描單元Un(U1~U6)之訊號。而且,選擇元件驅動控制部102係以入射允許訊號LPn(LP1~LP6)成為H(高)之接通時間Ton對相對應之選擇用光學元件AOMn(AOM1~AOM6)施加驅動訊號(高頻訊號)HFn(HF1~HF6),使對應之選擇用光學元件AOMn為接通狀態(產生1次繞射光之狀態)。例如,選擇元件驅動控制部102係以入射允許訊號LP1~LP3成為H(高)之固定時間Ton對相對應之選擇用光學元件AOM1~AOM3施加驅動訊號HF1~HF3。藉此,來自光源裝置LSa之光束LB1~LB3入射至對應之掃描單元U1~U3。又,選擇元件驅動控制部102係以入射允許訊號LP4~LP6成為H(高)之固定時間Ton對相對應之選擇用光學元件AOM4~AOM6施加驅動訊號(高頻訊號)HF4~HF6。藉此,來自光源裝置LSb之光束LB4~LB6入射至對應之掃描單元U4~U6。
如圖10所示,與第1光學元件模組之3個選擇用光學元件AOM1~AOM3對應之入射允許訊號LP1~LP3係變成H(高)之上升時序按照LP1→LP2→LP3之順序每次偏移時間Ts,且變成H(高)之接通時間Ton不相互重疊。因此,光束LBn(LB1~LB3)入射之掃描單元Un係以時間Ts間隔按照U1→U2→U3之順序切換。同樣地,與第2光學元件模組之 3個選擇用光學元件AOM4~AOM6對應之入射允許訊號LP4~LP6係變成H(高)之上升時序按照LP4→LP5→LP6之順序每次偏移時間Ts,且變成H(高)之接通時間Ton不相互重疊。因此,光束LBn(LB4~LB6)入射之掃描單元Un係以時間Ts間隔按照U4→U5→U6之順序切換。選擇元件驅動控制部102將所生成之複數個入射允許訊號LPn(LP1~LP6)輸出至光束控制裝置104。
圖9之光束控制裝置(光束控制部)104係對光束LB(LBa、LBb、LBn)之發光頻率Fa、光束LB之光點SP描繪之描繪線SLn之倍率、及光束LB之強度調變進行控制者。光束控制裝置104具備整體倍率設定部110、局部倍率設定部112、描繪資料輸出部114、及曝光控制部116。整體倍率設定部(整體倍率修正資訊記憶部)110係記憶自曝光控制部116發送來之整體倍率修正資訊TMg,並且將整體倍率修正資訊TMg輸出至光源裝置LS(LSa、LSb)之控制電路22之訊號產生部22a。訊號產生部22a之時脈產生部60生成與該整體倍率修正資訊TMg對應之振盪頻率Fa之時脈訊號LTC。再者,關於整體倍率設定部110與局部倍率設定部112之詳細構成,將於下文進行詳細敍述。
局部倍率設定部(局部倍率修正資訊記憶部、修正資訊記憶部)112係記憶自曝光控制部116發送來之局部倍率修正資訊(修正資訊)CMgn,並且將局部倍率修正資訊CMgn輸出至光源裝置LS(LSa、LSb)之控制電路22之訊號產生部22a。基於該局部倍率修正資訊CMgn,指定(特定)出描繪線SLn上之修正像素之位置,並決定其倍率。控制電路22之訊號產生部22a係根據基於該局部倍率修正資訊CMg所決定之修正像素及其 倍率,輸出像素移位脈衝BSC(BSCa、BSCb)。再者,局部倍率設定部112記憶自曝光控制部116發送來之每一掃描單元Un(U1~U6)之局部倍率修正資訊CMgn(CMg1~CMg6)。而且,局部倍率設定部112將與進行光點SP之掃描之掃描單元Un對應之局部倍率修正資訊CMgn輸出至光源裝置LS(LSa、LSb)之訊號產生部22a。即,局部倍率設定部112係將與產生原點訊號SZn(SZ1~SZ6)之掃描單元Un對應之局部倍率修正資訊CMgn輸出至成為入射至該掃描單元Un之光束LBn之產生源之光源裝置LSa(LSa、LSb)之訊號產生部22a。再者,基於整體倍率修正資訊TMg或局部倍率修正資訊CMgn之描繪倍率之修正係對來自光源裝置LS(LSa、LSb)之控制電路22之訊號產生部22a之時脈訊號LTC之時脈週期局部進行微調整而進行。關於控制電路22(訊號產生部22a)之詳細構成,將於下文進行詳細敍述。
例如,於產生原點訊號SZn之掃描單元Un(即,接下來進行光點SP之掃描之掃描單元Un)為掃描單元U1~U3之任一個之情形時,局部倍率設定部112將與產生原點訊號SZn之掃描單元Un對應之局部倍率修正資訊CMgn輸出至光源裝置LSa之訊號產生部22a。同樣地,於產生原點訊號SZn之掃描單元Un為掃描單元U4~U6之任一個之情形時,局部倍率設定部112將與產生原點訊號SZn之掃描單元Un對應之局部倍率修正資訊CMgn輸出至光源裝置LSb之訊號產生部22a。藉此,於每一掃描模組進行光點SP之掃描之掃描單元Un(U1~U3、U4~U6)所對應之像素移位脈衝BSC(BSCa、BSCb)自光源裝置LS(LSa、LSb)之送出時序切換部64輸出。藉此,可對每一描繪線SLn個別地調整掃描長度。
描繪資料輸出部114係將與第1掃描模組之3個掃描單元Un(U1~U3)中產生原點訊號SZn之掃描單元Un(接下來進行光點SP之掃描之掃描單元Un)對應之1行量之串列資料DLn作為描繪位元串資料SBa而輸出至光源裝置LSa之驅動電路36a。又,描繪資料輸出部114係將與第2掃描模組之3個掃描單元Un(U4~U6)中產生原點訊號SZn之掃描單元Un(接下來進行光點SP之掃描之掃描單元Un)對應之1行量之串列資料DLn(DL4~DL6)作為描繪位元串資料SBb而輸出至光源裝置LSb之驅動電路36a。關於第1掃描模組,進行光點SP之掃描之掃描單元U1~U3之順序成為U1→U2→U3,因此,描繪資料輸出部114將按照DL1→DL2→DL3之順序重複之串列資料DL1~DL3作為描繪位元串資料SBa而輸出。關於第2掃描模組,進行光點SP之掃描之掃描單元U4~U6之順序成為U4→U5→U6,因此,描繪資料輸出部114將按照DL4→DL5→DL6之順序重複之串列資料DL4~DL6作為描繪位元串資料SBb而輸出。
且說,圖9所示之曝光控制部116係對整體倍率設定部110、局部倍率設定部112、及描繪資料輸出部114進行控制者。對曝光控制部116輸入標記位置檢測部106檢測出之設置方位線Lx1、Lx4上之對準標記MKm(MK1~MK4)之位置資訊、及旋轉位置檢測部108檢測出之設置方位線Lx1~Lx4上之旋轉滾筒DR之旋轉角度位置資訊(基於計數器電路CN1a~CN4a、CN1b~CN4b之計數值)。曝光控制部116係基於設置方位線Lx1上之對準標記MKm(MK1~MK4)之位置資訊、及設置方位線Lx1上之旋轉滾筒DR之旋轉角度位置(計數器電路CN1a、CN1b之計數值),檢測(決定)基板P之副掃描方向(X方向)上之被曝光區域W之描繪曝光之開始 位置。
而且,曝光控制部116係基於檢測出描繪曝光之開始位置時之設置方位線Lx1上之旋轉滾筒DR之旋轉角度位置、及設置方位線Lx2上之旋轉角度位置(基於計數器電路CN2a、CN2b之計數值),判斷基板P之描繪曝光之開始位置是否已搬送至位於設置方位線Lx2上之描繪線SL1、SL3、SL5上。曝光控制部116若判斷為描繪曝光之開始位置已搬送至描繪線SL1、SL3、SL5上,則控制局部倍率設定部112及描繪資料輸出部114等,使掃描單元U1、U3、U5開始基於光點SP之掃描之描繪。
於該情形時,曝光控制部116係以掃描單元U1、U3進行描繪曝光之時序,使局部倍率設定部112將與進行光點SP之掃描之掃描單元U1、U3對應之局部倍率修正資訊CMg1、CMg3輸出至光源裝置LSa之訊號產生部22a。藉此,光源裝置LSa之訊號產生部22a係根據局部倍率修正資訊CMg1、CMg3而產生使進行光點SP之掃描之掃描單元U1、U3之串列資料DL1、DL3之像素移位之像素移位脈衝BSCa。根據該像素移位脈衝BSCa,描繪資料輸出部114使與進行光點SP之掃描之掃描單元U1、U3對應之串列資料DL1、DL3之各像素之邏輯資訊一像素一像素地移位。同樣地,曝光控制部116係以掃描單元U5進行描繪曝光之時序,使局部倍率設定部112將與掃描單元U5對應之局部倍率修正資訊CMg5輸出至光源裝置LSb之訊號產生部22a。藉此,光源裝置LSb之訊號產生部22a係根據局部倍率修正資訊CMg5而產生使與進行光點SP之掃描之掃描單元U5對應之串列資料DL5之像素移位之像素移位脈衝BSCb。根據該像素移位脈衝BSCb,描繪資料輸出部114使進行光點SP之掃描之掃描單元U5之串列資料DL5之各 像素之邏輯資訊一像素一像素地移位。
其後,曝光控制部116係基於檢測出描繪曝光之開始位置時之設置方位線Lx1上之旋轉滾筒DR之旋轉角度位置、及設置方位線Lx3上之旋轉角度位置(計數器電路CN3a、CN3b之計數值),判斷基板P之描繪曝光之開始位置是否已搬送至位於設置方位線Lx3上之描繪線SL2、SL4、SL6上。曝光控制部116若判斷為描繪曝光之開始位置已搬送至描繪線SL2、SL4、SL6上,則控制局部倍率設定部112及描繪資料輸出部114,進而,使掃描單元U2、U4、U6開始光點SP之掃描。
於該情形時,曝光控制部116係以掃描單元U2進行描繪曝光之時序,使局部倍率設定部112將與進行光點SP之掃描之掃描單元U2對應之局部倍率修正資訊CMg2輸出至光源裝置LSa之訊號產生部22a。藉此,光源裝置LSa之訊號產生部22a係根據局部倍率修正資訊CMg2而產生使進行光點SP之掃描之掃描單元U2之串列資料DL2之像素移位之像素移位脈衝BSCa。根據該像素移位脈衝BSCa,描繪資料輸出部114使進行光點SP之掃描之掃描單元U2之串列資料DL2之各像素之邏輯資訊一像素一像素地移位。同樣地,曝光控制部116係以掃描單元U4、U6進行描繪曝光之時序,使局部倍率設定部112將與掃描單元U4、U6對應之局部倍率修正資訊CMg4、CMg6輸出至光源裝置LSb之訊號產生部22a。藉此,光源裝置LSb之訊號產生部22a係根據局部倍率修正資訊CMg4、CMg6而產生使進行光點SP之掃描之掃描單元U4、U6之串列資料DL4、DL6之像素移位之像素移位脈衝BSCb。根據該像素移位脈衝BSCb,描繪資料輸出部114使進行光點SP之掃描之掃描單元U4、U6之串列資料DL4、DL6之各像素之 邏輯資訊一像素一像素地移位。
根據上文之圖4可知,基板P朝+X方向搬送,因此,描繪線SL1、SL3、SL5之各者中之描繪曝光先進行,於基板P進一步搬送特定距離後,進行描繪線SL2、SL4、SL6之各者中之描繪曝光。另一方面,第1掃描模組之3個掃描單元U1~U3之各多面鏡PM、第2掃描模組之3個掃描單元U4~U6之各多面鏡PM係具有特定之相位差而進行旋轉控制,因此,原點訊號SZ1~SZ3、SZ4~SZ6如圖10所示,以時間Ts具有相位差地持續產生。因此,產生如圖10所示之入射允許訊號LPn(LP1~LP6),於自描繪線SL1、SL3、SL5上之描繪曝光之開始時間點起至描繪線SL2、SL4、SL6上之描繪曝光即將開始之前之期間,亦輸出串列資料DL2、DL4、DL6。因此,於被曝光區域W之描繪曝光之開始位置到達描繪線SL2、SL4、SL6上之前,藉由基於掃描單元U2、U4、U6之光點SP之掃描而描繪圖案。因此,圖9之曝光控制部116係藉由對入射允許訊號LPn(LP1~LP6)進行邏輯運算之邏輯電路而禁止與掃描單元U2、U4、U6之各者對應之串列資料DL2、DL4、DL6之像素之移位。
又,曝光控制部116係基於標記位置檢測部106檢測出之設置方位線Lx1、Lx4上之對準標記MKm(MK1~MK4)之位置資訊、及旋轉位置檢測部108檢測出之設置方位線Lx1、Lx4上之旋轉滾筒DR之旋轉角度位置資訊,逐次運算基板P或被曝光區域W之應變(變形)。例如,於基板P於長條方向上受到較大之張力或者受到熱製程而變形之情形時,被曝光區域W之形狀亦產生應變(變形),對準標記MKm(MK1~MK4)之排列亦不成為如圖4所示之矩形狀,而成為產生應變(變形)之狀態。 於基板P或被曝光區域W產生應變之情形時,必須相應於此變更各描繪線SLn之倍率,因此,曝光控制部116係基於運算出之基板P或被曝光區域W之應變,生成整體倍率修正資訊TMg及局部倍率修正資訊CMgn之至少一者。而且,該生成之整體倍率修正資訊TMg及局部倍率修正資訊CMgn之至少一者係輸出至整體倍率設定部110或局部倍率設定部112。藉此,可提昇重疊曝光之精度。
進而,曝光控制部116亦可根據基板P或被曝光區域W之應變而針對各描繪線SLn中之每一條生成修正傾斜角資訊。基於該生成之修正傾斜角資訊,上文敍述之上述致動器使各掃描單元Un(U1~U6)繞照射中心軸Len(Le1~Le6)轉動。藉此,重疊曝光之精度進一步提昇。曝光控制部116亦可每當藉由各掃描單元Un(U1~U6)進行光點SP之掃描時或每當光點SP之掃描進行特定次數時或者基板P或被曝光區域W之應變之傾向超過容許範圍而改變時,再次生成整體倍率修正資訊TMg及局部倍率修正資訊CMgn之至少一者、以及修正傾斜角資訊。
圖11係表示設置於光源裝置LSa(LSb)之內部之訊號產生部22a之構成之圖。如圖9所示,設為自局部倍率設定部112對訊號產生部22a發送具有修正位置資訊Nv與伸縮資訊(極性資訊)POL之局部倍率修正資訊CMgn。該局部倍率設定部112對每一掃描單元Un(U1~U6)記憶局部倍率修正資訊CMgn(CMg1~CMg6)。
訊號產生部22a具有時脈訊號產生部200、修正點指定部202、及時脈切換部204。該時脈訊號產生部200、修正點指定部202、及時脈切換部204等可藉由FPGA(Field Programmable Gate Array,場可程式化閘 陣列)彙集而構成。時脈訊號產生部200生成複數個(N個)時脈訊號CKp(p=0、1、2、…、N-1),該時脈訊號CKp具有較由
Figure 106115404-A0202-12-0077-50
/Vs規定之週期短之基準週期Te,並且以基準週期Te之1/N之修正時間為單位賦予相位差。
Figure 106115404-A0202-12-0077-51
係光點SP之有效之大小,Vs係光點SP相對於基板P之主掃描方向之相對之速度,此處,作為一例,設為150mm/sec而進行說明。再者,於基準週期Te較由
Figure 106115404-A0202-12-0077-52
/Vs規定之週期長之情形時,沿著主掃描方向照射之光點SP隔開特定之間隔離散地照射至基板P之被照射面上。反之,於基準週期Te較由
Figure 106115404-A0202-12-0077-53
/Vs規定之週期短之情形時,光點SP以於主掃描方向上相互重疊之方式照射至基板P之被照射面上。於本實施形態中,原則上,使光點SP每次以大小
Figure 106115404-A0202-12-0077-54
之1/2重疊,為此,將振盪頻率Fe設定為100MHz。於該情形時,基準週期Te成為1/Fe=1/100〔MHz〕=10〔nsec〕,成為較
Figure 106115404-A0202-12-0077-55
/Vs=3〔μm〕/150〔mm/sec〕=20nsec小之值。又,若設為N=50,則時脈訊號產生部200生成被賦予有0.2nsec(=10〔nsec〕/50)之相位差之50個時脈訊號CK0~CK49
具體而言,時脈訊號產生部200具有時脈產生部(振盪器)60、及複數個(N-1個)延遲電路De(De01~De49)。時脈產生部60產生由以與整體倍率修正資訊TMg對應之振盪頻率Fe(=1/Te)振盪之時脈脈衝構成之時脈訊號CK0。於本實施形態中,將整體倍率修正資訊TMg設為0(修正量0%),時脈產生部60以100MHz之振盪頻率Fe(基準週期Te=10nsec)產生時脈訊號CK0
來自時脈產生部60之時脈訊號(輸出訊號)CK0係輸入至串聯連接之複數個延遲電路De(De01~De49)之初段(前頭)之延遲電路 De01,並且輸入至時脈切換部204之第1個輸入端子。該延遲電路De(De01~De049)使作為輸入訊號之時脈訊號CKp延遲固定時間(Te/N=0.2nsec)而輸出。因此,初段之延遲電路De01輸出時脈訊號(輸出訊號)CK1,該時脈訊號(輸出訊號)CK1為與時脈產生部60產生之時脈訊號CK0相同之基準週期Te(10nsec)且相對於時脈訊號CK0具有0.2nsec之延遲。同樣地,第2段延遲電路De02輸出時脈訊號(輸出訊號)CK2,該時脈訊號(輸出訊號)CK2為與來自前段之延遲電路De01之時脈訊號(輸出訊號)CK1相同之基準週期Te(10nsec),且相對於時脈訊號CK1具有0.2nsec之延遲。第3段之後之延遲電路De03~De49亦同樣地輸出時脈訊號(輸出訊號)CK3~CK49,該時脈訊號(輸出訊號)CK3~CK49為與來自前段之延遲電路De02~De48之時脈訊號(輸出訊號)CK2~CK48相同之基準週期Te(10nsec),且相對於時脈訊號CK2~CK48具有0.2nsec之延遲。
時脈訊號CK0~CK49係每0.2nsec被賦予相位差之訊號,因此,時脈訊號CK0成為與為與時脈訊號CK49相同之基準週期Te(10nsec)且相對於時脈訊號CK49進而具有0.2nsec之延遲之時脈訊號恰好偏移1週期的訊號。因此,時脈訊號CK0實質上可視為相對於時脈訊號CK49之各時脈脈衝延遲0.2nsec之時脈訊號。來自延遲電路De01~De49之時脈訊號CK1~CK49係輸入至時脈切換部204之第2個~第50個輸入端子。
時脈切換部204係選擇所輸入之50個時脈訊號CKp(CK0~CK49)中之任一個時脈訊號CKp並將所選擇之時脈訊號CKp作為時脈訊號(基準時脈訊號)LTC輸出的多工器(選擇電路)。因此,時脈訊號LTC之振盪頻率Fa(=1/Ta)原則上成為與時脈訊號CK0~CK49之振盪頻率Fe(= 1/Ta)、即100MHz相同。控制電路22係以響應自時脈切換部204輸出之時脈訊號LTC之各時脈脈衝而發出種光S1、S2的方式,控制DFB半導體雷射元件30、32。因此,自光源裝置LSa(LSb)射出之脈衝狀之光束LBa(LBb)之振盪頻率Fa原則上成為100MHz。
時脈切換部204係以光點SP通過位於掃描線上之特定之修正點CPP之時序,將作為時脈訊號LTC而輸出之時脈訊號CKp、即起因於光束LBa(LBb)之產生之時脈訊號CKp切換為相位差不同之其他時脈訊號CKp。時脈切換部204係以光點SP通過修正點CPP之時序,將選擇為時脈訊號LTC之時脈訊號CKp切換為相對於當前選擇為時脈訊號LTC之時脈訊號CKp具有0.2nsec之相位差之時脈訊號CKp±1。該切換之時脈訊號CKp±1之相位差之方向、即相位延遲0.2nsec之方向或者相位提前0.2nsec之方向係根據作為局部倍率修正資訊(修正資訊)CMgn(CMg1~CMg6)之一部分之1位元之伸縮資訊(極性資訊)POL而決定。
於伸縮資訊POL為高「1」(伸長)之情形時,時脈切換部204係將相對於當前作為時脈訊號LTC輸出之時脈訊號CKp而相位延遲0.2nsec的時脈訊號CKp+1選擇為時脈訊號LTC並輸出。又,於伸縮資訊POL為低「0」(縮小)之情形時,時脈切換部204係將相對於當前作為時脈訊號LTC輸出之時脈訊號CKp而相位提前0.2nsec的時脈訊號CKp-1選擇為時脈訊號LTC並輸出。例如,時脈切換部204係於當前作為時脈訊號LTC輸出之時脈訊號CKp為CK11之情形時,於伸縮資訊POL為高(H)時將作為時脈訊號LTC輸出之時脈訊號CKp切換為時脈訊號CK12,於伸縮資訊POL為低(L)時將作為時脈訊號LTC輸出之時脈訊號CKp切換為時脈訊號CK10。於 光點SP之1次掃描期間中,輸入相同之伸縮資訊POL。
時脈切換部204係使用與藉由光束切換部BDU使光束LBn入射之掃描單元Un對應之局部倍率修正資訊CMgn之伸縮資訊POL,決定作為時脈訊號LTC輸出之時脈訊號CKp之相位偏移之方向(相位提前之方向或延遲之方向)。來自光源裝置LSa之光束LBa(LB1~LB3)被導引至掃描單元U1~U3之任一個。因此,光源裝置LSa之訊號產生部22a之時脈切換部204係基於與掃描單元U1~U3中光束LBn入射之1個掃描單元Un對應之局部倍率修正資訊CMgn之伸縮資訊POL,決定作為時脈訊號LTC輸出之時脈訊號CKp之相位偏移之方向。例如,於光束LB2入射至掃描單元U2之情形時,光源裝置LSa之時脈切換部204係基於與掃描單元U2對應之局部倍率修正資訊CMg2之伸縮資訊POL,決定作為時脈訊號LTC輸出之時脈訊號CKp之相位偏移之方向。
又,來自光源裝置LSb之光束LBb(LB4~LB6)被導引至掃描單元U4~U6之任一個。因此,光源裝置LSb之訊號產生部22a之時脈切換部204係基於與掃描單元U4~U6中光束LBn入射之1個掃描單元Un對應之局部倍率修正資訊CMgn之伸縮資訊POL,決定作為時脈訊號LTC輸出之時脈訊號CKp之相位偏移之方向。例如,於光束LB6入射至掃描單元U6之情形時,光源裝置LSb之時脈切換部204係基於與掃描單元U6對應之局部倍率修正資訊CMg6之伸縮資訊POL,決定作為時脈訊號LTC輸出之時脈訊號CKp之相位偏移之方向。
修正點指定部202將各描繪線SLn(SL1~SL6)上之特定之點指定為修正點CPP。修正點指定部202係基於作為局部倍率修正資訊(修 正資訊)CMgn(CMg1~CMg6)之一部分之用於指定修正點CPP之修正位置資訊(設定值)Nv指定修正點CPP。該局部倍率修正資訊CMgn之修正位置資訊Nv係用以根據沿著描繪線SLn描繪之圖案之描繪倍率(或描繪線SLn之主掃描方向上之描繪倍率)於描繪線SLn上之等間隔地離散之複數個位置之各者指定修正點CPP的資訊,且係表示修正點CPP與修正點CPP之距離間隔(等間隔)之資訊。藉此,修正點指定部202可將描繪線SLn(SL1~SL6)上等間隔地離散地配置之位置指定為修正點CPP。該修正點CPP例如設定於沿著描繪線SLn投射之相鄰之2個光點SP之投射位置(光點SP之中心位置)之間。
修正點指定部202係使用與藉由光束切換部BDU使光束LBn入射之掃描單元Un對應之局部倍率修正資訊CMgn之修正位置資訊Nv而指定修正點CPP。由於來自光源裝置LSa之光束LBa(LB1~LB3)被導引至掃描單元U1~U3之任一個,故而修正點指定部202係基於與掃描單元U1~U3中光束LBn入射之1個掃描單元Un對應之局部倍率修正資訊CMgn之修正位置資訊Nv而指定修正點CPP。例如,於光束LB2入射至掃描單元U2之情形時,光源裝置LSa之修正點指定部202係基於與掃描單元U2對應之局部倍率修正資訊CMg2之修正位置資訊Nv,將描繪線SLn2上等間隔地離散地配置之複數個位置指定為修正點CPP。
又,由於來自光源裝置LSb之光束LBb(LB4~LB6)被導引至掃描單元U4~U6之任一個,故而光源裝置LSb之訊號產生部22a之修正點指定部202係基於與掃描單元U4~U6中光束LBn入射之1個掃描單元Un對應之局部倍率修正資訊CMgn之修正位置資訊Nv而指定修正點CPP。 例如,於光束LB6入射至掃描單元U6之情形時,光源裝置LSb之修正點指定部202係基於與掃描單元U6對應之局部倍率修正資訊CMg6之修正位置資訊Nv,將描繪線SLn6上等間隔地離散地配置之複數個位置指定為修正點CPP。
若對該修正點指定部202具體進行說明,則修正點指定部202具有分頻計數器電路212與移位脈衝輸出部214。分頻計數器電路212係減法計數器,且被輸入自時脈切換部204輸出之時脈訊號LTC之時脈脈衝(基準時脈脈衝)。自時脈切換部204輸出之時脈訊號LTC之時脈脈衝係經由閘電路GTa而輸入至分頻計數器電路212。表示掃描單元U1~U3之各者為描繪期間之描繪允許訊號SQ1~SQ3成為邏輯和而施加至閘電路GTa。描繪允許訊號SQ1~SQ3係響應圖10之入射允許訊號LP1~LP3而生成。閘電路GTa係於描繪允許訊號SQn為高(H)之期間打開之閘。即,分頻計數器電路212僅於描繪允許訊號SQn為高之期間中對時脈訊號LTC之時脈脈衝進行計數。因此,光源裝置LSa之閘電路GTa係將描繪允許訊號SQ1~SQ3之任一個為高(H)之期間所輸入之時脈訊號LTC之時脈脈衝輸出至分頻計數器電路212。同樣地,對光源裝置LSb之訊號產生部22a之閘電路GTa施加與掃描單元U4~U6對應之3個描繪允許訊號SQ4~SQ6。因此,光源裝置LSb之閘電路GTa係將描繪允許訊號SQ4~SQ6之任一個為高(H)之期間所輸入之時脈訊號LTC之時脈脈衝輸出至分頻計數器電路212。
分頻計數器電路212係初始之計數值預設為修正位置資訊(設定值)Nv,每當輸入時脈訊號LTC之時脈脈衝時將計數值遞減。分頻計數器電路212係於計數值變為0時將1脈衝之一致訊號Idc輸出至移位脈 衝輸出部214。即,分頻計數器電路212係於以修正位置資訊Nv量計數時脈訊號LTC之時脈脈衝時輸出一致訊號Idc。該一致訊號Idc係表示於下一時脈脈衝產生之前存在修正點CPP之資訊。又,分頻計數器電路212若於計數值變為0後被輸入下一時脈脈衝,則將計數值預設為修正位置資訊Nv。藉此,可沿著描繪線SLn等間隔地指定複數個修正點CPP。
移位脈衝輸出部214若被輸入一致訊號Idc則將移位脈衝CS輸出至時脈切換部204。若產生該移位脈衝CS,則時脈切換部204切換作為時脈訊號LTC輸出之時脈訊號CKp。該移位脈衝CS係表示修正點CPP之資訊,係於分頻計數器電路212之計數值變為0後且被輸入下一時脈脈衝之前產生。因此,於根據使分頻計數器電路212之計數值為0之時脈脈衝而產生之光束LBa(LBb)之光點SP之基板P上之位置與根據下一時脈脈衝而產生之光束LBa(LBb)之光點SP之基板P上之位置之間存在修正點CPP。
若如上述般每1條描繪線SLn投射20000個光點SP,並於描繪線SLn上等間隔地離散地配置40個修正點CPP,則以500個光點SP(時脈訊號LTC之時脈脈衝)為間隔配置修正點CPP,修正位置資訊Nv設定為500。
圖12係表示自圖11所示之訊號產生部22a之各部輸出之訊號之時序圖。時脈訊號產生部200產生之50個時脈訊號CK0~CK49均為與時脈產生部60輸出之時脈訊號CK0相同之基準週期Te,但其相位每次延遲0.2nsec。因此,例如,時脈訊號CK3成為相對於時脈訊號CK0而相位延遲0.6nsec者,時脈訊號CK49成為相對於時脈訊號CK0而相位延遲9.8nsec者。分頻計數器電路212係於以修正位置資訊(設定值)Nv量計數自時脈切換 部204輸出之時脈訊號LTC之時脈脈衝時輸出一致訊號Idc(省略圖示),相應於此,移位脈衝輸出部214輸出移位脈衝CS。移位脈衝輸出部214輸出如下移位脈衝CS,該移位脈衝CS通常輸出較高(邏輯值為1)之訊號,但於輸出一致訊號Idc時降低為較低(邏輯值為0),於經過時脈訊號CKp之基準週期Te之一半(半週期)之時間時上升為較高(邏輯值為1)。藉此,該移位脈衝CS係於分頻計數器電路212以修正位置資訊(設定值)Nv量計數時脈訊號LTC之時脈脈衝後且被輸入下一時脈脈衝之前上升。
時脈切換部204係響應移位脈衝CS之上升,將作為時脈訊號LTC輸出之時脈訊號CKp切換為自移位脈衝CS即將產生之前所輸出之時脈訊號CKp使相位朝與伸縮資訊POL′對應之方向偏移0.2nsec所得之時脈訊號CKp±1。於圖12之例中,將移位脈衝CS即將產生之前作為時脈訊號LTC輸出之時脈訊號CKp設為CK0,將伸縮資訊POL設為「0」(縮小),因此,響應移位脈衝CS之上升而切換為時脈訊號CK49。如此,於伸縮資訊POL為「0」之情形時,每當光點SP通過修正點CPP時(即,每當產生移位脈衝CS時),時脈切換部204係以相位每次提前0.2nsec之方式切換作為時脈訊號LTC輸出之時脈訊號CKp。因此,作為時脈訊號LTC輸出(選擇)之時脈訊號CKp按照CK0→CK49→CK48→CK47→‥‥之順序切換。於該移位脈衝CS產生之修正點CPP之位置,時脈訊號LTC之週期成為相對於基準週期Te(=10nsec)短0.2nsec之時間(9.8nsec),此後,於光點SP通過下一修正點CPP之前(產生下一移位脈衝CS之前),時脈訊號LTC之週期成為基準週期Te(=10nsec)。
反之,於伸縮資訊POL為「1」之情形時,每當光點SP通 過修正點CPP時(即,每當產生移位脈衝CS時),時脈切換部204係以相位每次延遲0.2nsec之方式切換作為時脈訊號LTC輸出(選擇)之時脈訊號CKp。因此,作為時脈訊號LTC輸出(選擇)之時脈訊號CKp按照CK0→CK1→CK2→CK3→‥‥之順序切換。於該移位脈衝CS產生之修正點CPP之位置,時脈訊號LTC之週期成為相對於基準週期Te(=10nsec)長0.2nsec之時間(10.2nsec),此後,於光點SP通過下一修正點CPP之前(產生下一移位脈衝CS之前),時脈訊號LTC之週期成為基準週期Te(=10nsec)。
於本實施形態中,有效之大小
Figure 106115404-A0202-12-0085-56
為3μm之光點SP以每次以1.5μm重疊之方式沿著主掃描方向投射,因此,修正點CPP處之時脈訊號LTC之週期之修正時間(±0.2nsec)相當於0.03μm(=1.5〔μm〕×(±0.2〔nsec〕/10〔nsec〕)),每1像素伸縮±0.03μm。
圖13A係對未進行局部倍率修正之情形時描繪之圖案PP進行說明之圖,圖13B係對根據圖12所示之時序圖進行局部倍率修正(縮小)之情形時描繪之圖案PP進行說明的圖。再者,以實線表示強度為高位準之光點SP,以虛線表示強度為低位準或零之光點SP。如圖13A、圖13B所示,藉由響應時脈訊號LTC之各時脈脈衝而產生之光點SP描繪圖案PP。為了將圖13A與圖13B之時脈訊號LTC與圖案PP加以區別,而以LTC1、PP1表示圖13A(未進行局部倍率修正之情形)之時脈訊號LTC、圖案PP,以LTC2、PP2表示圖13B(進行局部倍率修正之情形)之時脈訊號LTC、圖案PP。
於未進行局部倍率修正之情形時,如圖13A所示,描繪之各像素之尺寸Pxy於主掃描方向上成為固定之長度。再者,以Px表示像素 之副掃描方向(X方向)之長度,以Py表示主掃描方向(Y方向)之長度。若根據如圖12所示之時序圖進行局部倍率修正(縮小),則如圖13B所示,包含修正點CPP之像素之尺寸Pxy成為像素之長度Py縮小△Py(=0.03μm)之狀態。反之,若進行伸長之局部倍率修正,則包含修正點CPP之像素之尺寸Pxy成為像素之長度Py伸長△Py(=0.03μm)之狀態。
再者,關於串列資料DLn之像素移位,雖未特別提及,但每當自時脈切換部204將時脈訊號LTC之時脈脈衝輸出2個時,圖9所示之描繪資料輸出部114便使輸出至光源裝置LSa(LSb)之驅動電路36a之串列資料DLn之像素之邏輯資訊移位1像素量(1位元量)。藉此,2個光點SP(時脈訊號LTC之時脈脈衝)與1像素對應。
如上所述,本實施形態之曝光裝置EX係根據圖案資料對根據來自脈衝光源部35之種光S1、S2而生成之光束LB(Lse、LBa、LBb、LBn)之光點SP進行強度調變,並且使光點SP沿著基板P上之描繪線SLn相對地進行掃描,藉此於基板P上描繪圖案。曝光裝置EX至少具備時脈訊號產生部200、控制電路(光源控制部)22、及時脈切換部204。如上所述,時脈訊號產生部200生成複數個(N=50個)時脈訊號CKp(CK0~CK49),該時脈訊號CKp具有較由
Figure 106115404-A0202-12-0086-57
/Vs決定之週期短之基準週期Te(例如10nsec),並且以基準週期Te之1/N之修正時間(例如0.2nsec)為單位賦予相位差。控制電路(光源控制部)22係以響應複數個時脈訊號CKp中之任一個時脈訊號CKp(時脈訊號LTC)之各時脈脈衝而產生光束LB的方式控制脈衝光源部35。時脈切換部204係以光點SP通過描繪線SLn上指定之特定之修正點CPP之時序,將起因於光束LB之產生之時脈訊號CKp、即作為時脈訊號 LTC輸出之時脈訊號CKp切換為相位差不同之其他時脈訊號CKp。因此,可細微地修正描繪線SLn(描繪之圖案)之倍率,可進行微米級之精密之重疊曝光。
該局部倍率修正資訊CMgn(CMg1~CMg6)之修正位置資訊(設定值)Nv可任意地變更,根據描繪線SLn之倍率而適當設定。例如,亦可以位於描繪線SLn上之修正點CPP成為1個之方式設定修正位置資訊Nv。又,亦可於沿著描繪線SLn之光點SP之每1次掃描時改變修正位置資訊Nv之值,亦可於1次掃描中每當光點SP位於修正點CPP時改變修正位置資訊Nv之值。於該情形時,於描繪線SLn上之離散之位置指定複數個修正點CPP之情況亦不變,但可藉由變更修正位置資訊Nv而使修正點CPP之間隔不均勻。進而,亦可於沿著描繪線SLn之光束LBn(光點SP)之每1次掃描或多面鏡PM之每1周旋轉,使描繪線SLn上之修正像素之數量不變,而使修正像素(修正點CPP)之位置不同。
[第1實施形態之變形例]
上述第1實施形態可進行如下變形。再者,對與上述實施形態相同之構成標註相同之符號,以不同部分為中心進行說明。
(變形例1)
於上述第1實施形態中,將用以將來自光源裝置LSa(LSb)之光束LBa(LBb)選擇性地供給至掃描單元Un(U1~U6)之任一個的選擇用光學元件AOMn(AOM1~AOM6)設為聲光調變元件。即,將相對於入射光束以特定之繞射角偏轉後輸出之1次繞射光作為描繪用之光束LBn而供給至掃描單元Un,但選擇用光學元件AOMn(AOM1~AOM6)亦可為不使用繞射 現象之光電偏轉構件。圖14表示與變形例1之光束切換部BDU內之1個掃描單元Un對應之光束切換部之構成,於本變形例中,代替上文之圖6所示之選擇用光學元件AOM1與單元側入射鏡IM1之組合系統而設置使來自光源裝置LSa(LSb)之光束LBa(LBb)入射之光電元件OSn、及根據已透過光電元件OSn之光束之偏振特性使光束透過或反射之偏振分光鏡BSn。
於圖14中,將自光源裝置LSa(LSb)成為平行光束而射出之光束LBa(LBb)之前進方向設定為與X軸平行時入射至光電元件OSn之光束LBa(LBb)設為朝Y方向偏振後之直線偏振光,若向光電元件OSn之於Y方向上對向之面上所形成之電極EJp、EJm之間施加數Kv之電壓,則已透過光電元件OSn之光束成為自入射時之偏振光狀態旋轉90度並朝Z方向偏振後之直線偏振光,並入射至偏振分光鏡BSn。於不向電極EJp、EJm間施加電壓之情形時,已透過光電元件OSn之光束成為保持入射時之偏振光狀態而朝Y方向偏振後之直線偏振光。因此,於電極EJp、EJm間之電壓為零之斷開狀態時,來自光電元件OSn之光束直接透過立方體狀之偏振分光鏡BSn之偏振分割面psp(相對於XY面與YZ面之各面傾斜45度之面)。於向電極EJp、EJm間施加電壓之接通狀態時,來自光電元件OSn之光束係於偏振分光鏡BSn之偏振分割面psp反射,成為根據描繪資料(例如圖9中之描繪位元串資料SBa、SBb)進行強度調變後之描繪用之光束LBn而朝向掃描單元Un。光電元件OSn係由呈現折射率以施加之電場強度之1次方變化之帕克爾效應、或折射率以施加之電場強度之2次方變化之克爾效應的晶體介質或非晶體介質構成。又,光電元件OSn亦可為呈現代替電場而藉由磁場使折射率變化之法拉第效應之晶體介質。
(變形例2)
圖15表示將構成圖6所示之光束切換部BDU之選擇用光學元件AOM1~AOM6與單元側入射鏡IM1~IM6置換成圖14之變形例1之構成的情形時之變形例2。自光源裝置LSa以平行光束(光束直徑為1mm以下)之形式射出之直線偏振光之光束LBa係經由使用如圖6、圖9所示之聲光調變元件(或聲光偏轉元件)之光束移相器部SFTa,依次通過光電元件OS1、偏振分光鏡BS1、光電元件OS2、偏振分光鏡BS2、光電元件OS3、偏振分光鏡BS3之後,入射至吸收體TR1。偏振分光鏡BS1係於對光電元件OS1施加電場時,將光束LBa作為描繪用之光束LB1朝向掃描單元U1反射。同樣地,偏振分光鏡BS2係於對光電元件OS2施加電場時,將光束LBa作為描繪用之光束LB2朝向掃描單元U2反射,偏振分光鏡BS3係於對光電元件OS3施加電場時,將光束LBa作為描繪用之光束LB3朝向掃描單元U3反射。於圖15中,僅對光電元件OS1~OS3中之光電元件OS2施加電場,而自光束移相器部SFTa射出之光束LBa作為光束LB2僅入射至掃描單元U2。
同樣地,自光源裝置LSb以平行光束(光束直徑為1mm以下)之形式射出之直線偏振光之光束LBb係經由使用聲光調變元件(或聲光偏轉元件)之光束移相器部SFTb,依次通過光電元件OS4、偏振分光鏡BS4、光電元件OS5、偏振分光鏡BS5、光電元件OS6、偏振分光鏡BS6之後,入射至吸收體TR2。偏振分光鏡BS4係於對光電元件OS4施加電場時,將光束LBb作為描繪用之光束LB4朝向掃描單元U4反射,偏振分光鏡BS5係於對光電元件OS5施加電場時,將光束LBb作為描繪用之光束LB5朝向 掃描單元U5反射,偏振分光鏡BS6係於對光電元件OS6施加電場時,將光束LBb作為描繪用之光束LB6朝向掃描單元U6反射。於圖15中,僅對光電元件OS4~OS6中之光電元件OS6施加電場,而自光束移相器部SFTb射出之光束LBb作為光束LB6僅入射至掃描單元U6。
作為一例,光束移相器部SFTa、SFTb係使用聲光偏轉元件AODs如圖16般構成。聲光偏轉元件AODs係藉由與來自圖9所示之選擇元件驅動控制部102之作為高頻電力之驅動訊號HFn相同之高頻驅動訊號HGa、HGb而驅動。來自光源裝置LSa(LSb)之平行之光束LBa(LBb)係與焦距f1之透鏡CG1之光軸成為同軸而入射,於面pu以成為光束腰之方式聚光。聲光偏轉元件AODs之偏轉點配置於面pu之位置。於驅動訊號HGa(HGb)斷開之狀態下,於面pu成為光束腰之光束LBa(LBb)不繞射而自面pu入射至焦距f2之透鏡CG2,成為平行光束後於鏡OM反射並入射至吸收體TR3。於驅動訊號HGa(HGb)施加至聲光偏轉元件AODs之接通狀態時,聲光偏轉元件AODs生成以與驅動訊號HGa(HGb)之頻率對應之繞射角偏轉後之光束LBa(LBb)之1次繞射光。此處,該1次繞射光稱為經偏轉之光束LBa(LBb)。由於聲光偏轉元件AODs之偏轉點配置於透鏡CG2之焦距f2之位置即面pu,故而自透鏡CG2射出之光束LBa(LBb)成為與透鏡CG2之光軸平行之平行光束,並入射至圖15之光電元件OS1或OS4。
藉由改變對聲光偏轉元件AODs施加之驅動訊號HGa(HGb)之頻率,而自透鏡CG2射出之光束LBa(LBb)係以與透鏡CG2之光軸平行之狀態於與光軸垂直之方向上位置移位。光束LBa(LBb)之位置移位之方向係於圖14所示之光電元件OSn(OS1或OS4)之入射端面上與Z方向 對應,移位量與驅動訊號HGa(HGb)之頻率之變化量對應。於本變形例之情形時,光束移相器部SFTa(SFTb)相對於3個掃描單元U1、U2、U3(U4、U5、U6)共通地設置。因此,對聲光偏轉元件AODs施加之驅動訊號HGa(HGb)之頻率可與圖15之光電元件OS1~OS3之任一個或光電元件OS4~OS6之任一個成為接通狀態之時序同步地變更(頻率調變)。藉此,通過光電元件OS1~OS3(OS4~OS6)之光束LBa(LBb)於圖14中平行於Z方向而移位,於偏振分光鏡BS1~BS3(BS4~BS6)反射後之光束LBn(LB1~Lb6)於圖14中平行於X方向而移位。藉此,可使來自與已成為接通狀態之光電元件OSn對應之掃描單元Un之光束LBn之光點SP於副掃描方向(X方向)上以微少量快速移位。
以上,於本實施形態中,為了將來自光源裝置LSa(LSb)之光束LBa(LBb)選擇性地分配至3個掃描單元U1~U3(U4~U6)之任一個,而使用不具有偏轉作用之光電元件OS1~OS3(OS4~OS6),因此,為了對光點SP之位置於副掃描方向上進行微調整,而設置利用具有偏轉作用之聲光偏轉元件AODs之光束移相器部SFTa(SFTb)。
(變形例3)
圖17A及B表示代替上述實施形態或變形例中使用之選擇用光學元件AOM1~AOM6或聲光偏轉元件AODs而設置且不利用繞射作用的光束偏轉構件之一例。圖17A表示於以特定之厚度形成為稜鏡狀(三角形)之透過性之晶體介質之對向之平行之側面(圖17A中為上下表面)形成有電極EJp、EJm的光電元件ODn。晶體介質係作為化學組成而以KDP(KH2PO4)、ADP(NH4H2PO4)、KD*P(KD2PO4)、KDA(KH2AsO4)、BaTiO3、SrTiO3、LiNbO3、 LiTaO3等表示的材料。自光電元件ODn之一斜面入射之光束LBa(LBb)係於電極EJp、EJm間之電場為零時,根據晶體介質之初始之折射率與空氣之折射率之差而偏轉,並自另一斜面射出。若向電極EJp、EJm間施加固定值以上之電場,則晶體介質之折射率自初始值變化,因此,已入射之光束LBa(LBb)成為自另一斜面以不同於初始角度之角度射出之光束LBn。即便使用此種光電元件ODn,亦可對來自光源裝置LSa(LSb)之光束LBa(LBb)分時地進行切換而供給至掃描單元U1~U6之各者。又,藉由改變對光電元件ODn施加之電場強度,可微少地快速改變射出之光束LBn之偏轉角,因此,亦可使光電元件ODn同時具有切換功能、及使基板P上之光點SP於副掃描方向上微少量移位之光束移位功能。進而,亦可代替如圖16般之單獨之光束移相器部SFTa(SFTb)之聲光偏轉元件AODs而使用光電元件ODn。
又,圖17B表示使用利用例如日本專利特開2014-081575號公報、國際公開第2005/124398號說明書中揭示般之KTN(KTa1-xNbxO3)晶體之光電元件KDn的光束偏轉構件之例。於圖17B中,光電元件KDn係由沿著光束LBa(LBb)之前進方向形成為較長之角柱狀之晶體介質、及隔著該晶體介質對向配置之電極EJp、EJm所構成。光電元件KDn係以保持為固定之溫度(例如40度左右)之方式收納於具有調溫功能之殼體內。於電極EJp、EJm間之電場強度為零時,自角柱狀之KTN晶體介質之一端面入射之光束LBa(LBb)係於KTN晶體介質內直線前進,並自另一端面射出。若向電極EJp、EJm間施加電場強度,則通過KTN晶體介質內之光束LBa(LBb)朝電場之方向偏轉,並自另一端面作為光束LBn而射出。KTN晶體介質亦為折射率根據電場強度而變化之材料,但與上文列舉之各種晶體 介質相比,以低一位之電場強度(數百V)獲得較大之折射率變化。因此,若改變向電極EJp、EJm間施加之電壓,則可於相對較大之範圍(例如0度~5度)內快速調整自光電元件KDn射出之光束LBn相對於原來之光束LBa(LBb)之偏轉角。
即便使用此種光電元件KDn,亦可對來自光源裝置LSa(LSb)之光束LBa(LBb)分時地進行切換並供給至掃描單元U1~U6之各者。又,藉由改變對光電元件KDn施加之電場強度,可快速改變射出之光束LBn之偏轉角,因此,亦可使光電元件KDn同時具有切換功能、及使基板P上之光點SP於副掃描方向上移位之功能。進而,亦可代替如圖16之單獨之光束移相器部SFTa(SFTb)之聲光偏轉元件AODs而使用光電元件KDn。
根據以上之第1實施形態或其等之各變形例,為了使沿著描繪線SLn之各者掃描之光點SP於副掃描方向上移位,而設置有利用設置於掃描單元Un(U1~U6)之各者之移位光學構件SR(平行平板Sr2)之機械光學移相器、及利用聲光偏轉元件AODs、光電元件OSn、ODn、KDn等使入射至掃描單元Un(U1~U6)之各者之光束LBn移位之光電移相器。因此,於將基於來自掃描單元Un(U1~U6)之各者之光束LBn之光點SP之掃描之描繪線SLn之副掃描方向之位置關係設定為特定之狀態(初始之配置狀態等)的校正(校準)時,使用機械光學移相器(平行平板Sr2),即便藉由該校正亦殘留之誤差量可藉由光電移相器(聲光偏轉元件AODs、光電元件OSn、ODn、KDn)更精細地進行修正。
[第2實施形態]
其次,對第2實施形態進行說明。再者,對與上述實施形態(亦包含變形例)相同之構成標註相同之符號,僅對不同部分進行說明。於作為上述實施形態所說明之圖6之構成中,藉由基於聚光透鏡CD與準直器透鏡(準直透鏡)LC之複數個中繼系統,對來自光源裝置LSa(LSb)之光束LBa(LBb)形成複數個光束腰(聚光點),於其光束腰之位置之各者配置選擇用光學元件(聲光調變元件)AOM1~AOM6。光束LBa(LBb)之光束腰位置係以最終與基板P之表面(光束LB1~LB6之各光點SP)光學共軛之方式設定,因此,即便因選擇用光學元件(聲光調變元件)AOM1~AOM6之特性變化等而偏轉角產生誤差,亦可抑制基板P上之光點SP於副掃描方向(Xt方向)上漂移。因此,於針對每一掃描單元Un對光點SP之描繪線SLn於副掃描方向(Xt方向)上以像素尺寸(數μm)程度之範圍進行微調整的情形時,使上文之圖5所示之掃描單元Un內之平行平板Sr2傾斜即可。進而,為了使平行平板Sr2之傾斜自動化,設置小型之壓電馬達或傾斜量之監視器系統之類之機構即可。
然而,即便使平行平板Sr2之傾斜自動化,由於為機械驅動,故而例如具有與多面鏡PM之1周旋轉量之時間對應之較高之響應性的控制亦較難。因此,於第2實施形態中,對自如上文之圖7般之光源裝置LS(LSa、LSb)至各掃描單元Un之光束送光系統(光束切換部BDU)之光學構成或配置略微進行變更,使選擇用光學元件(聲光調變元件)AOM1~AOM6同時具有光束之切換功能、及對光點SP之位置於副掃描方向上進行微調整之移位功能。以下,利用圖18~圖22對本第2實施形態之構成進行說明。
圖18係詳細地表示上文之圖7所示之光源裝置LSa(LSb)之脈衝光產生部20內之波長轉換部之構成的圖,圖19係表示自光源裝置LSa(LSb)至最初之選擇用光學元件AOM1之光束LBa(省略LBb)之光路的圖,圖20係表示自選擇用光學元件AOM1至下一段選擇用光學元件AOM2之光路與選擇用光學元件AOM1之驅動電路之構成的圖,圖21係對選擇用光學元件AOM1之後之選擇用鏡(分支反射鏡)IM1中之光束選擇與光束移位之情況進行說明的圖,圖22係對自多面鏡PM至基板P之光束之動作進行說明之圖。
如圖18所示,自光源裝置LSa內之光纖光放大器46之射出端46a,經放大之種光(光束)Lse以較小之發散角(NA:數值孔徑)射出。透鏡元件GL(GLa)將種光Lse以於第1波長轉換元件(波長轉換光學元件)48中成為光束腰之方式聚光。因此,於第1波長轉換元件48進行波長轉換後之1次之諧波光束具有發散性地入射至透鏡元件GL(GLb)。透鏡元件GLb將1次之諧波光束以於第2波長轉換元件(波長轉換光學元件)50中成為光束腰之方式聚光。於第2波長轉換元件50進行波長轉換後之2次之諧波光束具有發散性地入射至透鏡元件GL(GLc)。透鏡元件GLc係以使2次之諧波光束為大致平行之細光束LBa(LBb)並自光源裝置LSa之射出窗20H射出的方式配置。自射出窗20H射出之光束LBa之直徑為數mm以下,較佳為1mm左右。如此,波長轉換元件48、50之各者係以藉由透鏡元件GLa、GLb而與光纖光放大器46之射出端46a(發光點)光學共軛之方式設定。因此,即便於因波長轉換元件48、50之晶體特性之變動而導致生成之諧波光束之前進方向略微傾斜之情形時,亦可抑制自射出窗20H射 出之光束LBa之角度方向(方位)上之漂移。再者,於圖18中,將透鏡元件GLc與射出窗20H分開而表示,但亦可將透鏡元件GLc本身配置於射出窗20H之位置。
自射出窗20H射出之光束LBa如圖19所示,沿著基於2個聚光透鏡CD0、CD1之擴大器系統之光軸AXj前進,轉換為光束直徑縮小為1/2左右(0.5mm左右)之大致平行光束並入射至第1段選擇用光學元件AOM1。來自射出窗20H之光束LBa於聚光透鏡CD0與聚光透鏡CD1之間之聚光位置Pep成為光束腰。聚光透鏡CD1係作為上文之圖6中之聚光透鏡CD1而設置。進而,選擇用光學元件AOM1內之光束之偏轉位置Pdf(繞射點)係以藉由基於聚光透鏡CD0、CD1之擴大器系統而與射出窗20H光學共軛之方式設定。進而,聚光位置Pep係以與圖18中之光纖光放大器46之射出端46a、波長轉換元件48、50之各者光學共軛之方式設定。又,選擇用光學元件AOM1之光束之偏轉方向、即切換時作為已入射之光束LBa之1次繞射光射出之光束LB1之繞射方向設定為Z方向(使基板P上之光點SP於副掃描方向上移位之方向)。通過選擇用光學元件AOM1之光束LBa例如成為光束直徑為約0.5mm左右之平行光束,作為1次繞射光射出之光束LB1亦成為光束直徑為約0.5mm左右之平行光束。即,於上述各實施形態(亦包含變形例)中,於選擇用光學元件AOM1內以成為光束腰之方式使光束LBa(LBb)收斂,但於本第2實施形態中,使通過選擇用光學元件AOM1之光束LBa(LBb)為具有微小之直徑之平行光束。
如圖20所示,已透過選擇用光學元件AOM1之光束LBa與切換時作為1次繞射光偏轉之光束LB1均入射至與光軸AXj同軸地配置之 準直器透鏡CL1(相當於圖6中之透鏡CL1)。選擇用光學元件AOM1之偏轉位置Pdf設定於準直器透鏡CL1之前側焦點之位置。因此,光束LBa與光束LB1係於準直器透鏡(聚光透鏡)CL1之後側焦點之面Pip分別以成為光束腰之方式收斂。沿著準直器透鏡CL1之光軸AXj前進之光束LBa係自面Pip以發散狀態入射至圖6所示之聚光透鏡(聚光透鏡)CD2,再次成為光束直徑為0.5mm左右之平行光束,並入射至第2段選擇用光學元件AOM2。第2段選擇用光學元件AOM2之偏轉位置Pdf係藉由基於準直器透鏡CL1與聚光透鏡CD2之中繼系統而與選擇用光學元件AOM1之偏轉位置Pdf配置成共軛關係。
圖6所示之選擇用之鏡IM1係於本第2實施形態中,配置於準直器透鏡CL1與聚光透鏡CD2之間之面Pip之附近。於面Pip,光束LBa、LB1成為最細之光束腰並於Z方向上分離,因此,鏡IM1之反射面IM1a之配置變得容易。選擇用光學元件AOM1之偏轉位置Pdf與面Pip係藉由準直器透鏡CL1而成為光瞳位置與像面之關係,自準直器透鏡CL1朝向鏡IM1之反射面IM1a之光束LB1之中心軸(主光線)成為與光束LBa之主光線(光軸AXj)平行。於鏡IM1之反射面IM1a反射後之光束LB1係藉由與聚光透鏡CD2同等之準直器透鏡CL1a而轉換為平行光束,並朝向圖5所示之掃描單元U1之鏡M10。再者,面Pip係藉由準直器透鏡CL1與圖19中之聚光透鏡CD1而與聚光位置Pep成為光學共軛之關係。因此,面Pip亦與圖18之光纖光放大器46之射出端46a、波長轉換元件48、50之各者成為共軛關係。即,面Pip係設定為利用由透鏡元件GLa、GLb、GLc、聚光透鏡CD0、CD1、及準直透鏡CL1所構成之中繼透鏡系統而與光纖光放大器46之射出 端46a、波長轉換元件48、50之各者共軛。
準直器透鏡CL1a之光軸AXm係設定為與圖5中之照射中心線Le1同軸,於切換時之基於選擇用光學元件AOM1之光束LB1之偏轉角為規定角度(基準之設定角)時,光束LB1之中心線(主光線)以與光軸AXm成為同軸之方式入射至準直器透鏡CL1a。又,鏡IM1之反射面IM1a如圖20般設定為如下大小,即,以不遮斷光束LBa之光路之方式僅使光束LB1反射,並且即便於到達至反射面IM1a之光束LB1於Z方向上略微移位之情形時亦確實地反射光束LB1。其中,於將鏡IM1之反射面IM1a配置於面Pip之位置之情形時,於反射面IM1a上形成光束LB1聚光之光點,因此,較佳為以反射面IM1a自面Pip之位置略微偏移之方式使鏡IM1於X方向上偏移而配置。又,於反射面IM1a形成有紫外線耐受性較高之反射膜(介電體多層膜)。
於本第2實施形態中,於上文之圖9所示之選擇元件驅動控制部102內設置用以使選擇用光學元件AOM1具有光束之切換功能與移位功能之兩者之驅動電路102A。驅動電路102A係由如下各部構成:局部振盪電路102A1(VCO:電壓控制振盪器等),其接收用以使應對選擇用光學元件AOM1施加之驅動訊號HF1之頻率自基準頻率改變之修正訊號FSS,並生成與應對基準頻率修正之頻率對應之修正高頻訊號;混合電路102A2,其將由基準振盪器102S產生之頻率穩定之高頻訊號與來自局部振盪電路102A1之修正高頻訊號以頻率相加減之方式合成;及放大電路102A3,其將利用混合電路102A2而頻率合成後之高頻訊號轉換為放大至適於選擇用光學元件AOM1之超音波振子之驅動之振幅之驅動訊號HF1。放大電路102A3 具備響應圖9之選擇元件驅動控制部102中生成之入射允許訊號LP1而將高頻之驅動訊號HF1切換為高位準與低位準(或振幅零)的切換功能。因此,於驅動訊號HF1為高位準之振幅之期間(訊號LP1為H位準之期間),選擇用光學元件AOM1使光束LBa偏轉而生成光束LB1。如以上之圖20般之鏡IM1與準直器透鏡CL1a之光學系統與驅動電路102A係對於其他選擇用光學元件AOM2~AOM6之各者亦同樣地設置。於以上之構成中,局部振盪電路102A1與混合電路102A2係作為根據修正訊號FSS之值使驅動訊號HF1之頻率變化之頻率調變電路發揮功能。
於該驅動電路102A中,於修正訊號FSS表示修正量零之情形時,自放大電路102A3輸出之驅動訊號HF1之頻率設定為基於選擇用光學元件AOM1之光束LB1之偏轉角成為規定角度(基準之設定角)般之規定頻率。於修正訊號FSS表示修正量+△Fs之情形時,以基於選擇用光學元件AOM1之光束LB1之偏轉角相對於規定角度增加△θ γ之方式修正驅動訊號HF1之頻率。於修正訊號FSS表示修正量-△Fs之情形時,以基於選擇用光學元件AOM1之光束LB1之偏轉角相對於規定角度減少△θ γ之方式修正驅動訊號HF1之頻率。若光束LB1之偏轉角相對於規定角度變化±△θ γ,則入射至鏡IM1之反射面IM1a之光束LB1之位置略微於Z方向上移位,而自準直器透鏡CL1a射出之光束LB1(平行光束)相對於光軸AXm略微傾斜。利用圖21對該情況進一步進行說明。
圖21係放大表示於選擇用光學元件AOM1偏轉之光束LB1之移位之情況的光路圖。於光束LB1藉由選擇用光學元件AOM1而以規定角度偏轉之情形時,光束LB1之中心軸與準直器透鏡CL1a之光軸AXm成 為同軸。此時,自準直器透鏡CL1射出之光束LB1之中心軸係自原來之光束LBa之中心軸(光軸AXj)朝-Z方向分離△SF0。若自該狀態將驅動選擇用光學元件AOM1之驅動訊號HF1之頻率提高例如△Fs,則於選擇用光學元件AOM1之光束LB1之偏轉角相對於規定角度增加△θ γ,而到達至鏡IM1之光束LB1'之中心軸AXm'位於自光軸AXj朝-Z方向分離△SF1之位置。如此,根據驅動訊號HF1之頻率之△Fs之變化,而朝向鏡IM1之光束LB1'之中心軸AXm'自規定位置(與光軸AXm同軸之位置)朝-Z方向以△SF1-△SF0橫向移位(平行移動)。
於光軸AXm上存在相當於面Pip之面Pip',於該面Pip',光束LB1(LB1')以成為光束腰之方式聚光。自面Pip'朝向準直器透鏡CL1a之光束LB1'之中心軸AXm'與光軸AXm平行,藉由將面Pip'設定於準直器透鏡CL1a之前側焦點之位置,而自準直器透鏡CL1a射出之光束LB1'轉換為相對於光軸AXm於XZ面內略微傾斜之平行光束。於本實施形態中,以面Pip'最終與基板P之表面(光點SP)共軛之方式配置掃描單元U1內之透鏡系統(圖5中之透鏡Be1、Be2、柱面透鏡CYa、CYb、f θ透鏡TF)。
圖22係將自掃描單元U1內之多面鏡PM之1個反射面RP(RPa)至基板P之光路展開而自Yt方向觀察所得的圖。藉由選擇用光學元件AOM1而以規定角度偏轉後之光束LB1係於與XtYt面平行之面內入射至多面鏡PM之反射面RPa而反射。入射至反射面RPa之光束LB1係於XtZt面內,藉由圖5所示之第1柱面透鏡CYa而於反射面RPa上於Zt方向上收斂。於反射面RPa反射後之光束LB1係於與包含f θ透鏡FT之光軸AXf之XtYt面平行之面內,根據多面鏡PM之旋轉速度而高速偏轉,並經由f θ 透鏡FT與第2柱面透鏡CYb而以光點SP之形式聚光於基板P上。光點SP係於圖21中與紙面垂直之方向上進行一維掃描。
另一方面,如圖21般,於面Pip'相對於光束LB1以△SF1-△SF0橫向移位後之光束LB1'入射至相對於多面鏡PM之反射面RPa上之光束LB之照射位置略微朝Zt方向偏移之位置。藉此,於反射面RPa反射後之光束LB1'之光路係於XtZt面內,以與光束LB1之光路略微偏移之狀態通過f θ透鏡FT與第2柱面透鏡CYb,以光點SP'之形式聚光於基板P上。多面鏡PM之反射面RPa係光學性地配置於f θ透鏡FT之光瞳面,藉由2個柱面透鏡CYa、CYb之面傾斜修正之作用,而於圖22之XtZt面內,反射面RPa與基板P之表面成為共軛關係。因此,若照射至多面鏡PM之反射面RPa上之光束LB1如光束LB1'般朝Zt方向略微移位,則基板P上之光點SP如光點SP'般於副掃描方向上移位△SFp。
如以上之構成般,藉由使選擇用光學元件AOM1之驅動訊號HF1之頻率自規定頻率變化±△Fs,而可使光點SP於副掃描方向上移位±△SFp。該移位量(|△SFp|)受選擇用光學元件AOM1本身之偏轉角之最大範圍、鏡IM1之反射面IM1a之大小、至掃描單元U1內之多面鏡PM之光學系統(中繼系統)之倍率、多面鏡PM之反射面之Zt方向之寬度、自多面鏡PM至基板P之倍率(f θ透鏡FT之倍率)等之限制,但設定為光點SP之基板P上之有效之大小(直徑)程度或描繪資料上定義之像素尺寸(Pxy)程度之範圍。當然,亦可設定為其以上之移位量。再者,對選擇用光學元件AOM1及掃描單元U1進行了說明,但關於其他選擇用光學元件AOM2~AOM6及掃描單元U2~U6亦同樣。
如此,於本實施形態中,可為了響應入射允許訊號LPn(LP1~LP6)之光束之切換功能、及響應修正訊號FSS之光點SP之移位功能而兼用選擇用光學元件AOMn(AOM1~AOM6),因此,向各掃描單元Un(U1~U6)供給光束之光束送光系統(光束切換部BDU)之構成變得簡單。進而,與針對每一掃描單元Un分別設置光束選擇用與光點SP之移位用之聲光調變元件(AOM或AOD)之情形相比,可減少發熱源,而可提高曝光裝置EX之溫度穩定性。尤其是,驅動聲光調變元件之驅動電路(102A)成為較大之發熱源,由於驅動訊號HF1為50MHz以上之高頻,故而配置於聲光調變元件之附近。即便設置使驅動電路(102A)冷卻之機構,若其數量較多則裝置內之溫度亦容易於短時間內上升,有可能因光學系統(透鏡或鏡)之溫度變化所致之變動而導致描繪精度降低。因此,較理想為成為熱源之驅動電路、及聲光調變元件較少。又,於選擇用光學元件AOMn(AOM1~AOM6)之各者受溫度變化之影響而使作為入射光束LBa(LBb)之1次繞射光偏轉之光束LBn之偏轉角變動的情形時,於本實施形態中,可藉由設置根據溫度變化調整對圖20之驅動電路102A賦予之修正訊號FSS之值之反饋控制系統而容易地將偏轉角之變動抵消。
本實施形態之選擇用光學元件AOMn之光束移位功能可對來自複數個掃描單元Un之各者之光束LBn之光點SPn之描繪線SLn之位置快速地於副掃描方向上進行微調整。例如,若以每當入射允許訊號LP1成為H位準時改變基於修正訊號FSS之修正量之方式控制圖20所示之選擇用光學元件AOM1,則可針對多面鏡PM之每一反射面、即光點SP之每一次掃描使描繪線SL1於副掃描方向上以像素大小(或光點之大小)程度之 範圍移位。因此,使鄰接之掃描單元Un之各者繞照射中心軸Le1~Le6微少旋轉而對各描繪線SLn之傾斜進行調整後,如上文之第1實施形態般修正描繪倍率,除此以外,如第2實施形態般使描繪線SLn於副掃描方向上移位,藉此,可提高各描繪線SLn之端部之圖案描繪時之接合之精度。又,於對已形成於基板P之用於電子器件之基底圖案重疊描繪新圖案時,亦可提高其重疊精度。
於以上之第2實施形態中,基板P之表面(光束LBn以光點SP之形式聚光之位置)與圖21中之面Pip'設定為彼此共軛之關係,進而,面Pip'(Pip)亦與光源裝置LSa(LSb)中之波長轉換元件48、50、光纖光放大器46之射出端46a之各者設定為彼此共軛之關係。因此,於以使多面鏡PM之1個反射面朝固定之方向靜止之狀態將光束LBn經由f θ透鏡FT與柱面透鏡CYb以光點SP之形式投射至基板P之表面之1點的情形時,即便因波長轉換元件48、50之晶體特性之變化而導致諧波光束之前進方向於角度方面產生漂移,基板P上之光點SP亦不會受其影響而保持靜止。此意味著光點SP之主掃描方向之掃描開始位置或響應原點訊號SD之描繪開始位置不於主掃描方向上漂移而保持穩定。因此,可長期以穩定之精度進行圖案描繪。
[第3實施形態]
圖23係表示上述第2實施形態中應用之掃描單元U1(Un)之具體構成的第3實施形態之圖,且係自與包含光束LB1之掃描方向(偏轉方向)之平面(與XY平面平行之平面)正交之平面(XZ平面)觀察所得之圖。再者,於圖23中,f θ透鏡系統FT之光軸AXf與XY面平行地配置,前端 之反射鏡M15以將光軸AXf以90度彎折之方式配置。於掃描單元U1內,沿著自光束LB1之入射位置至被照射面(基板P)之光束LB1之送光路徑,設置有反射鏡M10、擴束器BE、傾斜角可變之平行平板HVP、孔徑光闌PA、反射鏡M12、第1柱面透鏡CYa、反射鏡M13、反射鏡M14、多面鏡PM(反射面RP)、f θ透鏡系統FT、反射鏡M15、及第2柱面透鏡CYb。圖23之構成基本上與圖5之構成相同,省略一部分不需要說明之構件等。而且,於本實施形態中,將圖5中設置之移位光學構件SR之平行平板Sr2設為透光性之平行平板(石英板)HVP。
藉由圖6所示之鏡IM1而朝-Z方向反射之平行光束之光束LB1係入射至相對於XY平面傾斜45度之反射鏡M10。該反射鏡M10係使已入射之光束LB1朝向自反射鏡M10朝-X方向分離之反射鏡M12朝-X方向反射。於反射鏡M10反射後之光束LB1係透過擴束器BE及孔徑光闌PA而入射至反射鏡M12。擴束器BE使透過之光束LB1之直徑擴大。擴束器BE具有聚光透鏡Be1、及使藉由聚光透鏡Be1收斂之後發散之光束LB1為平行光束之準直透鏡Be2。藉由該擴束器BE而容易將光束LB6照射至孔徑光闌PA之開口部分。於聚光透鏡Be1與準直透鏡Be2之間配置有可利用未圖示之驅動馬達等變更傾斜角度之石英之平行平板HVP。藉由改變該平行平板HVP之傾斜角,可使於基板P上掃描之光點SP之掃描軌跡即描繪線SLn於副掃描方向上以微少量(例如,光點SP之有效之大小
Figure 106115404-A0202-12-0104-58
之數倍~十數倍左右)移位。
反射鏡M12係相對於YZ平面傾斜45度地配置,使已入射之光束LB1朝向自反射鏡M12朝-Z方向分離之反射鏡M13朝-Z方向反射。 於反射鏡M12朝-Z方向反射後之光束LB1係於透過第1柱面透鏡CYa(第1光學構件)之後,到達至反射鏡M13。反射鏡M13係相對於XY平面傾斜45度地配置,使已入射之光束LB1朝向反射鏡M14朝+X方向反射。於反射鏡M13反射後之光束LB1係於反射鏡M14反射後投射至多面鏡PM。多面鏡PM之1個反射面RP使已入射之光束LB1朝向具有沿X軸方向延伸之光軸AXf之f θ透鏡系統FT朝+X方向反射。
藉由改變設置於構成擴束器BE之透鏡系統Be1、Be2之間之平行平板HVP之傾斜角,可使描繪線SLn於副掃描方向上移位。圖24A、圖24B係對藉由平行平板HVP之傾斜而描繪線SLn移位之情況進行說明的圖,圖24A係表示平行平板HVP之相互平行之入射面與射出面相對於光束LBn之中心線(主光線)呈90度之狀態的圖,即,係表示平行平板HVP於XZ面內未傾斜之狀態之圖。圖24B係表示平行平板HVP之相互平行之入射面與射出面相對於光束LBn之中心線(主光線)自90度傾斜之情形、即平行平板HVP相對於YZ面以角度η傾斜之狀態的圖。
進而,於圖24A、圖24B中,於平行平板HVP未傾斜之狀態(角度η=0度)時,透鏡系統Be1、Be2之光軸AXe設定為通過孔徑光闌PA之圓形開口之中心,入射至擴束器BE之光束LBn之中心線調整為與光軸AXe成為同軸。又,透鏡系統Be2之後側焦點之位置以與孔徑光闌PA之圓形開口之位置一致之方式配置。孔徑光闌PA之位置係以如下方式設定,即,藉由第1柱面透鏡CYa,於副掃描方向上,從多面鏡PM之反射面RP之位置(或f θ透鏡系統FT之前側焦點之位置)來看成為大致光瞳之位置。另一方面,於主掃描方向上,孔徑光闌PA係以與f θ透鏡系統FT之 前側焦點之位置即入射光瞳之位置光學共軛之方式配置。因此,於使平行平板HVP以角度η傾斜之情形時,透過平行平板HVP而入射至透鏡系統Be2之光束LBn(此處為發散光束)之中心線係相對於光軸AXe朝-Z方向微小地平行移動,自透鏡系統Be2射出之光束LBn轉換為平行光束,並且光束LBn之中心線相對於光軸AXe略微傾斜。
透鏡系統Be2之後側焦點之位置以與孔徑光闌PA之圓形開口之位置一致之方式配置,因此,自透鏡系統Be2傾斜地射出之光束LBn(平行光束)不會於孔徑光闌PA上於Z方向上偏移,而持續投射至圓形開口。因此,已通過孔徑光闌PA之圓形開口之光束LBn係以將強度分佈上之1/e2之基礎之強度正確地截止之狀態,以相對於光軸AXe於XZ面內於副掃描方向上略微傾斜之角度朝向後段之第1柱面透鏡CYa。孔徑光闌PA係於副掃描方向上,從多面鏡PM之反射面RP來看對應於光瞳位置,根據已通過孔徑光闌PA之圓形開口之光束LBn之於副掃描方向上之傾斜角,而入射至多面鏡PM之反射面RP之光束LBn(於副掃描方向上收斂)於反射面上之位置略微移位。因此,於多面鏡PM之反射面RP反射後之光束LBn亦以相對於與包含圖23所示之f θ透鏡系統FT之光軸AXf之XY面平行之面略微朝Z方向移位的狀態入射至f θ透鏡系統FT。其結果,入射至第2柱面透鏡CYb之光束LBn於副掃描方向上略微傾斜,而可使投射至基板P上之光束LBn之光點SP之位置於副掃描方向上略微移位。
[第4實施形態]
圖25係表示第4實施形態之曝光裝置EX(圖案描繪裝置)之控制裝置16之構成之方塊圖。於圖25中,構成控制裝置16之多面鏡驅動控制部 100、選擇元件驅動控制部102、光束控制裝置104(曝光控制部116)、標記位置檢測部106、及旋轉位置檢測部108係與上文之圖9所示之構成相同。又,於圖25中,僅代表性地模式性地表示來自光源裝置LSa之光束LBa供給至掃描單元U1之狀態,選擇用光學元件AOM1、準直透鏡CL1、單元側入射鏡IM1係與圖20同樣地配置,自反射鏡M10至第2柱面透鏡CYb之掃描單元U1係與圖23同樣地構成。於本實施形態中,設置有包含用以使掃描單元U1內之作為機械光學之光束移相器之平行平板HVP以特定之衝程傾斜之壓電馬達等的伺服控制系統DU、及基底層計測部MU。基底層計測部MU具有對來自掃描單元U1內之光檢測器DT(參照圖5)之光電訊號之波形變化快速進行數位取樣的電路構成,基於為了重疊曝光而光點SP對基板P上已形成之基底圖案(與金屬層、絕緣層、半導體層等對應)進行掃描時產生之反射光之強度變化,計測基底圖案之主掃描方向或副掃描方向上之位置、或重疊曝光之新圖案與基底圖案之相對之位置誤差(重疊誤差)。利用基底層計測部MU計測之計測結果、尤其是與重疊誤差相關之資訊用於生成對圖20所示之選擇元件驅動控制部102內之驅動電路102A施加之修正訊號FSS。藉由如此般對掃描單元Un之各者設置光檢測器DT(參照圖5)並且設置作為位置計測部之基底層計測部MU,可確認無對準用之標記MKn之被曝光區域(圖4之器件形成區域)W內之重疊精度或者確認圖案曝光中之基板P之移動位置(器件形成區域W之移動位置)。
由於平行平板HVP設置於掃描單元Un之各者,故而藉由針對每一掃描單元Un使平行平板HVP之傾斜角度η連續地變化,而可使描繪於基板P上之圖案之副掃描方向之尺寸以微少之比率伸縮。因此,即便 於在基板P之長條方向(副掃描方向)上基板P局部伸縮之情形時,亦可良好地維持對與對準標記MKn一同形成於基板P上之用於電子器件之基底圖案(第1層圖案)重疊曝光(描繪)第2層用之圖案時之重疊精度。基板P之長條方向(副掃描方向)之局部伸縮例如可如圖4所示般藉由利用圖25所示之對準顯微鏡AM1m檢測沿長條方向以固定之間距(例如10mm)形成於基板P之寬度方向之兩側之對準標記MK1、MK4而計測。具體而言,可如圖4所示般藉由對準顯微鏡AM11、AM14利用攝像元件依次拍攝對準標記MK1、MK4,藉由對標記位置之長條方向之變化(標記之間距變化等)利用標記位置檢測部106與旋轉位置檢測部108等利用曝光控制部116進行解析而計測。因此,根據基板P之搬送方向之局部之伸縮量(縮放誤差),自曝光控制部116對伺服控制系統DU賦予根據基板P之副掃描方向之移動位置(或移動量)使平行平板HVP逐次傾斜般之控制指令。藉此,可對圖案之描繪位置與基板P之移動位置連動地於副掃描方向上逐漸進行調整,而可抑制對於伸縮較大之基板P之重疊曝光之精度降低。
又,平行平板HVP亦可用於調整第奇數條描繪線SL1、SL3、SL5與第偶數條描繪線SL2、SL4、SL6之副掃描方向(基板P之搬送方向)之間隔。例如,於基板P之搬送速度產生緩和之變動之情形時,因該速度變動而導致以第奇數條描繪線描繪之圖案與以第偶數條描繪線描繪之圖案於副掃描方向上以微米級偏移,而接合精度劣化。因此,亦可藉由對來自計測旋轉滾筒DR之旋轉位置之編碼器ENja、ENjb(圖25中,僅代表性地表示EN1a、EN2a)之計測訊號進行計數之旋轉位置檢測部108,檢測旋轉滾筒DR之旋轉速度之變動(基板P之速度變動),根據該變動之增減量利 用伺服控制系統DU驅動平行平板HVP之傾斜。
進而,亦可將利用平行平板HVP之機械光學之光束移相器(光束位置調整構件、第1調整構件)同時用於光點SP於副掃描方向上之位置調整之粗調整,將利用圖25所示之選擇用光學元件AOM1(或上文之圖16所示之聲光偏轉元件AODs、圖17所示之光電元件ODn、KDn等)之光電之光束移相器(光束位置調整構件、第2調整構件、第2調整光學構件)同時用於光點SP於副掃描方向上之位置調整之微調整。於如圖25般將平行平板HVP與選擇用光學元件AOM1(AOMn)組合之情形時,作為機械光學之光束移相器之平行平板HVP可於能夠傾斜之衝程範圍內使基板P上之光點SP於副掃描方向上移位數十像素量(例如,±100μm左右),另一方面,作為光電之光束移相器之選擇用光學元件AOM1(AOMn)可使基板P上之光點SP於副掃描方向上以例如數像素量(光點SP之大小
Figure 106115404-A0202-12-0109-59
之數倍左右)之微少範圍快速移位。
於利用選擇用光學元件(聲光偏轉元件)AOMn、AODs或光電元件ODn、KDn等之光電之光束移相器,藉由於每一次產生圖10所示之入射允許訊號LPn時改變修正訊號FSS之值,而可於每1次掃描時對光點SP之副掃描方向之位置快速進行微調整。因此,可提高描繪微細之圖案時之描繪品質,尤其是可減少將以複數個描繪線SLn之各者描繪之圖案於主掃描方向上接合時之接合誤差。於本實施形態中,作為一例,可使用圖25所示之光檢測器DT與基底層計測部MU而大致即時地計測接合誤差之程度。例如,於圖4中,以描繪線SL1與描繪線SL2之各者描繪之圖案於副掃描方向上接合之情形時,若已於基板P形成有基底圖案(第1層圖案), 則藉由將利用以描繪線SL1進行圖案描繪之掃描單元U1中設置之基底層計測部MU(圖25)計測之接合部分之重疊誤差之資訊、與利用以描繪線SL2進行圖案描繪之掃描單元U2中設置之相同之基底層計測部MU計測之接合部分之重疊誤差之資訊進行比較,而能夠確認以基底圖案為基準以描繪線SL1與描繪線SL2之各者描繪之圖案於副掃描方向上之接合誤差。
於圖4之情形時,以描繪線SL1描繪之基板P上之副掃描方向之位置係於基板P移動描繪線SL1與描繪線SL2之副掃描方向之間隔量後,以描繪線SL2描繪,因此,以其間隔量之移動之時間產生時間差,但若每隔基板P之恰當之移動量(例如每隔1mm或每隔5mm)逐次進行基於基底層計測部MU之重疊誤差之計測,則可掌握接合誤差之傾向(誤差是否變大)。於體現接合誤差變大般之傾向之情形時,以其接合誤差減少之方式,基於利用基底層計測部MU計測之接合誤差之資訊調整向對應於掃描單元U1與掃描單元U2之至少一者而設置之選擇元件驅動控制部102內之驅動電路102A(參照圖20)施加之修正訊號FSS,對沿著描繪線SL1與描繪線SL2之至少一者掃描之光點SP之副掃描方向之位置進行微調整即可。
〔另一變形例1〕
於以上之各實施形態或變形例中,將使光束LBn(光點SP)於副掃描方向上移位之作為機械光學之光束移相器(位置調整構件、第1調整構件)之可傾斜之平行平板Sr2或HVP設置於掃描單元Un內之自鏡M10至多面鏡PM之光路中,但亦可設置於自多面鏡PM至基板P之光路中。進而,機械光學之光束移相器亦可設置於自光束切換部BDU之單元側入射鏡IMn (IM1~IM6)至掃描單元Un之鏡M10之光路中。如上文所說明般,機械光學之光束移相器(第1調整構件、第1調整光學構件)可使光束LBn之光點SP以相對較大之範圍於副掃描方向上移位,但依存於機械精度之誤差容易殘留,因此,可同時使用光電之光束移相器(第2調整構件、第2調整光學構件),以減少殘留誤差。於該情形時,光電之光束移相器較佳為沿著來自光源裝置LSa、LSb之光束LBa、LBb前進之光路設置於機械光學之光束移相器之近前。
〔另一變形例2〕
於掃描單元(描繪單元)Un之各者,構成擴束器BE之透鏡系統Be1、Be2如上文之圖23所示,以具有正折射力之凸透鏡系統設置,但亦可如圖26所示,將供於反射鏡M10反射後之光束LBn入射之透鏡系統Be1替換成具有負折射力之凹透鏡系統Be1'。圖26係模式性地放大表示圖23所示之掃描單元(描繪單元)Un內之光路中自反射鏡M10至孔徑光闌PA之光路中之光束LBn之狀態的圖。於反射鏡M10反射之光束LBn成為有效之光束直徑為1mm以下之細平行光束而入射至凹透鏡系統Be1'。透鏡系統Be1'使已入射之光束LBn一面根據透鏡系統Be1'之焦距發散一面入射至具有正折射力之凸透鏡系統Be2。藉由使凹透鏡系統Be1'之前側焦距之位置與凸透鏡系統Be2之前側焦距之位置一致,而自凸透鏡系統Be2射出之光束LBn如圖23中所說明般,成為有效之光束直徑放大之平行光束而朝向孔徑光闌PA。利用凹透鏡系統Be1'與凸透鏡系統Be2之擴束器與利用2個凸透鏡系統Be1、Be2之擴束器相比,可縮短2個透鏡系統之間之物理距離。
又,於圖23所示之掃描單元(描繪單元)Un之擴束器BE 內,僅設置有使光點SP之掃描軌跡即描繪線SLn於基板P上於副掃描方向(X方向)上機械光學地移位之平行平板HVP。然而,為了對描繪線SLn之整體於主掃描方向(Y方向)上進行微調整,亦可將作為X方向用之移相器之平行平板HVPx與作為Y方向用之移相器之平行平板HVPy沿著光軸AXe並排設置於透鏡系統Be1'與透鏡系統Be2之間。於該情形時,用以使平行平板HVPx傾斜之旋轉中心軸Sy與用以使平行平板HVPy傾斜之旋轉中心軸Sx係設定為於與光軸AXe正交之面(與YZ面平行)內相互正交。
〔另一變形例3〕
用以對描繪線SLn之整體於主掃描方向(Y方向)上進行微調整之作為機械光學之移相器之平行平板HVPy亦可如圖27所示,設置於f θ透鏡系統FT之後。圖27係表示自圖23所示之掃描單元(描繪單元)Un內之多面鏡PM至基板P之光學系統配置的圖。於f θ透鏡系統FT之後,光束LBn於主掃描方向(Y方向)上進行掃描,因此,如圖27般,於反射鏡M15與第2柱面透鏡CYb之間設置平行平板HVPy之情形時,將平行平板HVPy設定為與柱面透鏡CYb之Y方向之尺寸相同程度之長度。進而,用於使圖27之平行平板HVPy於與YZ面平行之面內傾斜之旋轉中心軸Sx係與X軸平行地設定,並且以與於反射鏡M15彎折後成為與Z軸平行之f θ透鏡系統FT之光軸AXf正交的方式設定。
10‧‧‧器件製造系統
12‧‧‧基板搬送機構
14‧‧‧曝光頭
16‧‧‧控制裝置
AM1m、AM2m‧‧‧對準顯微鏡
AOMn‧‧‧選擇用光學元件
AXo‧‧‧中心軸
BDU‧‧‧光束切換部
DR‧‧‧旋轉滾筒
E‧‧‧設置面
ECV‧‧‧調溫室
EN1a~EN4a、EN1b~EN4b‧‧‧編碼器
EPC‧‧‧邊緣位置控制器
EX‧‧‧曝光裝置
LBa、LBb、LBn‧‧‧光束
Le1~Le6‧‧‧照射中心軸
LSa、LSb‧‧‧光源裝置
Lx1~Lx4‧‧‧設置方位線
P‧‧‧基板
Poc‧‧‧中心面
PR2、PR3‧‧‧處理裝置
R1~R3‧‧‧驅動輥
RT1、RT2‧‧‧張力調整輥
SDa、SDb‧‧‧標度部
Sft‧‧‧長桿
SP‧‧‧光點
SU1、SU2‧‧‧防振單元
U1~U6‧‧‧掃描單元

Claims (19)

  1. 一種圖案描繪裝置,其係使以光點之形式聚光於基板上之描繪光束沿第1方向掃描而描繪圖案的描繪單元於上述第1方向上配置有複數個,藉由上述基板往與上述第1方向交叉之第2方向上之移動,而將利用複數個上述描繪單元描繪之圖案於上述第1方向上接合而進行描繪,且具備:位置計測部,其計測應藉由上述複數個描繪單元描繪之上述基板上之被曝光區域之位置;第1調整構件,其係為了使利用上述描繪單元之各者描繪之圖案相對於上述被曝光區域之位置誤差減少,而根據利用上述位置計測部計測出之位置對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中在上述第2方向上進行調整;及第2調整構件,其係為了使利用上述描繪單元之各者描繪之圖案於上述第2方向上之接合誤差減少,而對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中以高於上述第1調整構件之響應性在上述第2方向上進行調整。
  2. 如申請專利範圍第1項之圖案描繪裝置,其中上述基板係以上述第2方向為長條方向之具有可撓性之薄片基板,且具有沿著上述第2方向以特定之設計間隔形成之複數個標記,且上述位置計測部具備標記位置檢測部,該標記位置檢測部係於上述薄片基板之移動方向上於基於上述描繪單元之圖案之描繪位置之上游側,依次檢測上述複數個標記之各者之位置。
  3. 如申請專利範圍第2項之圖案描繪裝置,其中上述第1調整構件係根據藉由上述標記位置檢測部檢測出之上述複數個標記之各者於上述第2方向上之間隔相對於上述設計間隔的誤差而對上述光點之位置於上述第2方向上進行調整。
  4. 如申請專利範圍第3項之圖案描繪裝置,其中上述複數個描繪單元之各者具備:旋轉多面鏡,其具有使上述描繪光束於與上述第1方向對應之方向上改變角度而反射之複數個反射面;及掃描用光學系統,其將於上述旋轉多面鏡之反射面反射後之上述描繪光束於上述基板上聚光成光點;且上述第1調整構件係藉由機械驅動使投射至上述旋轉多面鏡之反射面之上述描繪光束之位置於上述旋轉多面鏡之反射面上於與上述第2方向對應之方向上移位的機械光學移相器。
  5. 如申請專利範圍第4項之圖案描繪裝置,其進而具備生成上述描繪光束之光源裝置,且上述第2調整構件係設置於上述光源裝置與上述第1調整構件之間,藉由電氣之物性控制使投射至上述旋轉多面鏡之反射面之上述描繪光束之位置於上述旋轉多面鏡之反射面上於與上述第2方向對應之方向上移位的光電移相器。
  6. 如申請專利範圍第5項之圖案描繪裝置,其中上述光電移相器係可根據作為驅動訊號而施加之高頻電力之頻率調整偏轉角之聲光調變元件或聲光偏轉元件。
  7. 如申請專利範圍第4項之圖案描繪裝置,其中 於上述基板,與上述複數個標記一同形成有基底圖案,上述複數個描繪單元之各者具備光檢測器,該光檢測器係於藉由上述描繪光束之光點之掃描對上述基底圖案描繪應重疊曝光之新圖案之期間,檢測上述光點對上述基底圖案進行掃描時產生之反射光之變化,且上述位置計測部包含基底層計測部,該基底層計測部係基於來自上述複數個描繪單元之各者之上述光檢測器之光電訊號,計測以上述基底圖案為基準利用上述描繪單元之各者描繪之上述新圖案之間之接合誤差。
  8. 如申請專利範圍第7項之圖案描繪裝置,其中上述第2調整構件係以利用上述基底層計測部計測之上述接合誤差減少之方式,對上述光點之位置於上述第2方向上進行調整。
  9. 一種圖案描繪方法,其係使自沿第1方向配置之複數個描繪單元之各者投射之描繪光束之光點於基板上於上述第1方向上進行掃描,並使上述基板沿與上述第1方向交叉之第2方向移動,將利用上述複數個描繪單元之各者描繪之圖案於上述第1方向上接合而進行描繪,且包含:計測階段,其係於上述基板之移動中檢測形成於上述基板之基準圖案之位置,而計測上述基板上之被曝光區域之位置;第1調整階段,其係為了根據上述計測階段中計測出之位置使利用上述描繪單元之各者描繪之圖案對準上述被曝光區域,而對基於上述描繪單元之各者之上述光點之位置於上述基板之移動中於上述第2方向 上進行調整;及第2調整階段,其係為了使利用上述描繪單元之各者描繪之圖案於上述第2方向上之接合誤差減少,而對基於上述描繪單元之各者之上述光點之位置較上述第1調整階段更微細地於上述第2方向上進行調整。
  10. 如申請專利範圍第9項之圖案描繪方法,其中上述基板係以上述第2方向為長條方向之具有可撓性之薄片基板,上述基準圖案係沿著上述第2方向以特定之設計間隔形成之複數個標記,且上述計測階段係於上述薄片基板之移動方向上於基於上述描繪單元之圖案之描繪位置之上游側,依次檢測上述複數個標記之各者之位置。
  11. 如申請專利範圍第10項之圖案描繪方法,其中上述第1調整階段係根據上述計測階段中檢測出之上述複數個標記之各者於上述第2方向上之間隔相對於上述設計間隔之誤差,對上述光點之位置於上述第2方向上進行調整。
  12. 如申請專利範圍第11項之圖案描繪方法,其中上述複數個描繪單元之各者具備:旋轉多面鏡,其具有使上述描繪光束於與上述第1方向對應之方向上改變角度而反射之複數個反射面;及掃描用光學系統,其將於上述旋轉多面鏡之各反射面反射後之上述描繪光束於上述基板上聚光成光點;且於上述第1調整階段中,藉由調整構件之機械驅動使投射至上述旋轉多面鏡之各反射面之上述描繪光束之位置於上述旋轉多面鏡之反射 面上於與上述第2方向對應之方向上移位。
  13. 如申請專利範圍第12項之圖案描繪方法,其中於上述基板,與上述複數個個標記一同形成有基底圖案,上述複數個描繪單元之各者中設置有光檢測器,該光檢測器係於藉由上述描繪光束之光點之掃描對上述基底圖案描繪應重疊曝光之新圖案之期間,檢測上述光點對上述基底圖案進行掃描時產生之反射光之變化,且於上述計測階段,基於來自上述複數個描繪單元之各者之上述光檢測器之光電訊號,計測以上述基底圖案為基準利用上述描繪單元之各者描繪之上述新圖案之間之接合誤差。
  14. 如申請專利範圍第13項之圖案描繪方法,其中上述第2調整階段係以上述計測階段中計測出之上述接合誤差減少之方式,對上述光點之位置於上述第2方向上進行調整。
  15. 一種圖案描繪裝置,其具備:旋轉多面鏡,其使根據應描繪於基板上之圖案進行強度調變後之描繪光束於主掃描方向上進行一維掃描;及掃描用光學系統,其將已進行一維掃描之上述描繪光束以光點之形式聚光於上述基板上;且藉由上述光點之上述主掃描方向之掃描、及上述基板與上述光點之與上述主掃描方向交叉之副掃描方向上之相對移動而於上述基板上描繪圖案,且具備:機械光學之第1調整構件,其係為了對在上述主掃描方向上進行一維掃描之上述光點於上述副掃描方向上調整位置,而配置於入射至上述旋轉多面鏡之前之上述描繪光束之光路中或自上述旋轉多面鏡至上述 基板之上述描繪光束之光路中;及光電性之第2調整構件,其係為了對在上述主掃描方向上進行一維掃描之上述光點於上述副掃描方向上調整位置,而配置於入射至上述旋轉多面鏡之前之上述描繪光束之光路中且上述第1調整構件之近前之光路中。
  16. 如申請專利範圍第15項之圖案描繪裝置,其中上述第1調整構件係藉由機械驅動使入射至上述旋轉多面鏡之反射面之上述描繪光束之位置於上述旋轉多面鏡之反射面上於與上述副掃描方向對應之方向上移位的可傾斜之透過性之平行平板。
  17. 如申請專利範圍第16項之圖案描繪裝置,其進而具備生成上述描繪光束之光源裝置,且上述第2調整構件係設置於上述光源裝置與上述第1調整構件之間,藉由電氣之物性控制使入射至上述旋轉多面鏡之反射面之上述描繪光束之位置於上述旋轉多面鏡之反射面上於與上述副掃描方向對應之方向上移位的光電移相器。
  18. 如申請專利範圍第17項之圖案描繪裝置,其中上述光電移相器係可根據作為驅動訊號而施加之高頻電力之頻率調整偏轉角之聲光調變元件或聲光偏轉元件。
  19. 如申請專利範圍第16至18項中任一項之圖案描繪裝置,其進而具備利用以特定之間隔配置之2個透鏡系統之擴束器,以將入射至上述旋轉多面鏡之反射面之上述描繪光束之與上述主掃描方向對應之方向之光束直徑擴大,且 作為上述第1調整構件之上述平行平板設置於上述2個透鏡系統之間。
TW106115404A 2016-10-04 2017-05-10 圖案描繪裝置及圖案描繪方法 TWI736621B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP2016-196797 2016-10-04
JP2016196797 2016-10-04

Publications (2)

Publication Number Publication Date
TW201826035A TW201826035A (zh) 2018-07-16
TWI736621B true TWI736621B (zh) 2021-08-21

Family

ID=61830834

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106115404A TWI736621B (zh) 2016-10-04 2017-05-10 圖案描繪裝置及圖案描繪方法

Country Status (5)

Country Link
JP (1) JP6919660B2 (zh)
KR (1) KR102414046B1 (zh)
CN (2) CN109791371B (zh)
TW (1) TWI736621B (zh)
WO (1) WO2018066159A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022092320A1 (zh) * 2020-11-02 2022-05-05

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946234A (en) * 1987-05-13 1990-08-07 Dainippon Screen Mfg. Co., Ltd. Light beam deflection scanning method and an apparatus therefor
US5386221A (en) * 1992-11-02 1995-01-31 Etec Systems, Inc. Laser pattern generation apparatus
US5502001A (en) * 1990-12-19 1996-03-26 Hitachi, Ltd. Method of forming light beam and method of fabricating semiconductor integrated circuits
TW201602636A (zh) * 2014-04-28 2016-01-16 尼康股份有限公司 圖案描繪裝置、圖案描繪方法、元件製造方法、雷射光源裝置、光束掃描裝置、以及光束掃描方法
JP2016133623A (ja) * 2015-01-19 2016-07-25 株式会社ニコン 基板処理装置及びデバイス製造方法
WO2016152758A1 (ja) * 2015-03-20 2016-09-29 株式会社ニコン ビーム走査装置、ビーム走査方法、および描画装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5071382B2 (ja) * 2006-03-20 2012-11-14 株式会社ニコン 走査露光装置及びマイクロデバイスの製造方法
JP6245174B2 (ja) * 2012-08-28 2017-12-13 株式会社ニコン 基板支持装置、及び露光装置
TWI661280B (zh) * 2014-04-01 2019-06-01 日商尼康股份有限公司 Substrate processing method and substrate processing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4946234A (en) * 1987-05-13 1990-08-07 Dainippon Screen Mfg. Co., Ltd. Light beam deflection scanning method and an apparatus therefor
US5502001A (en) * 1990-12-19 1996-03-26 Hitachi, Ltd. Method of forming light beam and method of fabricating semiconductor integrated circuits
US5386221A (en) * 1992-11-02 1995-01-31 Etec Systems, Inc. Laser pattern generation apparatus
TW201602636A (zh) * 2014-04-28 2016-01-16 尼康股份有限公司 圖案描繪裝置、圖案描繪方法、元件製造方法、雷射光源裝置、光束掃描裝置、以及光束掃描方法
JP2016133623A (ja) * 2015-01-19 2016-07-25 株式会社ニコン 基板処理装置及びデバイス製造方法
WO2016152758A1 (ja) * 2015-03-20 2016-09-29 株式会社ニコン ビーム走査装置、ビーム走査方法、および描画装置

Also Published As

Publication number Publication date
JPWO2018066159A1 (ja) 2019-07-18
KR20190055243A (ko) 2019-05-22
JP6919660B2 (ja) 2021-08-18
TW201826035A (zh) 2018-07-16
CN113552778A (zh) 2021-10-26
WO2018066159A1 (ja) 2018-04-12
CN109791371B (zh) 2021-08-06
CN109791371A (zh) 2019-05-21
CN113552778B (zh) 2023-10-20
KR102414046B1 (ko) 2022-06-29

Similar Documents

Publication Publication Date Title
TWI701525B (zh) 圖案描繪裝置
CN109343214B (zh) 图案描绘装置
TWI782698B (zh) 圖案描繪裝置、圖案描繪方法、以及元件製造方法
CN109478018B (zh) 图案描绘装置
JP6583451B2 (ja) パターン描画装置
TWI736621B (zh) 圖案描繪裝置及圖案描繪方法
JP6870755B2 (ja) パターン描画方法
JP6582782B2 (ja) パターン描画装置
JP6835163B2 (ja) パターン露光装置
JP2016206636A (ja) パターン描画装置およびパターン描画方法
JP6504293B2 (ja) パターン描画装置
JP6780750B2 (ja) 基板処理装置のテスト方法
JP6645157B2 (ja) 基板処理装置
JP2017058494A (ja) パターン描画装置、パターン描画方法、基板処理装置、および、デバイス製造方法