TWI735587B - 用於偵測及分析分子之光子結構及積體裝置 - Google Patents
用於偵測及分析分子之光子結構及積體裝置 Download PDFInfo
- Publication number
- TWI735587B TWI735587B TW106118154A TW106118154A TWI735587B TW I735587 B TWI735587 B TW I735587B TW 106118154 A TW106118154 A TW 106118154A TW 106118154 A TW106118154 A TW 106118154A TW I735587 B TWI735587 B TW I735587B
- Authority
- TW
- Taiwan
- Prior art keywords
- integrated device
- waveguide
- layer
- sample
- excitation energy
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
- G01N21/6454—Individual samples arranged in a regular 2D-array, e.g. multiwell plates using an integrated detector array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6408—Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/648—Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/774—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
- G01N21/7743—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/543—Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
- G01N33/54373—Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6419—Excitation at two or more wavelengths
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
- G01N2021/6421—Measuring at two or more wavelengths
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Optics & Photonics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Measuring Cells (AREA)
- Optical Integrated Circuits (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
用於分析單分子並執行核酸定序之系統及方法。一種積體裝置可包含具經組態以接收一樣本之樣本井的多個像素,該樣本在被激發時發射輻射。該積體裝置包含一表面,其具有自該表面之一部分凹入之一溝槽區域,及一陣列之樣本井,其等經安置於該溝槽區域中。該積體裝置亦包含一波導,其經組態以使激發能耦合至該陣列中之至少一個樣本井,且係定位於自該溝槽區域之一表面之一第一距離處及自在與該溝槽區域分離之一區域中之該表面之一第二距離處。該第一距離係小於該第二距離。該系統亦包含一儀器,其與該積體裝置介接。該儀器可包含一激發能源,用於藉由經耦合至該積體裝置之一激發能耦合區域來提供激發能至該積體裝置。
Description
本申請案大體上係關於用於執行生物及/或化學樣本之迅速、大規模並行、定量分析之裝置、方法及技術,及製造該等裝置之方法。
可使用生物分析(「生物分析(bioassays)」)來執行生物樣本之偵測及分析。生物分析習知涉及大型、昂貴的實驗室設備,其需要經訓練以操作該設備及執行該生物分析之研究科學家。而且,生物分析習知地以整批執行,使得大量一特定類型之樣本對偵測及定量係必需的。 藉由使用發射一特定波長之光之發光標記來標籤樣本而執行一些生物分析。該等標記由一光源照明以致使發光,且發光使用一光電偵測器偵測以量化由標記發射之發光量。使用發光標記之生物分析習知地涉及用以照明樣本之昂貴雷射光源及用以收集來自經照明樣本之發光的複雜發光偵測光學器件及電子器件。
一些實施例係關於一種積體裝置,其包含:一表面,其具有自該表面之一部分凹入之一溝槽區域;及一陣列之樣本井,其經安置於該溝槽區域中。該陣列之樣本井之一樣本井可經組態以接收一樣本。該積體裝置進一步包含一波導,其經組態以使激發能耦合至該陣列中之至少一個樣本井且經定位於自該溝槽區域之一表面之一第一距離處及自與該溝槽區域分離之一區域中之該表面之一第二距離處。該第一距離可小於該第二距離。 該第一距離可在150奈米與600奈米之間。該第二距離可在250奈米與2000奈米之間。該樣本井可具有距該波導小於300奈米之一距離的一表面。該積體裝置可進一步包含至少一個光柵耦合器,其經組態以接收來自與該積體裝置分離之一激發源之激發能且導引激發能至該波導。該積體裝置可進一步包含一反射器,其經組態以反射激發能朝向該至少一個光柵耦合器。 該積體裝置可進一步包含一分裂器結構,其經組態以接收來自該至少一個光柵耦合器之激發能且導引激發能至複數個波導。該分裂器結構可包含至少一個多模式干擾分裂器。該分裂器結構可包含一星形耦合器。該分裂器結構可包含一切片光柵耦合器。 該波導可在垂直於沿該波導之光傳播之該方向之一方向上具有一漸縮尺寸,使得該尺寸在接近於該光柵耦合器之一位置處比在一遠端位置處大。該樣本井可包含經形成於該樣本井之一側壁之至少一部分上的一側壁間隔件。接近於該波導之該樣本井之一表面可經組態以依不同於該側壁間隔件之一方式而與該樣本相互作用。 該積體裝置可進一步包含經形成於該溝槽區域之一底部表面上之一金屬堆疊,使得該金屬堆疊具有一開口,其與該陣列之一樣本井之一孔重疊。該金屬堆疊可包含一鋁層及一氮化鈦層,且該鋁層係接近於該波導。該波導可包含氮化矽。該積體裝置可進一步包含一感測器,其經組態以接收由經定位於該樣本井中之該樣本發射之發射能。 一些實施例係關於一種積體裝置,其包含:一基板;一波導,其具有面向該基板之一第一側及相對於該第一側之一第二側;及複數個金屬層,其等經組態以支持複數個電信號。該複數個金屬層之一第一金屬層可經定位於比該波導之該第一側更靠近該基板的一距離處。 該波導可經定位於比該複數個金屬層之一第二金屬層更靠近該基板的一距離處。 該積體裝置可進一步包含:一表面,其具有自該表面之一部分凹入之一溝槽區域;及一陣列之樣本井,其經安置於該溝槽區域中。該陣列之樣本井之一樣本井可經組態以接收一樣本。該波導可經定位於自該溝槽區域之一表面的一第一距離處及自與該溝槽區域分離之一區域中之該表面的一第二距離處。該第一距離可小於該第二距離。 一些實施例係關於 一種形成一積體裝置之方法,其包含:形成一波導於一基板上方;形成一頂部覆層於該波導上方;形成一溝槽區域於該頂部覆層中;形成一金屬堆疊於該頂部覆層之一表面上;及形成至少一個樣本井於接近於該波導之該溝槽區域之一表面處。 該方法可進一步包含使該頂部覆層平坦化至自該頂部覆層之一表面至該波導之一距離。頂部覆層之一表面至在該溝槽區域內之一位置處之該波導之間的該距離可在150奈米與600奈米之間。形成該至少一個樣本井可包含選擇性地蝕刻該金屬層以形成開口,其等延伸至該頂部覆層。選擇性地蝕刻該金屬層可包含:使用一光阻遮罩來選擇性地蝕刻該金屬層;及使用一光阻遮罩或一硬遮罩來選擇性地蝕刻該頂部覆層。形成該至少一個樣本井可包含執行該頂部覆層之一定時蝕刻。形成該至少一個樣本井可包含:形成至少一個蝕刻停止層於該頂部覆層上;形成一介電層於該頂部覆層及該蝕刻停止層上方;及移除在與該至少一個蝕刻停止層重疊之位置處的該介電層以暴露該蝕刻停止層。該方法可進一步包含形成一間隔件於該至少一個樣本井之一樣本井之一側壁之至少一部分上。可使用一原子層沈積(ALD)製程來執行形成該間隔件。形成該間隔件可包含自接近於該波導之該樣本井之一表面蝕刻該間隔件。
本申請案主張2016年6月1日申請之題為「PHOTONIC STRUCTURES AND INTEGRATED DEVICE FOR DETECTING AND ANALYZING MOLECULES」之美國臨時專利申請案之優先權,該申請案之全部內容以引用的方式併入本文中。 發明者已認知並瞭解一種用於執行單分子或顆粒之偵測及定量之緊湊、高速設備可減少執行生物及/或化學樣本之複雜定量量測的成本且迅速地提前生化技術發現之比率。而且,可容易運輸之一具成本效益裝置可不僅轉變生物分析在已開發國家所執行之方式,而且為開發中國家的人們第一次提供進入基本診斷性測試,其等可顯著地改良他們的健康及幸福。例如,本文中所描述之實施例可用於血液、尿及/或唾液之診斷性測試,其等在一開發中國家可由個體在其等家中使用或由一醫生在一偏遠診所使用。 具大量像素(例如,數百,數千,數百萬或更多)之一像素化感測器裝置允許複數個個別分子或顆粒並行偵測。該等分子可為(藉由實例且非限制)蛋白質及/或DNA。而且,可以每秒大於100幀獲取資料的一高速裝置允許隨時間發生於被分析的樣本內之動態製程或改變之偵測及分析。 發明者已認知並瞭解防止生物分析設備被製成更緊湊的一個困難係需要過濾致使在感測器處之非所要偵測事件之激發光。用以傳輸所要信號光(發光)且充分阻斷激發光之光學濾波器可為厚的、笨重的、昂貴的,且無法容忍光入射角之改變,阻礙小型化。然而,發明者認知並瞭解使用一脈衝激發源可減少對諸如過濾之需要或在一些情況下完全不需要此等濾波器。藉由使用能夠判定一光子相對於激發光脈衝所偵測之時間的感測器,信號光可基於該光子經接收之時間而非所接收光之光譜而與激發光分離。據此,在一些實施例中減少及/或無需一笨重光學濾波器。 發明者已認知並瞭解發光壽命量測亦可用以識別存在於一樣本中之分子。能夠偵測何時一光子經偵測之一光學感測器能夠使用自許多事件推測之統計來量測由激發光激發之分子之發光壽命。在一些實施例中,可除發光之一光譜量測外而完成發光壽命量測。替代地,可在識別樣本分子中完全省略發光之一光譜量測。可使用一脈衝激發源來完成發光壽命量測。另外,可使用包含該感測器之一積體裝置或其中光源經定位於與該積體裝置分離之一系統中的一裝置來完成發光壽命量測。 發明者亦已認知並瞭解整合一樣本井(其可包含一奈米孔)及一感測器於能夠量測自生物樣本發射之發光之一單一積體裝置中減少生產此一裝置之成本,使得可形成可棄式生物分析積體裝置。與一基底儀器介接之可棄式、單次使用積體裝置可在世界任何地方使用,而無需要用於樣本分析之高成本生物實驗室之限制。因此,可為先前不可執行生物樣本之定量分析之世界之區域帶來自動化生物分析。例如,可藉由放置一血液樣本於一可棄式積體裝置上、放置該可棄式積體裝置至一小型可攜式基底儀器中用於分析、並由一電腦處理該等結果用於由一使用者立即檢視而執行針對嬰兒之血液檢測。該資料亦可經傳輸通過一資料網路至被分析之一遠端位置及/或經存檔用於隨後臨床分析。 發明者亦已認知並瞭解可藉由不包含光源於該積體裝置上而更簡單且更低成本地製造一可棄式、單次使用裝置。代替地,該光源可包含經併入至與該可棄式積體裝置介接之一系統中以分析一樣本的可再用組件。 發明者亦已認知並瞭解,當一樣本標籤有複數個不同類型之發光標記時,發光標記之任何合適特性可用以識別存在於該積體裝置之一特定像素中之標記之類型。例如,由該等標記發射之發光之特性及/或激發吸收之特性可用以識別該等標記。在一些實施例中,發光之發射能(其直接係關於光之波長)可用以區分一第一類型之標記與一第二類型之標記。另外或替代地,發光壽命量測亦可用以識別存在於一特定像素處之標記之類型。在一些實施例中,可由一脈衝激發源使用能夠區分一光子何時經偵測具充分解析度之一時間以獲得壽命資訊之一感測器而完成發光壽命量測。另外或替代地,由不同類型之標記吸收之激發光之能量可用以識別存在於一特定像素處之標記之類型。例如,一第一標記可吸收一第一波長之光,但不同樣地吸收一第二波長之光,而一第二標記可吸收該第二波長之光,但不同樣地吸收該第一波長之光。依此方式,當一個以上激發光源(各具一不同激發能)可用以依一交錯方式照明樣本時,該等標記之吸收能可用以識別哪一類型之標記係存在於一樣本中。不同標記亦可具有不同發光強度。據此,所偵測之該發光強度亦可用以識別存在於一特定像素處之標記之類型。 發明者想到之一裝置之一應用之一個非限制性實例係能夠執行一生物分子(諸如一核酸或具有複數個氨基酸之一多肽(例如蛋白質))之定序之一裝置。可使用此一裝置執行之診斷性測試包含定序一標的物之一生物樣本中之一核酸分子,諸如該標的物之一生物樣本中之無細胞脫氧核糖核酸分子或表達產物之定序。 本申請案提供用於偵測生物分子或其之子單元(諸如核酸分子)之裝置、系統及方法。此偵測可包含定序。可自自一標的物獲得之一生物樣本提取一生物分子。可自該標的物之一體液或組織(諸如口氣、唾液、尿或血液(例如全血或血漿))提取該生物樣本。該標的物可疑似具有一健康狀況,諸如一疾病(例如癌症)。在一些實例中,自該標的物之體液或組織提取一或多個核酸分子。可自自該標的物(諸如該標的物之一組織之部分)獲得或自該標的物之一無細胞體液(諸如全血)獲得之一或多個細胞提取該一或多個核酸。 定序可包含藉由合成與模板生物分子(例如核酸分子)互補或同類之另一生物分子(諸如,藉由合成與一模板核酸分子互補之一核酸分子且識別隨時間核苷酸之併入(例如藉由合成定序))之該模板之個別子單元之判定。作為一替代,定序可包含該生物分子之個別子單元之直接識別。 在定序期間,指示一生物分子之個別子單元之信號可經收集於記憶體中且即時或在後一時間點處理以判定該生物分子之一序列。此處理可包含該等信號與能夠該等個別子單元之識別之參考信號的一比較,其在一些情況下產生讀取。讀取可為具充分長度(例如至少約30個鹼基對(bp)、50個bp、100個bp或更多)之序列,其等可用以識別一更大序列或區域,例如其等可與一染色體或基因區域或基因上之一位置對準。 可使用標記來識別生物分子之個別子單元。在一些實例中,發光標記用以識別生物分子之個別子單元。發光標記(本文中亦指稱「標記」)可為外生標記或內生標記。外生標記可為用於一記錄器及/或標籤中之外部發光標記用於發光標號。外生標記之實例可包含(但不限於)螢光分子、螢光團、螢光染料、螢光斑點、有機染料、螢光蛋白、酶、參與螢光諧振能量轉移(FRET)之物種、酶及/或量子點。此等外生標記可與一探針或功能團(例如,分子、離子及/或配合基)共軛,其等特別結合至一特定目標或組件。將一外生標記附接至一探針允許通過偵測外生標記之存在而識別目標。探針之實例可包含蛋白質、核酸(例如DNA、RNA)分子、脂肪及抗體探針。一外生標記及一功能團之組合可形成用於偵測之任何合適探針、標籤及/或標號,包含分子探針、標號探針、雜交探針、抗體探針、蛋白質探針(例如結合生物素探針)、酶標號、螢光探針、螢光標籤及/或酶記錄器。 儘管本發明參考發光標記,然其他類型之標記可與本文中所提供之裝置、系統及方法一起使用。此等標記可包含質量標籤或靜電標籤。 儘管外生標記可添加至一樣本,然內生標記可為該樣本之已有部分。內生標記可包含存在之任何發光標記,其等可在激發能存在的情況下發冷光或「自動發螢光」。內生螢光團之自動發螢光可在無需外生螢光團之引入的情況下提供無標號及非侵害標號。此等內生螢光團之實例可包含(藉由實例且非限制)血紅蛋白、氧合血紅蛋白、脂肪、膠原及彈性蛋白交聯、還原煙醯胺腺嘌呤二核苷酸(NADH)、氧化黃素(FAD及FMN)、脂褐質、角蛋白及/或卟啉。 儘管一些實施例可係關於藉由偵測一樣本中之單分子之診斷性測試,然發明者亦已認知一些實施例可使用該等單分子偵測能力來執行一或多個核酸片段(諸如,例如基因或多肽)之核酸(例如DNA、RNA)定序。核酸定序允許核苷酸在一目標核酸分子中之順序及位置之判定。核酸定序技術可在用以判定該核酸序列之方法中以及在該定序程序之比率、讀取長度及誤差發生率中不同。例如,一些核酸定序方法係基於藉由合成之定序,其中一核苷酸之識別當該核苷酸經併入至與該目標核酸分子互補之核酸之一新合成鏈中時經判定。藉由合成方法之一些定序需要一群組目標核酸分子(例如一目標核酸之複製)之存在或該目標核酸之放大之一步驟以達成一群組之目標核酸。 在認知需要用於執行單分子偵測及/或核酸定序之簡單、較不複雜設備之後,發明者已設想一種用於使用標記集合(諸如光學(發光)標記)來標號不同分子來偵測單分子之技術。一標籤可包含一核苷酸或氨基酸及一合適標記。標記可在自該等單分子釋放之後在結合至單分子時或在結合至該等單分子及在自該等單分子釋放之後經偵測。在一些實例中,標記係發光標籤。在一所選集合中之各發光標記係與一各自分子相關聯。例如,一集合之四個標記可用以「標號」存在於DNA中之核酸鹼基-該集合之各標記係與一不同核酸鹼基相關聯以形成一標籤,例如一第一標記與腺嘌呤(A)相關聯,一第二標記與胞嘧啶(C)相關聯,一第三標記與鳥嘌呤(G),且一第四標記與胸腺嘧啶(T)相關聯。而且,該集合之標記中之發光標記之各者具有不同性質,其等可用以區分該集合之一第一標記與該集合中之其他標記。依此方式,各標記係可使用此等區分特性之一或多者而唯一識別。藉由實例及非限制,可用以區分一個標記與另一標記之該等標記之特性可包含回應於激發一特定標記之激發光之激發及/或波長及/或能量由該標記發射之光之發射能及/或波長。在該集合之四個標記當中區分一標記唯一識別與該標記相關聯之核鹼基。 發光標記可在其等發射之光之波長、其等發射之光之暫時特性(例如其等發射衰減時間週期)及其等對激發能之回應(例如其等吸收一激發光子之概率)中不同。據此,發光標記可基於偵測此等性質而自其他發光標記識別或區分。此等識別或區分技術可單獨或以任何合適組合使用。 在一些實施例中,如本申請案中所描述之一積體光電偵測器可量測或區分發光壽命,諸如螢光壽命。壽命量測係基於激發一或多個標記(例如螢光分子),及量測所發射發光中之時間變化。一標記在該標記到達一受激發狀態之後發射光子之概率隨著時間以指數方式下降。該概率以其下降之速率可為一標記之特性,且可針對不同標記而不同。偵測由標記發射之光之暫時特性可允許相對於彼此識別標記及/或區分標記。一光子隨時間發射之概率之下降可由一指數式衰減函數p(t)=e^(-t/τ)表示,其中p(t)係在一時間t處光子發射之概率,且τ係該標記之一暫時參數。暫時參數τ指示在激發之後當發射一光子之該標記之概率係某一值時的一時間。暫時參數τ係一標記之一性質,其可與其吸收及發射光譜性質不同。此一暫時參數τ係指發光壽命、螢光壽命或僅僅一標記之「壽命」。 圖1-1繪製根據時間針對具不同壽命之兩個標記的被發射之一光子之概率。由概率曲線B表示之標記具有快於由概率曲線A表示之標記之發射之概率而衰減的發射之一概率。由概率曲線B表示之標記具有比由概率曲線A表示之標記更短之一暫時參數τ或壽命。在一些實施例中,標記可具有範圍自0.1奈秒至20奈秒之壽命。然而,本文中所描述之技術不受限於所使用之標記之壽命。 一標記之壽命可用以在一個以上標記當中區分及/或可用以識別標記。在一些實施例中,可執行壽命量測,其中具有不同壽命之複數個標記由一激發源激發。作為一實例,具有0.5奈秒、1奈秒、2奈秒及3奈秒之壽命之四個標記分別可由發射具有一所選波長(例如藉由實例,635奈米)之光的一光源激發。該等標記可基於量測由該等標記發射之光之壽命而彼此識別或區分開。 壽命量測可相較於絕對強度值藉由比較強度如何隨時間改變而使用相對強度量測。因此,壽命量測可避免絕對強度量測之一些困難。絕對強度量測可取決於所存在之標記之濃度且可需要校正步驟用於不同標記濃度。藉由對照,壽命量測可對標記之濃度不敏感。 實施例可使用標記特性之任何合適組合來區分一集合之標記中之一第一標記與該相同集合中之其他標記。例如,一些實施例可僅使用來自該等標記之發射光之時序資訊來識別該等標記。在此等實施例中,一所選集合之標記中之各標記具有不同於該集合中之其他標記之一發射壽命且該等發光標記全部由來自一單一激發源之光激發。圖1-2A繪示根據一實施例之來自四個發光標記之發射時序,其中該四個標記展現不同平均發射壽命(τ)。一標記經量測為具有一特定值之一壽命之概率在本文中指稱該標記之「發射時序」。來自一第一發光標記之一第一發射時序1-101具有具有在τ1處之一壽命之一峰值概率,來自一第二發光標記之一第二發射時序1-102具有具有在τ2處之一壽命之一峰值概率,來自一第三發光標記之一第三發射時序1-103具有具有在τ3處之一壽命之一峰值概率,且來自一第四發光標記之一第四發射時序1-104具有具有在τ4處之一壽命之一峰值概率。在此實施例中,該四個發光標記之壽命概率峰值可具有任何合適值,其等滿足關係τ1<τ2<τ3<τ4。該四個時序發射圖表歸因於一特定發光標記之壽命中之稍微變化而可或可不重疊,如圖1-2A中所繪示。在此實施例中,該四個標記之各者自該激發源最大吸收其處之光之激發波長係近似相等,但無需為該情況。使用以上標記集合,四個不同分子可由來自該標記集合之一各自標記標號,該等標記可使用一單一激發源激發,且該等標記可藉由使用一光學系統及感測器偵測該等標記之發射壽命而彼此區分。儘管圖1-2A繪示四個不同標記,然應瞭解,可使用任何合適數目個標記。 其他實施例可使用標記特性之任何合適組合來判定一集合之標記內之該標記之識別。可經使用之該等標記特性之實例包含(但不限於)激發波長、發射波長及發射壽命。標記特性之組合形成一相空間且各標記可表示為此相空間內之一點。一集合之標記內之標記應經選擇,使得該集合內之各標記之間的「距離」係充分大使得該偵測機構可區分各標記與該集合中之其他標記。例如,在一些實施例中,一集合之標記可經選擇,其中該等標記之一子集合具有相同發射波長,但具有不同發射壽命及/或不同激發波長。在其他實施例中,一集合之標記可經選擇,其中該等標記之一子集合具有相同發射壽命,但具有不同發射波長及/或不同激發波長。在其他實施例中,一集合之標記可經選擇,其中該等標記之一子集具有相同激發波長,但具有不同發射波長及/或不同發射壽命。 藉由實例且非限制,圖1-2B繪示根據一實施例之來自四個發光標記之發射光譜,其中該等標記之兩者具有一第一峰值發射波長且其他兩個標記具有一第二峰值發射波長。來自一第一發光標記之一第一發射光譜1-105具有在λ1處之一峰值發射波長,來自一第二發光標記之一第二發射光譜1-106亦具有在λ1處之一峰值發射波長,來自一第三發光標記之一第三發射光譜1-107具有在λ2處之一峰值發射波長,且來自一第四發光標記之一第四發射光譜1-108亦具有在λ2處之一峰值發射波長。在此實施例中,該四個發光標記之該等發射峰值可具有任何合適值,其等滿足關係λ1<λ2。在諸如此之其中該峰值發射波長係針對一個以上發光標記係相同的實施例中,可具有相同發射波長之該等標記之一單獨特性必須不同。例如,以λ1發射之兩個標記可具有不同發射壽命。圖1-3A在由發射波長及發射壽命跨距之一相空間中示意性地繪示此情況。一第一標記具有一發射波長λ1及一發射壽命τ1,一第二標記具有一發射波長λ1及一發射壽命τ4,一第三標記具有一發射波長λ2及一發射壽命τ1,且一第四標記具有一發射波長λ2及一發射壽命τ4。依此方式,圖1-3A中所展示之該標記集合中之全部四個標記係可彼此區分。甚至當針對該四個標記之吸收波長係相等時,使用此一標記集合亦允許在四個標記之間區分。此使用一感測器係可行的,該感測器可偵測該光致發光之發射之時間以及發射波長。 藉由實例且非限制,圖1-2C繪示根據另一實施例之來自四個發光標記之吸收光譜。在此實施例中,該等標記之兩個具有一第一峰值吸收波長且其他兩個標記具有一第二峰值吸收波長。針對該第一發光標記之一第一吸收光譜1-109具有在λ3處之一峰值吸收波長,針對該第二發光標記之一第二吸收光譜1-110具有在λ4處之一峰值吸收波長,針對該第三發光標記之一第三吸收光譜1-111具有在λ3處之一峰值吸收波長,且針對該第四發光標記之一第四吸收光譜1-112具有在λ4處之一峰值吸收波長。注意,共用圖1-2C中之一吸收峰值波長之該等標記係可經由另一標記特性(諸如發射壽命)區分。圖1-3B在由吸收波長及發射壽命跨距之一相空間中示意性地繪示此情況。一第一標記具有一吸收波長λ3及一發射壽命τ1,一第二標記具有一吸收波長λ3及一發射壽命τ4,一第三標記具有一吸收波長λ4及一發射壽命τ1,且一第四標記具有一吸收波長λ4及一發射壽命τ4。依此方式,圖1-3A中所展示之該標記集合中之所有四個標記係可彼此區分。 即使當針對該四個標記之發射波長係不可區分,使用此一標記集合亦允許在四個標記之間區分。此使用在不同波長處發射之兩個激發源或能夠在多個波長處發射之一單一激發源結合可偵測光致發光之發射之時間的一感測器係可行的。若該激發光之波長針對各所偵測發射事件係已知,則可判定哪一標記係存在的。該(等)激發源可在一第一激發波長與一第二激發波長之間交替,其指稱交錯。替代地,該第一激發波長之兩個或兩個以上脈衝可經使用,接著該第二激發波長之兩個或兩個以上脈衝。 用以區分該等標記之激發源或激發波長之數目不受限於兩個,且在一些實施例中兩個以上激發波長或激發能可用以區分該等標記。在此等實施例中,可由回應於多個激發波長而發射之光子之強度或數目區分標記。一標記可藉由偵測回應於暴露該標記至某一激發波長而發射之光子之數目而係可在該多個標記當中區分。在一些實施例中,可藉由每次照明該標記至多個激發能之一者且自其中該標記發射最高光子數目之多個激發能當中識別該激發能而區分一標記。在其他實施例中,回應於不同激發能之自一標記發射之光子之數目可用以識別該標記。回應於一第一激發能具有高於回應於一第二激發能之發射光子之一概率的一第一標記可與回應於該第二激發能具有高於回應於該第一激發能之發射光子之概率的一第二標記區分。依此方式,可藉由量測經發射光子同時暴露一未知標記至不同激發能而識別回應於不同激發能具有可區分發射某些光子量之概率的標記。在此等實施例中,一標記可經暴露至多個激發能且可藉由判定該標記是否發射任何光及/或一特定數目個光子已發射而達成該標記之識別。可使用任何合適數目個激發能。在一些實施例中,四個不同激發能可用以在不同標記(例如四個不同標記)當中區分。在一些實施例中,三個不同激發能可用以在不同標記之間區分。一標記之其他特性可與回應於不同激發能所發射之光子量組合而用以區分一標記之存在,包含發射壽命及發射光譜。 在其他實施例中,一標記集合中之該等標記之兩個以上特性可被用以區分哪一標記係存在的。圖1-4繪示由標記之吸收波長、發射波長及發射壽命跨距之一繪示性相空間。在圖1-4中,八個不同標記係分佈於該相空間中。該八個標記之四個具有相同發射波長,一不同四個標記具有相同吸收波長,且一不同四個標記具有相同發射壽命。然而,當考量該等標記之所有三個特性時,該等標記之各者係可與每一其他標記區分。實施例不受限於任何數目個標記。此概念可延伸至包含任何數目個標記,其等可使用至少此等三個標記特性而係可彼此區分的。 儘管未繪示於圖中,然其他實施例可僅基於吸收頻率來判定一發光標記之識別。若激發光可經調諧至匹配一標記集合中之該等標記之吸收光譜的特定波長,則此等實施例係可行的。在此等實施例中,用以導引並偵測自各標記發射之光的光學系統及感測器無需能夠偵測所發射光的波長。在一些實施例中,此可係有利的,因為其減小光學系統及感測器之複雜性,因為在此等實施例中不需要偵測發射波長。 如上文所論述,發明者已認知並瞭解需要能夠使用標記之各種特性來彼此區分不同發光標記。用以判定一標記之識別之特性的類型影響用以執行此分析的實體裝置。本申請案揭示用於執行此等不同實驗之一設備、裝置、儀器及方法的若干實施例。 發明者已認知並瞭解包含光學器件及感測器之一低成本、單次使用可棄式積體裝置可與包含一激發源之一儀器結合使用,以量測自用以標號一生物樣本之一或多個標記發射之發光的不同特性,以分析該樣本。使用一低成本積體裝置減少執行一給定生物分析之成本。一生物樣本被放置至該積體裝置上,且在該生物分析完成之後可被丟棄。該積體裝置與更昂貴、多使用儀器介接,其可與諸多不同可棄式積體裝置重複使用。與一緊湊、可攜式儀器介接之一低成本積體裝置可在世界的任何地方被使用,而無需要實驗室經驗以分析樣本之高成本生物實驗室的限制。因此,可給先前不執行生物樣本之定量分析之世界的區域帶來自動化生物分析。例如,可藉由放置一血液樣本於一可棄式積體裝置上、放置該可棄式積體裝置至該小型可攜式儀器中來用於分析、且由經連接至該儀器之一電腦來處理該等結果而由一使用者立即檢視,以執行針對嬰兒之血液測試。該資料亦可被傳輸通過一資料網路至一遠端位置,用以分析及/或存檔用於隨後臨床分析。替代地,該儀器可包含一或多個處理器,用於分析獲自該積體裝置之該等感測器的資料。 I.系統之概述
該系統包含一積體裝置及經組態以與該積體裝置介接之一儀器。該積體裝置包含一陣列之像素,其中一像素包含一樣本井及至少一個感測器。該積體裝置之一表面具有複數個樣本井,其中一樣本井經組態以自經放置於該積體裝置之該表面上之一樣品接收一樣本。一樣品可含有多個樣本,且在一些實施例中不同類型之樣本。該複數個樣本井可具有一合適大小及形狀,使得該等樣本井之至少一部分自一樣品接收一個樣本。在一些實施例中,一樣本井內之樣本的數目可係分佈於該等樣本井當中,使得一些樣本井含有一個樣本,而其他樣本井含有零個、兩個或兩個以上樣本。 在一些實施例中,一樣品可含有多個單鏈DNA模板,且一積體裝置之一表面上之個別樣本井可經定大小且經定形以接收一單鏈DNA模板。單鏈DNA模板可係分佈於該積體裝置之該等樣本井當中,使得該積體裝置之該等樣本井之至少一部分含有一單鏈DNA模板。該樣品亦可含有經標籤核苷酸(例如dNTP),其等接著進入該樣本井中,且可允許一核苷酸當其經併入至與該樣本井中之該單鏈DNA模板互補之一DNA鏈時的識別。在此一實例中,該「樣本」可係指當前由一聚合酶合併之單鏈DNA及經標籤核苷酸(例如dNTP)兩者。在一些實施例中,該樣品可含有單鏈DNA模板,且經標籤核苷酸(例如dNTP)可在核苷酸經併入至一樣本井內之一互補DNA鏈中時,隨後被引入至該樣本井。依此方式,可藉由經標籤核苷酸(例如dNTP)何時被引入至一積體裝置之該等樣本井來控制核苷酸之併入的時序。 自經定位成與該積體裝置之該像素陣列分離之一激發源提供激發能。該激發能至少部分係由該積體裝置之元件導引朝向一或多個像素,以照明該樣本井內之一照明區域。當經定位於該照明區域內且回應於由激發能照明時,一標記或標籤可接著發射發射能。在一些實施例中,一或多個激發源係該系統之該儀器的部分,其中該儀器及該積體裝置的組件經組態以導引該激發能朝向一或多個像素。 可接著由該積體裝置之一像素內之一或多個感測器偵測由一樣本發射之發射能。該所偵測發射能之特性可提供發射該發射能之該標記之一指示且可用於識別與該發射能相關聯之該標記。此等特性可包含任何合適類型之光之特性,包含由一感測器偵測之光子之一到達時間、隨時間由一感測器累積之一光子量及/或光子跨兩個或兩個以上感測器之一分佈。在一些實施例中,一感測器可具有一組態,其允許與一樣本之發射能相關聯之一或多個時序特性(例如螢光壽命)之偵測。該等感測器可偵測在激發能之一脈衝傳播通過該積體裝置之後光子到達時間之一分佈,且到達時間之該分佈可提供該樣本之發射能之一時序特性(例如螢光壽命之一代理)之一指示。在一些實施例中,該一或多個感測器提供由該標記或標籤發射之發射能之概率之一指示(例如螢光強度)。在一些實施例中,複數個感測器可經定大小且經配置以捕獲該發射能之一空間分佈。來自該一或多個感測器之輸出信號可接著用以自複數個標記當中區分一標記,其中該複數個標記可用以識別該樣品內之一樣本。在一些實施例中,一樣本可由多個激發能激發,且回應於該多個激發能由該樣本發射之該發射能之發射能及/或時序特性可自複數個標記區分一標記。 系統2-100之一示意性概述繪示於圖2-1A及圖2-1B中。該系統包括與一儀器2-104介接之一積體裝置2-102兩者。在一些實施例中,儀器2-104可包含經整合為儀器2-104之部分之一或多個激發源2-106。在一些實施例中,一激發源可在儀器2-104及積體裝置2-102兩者外部,且儀器2-104可經組態以自該激發源接收激發能且導引其至該積體裝置。該積體裝置可使用用於接收該積體裝置並固持其與該激發源精確光學對準之任何合適插座而與該儀器介接。激發源2-106可經組態以提供激發能至積體裝置2-102。如圖2-1B中示意性地繪示,積體裝置2-102具有多個像素,其中像素2-112之至少一部分可執行一樣本之獨立分析。此等像素2-112可指稱「被動源像素」,因為一像素自與該像素分離之一源2-106接收激發能,其中該源激發複數個像素。一像素2-112具有經組態以接收一樣本的一樣本井2-108及用於回應於使用由激發源2-106提供之激發能照明該樣本而偵測由該樣本發射之發射能的一感測器2-110。樣本井2-108可保持該樣本接近於積體裝置2-102之一表面以在激發能傳遞至該樣本及偵測來自該樣本之發射能中提供方便。 用於引導並耦合激發能至樣本井2-108之光學元件經定位於積體裝置2-102及儀器2-104兩者上。此等源至井元件可包括:一或多個光柵耦合器,其等經定位於積體裝置2-102上以使激發能耦合至該積體裝置;及波導,用以將來自儀器2-104之激發能傳遞至像素2-112中之樣本井。在一些實施例中,經定位於該積體裝置上之元件可用以導引來自該樣本井之發射能朝向該感測器。樣本井2-108、該等激發源至井光學器件之一部分及該樣本井至感測器光學器件可經定位於積體裝置2-102上。激發源2-106及該等源至井組件之一部分可經定位於儀器2-104上。在一些實施例中,一單一組件可在耦合激發能至樣本井2-108及將來自樣本井2-108之發射能傳遞至感測器2-110兩者中起作用。用於耦合激發能至一樣本井及/或導引發射能至一感測器之包含於一積體裝置中之合適組件之實例經描述於題為「INTEGRATED DEVICE FOR PROBING, DETECTING AND ANALYZING MOLECULES」之美國專利申請案14/821,688及題為「INTEGRATED DEVICE WITH EXTERNAL LIGHT SOURCE FOR PROBING, DETECTING, AND ANALYZING MOLECULES」之美國專利申請案14/543,865中,該等案兩者之全部內容以引用的方式併入本文中。 如圖2-1B中所繪示,該積體裝置包括複數個像素,其中一像素2-112係與其自身個別樣本井2-108及至少一個感測器2-110相關聯。該複數個像素可經配置於一陣列中,且可在該陣列中存在任何合適數目個像素。積體裝置2-102中之像素之數目可在近似10,000個像素至10,000,000個像素之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,該積體裝置可具有512,000個像素、32,000個像素、64,000個像素或8,000,000個像素。在一些實施例中,該等像素可經配置於512個像素×512個像素之一陣列中。積體裝置2-102及儀器2-104可包含多通道、高速通信鏈路用於處理與大像素陣列(例如大於10,000個像素)相關聯之資料。 儀器2-104通過積體裝置介面2-114而與積體裝置2-102介接。積體裝置介面2-114可包含組件以定位及/或對準積體裝置2-102至儀器2-104以改良來自激發源2-106之激發能至積體裝置2-102之耦合。激發源2-106可為任何合適光源,其經配置以傳遞激發能至至少一個樣本井。合適激發源之實例經描述於題為「INTEGRATED DEVICE FOR PROBING, DETECTING AND ANALYZING MOLECULES」之美國專利申請案14/821688中,該案之全部內容以引用的方式併入本文中。在一些實施例中,激發源2-106包含多個激發源,其等經組合以傳遞激發能至積體裝置2-102。該多個激發源可經組態以產生多個激發能及/或波長。積體裝置介面2-114可接收來自經定位於該積體裝置上之該等像素中之該等感測器的讀出信號。積體裝置介面2-114可經設計使得該積體裝置藉由將該積體裝置牢固至積體裝置介面2-114而附接至該儀器。 儀器2-104包含一使用者介面2-116用於控制儀器2-104之操作。使用者介面2-116經組態以允許一使用者輸入資訊至該儀器中,諸如用以控制該儀器之功能之命令及/或設置。在一些實施例中,使用者介面2-116可包含按鈕、開關、刻度盤及一麥克風用於聲音命令。另外,使用者介面2-116可允許一使用者接收關於該儀器及/或積體裝置之效能的反饋,諸如由來自該積體裝置上之該等感測器之讀取信號獲得之合適對準及/或資訊。在一些實施例中,使用者介面2-116可使用一揚聲器提供反饋以提供聲音反饋,及指示燈及/或顯示螢幕用於提供視覺反饋。在一些實施例中,儀器2-104包含用以與一計算裝置2-120連接之一電腦介面2-118。可使用任何合適電腦介面2-118及計算裝置2-120。例如,電腦介面2-118可為一USB介面或一FireWire介面。計算裝置2-120可為任何通用電腦,諸如一膝上型或桌上型電腦。電腦介面2-118促進儀器2-104與計算裝置2-120之間的資訊之通信。可通過經連接至該儀器之電腦介面2-108之計算裝置2-120提供用於控制及/或組態儀器2-104之輸入資訊。可由計算裝置2-120通過電腦介面2-118接收輸出資訊。此輸出資訊可包含關於儀器2-104及/或積體裝置2-112之效能之反饋及來自感測器2-110之該等讀出信號之資訊。儀器2-104亦可包含一處理裝置2-122用於分析自感測器2-110接收之資料及/或發送控制信號至激發源2-106。在一些實施例中,處理裝置2-122可包括一通用處理器、一特別調適處理器(例如,一中央處理單元(CPU),諸如一或多個微處理器或微控制器核心、一場可程式化閘陣列(FPGA)、一專用積體電路(ASIC)、一客製積體電路、一數位信號處理器(DSP)或其等之一組合)。在一些實施例中,可由處理裝置2-122及外部計算裝置2-120兩者執行來自感測器2-110之資料之處理。在其他實施例中,可省略計算裝置2-120且可單獨由處理裝置2-122執行來自感測器2-110之資料之處理。 繪示一列像素之積體裝置3-102之一橫截面圖經展示於圖3-1A中。一像素3-112包含一樣本井3-108及一感測器3-110。感測器3-110可經對準並經定位至樣本井3-112,使得感測器3-110接收由樣本井3-112內之一樣本發射之發射能。合適感測器之實例經描述於題為「INTEGRATED DEVICE FOR TEMPORAL BINNING OF RECEIVED PHOTONS」之美國專利申請案14/821,656中,該案之全部內容以引用的方式併入本文中。 經耦合至該積體裝置之一激發源可提供激發能至積體裝置3-102之一或多個像素。圖3-1B係繪示激發源3-106至積體裝置3-102之耦合以提供激發能3-130 (展示於虛線中)至積體裝置3-102的一示意圖。圖3-1B繪示在像素3-112中激發能自激發能源3-106至一樣本井3-108之路徑。離開該積體裝置定位之組件可用以定位並對準激發源3-106至該積體裝置。此等組件可包含光學組件,其等包含透鏡、鏡、棱鏡、孔、衰減器及/或光學光纖。額外機械組件可經包含於該儀器中以允許一或多個對準組件之控制。此等機械組件可包含致動器、步進電機及/或把手。合適激發源及對準機構之實例經描述於題為「PULSED LASER AND SYSTEM」之美國專利申請案62/310,398中,該案之全部內容以引用的方式併入本文中。 該積體裝置包含導引激發能3-130朝向該積體裝置中之像素的組件。在各像素3-112內,激發能經耦合至與該像素相關聯之樣本井3-108。儘管圖3-1B繪示激發能耦合至一列像素中之各樣本井,但在一些實施例中,激發能不可耦合至一列中之所有像素。在一些實施例中,激發能可耦合至像素或該積體裝置之一列像素中之樣本井之一部分。激發能可照明經定位於一樣本井內之一樣本。該樣本可回應於由該激發能照明而到達一激發狀態。當一樣本係在一激發狀態中時,該樣本可發射發射能且該發射能可由一感測器偵測。圖3-1B示意性地繪示發射能3-140 (展示於實線中)自樣本井3-108至像素3-112之感測器3-110之路徑。像素3-112中之感測器3-110可經組態且經定位以偵測來自樣本井3-108之發射能。在一些實施例中,感測器3-110可包含多個子感測器。 待分析之一樣本可經引入至像素3-112之樣本井3-108中。該樣本可為一生物樣本或任何其他合適樣本,諸如一化學樣本。該樣本可包含多個分子且該樣本井可經組態以隔離一單分子。在一些例項中,該樣本井之尺寸可用以限制一單分子於該樣本井內,允許對該單分子執行量測。一激發源3-106可經組態以傳遞激發能至樣本井3-108中,以便當其在樣本井3-108內之一照明區域內時激發該樣本或經附接至該樣本或依其他方式與該樣本相關聯之至少一個發光標記。 當一激發源傳遞激發能至一樣本井時,該井內之至少一個樣本可發冷光,且該所得發射可由一感測器偵測。如本文中所使用,片語「一樣本可發冷光」或「一樣本可發射輻射」或「來自一樣本之發射」意謂一發光標籤、標記或記錄器、該樣本自身或與該樣本相關聯之一反應產品可產生所發射輻射。 一積體裝置之一或多個組件可導引發射能朝向一感測器。該(等)發射能可由該感測器偵測且轉換成至少一個電信號。該等電信號可沿導電線傳輸於通過該積體裝置介面(諸如圖2-1B中所展示之儀器2-104之積體裝置介面2-114)而連接至該儀器之該積體裝置之電路中。該等電信號可隨後經處理及/或分析。電信號之處理或分析可發生在經定位於儀器2-104上或脫離儀器之一合適計算裝置(諸如圖2-1B中所展示之計算裝置2-120)上。 在操作中,藉由使用該激發源激發該等井內之該等樣本且使用該等感測器偵測來自該樣本發射之信號而執行該等樣本井內之樣本之並行分析。來自一樣本之發射能可由一對應感測器偵測且經轉換成至少一個電信號。在一些實施例中,該(等)所得信號可在該積體裝置上處理,或傳輸至該儀器用於由該處理裝置及/或計算裝置處理。來自一樣本井之信號可獨立於與其他圖元相關聯之信號而接收並處理。 在一些實施例中,一樣本可由一或多個標記標號,且與該等標記相關聯之發射係可由該儀器辨認。例如,該感測器可經組態以將來自該發射能之光子轉換成電子以形成一電信號,其可用以辨認取決於來自一特殊標記之發射能的一壽命。藉由使用具不同壽命之標記來標號樣本,可基於由該感測器偵測之該所得電信號而識別特定樣本。 一樣本可含有多個類型之分子且不同發光標記可唯一與一分子類型相關聯。在激發期間或在激發之後,該發光標記可發射發射能。該發射能之一或多個性質可用以識別該樣本中之一或多個類型之分子。用以在分子類型當中區分之該發射能之性質可包含一螢光壽命值、強度及/或發射波長。一感測器可偵測光子,包含發射能之光子,且提供指示此等性質之一或多者之電信號。在一些實施例中,來自一感測器之電信號可提供關於光子到達時間跨一或多個時間間隔之一分佈的資訊。光子到達時間之該分佈可對應於在激發能之一脈衝由一激發源發射之後一光子何時經偵測。針對一時間間隔之一值可對應於在該時間間隔期間偵測之光子之一數目。跨多個時間間隔之相對值可提供該發射能之一暫時特性(例如壽命)之一指示。分析一樣本可包含藉由比較一分佈內之兩個或兩個以上不同時間間隔之值而在標記當中區分。在一些實施例中,可藉由判定跨一分佈中之所有時間箱之光子之一數目而提供該強度之一指示。 II.積體裝置
一積體裝置在分析樣本中之效能可取決於經傳遞至個別樣本井之激發能(例如光學功率)量。隨著激發能自一激發源傳播至一樣本井,光學損失可發生,其可減小耦合至該樣本井之激發能量且影響與該樣本井相關聯之像素在偵測該樣本中之效能。針對一陣列之樣本井,此等光學損失可限制能夠樣本偵測之像素之數目。在一些例項中,此等光學損失可減小在傳遞激發能至該陣列中之個別樣本井中的一致性。該積體裝置之一波導可使激發能耦合至經定位成接近於該波導之數個樣本井(例如512個樣本井)。隨著激發能沿該波導傳播,總光學損失量可增加,減小耦合至經定位成沿該波導更遠之樣本井之激發能量。依此方式,沿該波導之光學損失可影響經耦合至經定位成接近於該波導之個別樣本井之激發能量中的一致性。本申請案之態樣係關於積體裝置,及形成積體裝置之方法,其等藉由當激發能沿一波導傳播時減少光學損失而改良該陣列之樣本井內之激發能之一致性。 一個類型之光學損失可由該積體裝置之一波導至該裝置之一表面的接近度引起。當該表面係由一金屬層在該積體裝置之一覆層上方形成時可增強該光學損失。該積體裝置之該波導可傳遞激發能至經定位於該積體裝置之一表面上之多個樣本井,其中該等樣本井通過該金屬層形成。一個別樣本井與該波導之間的該距離可允許來自該波導之激發能至該樣本井之耦合,但該波導至該金屬層之接近度可對沿該波導傳播之激發能之損失做貢獻。據此,本申請案之態樣係關於形成一積體裝置之技術,其中一波導與該積體裝置之一金屬層之間的該距離沿該波導不同。一些實施例係關於該金屬層之部分,其等包含以比缺乏一樣本井之該金屬層之一部分更靠近該波導之一距離定位之一或多個樣本井。依此方式,樣本井可以至該波導之一合適距離定位用於激發能耦合之一所要位準,同時減小可由藉由具有沿該波導之其他地方之一更厚覆層之該波導至該金屬層之接近度引起的光學損失。 包含至少一個樣本井之該區域可自該積體裝置之該表面之另一部分凹入。在一些實施例中,包含至少一個樣本井且與該波導重疊之該表面之一第一區域以小於與該波導重疊但不包含一樣本井之該表面之一第二區域至該波導的一距離定位。該表面之一凹入區域可藉由在該積體裝置之形成期間蝕刻該區域而形成且可指稱一「溝槽」區域。在一些實施例中,一溝槽區域可包含一單一樣本井,使得個別溝槽區域經形成圍繞個別樣本井。在一些實施例中,一溝槽區域可包含多個樣本井,諸如一列樣本井(例如沿一波導定位之樣本井)或多列樣本井(例如整個樣本井陣列)。 另一類型之光學損失可由一波導至該裝置之一組件之接近度引起,其影響光沿該波導傳播之能力。在一些實施例中,一積體裝置可包含金屬組件,其等可對沿一波長之光學損失做貢獻。該積體裝置之一些實施例包含經形成於該積體裝置之該表面上之一金屬層內之樣本井。該金屬層可在由一或多個感測器偵測來自一樣本井之發射能中提供優勢。該金屬層可用以減少背景信號且提高由該一或多個感測器偵測之發射能量。包含一或多個樣本井之一溝槽區域之形成可減少由該金屬層至該波導之接近度引起的光學損失。 在一些實施例中,該積體裝置可包含經組態以充當用以傳輸及/或接收電信號之佈線的金屬層。此佈線可耦合至一感測器且傳輸信號以控制該感測器及/或接收指示由該感測器偵測之該發射能之信號。一些實施例係關於用以容納金屬佈線之一溝槽區域之形成同時提供一或多個樣本井至一波導及/或一感測器之接近度。 一些實施例係關於用於改良在耦合至各樣本井中之激發能量中跨多個樣本井的一致性之技術。該積體裝置之光學組件可合適地經定大小且經定形使得經耦合至多個樣本井之激發能量具有在一所要容差量內之一功率位準。一積體裝置可包含經組態以接收激發能並導引該激發能至一或多個波導中之一光柵耦合器。一波導可具有一組態,其允許激發能至一或多個樣本井中之耦合。在一些實施例中,一或多個光學分裂器組件(例如星形耦合器、多模式干擾分裂器)可經組態以接收來自該光柵耦合器之光(例如激發能)且導引光至一或多個波導中,其中各波導經定位成接近於多個樣本井。此一光學分裂器組件可具有一組態,其提供該積體裝置之多個波導當中之一大致一致光分佈。依一一致方式在多個波導當中分佈激發能可改良由該陣列中之該等樣本井接收之激發能之一致性。 在一些實施例中,該積體裝置之一波導可在一或多個尺寸上在垂直於光傳播之方向之一方向上漸縮。該波導之此一漸縮可允許該波導使大致相同激發能量耦合至經定位成接近於該波導之一列樣本井中。隨著一激發能脈衝沿該波導傳播且使激發能耦合至該列中之該等樣本井,激發能量可減少。減少該波導之一尺寸可改變該波導之傳播模式以考量該減少功率,使得該列中之該等樣本井之各者接收大致相同激發能量。 圖3-2A係根據一些實施例之一積體裝置之一平面圖的一示意圖。激發能可耦合至光柵耦合器3-200且沿一波導傳播至分裂器3-202。分裂器3-202 (例如星形耦合器、多模式干擾(MMI)耦合器)可使激發能耦合至經組態以導引激發能至該積體裝置之像素陣列3-204之複數個波導。光柵耦合器3-200可具有一組態,其中藉由在與法向於該xy平面成一角度之一方向上定位入射至光柵耦合器3-200之一束激發能而改良耦合效率。光柵耦合器3-200可相對於像素陣列3-204定位,使得入射至光柵耦合器之激發能經導引遠離像素陣列3-204。此一組態可自到達並由經定位於該積體裝置之像素陣列3-204內之一感測器偵測而減少激發能,其可改良由該積體裝置執行之量測之信號雜訊比。如圖3-2A中所展示,導引光自光柵耦合器3-200至分裂器3-202之該波導具有一U轉向形狀3-201以允許光柵耦合器3-200接收經入射至光柵耦合器3-220之激發能,同時仍使激發能耦合至分裂器3-202。U轉向形狀3-201允許光柵耦合器3-200之效率在經入射至光柵耦合器3-200之一束激發能在該負x方向之一方向上與xy平面之法向成一角度時經改良。依此方式,該束激發能可自朝向像素陣列3-204之一角度到達,使得到達圖3-2A中所展示之xy平面之激發能經導引遠離像素陣列3-204。 分裂器3-202可具有一組態,其改良激發能跨經連接至分裂器3-202之該等波導的一致性。在一些實施例中,分類器3-202可提供激發能跨128個波導之大致一致量。個別波導可在垂直於沿一波導之光傳播之方向的一維度上漸縮。在圖3-2A中,像素陣列3-204內之波導可具有沿y方向之個別波導之一漸縮尺寸。 根據本文中所描述之技術,像素陣列3-204可與一溝槽區域重疊。在一些實施例中,像素陣列3-204可具有近似2.7毫米之一尺寸。與像素陣列3-204之像素相關聯之個別感測器可經形成以與像素陣列3-204重疊。 該積體裝置可包含用於在個別波導之端處偵測激發能的一區域。監測區域3-206可包含經耦合至個別波導之一光柵耦合器。區域3-206中之一光柵耦合器可經組態以導引激發能自一波導至經定位以至少部分與監測區域3-206重疊之一監測感測器。由該檢測感測器之激發能之偵測可在激發能之一脈衝沿該波導(在負x方向上)行進且使激發能耦合至經定位成接近於該波導之樣本井中之後提供一波導中之激發能量的一指示。 一些實施例係關於一種積體裝置,其具有複製結構及/或測試結構以為操作該積體裝置提供經改良效能。在一些實施例中,一積體裝置可包含經耦合至一光學分裂器組件之多個光柵耦合器,其中該等光柵耦合器之各者經組態以接收來自一外部源之激發能。圖3-2B係包含經耦合至分裂器3-212之輸入光柵耦合器3-210的一積體裝置之一平面圖之一示意圖。多個光柵耦合器3-210可在輸入之數目中提供冗餘用於激發能與該積體裝置耦合。儘管在該積體裝置之操作期間可使用該等光柵耦合器之僅一者以分析一樣本,然來自多個光柵耦合器3-210當中之一光柵耦合器可基於多個光柵耦合器3-210之各者之一效能位準而經選擇用於在操作期間使用。針對一輸入光柵耦合器之該效能位準可基於關於跨像素陣列3-214中之多個樣本井所接收之激發能量及/或在一或多個波導輸出處接收之激發能量的一指示而判定。一旦一積體裝置經負載至該儀器中,則該所選光柵耦合器可藉由判定哪一光柵耦合器3-210提供該積體裝置內之激發能分佈之一所要位準而識別。在一些實施例中,若該積體裝置在該積體裝置之操作期間經歷低於一所要臨限值之效能,則多個輸入光柵耦合器3-210可允許該積體裝置之繼續使用。該激發能束可經定位於一不同光柵耦合器3-210上而非由一不同積體裝置替換以達成改良效能且繼續使用該積體裝置操作以分析一樣本。 一積體裝置亦可包含經組態以在該積體裝置由一使用者操作之前提供該積體裝置之評估及/或測試能力的光學結構。此等測試結構可允許在製造及/或組裝期間該積體裝置之評估組作為品質控制量測之部分。一些測試結構亦可用作針對一積體裝置與包含該激發源之該儀器介接的一評估程序之部分。測試結構3-216、3-218、3-220及3-224可包含經耦合至輸入及輸出光柵耦合器之螺旋結構,其等可用以量測該等波導結構中之光學損失量。一束光可經對準以在一測試結構之一端處與一光柵耦合器及經定位以接收自該測試結構之另一端發射之光之一感測器耦合以提供在穿過該測試結構之後保持之光量的一指示。 一積體裝置之一個類型之光子測試結構可包含多個馬赫-曾德爾(Mach-Zehnder)干涉儀(MZI),諸如圖3-2C中所展示之測試結構。包含MZI 3-234之個別MZI可具有具不同長度之測試臂且連接至相同MMI。如圖3-2C中所展示,MMI 3-232可具有一個輸入至八個輸出,各輸出至一信號MZI,然應瞭解,MMI及MZI之其他組合可用於一測試結構中。此類型之測試結構可針對該材料之折射率之一有效值提供一指示,其用以藉由使一光束對準至輸入光柵耦合器3-230且量測由經定位以自輸出光柵耦合器3-236發射之光之感測器偵測之光而形成該積體裝置之波導。一感測器對可偵測來自經耦合至相同MZI之兩個個別輸出光柵耦合器3-236之光。該兩個感測器之間的該所偵測光中之一比較(例如差、比率)可針對該兩個輸出光柵耦合器提供光之相對功率輸出之一指示。該相對功率可關於該MZI之該測試臂之長度及該波導之有效折射率。針對該波導之有效折射率之一值可藉由比較該相對功率與各個別MZI之測試臂之長度而判定。相對功率與測試臂長度之間的關係可具有一正弦函數,其中該正弦曲線之週期係關於有效折射率。圖3-2D係根據測試結構長度(由ΔL指示)針對包含於一測試結構(諸如圖3-2C中所展示之測試結構)中之不同MZI之相對功率之一曲線。藉由擬合資料點至一正弦函數,該有效折射率可藉由識別該經擬合正弦曲線之週期而判定。此一測試結構亦可提供MMI 3-232在傳遞一所要光量至經連接至MMI 3-232之該等MZI之各者中的一致性及/或有效性之一指示。 圖4-1A示意性地繪示根據一些非限制性實施例之積體裝置4-100之一橫截面圖。激發能可耦合至光柵耦合器4-114且可沿波導4-116之傳播軸行進(例如沿x軸自圖4-1A之左側至右側)。波導4-116可支持激發能之一模式,其至少部分垂直於波導4-116之傳播方向延伸。此一模式可允許激發能延伸至頂部覆層4-118中且短暫地耦合至樣本井4-1081
、4-1082
、4-1083
、4-1084
、4-1085
及4-1086
。儘管僅六個樣本井展示於圖4-1A中,然任何合適數目個樣本井可沿一波導定位以短暫地與該波導耦合。沿一波導定位之樣本井之數目可在100至5000之範圍中或在該範圍中之任何值或值之範圍。在一些實施例中,沿一波導定位之樣本井之數目可在500至1,000之範圍中或在該範圍中之任何值或值之範圍。經定位於一樣本井4-108中之一樣本可回應於由該激發能照明而到達一激發狀態且可發射發射能。樣本井及/或金屬層4-122之組合物之形狀及大小可用以導引發射能朝向一感測器。在一些實施例中,由一樣本發射之呈發射能之形式之能量之一部分可向下傳播通過頂部覆層4-118、波導層4-116、底部覆層4-110及介電層4-102。該發射能之一部分可由經安置於與該樣本井相關聯之一像素中之基板4-105上之一或多個感測器接收。 積體裝置4-100可包括一下堆疊4-150及經安置於下堆疊4-150上方之一上堆疊4-151。在一些實施例中,上堆疊4-151及下堆疊4-150具有一相鄰表面,使得上堆疊4-151及下堆疊4-150係彼此接觸。在其他實施例中,上堆疊4-151及下堆疊4-150由一或多個材料層分離。 下堆疊4-150可包含組件,其等經組態以提供自該發射能自經定位於上堆疊4-151之一樣本井中之一樣本發射的一指示。下堆疊4-150可包括基板4-105,其在一些實施例中可包含矽。基板4-105可具有沿圖4-1A中所展示之z軸之任何合適高度。藉由實例且非限制,基板4-105可具有在一些實施例中0.001毫米與0.01毫米之間、在一些實施例中0.01毫米與0.1毫米之間、在一些實施例中0.1毫米與1毫米之間的一高度。基板4-105可包括經組態以偵測由一或多個樣本發射之發射能之感測器。基板4-105亦可包含用以監測經耦合至該積體裝置之激發能之感測器。在一些實施例中,經定位以與光柵耦合器4-114重疊之一或多個監測感測器可偵測穿過光柵耦合器4-114之激發能。來自該等感測器之電信號可提供該發射壽命、強度及/或光譜之一指示。基板4-105可進一步包括經組態以讀出由感測器提供之該等電信號之類比及/或數位電子電路。該電子電路可包括電晶體、電容器、放大器、開關、濾波器、整合器、計時器或其等之任何合適組合。下堆疊4-150可包括介電層4-102。在一些實施例中,介電層4-102可經安置於基板4-105之頂部上。在一些實施例中,介電層4-102可包括一或多個介電子層。該等子層可由至少部分對發射能透明之任何合適介電質形成,包含氧化矽、氧化鋁及氧化鈦。 在一些實施例中,下堆疊4-150可包含經組態以充當該積體裝置內之電佈線之一或多個金屬層。該等金屬層可充當金屬佈線以路由電信號於該積體裝置內及/或藉由耦合至該等金屬佈線而至經定位成與該積體裝置分離之電路。該等金屬佈線可通過通孔(例如鎢通孔)而經電耦合至基板4-105。一金屬層可經安置於該積體裝置之一材料層(例如介電層)上或內。如圖4-1A中所展示,金屬層4-103及金屬層4-104經安置於介電層4-102內且可充當積體裝置4-100內之金屬佈線。 一積體裝置之一金屬層亦可用以減少源自除經定位於該陣列之樣本井中之樣本之源的光量。依此方式,一金屬層可考量一擋板。此等金屬層可藉由減少可由雜散光(例如激發光、背景光)引起之雜訊假像來改良該等感測器之信號雜訊比。該等金屬層可相對於該等樣本井定位,以允許發射能之偵測。如圖4-1A中所展示,金屬層4-103及金屬層4-104係不與樣本井4-1081
、4-1082
、4-1083
、4-1084
、4-1085
及4-1086
重疊。金屬層4-103係定位於基板4-105與光柵耦合器4-114之間,且可作用以減少自到達基板4-105及/或基板4-105之一感測器而穿過光柵耦合器4-114的激發能量。金屬層4-104係定位於波導4-116之一遠端與基板4-105之間,且可作用以減少自到達基板4-105及/或基板4-105之一感測器而從波導4-116之該遠端發射的激發能。 金屬層4-103及金屬層4-104可係由任何合適金屬形成,諸如在一些實施例中為鋁。在一些實施例中,一金屬層可包含一個以上金屬。用以形成一金屬層之材料可為一積體裝置之一或多個圍繞材料提供一所要黏著位準。在一些實施例中,一襯層可經形成與一金屬層接觸,且可改良該金屬層與積體裝置4-100之另一組件的黏著性。該襯層可充當一金屬層與介電層4-102之間之一黏著層。用作一襯層之合適材料的實例包含鈦及氮化鈦。在一些實施例中,一襯層可經形成在接近於該積體裝置之該基板之一金屬層之一表面上。在一些實施例中,一襯層可經形成在接近於具有該等樣本井之該積體裝置之該表面之一金屬層之一表面上。 在一些實施例中,一積體裝置可包括兩個或兩個以上金屬層,其等在該積體裝置中至少部分重疊(未展示於圖4-1A中)。可使用任何合適數目個重疊金屬層(例如,2個、3個、4個、5個)。相鄰金屬層可通過一或多個通孔(例如鎢通孔)來電連接。 上堆疊4-151可包含該陣列中的樣本井及經組態以接收來自與積體裝置4-100分離之一外部光源之激發能且導引激發能朝向該等樣本井之一或多者的光學組件。上堆疊4-151可包含底部覆層4-110,其可係安置於介電層4-102之頂部上。用以形成底部覆層4-110之材料可具有對光之一所要透明度位準(例如發射能、激發能)。底部覆層4-110可係由任何合適介電材料形成,諸如(例如)氧化矽、氧化鋁或氧化鈦。在一些實施例中,介電層4-102及底部覆層4-110可包括相同介電材料,且可形成一單一介電堆疊。在其他實施例中,介電層4-102及底部覆層4-110可包括不同介電材料。 上堆疊4-151可包含經組態以傳播具有一或多個特性波長之激發能的一或多個波導。可藉由使用合適製造技術(例如光微影)圖案化一材料層作為上堆疊4-151的部分來形成波導4-116。波導4-116可係由具有大於底部覆層4-110之折射率之一折射率的一或多個材料形成。用以形成波導4-116之實例材料包含矽及氮化矽(Six
Ny
)。 波導4-116可具有一寬度(沿垂直於圖4-1A之平面之一軸界定)及一高度(沿z軸界定),使得僅一單一模式可被界定在波導4-116內。在一些實施例中,該單一模式可為一橫向電(TE)模式。在其他實施例中,該單一模式可為一橫向磁(TM)模式。波導4-116可具有在80奈米至250奈米之範圍中或在該範圍內之任何值或值之範圍之一高度。在一些實施例中,波導4-116具有在120奈米至150奈米之範圍中或在該範圍中之任何值或值之範圍之一高度。波導4-116可具有在200奈米至1600奈米之範圍中或在該範圍內之任何值或值之範圍之一寬度。在一些實施例中,波導4-116之寬度可沿其傳播軸漸縮,使得波導4-116接近於光柵耦合器4-114比在遠離光柵耦合器4-114之一位置處具有一更大寬度。據此,該波導可經組態以當該模式傳播遠離該輸入光柵耦合器時,具有至該各種樣本井之增加的耦合係數。在一些實施例中,波導4-116之該寬度可係線性地漸縮。具有一漸縮波導可比在該波導缺乏該漸縮組態的情況下允許激發能至經定位以與該波導耦合之各種樣本井4-108之一更一致耦合。 上堆疊4-151可包含經組態以接收來自一激發源之激發能,且使激發能光學地耦合至波導4-116之光柵耦合器4-114。在一些實施例中,光柵耦合器4-114可係由相同於波導4-116之材料(例如矽、氮化矽)形成。在該積體裝置之形成期間,該相同光微影製程步驟可形成光柵耦合器4-114及波導4-116兩者。光柵耦合器4-114可經組態以接收一光學光束,其法向地入射(沿圖4-1A中所展示之z方向)至光柵耦合器4-114之平面。在一些實施例中,光柵耦合器4-114可經組態以接收以與法向於光柵耦合器4-114之平面(沿圖4-1A中所展示之z方向)成一角度入射之一光束。此一角度可在約0.1°與10°之間,或在該範圍內之任何值或值的範圍。光柵耦合器4-114之耦合係數可取決於反射器4-112至光柵耦合器4-114之相對定位。在一些實施例中,光柵耦合器4-114可具有在40%至70%之範圍中或在該範圍內之任何值或值之範圍之一耦合係數。圖4-4展示針對一光柵耦合器(諸如光柵耦合器4-114)之一例示性結構,一腔區域,其經耦合至一波導。一光柵耦合器可具有具第一光柵之一半徑Rg
且接近於沿y方向具有一寬度Wc
之一腔區域之一側。該腔區域可具有沿x方向之一漸縮長度Lc
。該腔可具有具一半徑椎體之一區域。如圖4-4中所展示,該腔具有具在該腔之寬度We
與Wo
之間之一半徑椎體的區域4-404。寬度Wo
可對應於其中該腔輸出至一波導之處。該腔可具有具一絕熱椎體之一區域。如圖4-4中所展示,該腔具有具在該腔之寬度Wg
與Wo
之間之一絕熱椎體區域的區域4-402,其沿x方向具有一長度Lt
。在寬度Wg
處,該腔之該等尺寸可對應於一波導。 經定位成接近於光柵耦合器4-114之一或多個監測感測器可在不耦合至光柵耦合器4-114的情況下偵測穿過光柵耦合器4-114之一平面的激發能。來自該一或多個監測感測器之電信號可提供來自該激發源之激發能至該積體裝置之對準的一指示。在一些實施例中,該一或多個監測感測器經定位以接收激發能,其穿過光柵耦合器4-114之一平面但在與光柵耦合器4-114分離之一區域中。在一些實施例中,經定位於光柵耦合器4-114與該一或多個監測感測器之間的一反射器可具有一或多個開口,其等允許激發能穿過該反射器。該反射器之該一或多個開口可相對於光柵耦合器4-114定位,使得光柵耦合器4-114係不與該反射器之該一或多個開口重疊。在一些實施例中,該反射器之該一或多個開口經定位成接近於光柵耦合器4-114之該周邊。 積體裝置4-100可包含經定位以沿z軸至少部分與光柵耦合器4-114重疊之反射器4-112。反射器4-112可藉由使穿過光柵耦合器4-114之光之至少一部分反射回朝向光柵耦合器4-114而改良光柵耦合器之耦合效率,其可比若反射器4-112不存在的情況下增強耦合至光柵耦合器4-114之光量。反射器4-112可使用至少部分反射該激發能之一材料形成。用作一反射器之合適材料之實例包含鋁及銅。在一些實施例中,反射器4-112可包括鋁,且該鋁層可直接與底部覆層4-110接觸。 光柵耦合器4-114之該耦合效率可取決於該入射光之相不同於來自反射器4-112之該經反射光之相的程度。光柵耦合器4-114之耦合效率可經改良,其中該入射光之該相大致與該經反射光之該相對準。與該入射激發能組合之該經反射光之該相可取決於光柵耦合器4-114與反射器4-112之間的光學路徑長度。據此,一些實施例係關於一積體裝置,其中光柵耦合器4-114與反射器4-112之間的距離hR
提供一光學路徑長度,其減小穿過光柵耦合器4-114且由反射器4-112反射之光與由光柵耦合器4-114支持之光之模式之間的相失配。為改良經反射光與至光柵耦合器4-114之入射光之間的相匹配之一合適量,所要距離hR
可取決於用以形成底部覆層4-110之材料之折射率及/或該激發能之特性波長。在一些實施例中,hR
可具有一長度,使得來自光柵耦合器4-114且由反射器4-112反射至光柵耦合器4-114之一光束係大致與光柵耦合器4-114之該模式同相。在一些實施例中,藉由自光柵耦合器4-114之該平面傳播之一光束(由反射器4-112反射回)傳播朝向光柵耦合器4-114之該平面經歷之相累積可近似等於2π或在2π之一範圍內(例如在2π之5%之一範圍內)。距離hR
可在400奈米至1200奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,距離hR
可為近似1100奈米。在其他實施例中,距離hR
可為近似550奈米。 反射器4-112可具有形成於其上之複數個開口(未展示)。該等開口可具有圓形形狀、橢圓形形狀、矩形形狀、正方形形狀或任何其他合適形狀。該等開口可具有任何合適大小。可在反射器4-112藉由其形成之相同微影步驟期間形成該等開口。例如,可通過具有對應於反射器4-112之一形狀之一光遮罩形成反射器4-112,使得該形狀可具有形成於其上之開口。該等開口可經組態以允許傳播朝向反射器4-112 (大致沿z方向)之該激發能之一部分穿過反射器4-112。 經定位以與反射器4-112之該等開口重疊之一或多個監測感測器可接收穿過反射器4-112之激發能且產生對應於所接收之該激發能之一量的一電信號。由該等監測器感測器之該激發能之量測可用以使該架能之該入射輻射對準至光柵耦合器4-114以達成經耦合至波導4-116中之激發能之一所要功率位準。在一些實施例中,一操作者可手動地通過把手或電子地通過經耦合至用以導引來自該激發源之激發能之光學組件的致動器及電極調整由一監測器感測器偵測之能量。在一些實施例中,該激發能至光柵耦合器4-114之對準可包含識別激發能之一光束至光柵耦合器4-114之一定向,其中由個別監測器感測器偵測之光子量大致相同。任何合適數目個監測器感測器可包含於一積體裝置中且用於該激發源至該積體裝置之該光柵耦合器之對準。在一些實施例中,該積體裝置可包含經配置以形成四個象限之四個監測器感測器,其等可指稱一「象限」偵測器。該四個監測器感測器可各通過反射器4-112而個別與一開口重疊。用於使一激發源對準至一光柵耦合器之合適對準機構之實例經描述於題為「PULSED LASER AND SYSTEM」之美國專利申請案62/310,398中,該案之全部內容以引用的方式併入本文中。 在一些實施例中,激發能之一光束至光柵耦合器4-114之對準可包含量測由包含一或多個輸出感測器之一或多個額外感測器及/或與該積體裝置之像素相關聯之一或多個感測器偵測之光,該一或多個輸出感測器經定位以接收自遠離該激發能耦合區域之一波導之一端耦合之激發能。該光學光束之對準可包含相對於光柵耦合器4-114定位該光束,使得激發能之一所要位準由一或多個輸出感測器及/或一或多個像素感測器偵測。 在一些實施例中,在由至少一個輸出感測器及/或至少一個像素感測器之一量測提供激發能之量已自該光束之一不同定位增加的一指示時達成該光束之對準。一對準程序可包含定位該光束於不同定向中(例如光束與光柵耦合器4-114之角度、光柵耦合器4-114上之入射光束位置)及由至少一個輸出感測器及/或至少像素感測器針對不同定向偵測光。一光束定向可經識別為藉由指示該所偵測光之量測針對該光束之一對准位置。在一些實施例中,一光束定向可經識別為當由至少一個輸出感測器及/或至少一個像素感測器之所偵測光之一量測在該定向處相對於其他光束定向係最大時的一對準位置。 一旦該光束之一對準位置經識別,則由該一或多個監測感測器之量測可提供該光束定向是否自一初始對準位置改變的一指示。該等量測可提供關於如何針對此一未對準校正之資訊。該光束之重新對準可包含定位該光束,使得由該一或多個監測感測器之激發能之量測係大致類似於與該初始對準位置相關聯之量測。依此方式,該一或多個監測感測器可提供資訊作為一反饋程序之部分用於在達成一初始對準之後維持該光學光束之對準。可在該積體裝置用以改良對一樣本所執行之量測之穩定性之操作期間使用該反饋程序。 積體裝置4-100可包含經形成於波導4-116上方之頂部覆層4-118。頂部覆層4-118可包含具有低於波導4-116之一材料之折射率之一折射率的一介電材料。在一些實施例中,頂部覆層4-118可包括一或多個子層,其等具有對激發能及發射能之一所要透明度位準。用以形成頂部覆層4-118之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。所要透明度位準可在50%至100%之範圍中或在該範圍內之任何值或值之範圍。 頂部覆層4-118可在垂直於波導4-116且平行於上堆疊4-151之厚度之一方向上具有一不同尺寸。如圖4-1A中所展示,頂部覆層4-118沿z軸具有一不同尺寸,其在至少部分與光柵耦合器4-114重疊之一區域中及在至少部分與樣本井4-108重疊之一區域中比在該積體裝置之其他區域中更小。其中頂部覆層4-118之尺寸自該積體裝置之其他區域凹入之此一區域可視作一溝槽區域。頂部覆層4-118沿z方向之變化可允許藉由在一些區域中具有一更大厚度以減少由金屬層4-122散射或吸收之激發能量及在其中激發能與表面4-124耦合之區域(包含激發能耦合區域4-115及具有樣本井4-108之溝槽區域4-120)中之一更小厚度的積體裝置4-100之經改良光學效能。頂部覆層4-118之厚度中之改變可針對沿波導4-116之一些區域提供波導4-116與金屬層4-122與頂部覆層4-118之間的該介面之間的一較大距離,其可降低通過此等區域之光學損失。 頂部覆層4-118可具有沿z方向之對應於在與一或多個樣本井4-108分離之至少一個區域中之距離hC
的一尺寸。具有尺寸hC
之頂部覆層4-118之一區域可經定位以不與一樣本井4-108重疊。尺寸hC
可對應於波導4-116之頂部與頂部覆層4-118之頂部表面之間的一距離。尺寸hC
可具有一合適值以減小光沿波導4-116傳播之光學損失。在包含金屬層4-122於頂部覆層4-118上方之積體裝置之實施例中,尺寸hC
可減少由歸因於金屬層4-122之光學損失引起之光學損失。尺寸hC
可在200奈米至2000奈米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,尺寸hC
可在400奈米至2000奈米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,尺寸hC
可在250奈米至2000奈米之範圍中,或在該範圍內之任何值或值之範圍。 一些實施例係關於一積體裝置,其包含經定位以至少部分與光柵耦合器4-114重疊之頂部覆層4-118之一激發能耦合區域4-115。激發能耦合區域4-115沿z方向在積體裝置4-100之表面4-124與接近於表面4-124之光柵耦合器4-114之一表面之間可具有一尺寸hG
。尺寸hG
可具有小於頂部覆層4-118之尺寸hC
之一值。可藉由部分蝕刻頂部覆層4-118而形成激發能耦合區域4-115。激發能耦合區域4-115之尺寸hG
可針對激發能之一特性波長(例如532奈米)提供耦合效率之一所要位準。據此,一合適尺寸hG
可取決於用作一激發源之激發能之特性波長而改變。尺寸hG
可在200奈米至800奈米之範圍中,或在該範圍內之任何值或值之範圍。在其中激發能之特性波長係532奈米之實施例中,尺寸hG
係在250奈米至350奈米之範圍中。 尺寸hG
及hR
可在導引來自一外部源之激發能至一積體裝置之一或多個波導中影響該光柵耦合器之耦合效率。用以形成一積體裝置之一製程可形成頂部覆層4-118及/或底部覆層4-110以具有在值之一窗內之一尺寸用於在該製程期間使用之一目標值。由該製程引入之頂部擴大覆層4-118及/或底部覆層4-110之尺寸中之此改變可在跨多個積體裝置之耦合效率中產生變化。申請人已認知hG
及/或hR
之一些尺寸可擴大頂部覆層4-118及/或底部覆層4-110之合適尺寸之範圍用於達成該光柵耦合器之耦合效率之一所要位準。據此,本申請案之一些態樣係關於使用針對尺寸hG
及/或hR
之目標值之製造技術,其可為該所得裝置中之尺寸hG
及/或hR
之偏差提供一容差度以減小該偏差對該光柵耦合器之耦合效率之影響。在一些例項中,用以形成頂部覆層4-118之激發耦合區域4-115之該製程可為頂部覆層4-118提供比用以形成底部覆層4-110之尺寸hR
之製程的一更準確尺寸hG
。在一些實施例中,尺寸hR
可跨使用相同製程形成之不同積體裝置改變近似10%。用於尺寸hG
之合適目標值可基於其等針對尺寸hR
提供一廣泛範圍值之能力而選擇,使得尺寸hG
及尺寸hR
之組合為光柵耦合器4-114提供一所要耦合效率,其考量可在製造期間出現之尺寸之變化。 圖4-5係繪示針對頂部覆層尺寸hG
(y軸)及底部覆層尺寸hR
(x軸)及一波長532奈米之不同值之作為一百分比之光柵耦合器之耦合效率的一曲線(一色彩熱圖之黑白轉換)。線4-503與線4-504之間的曲線之較暗區域描繪尺寸hG
及hR
之組合,其中該光柵耦合器具有至少50%之一耦合效率。圖4-5提供針對底部覆層及/或頂部覆層之尺寸之一指示,其等在一積體裝置之製程期間提供一容差度。在其中該頂部覆層之尺寸hG
可比該底部覆層之尺寸hR
更準確製造的實施例中,針對尺寸hG
之一目標值可經選擇以便為所得尺寸hR
提供一合適製造容差。如圖4-5中所展示,針對線4-501及線4-502內之該頂部覆層之尺寸hG
之值為尺寸hR
提供一廣範圍值,其等形成近似50%耦合效率之一光柵耦合器。選擇針對線4-501及線4-502內之尺寸hG
之一目標值可考量底部覆層之製程之容差。在一些實施例中,一積體裝置之製造可包含由線4-501及線4-502界定之範圍內之尺寸hG
之一目標值及由線4-503及線4-504界定之範圍內之尺寸hR
之一目標值。尺寸hG
可具有在250奈米至350奈米之範圍中或在該範圍內之任何值或值之範圍的一值。尺寸hR
可具有在1025奈米至1175奈米之範圍中或在該範圍內之任何值或值之範圍的一值。在一些實施例中,在一積體裝置之製造期間,針對尺寸hG
之一目標值係近似300奈米且針對尺寸hR
之一目標值係近似1100奈米。 一光柵耦合器可耦合至一或多個分裂器結構以提供跨該陣列之樣本井之大致一致功率分佈。一些實施例係關於一積體裝置,其具有經組態以接收輸入激發能且導引該激發能至個別波導中的一分裂器結構。該分裂器結構可具有一組態,其提供在該等個別輸出波導當中的激發能之大致一致分佈。在一些實施例中,該分裂器結構可具有一組態,其減小其等在該積體裝置上佔據之區域以提供具有一所要大小及形狀之一積體裝置。 在一些實施例中,一積體裝置可具有一分裂器結構,其包含具有一串聯組態之多個MMI。該分裂器結構可包含多個MMI,其等具有經配置以具有七個串聯位準之一個輸入至兩個輸出以提供自該分裂器結構之一單一輸入至128個輸出之一所要功率劃分。如圖4-6中所展示,具有一系列串聯MMI之一分裂器結構可包含第一位準MMI 4-601,其接收輸入光且將該光分裂成兩個輸出,包含作為一輸入耦合至第二位準MMI 4-602之一輸出。第二位準MMI 4-602之一輸出可作為一輸入耦合至第三位準MMI 4-603。第三位準MMI 4-603之一輸出可作為一輸入耦合至第四位準MMI 4-604。第四位準MMI 4-604之一輸出可作為一輸入耦合至第五位準MMI 4-605。第五位準MMI 4-605之一輸出可作為一輸入耦合至第六位準MMI 4-606。第六位準MMI 4-606之一輸出可作為一輸入耦合至第七位準MMI 4-607。包含第七位準MMI 4-607之來自第七位準MMI之輸出4-600可各耦合至經組態以導引激發能至該積體裝置之多個樣本井的波導。具有一個輸入至兩個輸出之一MMI可具有近似98%之一功率效率。具有串聯MMI之一結構(諸如圖4-6中所展示之具有七個位準之MMI結構之結構)可具有近似87%之一總效率。在一些實施例中,跨一串聯MMI結構之不同輸出的功率輸出之變化可在2%至20%之範圍中,或在該範圍內之任何值或值之範圍。 一串聯MMI分裂器結構之MMI可具有任何合適數目個輸入及/或輸出以為該MMI串聯分裂器提供一所要數目個位準。圖4-7A係具有三個位準之串聯MMI之一分裂器結構之一示意圖。光柵耦合器4-700之至少一者可經組態以導引來自激發能之一入射光束的激發能至第一位準MMI 4-701,其具有一結構,其具有四個輸入及四個輸出。圖4-7B係具有一四個輸入4-7-8×四個輸出4-406結構之一例示性MMI,其可用作第一位準MMI 4-701。此MMI設計提供多個輸入,其可相等地耦合激發能至隨後MMI結構。多個光柵耦合器4-700可提供冗餘於用以與該積體裝置耦合之激發能之輸入之數目中。儘管該等光柵耦合器之僅一者可在該積體裝置之操作期間使用以分析一樣本,然在操作期間可基於針對多個光柵耦合器4-700之各者之一效能位準而選擇自多個光柵耦合器4-700當中之一光柵耦合器用於使用。來自第一位準MMI 4-701之該等輸出之各者可與包含第二位準MMI之一第二位準MMI耦合,其具有一一個輸入×八個輸出組態。來自一第二位準MMI之各輸出耦合至包含第三位準MMI 4-703之一第三位準MMI,其具有一一個輸入×四個輸出組態。來自第三位準MMI之各者的輸出4-704可耦合至經組態以使激發能耦合至該積體裝置之個別樣本井的波導。 跨多個波導之功率劃分之效率及一致性可取決於用以形成該分裂器結構之該材料(例如氮化矽)之厚度及/或折射率及圍繞該分裂器結構之該覆層材料(例如氧化矽)之折射率。圖4-7C展示具有具寬度WGbusin
之一輸入波導之一例示性MMI結構,該WGbusin
增加至寬度WGin
以耦合至具有WMMI
之MMI之一腔中。圖4-7C中所展示之該MMI結構具有四個輸出波導,各相對於該MMI腔之一中心線定位。該等輸出波導具有一輸出寬度WGout
,其減小至WGbusout
。如圖4-7C中所展示,一外波導相對於該MMI腔之該中心線經定位於位置P2處且一內波導相對於該MMI腔之該中心線經定位於位置P1處。 在一些實施例中,一積體裝置可具有一分裂器結構,其包含一星形耦合器組態。該星形耦合器可具有一輸入,其經組態以與至少一個輸入光柵耦合器耦合,及輸出,其等經組態以跨該等個別輸出提供大致一致功率分佈。在一些實施例中,一星形耦合器可具有輸出,其等跨該等個別輸出具有不同寬度以提供跨該等輸出之大致一致功率分佈。圖4-8A係一例示性星形耦合器之一示意圖,其具有經組態以接收來自經導引遠離經定位於光柵耦合器4-800之一相對側處之輸出4-804之一入射光束之光的輸入光柵耦合器4-800。圖4-8B係展示於區域4-802中之星形耦合器之部分之一放大示意圖。傳播區域4-806接收輸入光且導引光至輸出4-804。傳播區域4-806內之分歧可取決於該傳播區域之厚度及用以形成該星形耦合器及/或圍繞該星形耦合器之覆層之材料之折射率。該輸入波導之大小及形狀亦可影響由傳播區域4-806提供之分歧之位準。輸出4-804可在寬度中不同,其係圖4-8A及圖4-8B中所展示之平面中之一尺寸且垂直於光沿一輸出傳播之方向。該等個別波導輸出之寬度中之變化可提供跨個別輸出4-804之大致一致功率分佈。相鄰輸出4-804之間的一尺寸可在100奈米至200奈米之範圍中,或在該範圍內之任何值或值之範圍。 在一些實施例中,一星形耦合器可具有經定位於自該星形耦合器之一輸出之不同徑向距離處的輸出。此一組態可提供具有大致一致寬度之輸出,其可減小形成該分裂器結構且容納該積體裝置之空間限制所需之空間量。圖4-9A係一例示性星形耦合器之一示意圖,其具有至少一個輸入4-904,其經耦合至具相對於至少一個輸入4-904之輸出的一傳播區域。圖4-9B係4-900之區域之一縮放圖且圖4-9C係區域4-902之一縮放圖。區域4-900展示比區域4-902中所展示之該等輸出以一更靠近徑向距離至輸入4-904之來自該傳播區域之輸出的配置。 在一些實施例中,一星形耦合器可包含經嵌入於該星形耦合器之一傳播區域內之一光柵耦合器,其中該光柵耦合器可充當針對激發能之一入射光束之一輸入。該光柵耦合器可為彎曲、線性或具有任何合適形狀或大小以為星形耦合器提供耦合效率之一所要位準。圖4-10係一例示性星形耦合器之一示意圖,其具有經定位於經耦合至輸出4-1002之傳播區域4-1004內之輸入光柵耦合器4-1000。 在一些實施例中,該光柵耦合器可經組態以接收激發能之兩個不同特性波長。在一些實施例中,一星形耦合器可具有兩個不同光柵耦合器於一傳播區域內,其中該等光柵耦合器之各者經組態以接收激發能之一不同特性波長。 在一些實施例中,一積體裝置可包含一分裂器結構,其經組態為一切片光柵耦合器,其經組態以提供跨多個輸出波導之來自具有一非圓形(例如細長高斯(Gaussian)輪廓)橫截面區域之一輸入光束的功率分佈。圖4-11係具有經組態以與輸出4-1102耦合之切片光柵耦合器4-1100之一分裂器結構之一示意圖。切片光柵耦合器4-1100可經組態以接收具有一高斯橫截面輪廓之一輸入光且提供跨個別輸出4-1102之大致一致功率分佈。個別切片可具有接近於切片光柵耦合器4-1100之不同寬度(沿y方向)以改良跨不同輸出4-1102之功率之一致性。個別切片之寬度可逐漸漸縮以形成跨與該積體裝置之該像素陣列之至少一部分重疊之一區域中的所有輸出4-1102的一致或大致一致寬度。如圖4-11中所展示,跨切片之寬度變化可包含具有比一或多個內切片4-1106更大之接近於光柵耦合器4-1100之一寬度的外切片4-1104。在一些實施例中,該輸入光束強度沿該光柵之該長度係大致一致,在該情況下,該等個別切片寬度係大致類似。 頂部覆層可具有一或多個區域,其等具有小於距離hC
之一尺寸且包含一或多個樣本井。此一區域可視作具合適大小及形狀之一溝槽區域以包含該積體裝置之一或多個樣本井。如圖4-1A中所展示,積體裝置4-100包含溝槽區域4-120,其中頂部覆層4-118沿z方向具有小於hC
之一尺寸hM
。針對尺寸hM
之一值可平衡一或多個樣本井至波導4-116之接近度及可由金屬層4-122至波導4-116之接近度引起之光學損失。沿波導4-124傳播之激發能之光學損失可由使用金屬層4-122接近於波導4-124之一表面散射及/或吸收引起。據此,尺寸hM
可影響激發能至經定位以與一波導4-116耦合之樣本井4-1081
、4-1082
、4-1083
、4-1084
、4-1085
及4-1086
之一致性。尺寸hM
可具有在150奈米至600奈米之範圍中或在該範圍內之任何值或值之範圍的一值。在一些實施例中,尺寸hM
可近似為400奈米。在一些實施例中,尺寸hM
可具有在300奈米至600奈米之範圍中或在該範圍內之任何值或值之範圍的一值。在一些實施例中,尺寸hM
可具有在150奈米至450奈米之範圍中的一值。 溝槽區域4-120可在垂直於圖4-1A中所展示之圖之一平面中具有具任何合適大小及形狀之一區域以包含一所要數目個樣本井。在一些實施例中,溝槽4-120可具有一矩形形狀(例如正方形)。溝槽4-120可具有複數個樣本井,包含樣本井4-1081
、4-1082
、4-1083
、4-1084
、4-1085
及4-1086
。儘管圖4-1A繪示六個樣本井,然該申請案不受限於此態樣且任何合適數目個樣本井可形成於一溝槽區域中。 一溝槽區域可包含一或多個樣本井,其中該等樣本井之一者之一表面可經定位成自波導4-116之一距離hW
。當激發能沿波導4-116傳播時,積體裝置4-100之一樣本井4-108與波導4-116之間的尺寸hW
可提供一所要耦合位準。尺寸hW
可允許激發能短暫地耦合至樣本井4-108。依此方式,尺寸hW
可影響經傳遞至積體裝置4-100之一或多個樣本井之激發能量。尺寸hW
可在0奈米至400奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,hW
係近似300奈米。在一些實施例中,尺寸hW
係在範圍0奈米至300奈米中。在一些實施例中,尺寸hW
係在範圍0奈米至100奈米中。 一感測器與一積體裝置之一像素中之一樣本井之間的該光學路徑長度可影響該感測器用以偵測自該樣本井發射之一光子的能力。藉由縮短該樣本井與該感測器之間的該光學路徑長度,該數值孔可增加並改良自該樣本井中之一樣本發射之發射能之收集。尺寸hW
亦可影響一像素中之發射能之方向性。尺寸hW
之一值可允許該積體裝置之一感測器偵測發射能之一所要功率位準。在一些實施例中,一樣本井與一像素中之一感測器之間的該距離可在4微米至9微米之範圍中或在該範圍內之任何值或值之範圍。 對應於該樣本井之該深度的一樣本井之一尺寸可由表達hM
-hW
界定。尺寸hM
-hW
可在50奈米至450奈米之一範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,尺寸hM
-hW
係在95奈米與150奈米之間。在一些實施例中,hM
-hW
可為近似100奈米。在一些實施例中,尺寸hM
-hW
係在250奈米與350奈米之間。在一些實施例中,hM
-hW
可為近似300奈米。尺寸hM
-hW
亦可影響一像素中之發射能之方向性。尺寸hM
-hW
之一值可允許該積體裝置之一感測器偵測發射能之一所要功率位準。該等樣本井之該底部與基板4-105中之該等感測器之間的該距離可經組態以便控制由該等感測器之一者偵測之能量及/或相鄰像素之間的串擾。該等感測器可佔據基板4-105中之一平面,且在一些實施例中,該等樣本井之該底部與該等感測器之該平面之間的該距離可在4微米至9微米之範圍中或在該範圍內之任何值或值之範圍。 積體裝置4-100可包含金屬層4-122於頂部覆層4-118上方。金屬層可充當一反射器用於由一樣本井中之一樣本發射之發射能且可改良藉由反射發射能朝向該積體裝置之一感測器的發射能之偵測。金屬層4-122可用以減小歸因於不源於該樣本內之光子之背景信號。金屬層可包括一或多個子層。用作一金屬層之合適材料之實例包含鋁、鈦及氮化鈦。金屬層4-122可具有對應於頂部覆層4-118之該等蝕刻部分之一或多個間斷以形成樣本井4-1081
、4-1082
、4-1083
、4-1084
、4-1085
及4-1086
。金屬層4-122可具有對應於激發能耦合區域4-115之一間斷。 在一些實施例中,本文中所描述之該類型之複數個溝槽可經形成以減少歸因於該光學模式在波導4-116及金屬層4-122下行進之相互作用的光學損失。一些實施例係關於一積體裝置,其具有在該頂部覆層中之一溝槽區域,該溝槽區域與一波導及接近於該波導之一列樣本井重疊。在一些實施例中,一積體裝置可包含一溝槽區域用於一單一樣本井。該積體裝置可具有多個溝槽區域於該頂部覆層中,其中各溝槽區域對應於一個樣本井。 本申請案之一些實施例係關於具有用於各樣本井之一溝槽區域之一積體裝置。圖4-1B係具有經定位成接近於波導4-136之多個溝槽區域4-130之上堆疊4-161之一示意圖。此一組態可改良波導4-136沿x方向之相對長度,其中頂部覆層4-138之厚度具有比若一個溝槽區域經形成以包含所有樣本井4-128的情況下的一尺寸hc
,諸如圖4-1A中所展示之例示性積體裝置。藉由具有多個溝槽區域4-130,頂部覆層4-138可減小沿波導4-136之長度量,其中頂部覆層具有自表面4-154之尺寸hM
。針對上堆疊4-161之此一組態可減小相較於上堆疊4-151之總光學損失,由於相鄰樣本井之間的區域具有一頂部覆層厚度以減少具金屬層4-152之激發能之吸收損失。溝槽區域4-130可具有沿x方向之一尺寸Wt
。尺寸Wt
可在300奈米至2000奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,尺寸Wt
係在500奈米與1000奈米之間。在一些實施例中,尺寸Wt
係近似900奈米。在一些實施例中,Wt
可經組態以便提供激發能及/或發射能之諧振。 溝槽區域可具有任何合適大小及形狀(例如圓形、矩形)且依任何合適方式相對於該積體裝置之樣本井及/或波導配置。一溝槽區域可包含任何合適數目個樣本井且與該積體裝置之一或多個波導重疊。在一些實施例中,在一溝槽區域與一樣本井之間存在一一對一對應,使得僅一個樣本井經安置於一溝槽區域內。圖4-1C係沿與圖4-1B中所展示之波導4-136交叉之一xy平面的一例示性平面圖。溝槽區域4-130及經安置於個別溝槽區域內之樣本井4-128之相對位置由虛線展示。在此例示性組態中,溝槽區域4-130具有一圓形形狀,然一溝槽區域可具有其他合適形狀(例如,正方形、三角形),其等可減少光學損失。在一些實施例中,多個樣本井可經安置於一單一溝槽區域內。該溝槽區域可與多個波導重疊。圖4-1D係沿與圖4-1B中所展示之波導4-136交叉之一xy平面的另一例示性平面圖。溝槽區域4-130大致垂直於沿波導4-136之光之方向延伸且包含經定位以耦合來自不同波導4-136之激發能之樣本井4-128。如圖4-1D中所展示,樣本井4-128a、4-128b及4-128c經安置於溝槽區域4-130b內,其中樣本井4-128a、4-128b及4-128c經定位以接收分別來自波導4-136a、4-136b及4-136c之激發能。儘管僅三個波導展示於圖4-1C及圖4-1D中,然應瞭解,一積體裝置可包含任何合適數目個波導及經定位以與一或多個波導重疊之溝槽區域。 一溝槽區域之大小及形狀可提供關於一樣本井之一或多個表面之功能化及/或改質之一或多個優勢。如本文中所描述,一樣本井之一表面可經改質及/或經功能化以提供與另一類型之分子的某一類型及/或位準之相互作用(例如改良一聚合酶至一表面之締合之一相互作用)。用於功能化一樣本井之一表面之一個類型之技術可包含使用具有一尺寸之顆粒,該尺寸允許該等顆粒常駐於該積體裝置之一溝槽區域內。該等顆粒可攜帶一或多個化學物種,其等經組態以功能化及/或改質該樣本井之一表面。該等溝槽區域之表面拓撲可用以保持該等顆粒接近於該積體裝置之表面,其中期望化學功能化及改質。該等顆粒可具有一尺寸,其提供與溝槽區域之一表面之一有利表面相互作用。在一些實施例中,該等顆粒之曲率可改良該顆粒與該溝槽區域之一表面之間的一表面相互作用量。在一些實施例中,該等顆粒可具有大於一溝槽區域之一尺寸之一直徑,使得一顆粒之部分可進入該溝槽區域。在一些實施例中,該等顆粒可具有在1微米至5微米之範圍中或在該範圍內之任何值或值之範圍的一直徑。用於該等顆粒之合適材料之實例包含聚苯乙烯及乳膠。在一些實施例中,該等顆粒係磁性顆粒。 在一些實施例中,模板DNA鏈經耦合至該等顆粒且該等顆粒與該等溝槽區域之表面拓撲之間的相互作用可改良該等模板DNA鏈接近於該積體裝置之該等樣本井之定位。一顆粒可結合至一模板DNA鏈之多個複製,使得該顆粒相對於一樣本井之定位增加該模板DNA鏈之局部濃度,其可改良該模板DNA鏈在該樣本井中之負載及保持。在一些實施例中,該模板DNA鏈係接近10kb長。 本發明之一些實施例係關於用於減小一樣本井與一積體裝置之一像素內之一或多個感測器之間的距離之技術。該樣本井越靠近相對於一感測器定位,可由該感測器自其偵測輻射之固定角越寬。更寬收集角可改良自經定位於該樣本井中之一樣本井發射之發射能之收集效率。用於以一更靠近距離至一或多個感測器定位樣本井之此等技術可減少不同像素之間的信號串擾,諸如(例如)偵測來自一相鄰像素中之一樣本井之發射能的一感測器。 用於減小一樣本井與一感測器之間的距離之一個類型之技術可包含形成一或多個樣本井層於該積體裝置之一平面內及/或在該平面下方,其包含經組態以路由電信號於該積體裝置內之一金屬層。此一組態可提供該樣本井之一表面與該感測器之間的一距離為在1微米至5微米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,一樣本井之一表面與該積體裝置之一像素中之一感測器之間的一距離可在2微米與3微米之範圍中,或在該範圍內之任何值或值之範圍。經組態以傳遞激發能至該樣本井之一波導可經定位於該樣本井與感測器之間。該波導可重疊包含一金屬層之一平面或經定位於該平面下方,該金屬層可充當用於該積體裝置之一電路由。依此方式,波導可視作嵌入於該積體裝置之後段製程(BEOL)佈線內。 本發明之一些實施例係關於一種積體裝置,其包含經定位於一平面中之一樣本井,該平面與一金屬層重疊及/或經定位於一金屬層與該積體裝置之一感測器之間。圖4-2係垂直於一積體裝置之激發能之傳播軸之一橫截面圖,其包含經定位於沿z方向之一平面中之樣本井4-208,其與沿z方向之包含金屬層4-203A
、4-203B
、4-203C
、4-203D
之一區域重疊。如圖4-2中所展示,樣本井4-208經定位於在至少一個金屬層4-203與經定位於基板4-200中之一感測器之間的一xy平面中。 圖4-2中所展示之積體裝置4-260可包含一基板4-200 (例如一矽基板),其可包含經組態以偵測發射能之一或多個感測器。由一感測器提供之信號可提供該發射能之壽命、強度及/或光譜之一指示。積體裝置4-260可包括由任何合適介電材料形成之介電層4-202 (例如摻雜氧化矽、未摻雜氧化矽)。積體裝置4-260可包含由任何合適材料(例如氧化矽)形成之覆層4-210。在一些實施例中,覆層4-210可包含未摻雜氧化矽,其可減小針對激發能沿波導4-216傳播之光學損失量。 積體裝置4-260可包括積體裝置4-260之一或多個金屬層4-203A
、4-203B
、4-203C
及4-203D
,其等經組態以路由電信號於積體裝置4-260內,傳輸電信號至一外部裝置(例如經組態以與積體裝置4-260介接之一儀器)及/或接收來自一外部裝置(例如一儀器)之電信號。在一些實施例中,積體裝置4-260之一或多個金屬層可用以減小來自包含樣本井4-208之像素外側之光由該像素中之一感測器偵測之量。依此方式,一金屬層可減小由來自出於該積體裝置之光之背景信號引起之雜訊假影及/或減小可由來自其他像素之光由該感測器偵測引起之串擾信號。儘管圖4-2繪示具四個金屬佈線層之一積體裝置,然本申請案之技術不受限於此態樣且可使用任何其他合適數目個金屬佈線層。金屬佈線層可通過一或多個通孔(例如鎢通孔)而電連接。例如,通孔4-204A
可連接金屬層4-203A
至基板4-200。通孔4-204B
可連接金屬層4-203A
至金屬層4-203B
。通孔4-204C
可連接金屬層4-203B
至金屬層4-203C
。通孔4-204D
可連接金屬層4-203C
至金屬層4-203D
。 積體裝置4-260之波導4-216可具有一組態,其允許光在垂直於圖4-2之平面之一方向上傳播。在一些實施例中,至少一個金屬層以自基板4-200之一距離沿z軸安置,其係小於沿z軸之在波導4-216之一表面與基板4-200之間的距離。如圖4-2中所展示之金屬層4-203A
以自基板4-200之一距離沿z軸定位,其小於沿z軸之在波導4-216之一表面與基板4-200之間的距離。在一些實施例中,至少一個金屬層以自基板4-200之一距離沿z軸安置,其大於沿z軸之在波導4-216之一表面與基板4-200之間的距離。金屬層4-203C
及金屬層4-203D
可以自基板4-200之一距離沿z軸安置,其大於沿z軸之在波導4-216之一表面與基板4-200之間的距離。 積體裝置4-260可包含溝槽區域4-220。溝槽區域4-220可具有沿z方向之一尺寸,使得溝槽區域4-220在一xy平面中與一或多個金屬層4-203重疊。在一些實施例中,溝槽區域4-220可具有一矩形形狀(例如正方形)。溝槽區域4-220之一表面可包含至少一個樣本井,包含樣本井4-208。在一些實施例中,溝槽區域4-220可包括沿x軸安置於一列中之複數個樣本井4-208。在其他實施例中,溝槽4-220可包括一單一樣本井。 積體裝置4-260可包含經安置於覆層4-210之頂部上之金屬層4-222。金屬層4-222可具有對應於覆層4-210之經蝕刻部分之一或多個間斷,其等形成樣本井4-208。金屬層4-222可包括一或多個合適材料之一或多個子層。可用以形成金屬層4-222之合適材料之實例可包含鋁、鈦及氮化鈦。 一積體裝置之一樣本井可具有在該積體裝置之一或多個層中之一腔的一組態。該樣本井可延伸通過經安置於該積體裝置之一表面上之一金屬層。該樣本井可通過一介電材料之一部分形成,其可經形成於該金屬層與一波導之間。該金屬層可充當用於發射能之一反射器且可改良發射能由包含該樣本井之該像素之一感測器的光子之收集。 該樣本井可經合適定大小且經定形以接收一樣本且包含該樣本一持續時間以允許該樣本之分析。一樣本井之一或多個表面可經組態以優先地保持該樣本於自該積體裝置之一波導之一距離處。在一些實施例中,該樣本可黏著至大致平行於沿一波導之光傳播之方向的該樣本井之一表面。一樣本井可具有具一橫截面尺寸之一孔,其減小離開該積體裝置之光到達一樣本及/或該積體裝置之一感測器之影響。該樣本井可在該積體裝置之一表面處形成一開口,其中該表面處之該開口之面積形成該樣本井之孔。該孔之一尺寸可用以提供存在於該樣本井中之發光標號之一合適數目及/或濃度。該樣本井之開口可經形成於該積體裝置之該表面之一或多個金屬層中。該一或多個金屬層可用以減小激發能之量,其到達經沈積於該積體裝置上之一本體溶液且照明該本體溶液,其可減小對一背景信號做貢獻的自存在於該本體溶液中之發光標記發射之光量。 本申請案之態樣係關於用於以自經安置於一積體裝置之一表面上之一金屬層的一合適距離定位一樣本於該積體裝置之一樣本井內之技術。該金屬層可影響一標記(例如螢光團)之經偵測壽命,因為圍繞該標記之條件可影響該標記之光子發射事件。例如,針對更靠近一金屬層之一標記所偵測之一壽命可小於針對經定位成更遠之相同標記所偵測之一壽命。由於針對不同標記之壽命值歸因於金屬層之存在而變得更小,所以對基於一壽命之指示而在該等不同標記之間區分可具挑戰性的,因為該等壽命值經壓縮至一更窄範圍中。基於一壽命之一指示而在不同標記當中區分可由一積體裝置改良,其使該等個別壽命之變化變寬用於不同標記。本申請案之一些實施例係關於一種積體裝置,其經組態以減小針對用以藉由以自該積體裝置之一金屬層之一合適距離定位一樣本而偵測該樣本的標記之壽命壓縮。在一些實施例中,遠離一金屬層之一樣本井之一第一表面可具有不同於該樣本井之一第二表面之表面化學,使得比起該第二表面,一樣本優先與該第一表面締合。 圖4-3係根據一些實施例之包含樣本井4-308之積體裝置之一橫截面圖。樣本井4-308可經組態以接收樣本4-391,其等可經保持於樣本井4-308之一表面處。接近於波導4-316之樣本井4-308之一表面可具有一組合物,其至少暫時地黏著至該樣本一持續時間。接近於波導4-316之樣本井4-308之一表面可具有一或多個材料,其等為樣本4-391提供選擇性以黏著至該表面而非樣本井4-308之一側壁,如圖4-3中所展示。此一組態可維持樣本4-391接近於波導4-316。在一些實施例中,接近於波導4-316之樣本井4-308之一表面可允許樣本4-391至樣本井4-308之光敏化結合。在一些實施例中,接近於波導4-316之樣本井4-308之一表面可由氧化矽形成,其可由一或多個矽烷醇基(Si-OH)終止。一矽烷醇基可與另一材料(例如具有具一或多個矽烷基之一結構之一化學品)相互作用以針對該表面產生某一類型之表面化學。樣本4-391可通過樣本井4-308之一頂部孔而經安置於樣本井內。該頂部孔可經組態以減少來自照明樣本4-391及/或感測器4-300之周圍光或雜散光。在一些實施例中,樣本井4-308可具有一子波長橫截面尺寸,其可禁止或減少入射於該積體裝置上之光。樣本井4-308之該頂部孔可具有一寬度wA
,其係在50奈米與300奈米之範圍中,或在該範圍內之任何值或值之範圍。 樣本井4-308可在平行於或大致平行於沿波導4-316之光傳播之方向的樣本井4-308之一表面與覆層4-318與金屬層4-322之間的介面4-327之間具有尺寸dW
。尺寸dW
可在經定位於該表面處之一樣本與金屬層4-322之間提供一合適距離。尺寸dW
可歸因於該樣本井中之樣本之限制而影響與樣本4-391相關聯之一標記之光子發射事件(例如壽命)之時序。據此,尺寸dW
可允許基於與該等不同標記之個別壽命相關聯之時序特性而在樣本井4-308中之不同標記當中區分。在一些實施例中,樣本井4-308之尺寸dW
可影響自波導4-316接收之激發能量。尺寸dW
可在50奈米至450奈米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,尺寸dW
係在95奈米與150奈米之間。在一些實施例中,尺寸dW
係在250奈米與350奈米之間。 一積體裝置之一金屬層可包含一或多個材料層。用作一金屬層之層之合適材料之實例可包含鋁、銅、鈦及氮化鈦。如圖4-3中所展示,金屬層4-322包含至少兩個子層。在一些實施例中,經定位以與覆層4-318介接之一第一子層可包含鋁。在一些實施例中,該鋁可與矽或銅製成合金。藉由具有鋁於該第一子層中,可減少沿波導4-176傳播之激發能之光學損失。該第一子層之厚度可在30奈米至165奈米之範圍中,或在該範圍內之任何值或值之範圍。 在一些實施例中,金屬層4-322可包含經安置於該第一子層上方之一第二子層。在一些實施例中,該第二子層可包含鈦。鈦可減少發生於金屬層4-322內之腐蝕量。該第二子層之厚度可在5奈米至100奈米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,該第二子層之厚度可近似10奈米。 在一些實施例中,金屬層4-322可包含經安置於該第二子層上方及/或該第一子層上方之一第三子層。該第三子層可包含氮化鈦。該第三子層可具有在5奈米至100奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,該第三子層可具有近似30奈米之一厚度。 樣本井4-308可具有至少部分由一側壁間隔件4-390覆蓋之一或多個側壁。側壁間隔件4-390之組合物可經組態以能夠與樣本4-391之某一類型之相互作用。在一些實施例中,側壁間隔件4-390可具有經組態以鈍化樣本井4-308之側壁以減小黏著至樣本井4-308之側壁之樣本量的一組合物。藉由僅塗佈具該間隔件之該樣本井之側壁,與樣本4-391之一不同類型之相互作用可經提供於樣本井4-308之一不同區域處。在一些實施例中,平行於或大致平行於沿波導4-316之光傳播之方向的樣本井4-308之表面可由一矽烷塗佈以改良樣本4-391至該表面的黏著性。藉由塗佈具間隔件4-390之側壁,樣本井4-308之一或多個表面可選擇性地由該矽烷塗佈。側壁間隔件4-390之組合物可經選擇以提供相對於平行於或大致平行於該波導之樣本井4-308之表面的側壁間隔件4-390之選擇性塗佈。側壁間隔件4-390可具有在3奈米至30奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,側壁間隔件4-390可具有近似10奈米之一厚度。用以形成側壁間隔件4-390之合適材料之實例包含TiO2
、TiN、TiON、TaN、Ta2
O5
、Zr2
O5
及HfO2
。在一些實施例中,側壁間隔件4-390包含TiN,其可歸因於TiN之折射率提供發射能朝向感測器4-300之方向性之一所要位準。側壁間隔件4-390可經組態以阻斷散射光,包含來自波導4-316之散射發射能,因此減少可照明樣本4-391之散射光量。 III.製造技術
在一些實施例中,一積體裝置之形成可包含形成來自一單一基板之一上堆疊及一下堆疊。在一些實施例中,一積體裝置可藉由形成來自一第一基板之一上堆疊及來自一第二基板之一下堆疊且將該上堆疊及該下堆疊接合在一起而形成。該下堆疊及該上堆疊之接合可發生於形成該積體裝置之任何合適階段處。在一些實施例中,該下堆疊及該上堆疊之接合可發生於在形成個別積體電路之前之晶圓級處。在一些實施例中,該下堆疊及該上堆疊之接合可發生於其中該上堆疊及該下堆疊在接合之前經切片之晶粒級處。在一些實施例中,該上堆疊及該下堆疊之接合可通過一倒裝晶片接合製程發生。 本申請案之一些實施例係關於用於藉由形成一材料層(其導致該積體裝置之一覆層)及選擇性地移除該層之一部分以形成一溝槽區域而形成該溝槽區域的技術。圖5-1A、圖5-1B及圖5-1C繪示根據一些實施例之用於形成一積體裝置(諸如積體裝置4-100)之一上堆疊之一溝槽區域的一方法之步驟。可使用任何合適技術形成底部覆層5-410。在一些實施例中,底部覆層5-410可經形成於一基板(例如矽基板)上。在一些實施例中,底部覆層5-410可經形成於一積體裝置之一下堆疊(諸如積體裝置4-100之下堆疊4-150)上。 波導5-416及光柵耦合器5-414可藉由形成一或多個材料(例如氮化矽)之一層而經形成於底部覆層5-410上方。層可具有一合適折射率以提供所要光學性質用於由該波導傳播激發能。任何合適製造技術可用以圖案化波導5-416及/或光柵耦合器5-414。在一些實施例中,一材料層可經形成於底部覆層5-410上方且一遮罩可經圖案化於該層上方,使得該層之暴露區域可經選擇性地蝕刻以形成所要圖案用於波導5-416及光柵耦合器5-414。 材料層5-418可經形成於波導5-416上方,如圖5-1A中所展示,作為該積體裝置之一頂部覆層。可藉由生長一材料及/或沈積該材料至一所要厚度而形成層5-418。層5-418可包含具有對激發能及發射能具有一所要透明度位準之任何合適介電材料。用以形成層5-418之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,沿z軸之經形成於圖5-1A中所展示之波導5-416上方之該層之厚度可在500奈米至1200奈米之範圍中,或在該範圍內之任何值或值之範圍。在一些實施例中,層5-418之厚度可近似850奈米。層5-418可藉由經形成於一經圖案化層(例如光柵耦合器5-414)上方而具有厚度之變化。 層5-418可經平坦化以形成一積體裝置之一頂部覆層之一表面,如圖5-1B中所展示。在一些實施例中,該覆層可通過一化學機械平坦(CMP)製程平坦化。該CMP製程可減小該頂部覆層之該表面之表面粗糙度,其可減少當激發能沿接近於該表面之一波導(諸如波導5-416)傳播時之激發能之光學損失。沿z方向之層5-418之厚度可由於該平坦化製程而減小。在一些實施例中,該頂部覆層之該厚度可減小250奈米。該所得頂部覆層之一厚度可具有沿z方向之在100奈米至500奈米之範圍中或在該範圍內之任何值或值之範圍的一尺寸。 一溝槽區域5-420可經形成於層5-418中,如圖5-1C中所展示。可藉由通過一光遮罩而暴露層5-418之該頂部表面且藉由選擇性地蝕刻該層之一區域而形成溝槽區域5-420。在一些實施例中,所處理之蝕刻可計時以便蝕刻該層一所要量以達成沿該所得溝槽區域之z方向之一所得尺寸。在一些實施例中,層5-418可計時蝕刻一持續時間用以達成沿z方向之對應於在100奈米至500奈米之範圍中或該範圍內之任何值或值之範圍的一值之一尺寸。平行於或大致平行於沿波導5-416之光傳播之方向之溝槽區域5-420之一表面與波導5-416之間的所得距離可在200奈米至800奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,溝槽區域5-420之表面與波導5-416之間的一距離可近似400奈米。 在一些實施例中,溝槽區域5-420之形成可包含多個蝕刻製程。用以形成溝槽區域5-420之一第一時間蝕刻製程可為一乾蝕刻或任何合適各向異性蝕刻。該第一蝕刻製程可用以界定溝槽區域5-420之一區域。該第一蝕刻製程可自對應於溝槽區域5-420之層5-418之一部分移除在100奈米至400奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,該第一蝕刻製程可移除近似190奈米。用以形成溝槽區域5-420之一第二蝕刻製程可為一濕蝕刻或任何合適各向同性蝕刻。該第二蝕刻製程可用以在該第一蝕刻製程之後限制溝槽區域5-420之一或多個特徵。在一些實施例中,該第二蝕刻製程可在溝槽區域5-420拐角處。該第二蝕刻製程可自對應於溝槽區域5-420之層5-418之一部分移除在5奈米至100奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,該第二蝕刻製程可移除近似10奈米。 本申請案之一些實施例係關於用於藉由形成一材料層(其導致該積體裝置之一覆層)而形成具有一所要厚度之一溝槽區域的技術。用於形成該溝槽區域之一方法可包含形成一或多個蝕刻停止層以改良該覆層之該厚度之準確度。圖5-2A、圖5-2B、圖5-2C、圖5-2D、圖5-2E及圖5-2F繪示用於形成一溝槽區域於一積體裝置(諸如積體裝置5-102)之一上堆疊中之一方法的步驟。可使用任何合適技術形成底部覆層5-430。在一些實施例中,底部覆層5-430可經形成於一基板(例如矽基板)上。在一些實施例中,底部覆層5-430可經形成於一積體裝置之一下堆疊(諸如積體裝置4-100之下堆疊4-150)上。 波導5-436及光柵耦合器5-434可藉由形成一或多個材料(例如氮化矽)之一層而經形成於底部覆層5-430上方。層可具有一合適折射率以提供所要光學性質用於由該波導傳播激發能。任何合適製造技術可用以圖案化波導5-436及/或光柵耦合器5-434。在一些實施例中,一材料層可經形成於底部覆層5-430上方且一遮罩可經圖案化於該層上方,使得該層之該等經暴露區域可經選擇性地蝕刻以形成波導5-436及光柵耦合器5-434之所要圖案。 材料層5-438可經形成於波導5-436上方,如圖5-2A中所展示,其可導致一積體裝置之一頂部覆層。可藉由生長一材料及/或沈積該材料至一所要厚度而形成層5-438。層5-438可包含對激發能及發射能具有一所要透明度位準之任何合適介電材料。用以形成層5-438之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,沿z軸之經形成於圖5-2A中所展示之波導5-436上方之該層之厚度可在500奈米至1200奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,層5-438之厚度可近似750奈米。層5-438可藉由經形成於一經圖案化層(例如光柵耦合器5-434)上方而具有厚度之變化。 層5-438可經平坦化以形成一積體裝置之一頂部覆層之一表面,如圖5-2B中所展示。在一些實施例中,該覆層可通過一化學機械平坦化(CMP)製程平坦化。該CMP製程可減小該頂部覆層之表面之表面粗糙度,其可減少當激發能沿接近於該表面之一波導(諸如波導5-436)傳播時激發能之光學損失。層5-438沿z方向之厚度可由於該平坦化製程而減小。在一些實施例中,該頂部覆層之厚度可減小350奈米。該所得頂部覆層之一厚度可具有沿z方向之在100奈米至500奈米之範圍中或在該範圍內之任何值或值之範圍的一尺寸。 一蝕刻停止層5-480可經沈積於層5-438之一表面上,如圖5-2C中所展示。該蝕刻停止層可經圖案化以界定對應於該積體裝置之一溝槽區域之區域。該蝕刻停止層可通過一微影製程在一些區域中經選擇性地移除,但其可經維持於一溝槽區域待形成於其中之區域中。用以形成蝕刻停止層5-480之合適材料之實例包含SiN、SiON、SiOx
Ny
、Al、Ti及TiN。在一些實施例中,蝕刻停止層5-480可包含多個材料之分層組合。 一介電層5-439可經形成於層5-438之一表面上,如圖5-2D中所展示。介電層5-439可經生長及/或經沈積於層5-438之該表面上。用以形成介電層5-439之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,介電層5-439可通過一化學氣相沈積(CVD)製程沈積。在一些實施例中,介電層5-439可通過一高密度電漿化學氣相沈積(HDPCVD)製程沈積。介電層5-439可經選擇性地蝕刻於至少部分與蝕刻停止層5-480重疊之一區域中。在蝕刻期間,蝕刻停止層5-480之存在可減小蝕刻超過蝕刻停止層5-480及/或至層5-438中。使用蝕刻停止層5-480之該蝕刻製程可提供沿z軸之一所要尺寸之介電層5-439之形成。此一技術可在不使用一時間蝕刻製程作為該製程之部分的情況下改良該積體裝置內之層之尺寸之精確度。可使用任何合適微影技術至少部分移除該蝕刻停止層,如圖5-2E中所展示。該蝕刻停止層之一些或全部之移除可通過經組態以減小該溝槽區域之邊緣處之底切區域之形成及/或層5-438之表面之氧化的一帶狀製程發生。介電層5-439及層5-438之剩餘部分可充當一積體裝置之一頂部覆層。 金屬層5-422可經形成於介電層5-439上方及/或層5-438之一表面上。如圖5-2F中所展示,金屬層5-422可經沈積於介電層5-439之一表面上及層5-438之暴露表面上。金屬層5-422可包含鋁、鈦、氮化鈦或其等之任何合適組合。可藉由選擇性地移除金屬層5-422及層5-438之區域而形成樣本井5-1081
、5-1082
、5-1083
、5-1084
及5-1085
。可使用一光微影製程步驟藉由施加暴露所要區域用於樣本井之形成並暴露該表面的一光遮罩以選擇性地蝕刻此等區域而形成樣本井5-1081
、5-1082
、5-1083
、5-1084
及5-1085
。儘管圖5-2F繪示五個樣本井,然本申請案之該等技術不受限於此態樣且可形成任何合適數目個樣本井。該蝕刻製程可包括通過金屬層5-422之一第一蝕刻及層5-438中之一第二蝕刻。可藉由移除沿z軸至少部分與光柵耦合器4-114重疊之金屬層5-435、介電層5-439及/或層5-438之一部分而形成激發能耦合區域5-435。 本申請案之一些實施例係關於藉由使用一蝕刻停止製程作為形成一積體裝置之一或多個樣本井之部分而形成該積體裝置。圖5-3A、圖5-3B、圖5-3C、圖5-3D、圖5-3E、圖5-3F及圖5-3G繪示用於形成一溝槽區域於一積體裝置(諸如積體裝置5-102)之一上堆疊中之一方法的步驟。可使用任何合適技術形成底部覆層6-410。在一些實施例中,底部覆層6-410可經形成於一基板(例如矽基板)上。在一些實施例中,底部覆層6-410可經形成於一積體裝置之一下堆疊(諸如積體裝置4-100之下堆疊4-150)上。 波導6-416及光柵耦合器6-414可藉由形成一或多個材料(例如氮化矽)之一層而經形成於底部覆層6-410上方。層可具有一合適折射率以提供所要光學性質用於由該波導傳播激發能。任何合適製造技術可用以圖案化波導6-416及/或光柵耦合器6-414。在一些實施例中,一材料層可經形成於底部覆層6-410上方且一遮罩可經圖案化於該層上方,使得該層之該等經暴露區域可經選擇性地蝕刻以形成波導6-416及光柵耦合器6-414之所要圖案。 材料層6-418可經形成於波導6-416上方,如圖5-3A中所展示,其可導致一積體裝置之一頂部覆層。可藉由生長一材料及/或沈積該材料至一所要厚度而形成層6-418。層6-418可包含對激發能及發射能具有一所要透明度位準之任何合適介電材料。用以形成層6-418之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,沿z軸之經形成於圖5-3A中所展示之波導6-416上方之該層之厚度可在500奈米至1200奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,層6-418之厚度可近似750奈米。層6-418可藉由經形成於一經圖案化層(例如光柵耦合器6-414)上方而具有厚度之變化。 層6-418可經平坦化以形成一積體裝置之一頂部覆層之一表面,如圖5-3B中所展示。在一些實施例中,該覆層可通過一化學機械平坦化(CMP)製程平坦化。該CMP製程可減小該頂部覆層之表面之表面粗糙度,其可減少當激發能沿接近於該表面之一波導(諸如波導6-416)傳播時激發能之光學損失。層6-418沿z方向之厚度可由於該平坦化製程而減小。在一些實施例中,該頂部覆層之厚度可減小350奈米。該所得頂部覆層之一厚度可具有沿z方向之在100奈米至500奈米之範圍中或在該範圍內之任何值或值之範圍的一尺寸。 一蝕刻停止層6-481可經沈積於層6-418之一表面上,如圖5-3C中所展示。該蝕刻停止層可經圖案化以界定對應於該積體裝置之個別樣本井之區域。在一些實施例中,該蝕刻停止層可通過一微影製程在一些區域中經選擇性地移除,但其可經維持於該等樣本井待形成於其中之區域中。用以形成蝕刻停止層6-481之合適材料之實例包含SiN、SiON、SiOx
Ny
、Al、Ti及TiN。在一些實施例中,蝕刻停止層6-481可包含不同材料之分層組合。蝕刻停止層6-481之厚度可具有沿z方向之一尺寸,其可減小接近於波導6-416之蝕刻停止材料之存在對激發能之光學損失之影響。蝕刻停止層6-481之厚度可在20奈米至200奈米之範圍中或在該範圍內之任何值或值之範圍。 一介電層6-482可經形成於蝕刻停止層6-481及/或層6-418上,如圖5-3D中所展示。介電層6-482可經生長及/或經沈積於蝕刻停止層6-481及/或層6-418上方。用以形成介電層6-482之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,介電層6-482可通過一化學氣相沈積(CVD)製程沈積。在一些實施例中,介電層6-482可通過一高密度電漿化學氣相沈積(HDPCVD)製程沈積。 介電層6-482可使用任何合適製造技術平坦化以形成一表面。介電層6-482可通過一化學機械平坦化(CMP)製程平坦化。介電層6-482之所得高度可在50奈米至200奈米之一範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,介電層6-482之所得高度可在95奈米至100奈米之一範圍中或在該範圍內之任何值或值之範圍。 一蝕刻停止層6-483可經沈積於介電層6-482之一表面上,如圖5-3E中所展示。該蝕刻停止層可經圖案化以界定對應於該積體裝置之一溝槽區域之區域。該蝕刻停止層可通過一微影製程而在一些區域中經選擇性地移除,但其可維持於一溝槽區域待形成於其中之區域中。蝕刻停止層6-483可經維持於沿z軸與蝕刻停止層6-481之至少一部分重疊之一區域中。用以形成蝕刻停止層6-483之合適材料之實例包含SiN、SiON、SiOx
Ny
、Al、Ti及TiN。在一些實施例中,蝕刻停止層6-483可包含多個材料之分層組合。 一介電層6-484可經形成於蝕刻停止層6-483及/或層6-418上,如圖5-3F中所展示。介電層6-484可經生長及/或經沈積於蝕刻停止層6-483及/或層6-482上方。用以形成介電層6-484之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。在一些實施例中,介電層6-484可通過一化學氣相沈積(CVD)製程沈積。在一些實施例中,介電層6-484可通過一高密度電漿化學氣相沈積(HDPCVD)製程沈積。 介電層6-484可經選擇性地蝕刻於至少部分與蝕刻停止層6-483重疊之一區域中。在蝕刻期間,蝕刻停止層6-483之存在可減小蝕刻超過蝕刻停止層6-483及至層6-482中。使用蝕刻停止層6-483之該蝕刻製程可提供沿z軸具有一所要尺寸之介電層6-484之形成。此一技術可在不使用一時間蝕刻製程作為該製程之部分的情況下改良該積體裝置內之層之尺寸之精確度。可使用任何合適微影技術移除蝕刻停止層6-483。介電層6-484、層6-482及層6-418之剩餘部分可充當一積體裝置之一頂部覆層。 金屬層6-422可經形成於介電層6-484上方及/或層6-482之一表面上。如圖5-3G中所展示,金屬層6-422可經沈積於介電層6-484之一表面上及層6-482之暴露表面上。金屬層6-422可包括鋁、鈦、氮化鈦或其等之任何合適組合。可藉由選擇性地移除金屬層6-422及層6-482之區域而形成樣本井5-3081
、5-3082
、5-3083
、5-3084
及5-3085
。儘管圖5-3G繪示五個樣本井,然本申請案之該等技術不受限於此態樣且可形成任何合適數目個樣本井。可使用一光微影製程步驟藉由施加暴露所要區域用於樣本井之形成並暴露該表面的一光遮罩以選擇性地蝕刻此等區域而形成樣本井5-3081
、5-3082
、5-3083
、5-3084
及5-3085
。在蝕刻期間,蝕刻停止層6-481之存在可減小蝕刻超過蝕刻停止層6-481及/或至層6-418中。使用蝕刻停止層6-481之該蝕刻製程可提供沿z軸具有一所要尺寸的層6-482之形成。該蝕刻製程可包括通過金屬層6-422之一第一蝕刻及層6-482中之一第二蝕刻。可藉由移除沿z軸至少部分與光柵耦合器6-114重疊之金屬層6-422、介電層6-484及/或層6-482之一部分而形成激發能耦合區域。 在一些實施例中,可藉由形成包含一金屬材料之至少一個層之一金屬堆疊於一頂部覆層上且移除該金屬堆疊及該頂部覆層之一部分而形成一積體裝置之一樣本井。該金屬堆疊可包含經定位成接近於該頂部覆層之一鋁層。該鋁層可包含銅及/或矽。在一些實施例中,鋁層可包含小於近似2%銅及/或矽。該鋁層可具有在30奈米至150奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,該鋁層係近似65奈米。在一些實施例中,該金屬堆疊可包含一氮化鈦層於該鋁層上方。該氮化鈦層可具有在1奈米至50奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,氮化鈦之厚度係近似10奈米。在一些實施例中,該金屬堆疊亦可包含一鈦層於該鋁層上方。在其中該金屬堆疊包含一氮化鈦層之實施例中,該鈦層可經定位於一鋁層與該氮化鈦層之間。該鈦層可具有在1奈米至50奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,該鈦層之厚度係近似30奈米。 圖6-1A、圖6-1B、圖6-1C、圖6-1D及圖6-1E繪示根據一些實施例之用於形成一樣本井之步驟。如圖6-1A中所展示,金屬堆疊6-620可經形成於頂部覆層6-619、波導6-616、底部覆層6-610及基板6-600上方。在形成該金屬堆疊之前,該金屬堆疊待形成於其上之頂部覆層之一表面可使用一合適製程(例如一CMP製程)平坦化。 金屬堆疊6-620可包含第一子層6-622、第二子層6-623及/或第三子層6-624。第一子層6-622可具有在30奈米至165奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,第一子層6-622之厚度可近似65奈米。第二子層6-623可具有在1奈米至50奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,第二子層6-623之厚度可近似10奈米。第三子層6-624可與第二子層6-623接觸。在僅包含第一子層6-622及第三子層6-624之金屬堆疊6-620之實施例中,第三子層6-624可與第一子層6-622接觸。第三子層6-624可具有在1奈米至50奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,第三子層6-624可具有近似30奈米之一厚度。在一些實施例中,第一子層6-622包含鋁,第二子層6-623包含鈦,且第三子層6-624包含氮化鈦。 在一些實施例中,金屬堆疊6-620可經退火以改良包含於金屬堆疊6-620中之該等材料之穩定性且可減小可發生之腐蝕量。金屬堆疊6-620可在300°C至500°C之範圍中或該範圍內之任何溫度或溫度之範圍的一溫度處退火。在一些實施例中,該基板可在近似400°C之一溫度處退火。金屬堆疊6-620之退火可發生在10分鐘至60分鐘之範圍中或該範圍內之任何時間週期的一時間週期。在一些實施例中,該堆疊可退火近似40分鐘。 光阻劑層6-631可經形成於金屬堆疊6-620上方,如圖6-1B中所展示。光阻劑層6-631可經圖案化為具有一或多個開口,其等可對應於其中一樣本井經形成於金屬堆疊6-620內之一位置。光阻劑層6-631可用以保護該光阻劑存在於其中之材料免於一蝕刻製程,而可在該蝕刻製程期間經移除經暴露材料(諸如通過一開口)。在一些實施例中,光阻劑層6-631可包含一主動光阻劑。在一些實施例中,光阻劑層6-631可包含一被動光阻劑。防反射塗佈層6-630可經形成於光阻劑層6-631與金屬堆疊6-620之間。光阻劑6-631可在一光微影暴露之後經選擇性地蝕刻以便移除對應於該樣本井經形成於其中之區域之該光阻劑之一區域。 可使用一電漿蝕刻製程或任何合適技術選擇性地移除防反射塗佈6-630。亦可使用任何合適技術選擇性地移除金屬堆疊6-622,包含用以選擇性地移除防反射塗佈6-630之樣本製程。藉由移除金屬堆疊6-622之一部分而經形成於金屬堆疊6-622中之該開口之一橫截面區域可形成該所得樣本井之一孔。在一些實施例中,可通過包含Cl2
及/或BCl2
之電漿蝕刻製程移除防反射塗佈6-630及金屬堆疊6-622。該電漿蝕刻製程可移除與光阻劑層6-631之一開口重疊之防反射塗佈6-630及金屬堆疊6-622之一部分。 可使用一乾蝕刻製程或任何合適技術選擇性地移除頂部覆層6-619以形成一腔於頂部覆層6-619內,其與光阻劑層6-631之一開口重疊。在一些實施例中,用以移除頂部覆層6-619之一部分之一乾蝕刻製程可包含一或多個碳氟化合物氣體(例如,CF4
、CHF3
、C4
F8
、C3
H2
F6
)之使用。在一些實施例中,該乾蝕刻製程可發生一持續時間以達成一所要蝕刻深度。在一些實施例中,一蝕刻停止層可經定位於頂部覆層6-619內之一位置處以使用該乾蝕刻製程達成一所要蝕刻深度。在一些實施例中,藉由該蝕刻製程形成之該腔之一或多個側壁可與平行於或大致平行於波導6-616之腔之一表面之法線成一角度。該腔之一側壁可與平行於或大致平行於波導6-616之該腔之一曲面法線成1°至15°之範圍或該範圍內之任何值的一角度。在一些實施例中,該所得腔之一側壁可大致垂直於平行於或大致平行於波導6-616之該腔之一表面。由金屬堆疊6-620及頂部覆層6-619之移除所致之該腔可形成一樣本井。 可使用一電漿移除製程(例如灰化、清除)或任何合適技術自金屬堆疊6-622移除光阻劑層6-631及/或防反射塗佈6-630。在一些實施例中,可使用一氧氣電漿移除製程移除光阻劑層6-631及/或防反射塗佈6-630。在一些實施例中,在金屬堆疊6-622之蝕刻之後及在頂部覆層6-619之蝕刻之前移除光阻劑層6-631及/或防反射塗佈6-630。在此等實施例中,可形成該所得樣本井之一孔之金屬堆疊6-622中之該開口可用作一遮罩(例如硬遮罩)用於頂部覆層6-619之移除製程。在一些實施例中,在金屬堆疊6-622及頂部覆層6-619之蝕刻之後移除光阻劑層6-631及防反射塗佈6-630。 可使用一濕溶液或任何合適製程移除殘渣(包含氧化物及金屬殘渣)。在一些實施例中,該所得結構可經放置於一濕溶液中以減小金屬及/或氧化物殘渣在該所得樣本井內及/或在該所得樣本井之一表面上的存在。在一些實施例中,該濕溶液可包括來自空氣產品之ACT 114。 一側壁間隔件可經形成於該所得樣本井之一或多個表面上。用以形成該側壁間隔件之合適材料之實例包含TiO2
、TiN、TiON、TaN、Ta2
O5
、ZrO2
及HfO2
。一側壁間隔件可具有在3奈米至30奈米之範圍中或在該範圍內之任何值或值之範圍的一厚度。在一些實施例中,側壁間隔件6-690可具有大致10奈米之一厚度。 如圖6-1D中所展示,間隔件6-690可經沈積於金屬堆疊6-620及經形成於金屬堆疊6-620及頂部覆層6-619中之該腔之一或多個表面上。間隔件6-690可通過一合適沈積製程沈積,包含原子層沈積(ALD)、金屬有機化學氣相沈積(MOCVD)及離子物理氣相沈積(IPVD)。該沈積製程可提供材料之一致或大致一致形成,其形成側壁間隔件於該結構之一經暴露表面上。 在一些實施例中,自接近於一波導之該樣本井之一表面移除該間隔件材料。該表面可大致平行於沿該波導之光傳播之一方向。如圖6-1E中所展示,可自該樣本井之底部表面6-608移除該間隔件材料。可通過一各向異性蝕刻製程自該樣本井之該底部表面移除該側壁間隔件,其可移除水平表面(例如該樣本井之底部表面、該金屬堆疊之表面)上之材料。該各向異性蝕刻製程可自該底部表面移除該側壁間隔件,同時維持該側壁間隔件於該樣本井之該等側壁之至少一部分上。該所得結構可相較於該樣本井之該等側壁提供一不同功能性用於一樣本至底部表面6-608之結合。此功能性可允許一樣本優先於該樣本井之一側壁而黏著至底部表面6-608。 通過該積體裝置之一或多個開口可經形成以提供電接觸至在該裝置內之電路。一開口可提供至經電耦合至該積體裝置之一感測器的一或多個金屬墊的進入。可藉由使用任何合適移除製程形成一開口,包含一微影製程接著一蝕刻製程。在一些實施例中,可使用一光微影製程形成一或多個開口。該光微影製程可包含一I線光阻劑之使用用於365奈米之一波長。該光微影製程可形成光致發光殘渣,其等可在一樣本之分析期間由所得積體裝置形成假影。可藉由一各向異性蝕刻製程移除或減小此等光致發光殘渣。據此,在一些實施例中,一或多個開口可在經形成於該樣本井之一底部表面上之間隔件材料之移除之前藉由一各向異性蝕刻製程形成於該積體裝置中。此等製造技術可減少用以形成一積體裝置之步驟之數目。 在一些實施例中,一樣本井之形成可包含頂部覆層6-619之移除以延伸該樣本井之一底部表面更靠近波導6-619,其可改良激發能自波導6-619之耦合且減小金屬堆疊6-622對激發能之光學損失之影響。該移除製程可在形成一間隔件材料於該樣本井之一或多個側壁上之後發生且可視作一「過蝕刻」製程且可移除在20奈米至50奈米之範圍中或在該範圍內之任何值的頂部覆層6-619之一厚度。該所得樣本井結構可具有接近於波導6-616之一部分,其除該樣本井之該底部表面外在該等側壁上缺乏間隔件材料,如圖6-1F中所展示。該底部表面與側壁間隔件之間的距離可在20奈米至50奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,該過蝕刻製程可使用CF4
。該移除製程亦可減小殘渣在該所得樣本井中之存在。 一些實施例係關於形成一積體裝置之方法,其中一樣本井藉由形成該樣本井於該積體裝置之一平面內及/或在該平面下方而經定位成接近於一感測器,該積體裝置包含經組態以路由電信號於該積體裝置內之一金屬層。在此等實施例中,該樣本井之一表面與該感測器之間的距離可在2微米至3微米之範圍中或在該範圍內之任何值或值之範圍。經組態以傳遞激發能至該樣本井之一波導可經形成於該樣本井與感測器之間。該波導可經形成於該積體裝置之一平面中,該平面重疊包含一金屬層之一平面及/或經定位於該平面下方,其可充當該積體裝置之一電路由。依此方式,波導可視作嵌入於該積體裝置之後段製程(BEOL)佈線內。 圖7-1A、圖7-1B、圖7-1C、圖7-1D及圖7-1E繪示形成一積體裝置之步驟,其中一波導及一樣本井經嵌入於該積體裝置之BEOL內。波導7-516可經形成於基板7-500上方,其中一覆層材料之一或多個層在波導7-516與基板7-500之間。波導7-516與基板7-500之間的一距離可在1微米至2微米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,波導7-516與基板7-500之間的距離可在1.2微米至1.7微米之範圍中或在該範圍內之任何值或值之範圍。 如圖7-1A中所展示,介電層7-502及覆層7-510可經形成於基板7-500上,其中金屬層7-503A
在介電層7-502與覆層7-510之間。可藉由生長或沈積(例如電漿增強化學氣相沈積(PECVD)、高密度電漿化學氣相沈積(HDPCVD))一合適材料(例如介電材料)而形成介電層7-502及/或覆層7-510。介電層7-502可包含未摻雜二氧化矽。用以形成覆層7-510之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。通孔7-504A
可經形成通過介電層7-502,諸如藉由蝕刻介電層7-502之一部分以暴露基板7-500且使用一金屬(例如鎢)填充該開口。 波導7-516可經形成於覆層7-510上方,且額外覆層可經形成於波導7-516上方。如圖7-1B中所展示,一或多個金屬層7-503及通孔7-504可經形成於該覆層內。蝕刻停止層7-720可以自波導7-516之一所要距離經形成於覆層7-510上方。蝕刻停止層7-720可包含氮氧化矽(例如SiON)。在一些實施例中,沿z方向之在蝕刻停止層7-720與波導7-516之間的一距離可在2微米至3微米之範圍中或在該範圍內之任何值或值之範圍。額外覆層7-710可經形成於蝕刻停止層7-720上方,如圖7-1C中所展示。一或多個金屬層7-503及通孔7-504可經形成於蝕刻停止層7-720之一xy平面上方之一xy平面中。 一或多個金屬層7-503可通過一或多個通孔7-504而經電連接至基板7-500。沿一金屬層之z維度之一尺寸之一值可在450奈米至650奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,沿z維度之一金屬層之一尺寸係近似555奈米。沿z維度分離相鄰金屬層(諸如金屬層7-503A
及金屬層7-503B
)之一距離可在750奈米至950奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,沿z維度在相鄰金屬層之間的覆層7-710之一尺寸可近似850奈米。 如圖7-1D中所展示,可藉由移除覆層7-710之一部分而形成溝槽區域7-520。覆層7-710之經移除部分可延伸至蝕刻停止層7-720。在一些實施例中,用以移除覆層7-710之該製程亦可用以移除蝕刻停止層7-720之至少一部分。可藉由蝕刻覆層7-710形成溝槽區域7-520,直至蝕刻停止層7-720經暴露為止。蝕刻停止層7-720可改良在達成溝槽區域7-520之所要深度中之準確度。 如圖7-1E中所展示,金屬層7-522可經形成於溝槽區域7-520上方。可使用本文中所描述之技術形成金屬層7-522。樣本井7-508可使用本文中所描述之技術經形成為金屬層7-522及覆層7-710內之一腔。在一些實施例中,樣本井7-508之一或多個表面可使用本文中所使用之技術由側壁間隔件7-590塗佈。 在一些實施例中,一積體裝置之形成可包含藉由形成一金屬層及一蝕刻停止層於該金屬層上方而嵌入該金屬層及一波導於該積體裝置之該BEOL內,形成一覆層於該蝕刻停止層上方及移除該覆層之一部分以產生該金屬層作為該積體裝置之一表面。圖7-2A及圖7-2B繪示形成一積體裝置之步驟,其中一波導及一樣本井經嵌入於該積體裝置之該BEOL內。 如圖7-2A中所展示,介電層7-802及覆層7-810可經形成於基板7-800上,其中金屬層7-803A
、7-803B
、7-803C
及7-803D
經安置於介電層7-802及/或覆層7-810內。可藉由生長或沈積(例如電漿增強化學氣相沈積(PECVD)、高密度電漿化學氣相沈積(HDPCVD))一介電材料而形成介電層7-802及/或覆層7-810。在一些實施例中,介電層7-802可包含未摻雜二氧化矽。用以形成覆層7-810之合適材料之實例包含氧化矽、氧化鋁及氧化鈦。通孔(諸如通孔7-804A
)可經形成通過介電層7-802,諸如藉由蝕刻介電層7-802之一部分以暴露基板7-800且使用一金屬(例如鎢)填充該開口。 波導7-816可經形成於覆層7-810內,且金屬層7-821可經形成於波導7-816上方,其中覆層7-810之一區域在波導7-816與金屬層7-821之間。開口7-822可經形成於金屬層7-821內,其可對應於該所得裝置中之一樣本井的一孔之一位置。亦可自與開口7-822重疊之一區域移除覆層7-810之一部分。開口7-822及覆層7-810之經移除區域可形成一樣本井於該所得積體裝置中。犧牲層7-820可經形成於金屬層7-821上方,且至少部分填充金屬層7-821之開口7-822及覆層7-810之經移除部分。犧牲層7-820可包含氮氧化矽(例如SiON)、Ti及/或TiN。在一些實施例中,沿z方向之在犧牲層7-820與波導7-816之間的一距離可在2微米至3微米之範圍中或在該範圍內之任何值或值之範圍。額外覆層7-810可經形成於蝕刻停止層7-820上方。 一或多個金屬層7-803及通孔7-804可經形成於犧牲層7-820之一xy平面上方的一xy平面中。一或多個金屬層7-803可通過一或多個通孔7-804而經電連接至基板7-800。沿z維度之一金屬層之一尺寸之一值可在450奈米至650奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,沿z維度之一金屬層之一尺寸係近似555奈米。沿z維度分離相鄰金屬層(諸如金屬層7-803A
及金屬層7-803B
)之一距離可在750奈米至950奈米之範圍中或在該範圍內之任何值或值之範圍。在一些實施例中,沿z維度之在相鄰金屬層之間的覆層7-810之一尺寸可近似850奈米。 如圖7-2B中所展示,可藉由移除覆層7-810至犧牲層7-820之一部分及犧牲層7-820之至少一部分而形成溝槽區域7-830及/或樣本井7-808。在其中犧牲層7-820包含Ti及/或TiN之實施例中,犧牲層7-820可使用含有濕化學之過氧化氫經移除以暴露金屬層7-821之一部分及/或覆層7-810之一部分。可藉由蝕刻覆層7-810形成溝槽區域7-830,直至該犧牲蝕刻停止層經暴露為止。可接著通過一第二蝕刻製程蝕刻該犧牲蝕刻停止層,直至金屬層7-821經暴露為止。 因此在本申請案之技術之所描述若干態樣及實施例之後,應瞭解,一般技術者將容易想到各種替代、修改及改良。此等替代、修改及改良意欲在本申請案中所描述之技術之精神及範疇內。因此,應瞭解,前述實施例僅藉由實例呈現且在隨附申請專利範圍及其等效物之範疇內,發明性實施例可依除如特殊描述外之方式實踐。另外,本文中所描述之兩個或兩個以上特徵、系統、物件、材料、套組及/或方法之任何組合若此等特徵、系統、物件、材料、套組及/或方法並非互相不一致則係包含於本發明之範疇內。 同樣地,如所描述,一些態樣可經體現為一或多個方法。經執行為該方法之部分之動作可依任何合適方式定序。據此,實施例可經建構,其中依不同於所繪示之一順序執行動作,其可包含同時執行一些動作,即使經展示為在繪示性實施例中之連續動作。 如本文中所界定及所使用之所有定義應理解為控制詞典定義、以引用的方式併入之文檔中之定義及/或所定義術語之一般意義。 如本文中用於說明書中及申請專利範圍中之不定冠詞「一」除非本文清楚指示否則應理解為意謂「至少一個」。 如本文中用於說明書中及申請專利範圍中之片語「及/或」應理解為意謂所接合之元件之「任一者或兩者」,即在一些情況中結合地存在且在其他情況中分離地存在之元件。 如本文中說明書中及申請專利範圍中所使用,參考一列表之一或多個元件之片語「至少一個」應理解為意謂選自該列表之元件中之元件之任何一或多者的至少一個元件,但並不一定包含特別列於該列表之元件內之各元件及每一元件之至少一者且不排除該列表之元件中之元件之任何組合。此定義亦允許除片語「至少一個」所指示之該列表之元件內所特別識別之元件外,元件可選擇性地存在,無論是否與經特定識別之彼等元件相關或無關。 在申請專利範圍中以及在上文說明書中,所有過渡性片語(諸如「包括」、「包含」、「攜載」、「具有」、「含有」、「涉及」、「固持」、「由……組成」及類似者)應理解為開放式,即意謂包含但不限於。過渡性片語「由……組成」及「基本上由……組成」應分別為封閉式或半封閉式過渡性片語。
1-101‧‧‧第一發射時序1-102‧‧‧第二發射時序1-103‧‧‧第三發射時序1-104‧‧‧第四發射時序1-105‧‧‧第一發射光譜1-106‧‧‧第二發射光譜1-107‧‧‧第三發射光譜1-108‧‧‧第四發射光譜1-109‧‧‧第一吸收光譜1-110‧‧‧第二吸收光譜1-111‧‧‧第三吸收光譜1-112‧‧‧第四吸收光譜2-100‧‧‧系統2-102‧‧‧積體裝置2-104‧‧‧儀器2-106‧‧‧激發源2-108‧‧‧樣本井2-110‧‧‧感測器2-112‧‧‧像素2-114‧‧‧積體裝置介面2-116‧‧‧使用者介面2-118‧‧‧電腦介面2-120‧‧‧計算裝置2-122‧‧‧處理裝置3-102‧‧‧積體裝置3-106‧‧‧激發源3-108‧‧‧樣本井3-110‧‧‧感測器3-112‧‧‧像素3-130‧‧‧激發能3-140‧‧‧發射能3-200‧‧‧光柵耦合器3-201‧‧‧U轉向形狀3-202‧‧‧分裂器3-204‧‧‧像素陣列3-206‧‧‧監測區域3-210‧‧‧光柵耦合器3-212‧‧‧分裂器3-214‧‧‧像素陣列3-216‧‧‧測試結構3-218‧‧‧測試結構3-220‧‧‧測試結構3-224‧‧‧測試結構3-230‧‧‧輸入光柵耦合器3-232‧‧‧MMI3-234‧‧‧MZI3-236‧‧‧輸出光柵耦合器4-100‧‧‧積體裝置4-102‧‧‧介電層4-103‧‧‧金屬層4-104‧‧‧金屬層4-105‧‧‧基板4-1081‧‧‧樣本井4-1082‧‧‧樣本井4-1083‧‧‧樣本井4-1084‧‧‧樣本井4-1085‧‧‧樣本井4-1086‧‧‧樣本井4-110‧‧‧底部覆層4-112‧‧‧反射器4-114‧‧‧光柵耦合器4-115‧‧‧激發能耦合區域4-116‧‧‧波導4-118‧‧‧頂部覆層4-120‧‧‧溝槽區域4-122‧‧‧金屬層4-124‧‧‧表面4-128‧‧‧樣本井4-128a‧‧‧樣本井4-128b‧‧‧樣本井4-128c‧‧‧樣本井4-130‧‧‧溝槽區域4-130a‧‧‧溝槽區域4-130b‧‧‧溝槽區域4-136‧‧‧波導4-136a‧‧‧波導4-136b‧‧‧波導4-136c‧‧‧波導4-138‧‧‧頂部覆層4-150‧‧‧下堆疊4-151‧‧‧上堆疊4-152‧‧‧金屬層4-154‧‧‧表面4-161‧‧‧上堆疊4-200‧‧‧基板4-202‧‧‧介電層4-203A‧‧‧金屬層4-203B‧‧‧金屬層4-203C‧‧‧金屬層4-203D‧‧‧金屬層4-204A‧‧‧通孔4-204B‧‧‧通孔4-204C‧‧‧通孔4-204D‧‧‧通孔4-208‧‧‧樣本井4-210‧‧‧覆層4-216‧‧‧波導4-220‧‧‧溝槽區域4-222‧‧‧金屬層4-260‧‧‧積體裝置4-300‧‧‧感測器4-308‧‧‧樣本井4-316‧‧‧波導4-318‧‧‧覆層4-322‧‧‧金屬層4-327‧‧‧介面4-390‧‧‧側壁間隔件4-391‧‧‧樣本4-402‧‧‧區域4-404‧‧‧區域4-501‧‧‧線4-502‧‧‧線4-503‧‧‧線4-504‧‧‧線4-600‧‧‧輸出4-601‧‧‧第一位準MMI4-602‧‧‧第二位準MMI4-603‧‧‧第三位準MMI4-604‧‧‧第四位準MMI4-605‧‧‧第五位準MMI4-606‧‧‧第六位準MMI4-607‧‧‧第七位準MMI4-700‧‧‧光柵耦合器4-701‧‧‧第一位準MMI4-703‧‧‧第三位準MMI4-704‧‧‧輸出4-800‧‧‧光柵耦合器4-802‧‧‧區域4-804‧‧‧輸出4-806‧‧‧傳播區域4-900‧‧‧區域4-902‧‧‧區域4-904‧‧‧輸入4-1000‧‧‧輸入光柵耦合器4-1002‧‧‧輸出4-1004‧‧‧傳播區域4-1100‧‧‧切片光柵耦合器4-1102‧‧‧輸出4-1104‧‧‧外切片4-1106‧‧‧內切片5-1081‧‧‧樣本井5-1082‧‧‧樣本井5-1083‧‧‧樣本井5-1084‧‧‧樣本井5-1085‧‧‧樣本井5-3081‧‧‧樣本井5-3082‧‧‧樣本井5-3083‧‧‧樣本井5-3084‧‧‧樣本井5-3085‧‧‧樣本井5-410‧‧‧底部覆層5-414‧‧‧光柵耦合器5-416‧‧‧波導5-418‧‧‧材料層5-420‧‧‧溝槽區域5-422‧‧‧金屬層5-430‧‧‧底部覆層5-434‧‧‧光柵耦合器5-435‧‧‧金屬層5-436‧‧‧波導5-438‧‧‧材料層5-439‧‧‧介電層5-480‧‧‧蝕刻停止層6-410‧‧‧底部覆層6-414‧‧‧光柵耦合器6-416‧‧‧波導6-418‧‧‧材料層6-422‧‧‧金屬層6-481‧‧‧蝕刻停止層6-482‧‧‧介電層6-483‧‧‧蝕刻停止層6-484‧‧‧介電層6-600‧‧‧基板6-608‧‧‧底部表面6-610‧‧‧底部覆層6-616‧‧‧波導6-619‧‧‧頂部覆層6-620‧‧‧金屬堆疊6-622‧‧‧第一子層6-623‧‧‧第二子層6-624‧‧‧第三子層6-630‧‧‧防反射塗佈層6-631‧‧‧光阻劑層6-690‧‧‧側壁間隔件7-500‧‧‧基板7-502‧‧‧介電層7-503A‧‧‧金屬層7-503B‧‧‧金屬層7-503C‧‧‧金屬層7-503D‧‧‧金屬層7-504A‧‧‧通孔7-508‧‧‧樣本井7-510‧‧‧覆層7-516‧‧‧波導7-520‧‧‧蝕刻停止層7-522‧‧‧金屬層7-590‧‧‧側壁間隔件7-710‧‧‧覆層7-720‧‧‧蝕刻停止層7-800‧‧‧基板7-802‧‧‧介電層7-803A‧‧‧金屬層7-803B‧‧‧金屬層7-803C‧‧‧金屬層7-803D‧‧‧金屬層7-804A‧‧‧通孔7-808‧‧‧樣本井7-810‧‧‧覆層7-816‧‧‧波導7-820‧‧‧犧牲層7-821‧‧‧金屬層7-822‧‧‧開口7-830‧‧‧溝槽區域
將參考隨附圖式來描述本申請案之各種態樣及實施例。應瞭解,該等圖式並不一定按比例繪製。多個圖式中出現之項目在其等出現之所有圖式中由相同元件符號指示。 圖1-1係用於根據時間發射來自一標記之一光子之概率之一曲線。 圖1-2A係例示性發射時序光譜之一曲線。 圖1-2B係例示性吸收波長光譜之一曲線。 圖1-2C係例示性發射波長光譜之一曲線。 圖1-3A係用於發射波長及發射壽命之一相空間圖。 圖1-3B係用於吸收波長及發射壽命之一相空間圖。 圖1-4係用於發射波長、吸收波長及發射壽命之一相空間圖。 圖2-1A係根據一些實施例之一設備之一方塊圖代表,該設備可用於生物及化學樣本之迅速、行動分析。 圖2-1B係根據一些實施例之一積體裝置及一儀器之一方塊圖。 圖3-1A係根據一些實施例之一積體裝置之一示意圖。 圖3-1B係根據一些實施例之耦合至一列像素中之樣本井的激發能及來自各樣本井之導引朝向感測器的發射能之一示意圖。 圖3-2A係根據一些實施例之一積體裝置之光學組件之一平面圖。 圖3-2B係根據一些實施例之一積體裝置之光學組件之一平面圖。 圖3-2C係根據一些實施例之一測試結構之一平面圖。 圖3-2D係根據自由圖3-2C中所展示之測試結構執行之量測獲得之長度之相對功率的一曲線。 圖4-1A係根據一些實施例之具有複數個樣本井之一積體裝置之一橫截面圖。 圖4-1B係根據一些實施例之具有複數個溝槽區域之一積體裝置之一橫截面圖。 圖4-1C係根據一些實施例之具有與個別樣本井相關聯之圓形溝槽區域之一積體裝置之一平面圖。 圖4-1D係根據一些實施例之具有與多個波導重疊之矩形溝槽區域之一積體裝置之一平面圖。 圖4-2係根據一些實施例之具有複數個金屬層之一積體裝置之一橫截面圖。 圖4-3係根據一些實施例之一積體裝置之一像素之一橫截面圖。 圖4-4係根據一些實施例之一光柵耦合器之一平面圖。 圖4-5係根據一些實施例之繪示根據一頂部覆層及一底部覆層之厚度之一光柵耦合器之耦合效率的一熱圖。 圖4-6係根據一些實施例之一串聯MMI分裂器結構之一平面圖。 圖4-7A係根據一些實施例之一串聯MMI分裂器結構之一平面圖。 圖4-7B係根據一些實施例之一例示性MMI之一平面圖。 圖4-7C係根據一些實施例之一例示性MMI之一平面圖。 圖4-8A係根據一些實施例之一例示性星形耦合器分裂器結構之一平面圖。 圖4-8B係圖4-8A之星形耦合器分裂器結構之區域4-802之一平面圖。 圖4-9A係根據一些實施例之一例示性星形耦合器分裂器結構之一平面圖。 圖4-9B係圖4-9A之星形耦合器分裂器結構之區域4-900之一平面圖。 圖4-9C係圖4-9A之星形耦合器分裂器結構之區域4-902之一平面圖。 圖4-10係根據一些實施例之一例示性星形耦合器分裂器結構之一平面圖。 圖4-11係根據一些實施例之一切片光柵耦合器分裂器結構之一平面圖。 圖5-1A至圖5-1C繪示根據一些實施例之用於製造包括一溝槽區域之一積體裝置之一製造序列。 圖5-2A至圖5-2F繪示根據一些實施例之用於製造包括複數個樣本井之一積體裝置之一製造序列。 圖5-3A至圖5-3G繪示根據一些實施例之用於製造包括複數個樣本井之一積體裝置之一製造序列。 圖6-1A至圖6-1F繪示根據一些實施例之用於製造一樣本井之一製造序列。 圖7-1A至圖7-1E繪示根據一些實施例之用於製造包括複數個金屬層之一積體裝置之一製造序列。 圖7-2A及圖7-2B繪示根據一些實施例之用於製造包括複數個金屬層之一積體裝置之一製造序列。
4-100‧‧‧積體裝置
4-102‧‧‧介電層
4-103‧‧‧金屬層
4-104‧‧‧金屬層
4-105‧‧‧基板
4-1081‧‧‧樣本井
4-1082‧‧‧樣本井
4-1083‧‧‧樣本井
4-1084‧‧‧樣本井
4-1085‧‧‧樣本井
4-1086‧‧‧樣本井
4-110‧‧‧底部覆層
4-112‧‧‧反射器
4-114‧‧‧光柵耦合器
4-115‧‧‧激發能耦合區域
4-116‧‧‧波導
4-118‧‧‧頂部覆層
4-120‧‧‧溝槽區域
4-122‧‧‧金屬層
4-124‧‧‧表面
4-150‧‧‧下堆疊
4-151‧‧‧上堆疊
Claims (20)
- 一種積體裝置,其包括:該積體裝置之一表面,其具有自該表面之一部分凹入之一溝槽區域;一陣列之樣本井,其經安置於該溝槽區域中並從該溝槽區域的一底部表面凹入,其中該陣列之樣本井之一樣本井經組態以接收一樣本;及一波導,其經組態以使激發能耦合至該陣列中之至少一個樣本井,且係定位於自該溝槽區域之該底部表面之一第一距離處及自與該溝槽區域分離之一區域中之該積體裝置之該表面之一第二距離處,其中該第一距離係小於該第二距離。
- 如請求項1之積體裝置,其中該第一距離係在150奈米與600奈米之間。
- 如請求項1或2之積體裝置,其中該第二距離係在250奈米與2000奈米之間。
- 如請求項1或2之積體裝置,其中該樣本井在距該波導小於300奈米之一距離處具有一表面。
- 如請求項1之積體裝置,其中該積體裝置進一步包括至少一個光柵耦合器,其經組態以接收來自與該積體裝置分離之一激發源的激發能,且導 引激發能至該波導。
- 如請求項5之積體裝置,其中該積體裝置進一步包括一反射器,其經組態以反射激發能朝向該至少一個光柵耦合器。
- 如請求項5之積體裝置,其中該積體裝置進一步包括一分裂器結構,其經組態以接收來自該至少一個光柵耦合器的激發能,且導引激發能至複數個波導。
- 如請求項7之積體裝置,其中該分裂器結構包含至少一個多模式干擾分裂器。
- 如請求項7之積體裝置,其中該分裂器結構包含一星形耦合器。
- 如請求項7之積體裝置,其中該分裂器結構包含一切片光柵耦合器。
- 如請求項1之積體裝置,其中該波導在垂直於沿該波導之光傳播之方向之一方向上具有一漸縮尺寸,使得該尺寸在接近於一光柵耦合器之一位置處大於在一遠端位置處。
- 如請求項1之積體裝置,其中該樣本井包含經形成於該樣本井之一側壁之至少一部分上之一側壁間隔件。
- 如請求項12之積體裝置,其中接近於該波導之該樣本井之一表面經組態以依不同於該側壁間隔件之一方式來與該樣本相互作用。
- 如請求項1之積體裝置,其中該積體裝置進一步包括經形成於該溝槽區域之該底部表面上之一金屬堆疊,使得該金屬堆疊具有一開口,其與該陣列之一樣本井之一孔重疊。
- 如請求項14之積體裝置,其中該金屬堆疊包含一鋁層及一氮化鈦層,且該鋁層係接近於該波導。
- 如請求項1之積體裝置,其中該波導包含氮化矽。
- 如請求項1之積體裝置,該積體裝置進一步包括一感測器,其經組態以接收由經定位於該樣本井中之該樣本發射的發射能。
- 一種積體裝置,其包括:具有電路的一基板;一波導,其具有面向該基板之一第一側,及相對於該第一側之一第二側;及形成在該基版上方的複數個金屬層,其經組態以支持複數個電信號,其中該複數個金屬層之一第一金屬層係以比該波導之該第一側更靠近該基板之一距離定位。
- 如請求項18之積體裝置,其中該波導係以比該複數個金屬層之一第二金屬層更靠近該基板之一距離定位。
- 如請求項18或19之積體裝置,進一步包括該積體裝置之一表面,其具有自該積體裝置之該表面之一部分凹入之一溝槽區域;及一陣列之樣本井,其係安置於該溝槽區域中,其中該陣列之樣本井之一樣本井經組態以接收一樣本;及其中該波導經定位於自該溝槽區域之一底部表面之一第一距離處及自與該溝槽區域分離之一區域中之該積體裝置之該表面之一第二距離處,其中該第一距離係小於該第二距離。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662344123P | 2016-06-01 | 2016-06-01 | |
US62/344,123 | 2016-06-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201802454A TW201802454A (zh) | 2018-01-16 |
TWI735587B true TWI735587B (zh) | 2021-08-11 |
Family
ID=59062092
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110124557A TWI844783B (zh) | 2016-06-01 | 2017-06-01 | 用於偵測及分析分子之光子結構及積體裝置 |
TW106118154A TWI735587B (zh) | 2016-06-01 | 2017-06-01 | 用於偵測及分析分子之光子結構及積體裝置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110124557A TWI844783B (zh) | 2016-06-01 | 2017-06-01 | 用於偵測及分析分子之光子結構及積體裝置 |
Country Status (10)
Country | Link |
---|---|
US (4) | US11226290B2 (zh) |
EP (2) | EP4113104A3 (zh) |
JP (2) | JP7309364B2 (zh) |
KR (2) | KR102414666B1 (zh) |
CN (2) | CN109219743B (zh) |
AU (1) | AU2017297185B2 (zh) |
CA (1) | CA3025431A1 (zh) |
MX (1) | MX2018014841A (zh) |
TW (2) | TWI844783B (zh) |
WO (1) | WO2018013243A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109219743B (zh) * | 2016-06-01 | 2022-04-26 | 宽腾矽公司 | 用于检测及分析分子的集成装置 |
WO2018118992A1 (en) | 2016-12-19 | 2018-06-28 | Quantum-Si Incorporated | Loading molecules into sample wells for analysis |
WO2018204810A1 (en) | 2017-05-05 | 2018-11-08 | Quantum-Si Incorporated | Substrates having modified surface reactivity and antifouling properties in biological reactions |
US11237326B2 (en) | 2017-07-24 | 2022-02-01 | Quantum-Si Incorporated | Optical rejection photonic structures using two spatial filters |
CN114950588A (zh) | 2018-01-08 | 2022-08-30 | 宽腾矽公司 | 用于亚微米级反应室的电气动力装载的系统及方法 |
WO2019160949A1 (en) * | 2018-02-13 | 2019-08-22 | Masseta Technologies Llc | Integrated photonics device having integrated edge outcouplers |
TWI840365B (zh) * | 2018-05-24 | 2024-05-01 | 加拿大商光子公司 | 包含在具有局部資訊狀態之半導體中之發光局部缺陷之系統、裝置、製品及方法 |
WO2020047272A1 (en) * | 2018-08-29 | 2020-03-05 | Quantum-Si Incorporated | Sample well fabrication techniques and structures for integrated sensor devices |
US20200171484A1 (en) * | 2018-12-03 | 2020-06-04 | Quantum-Si Incorporated | Sample well fabrication techniques and structures for integrated sensor devices |
TW202041847A (zh) * | 2019-01-03 | 2020-11-16 | 美商寬騰矽公司 | 用於傳遞光至光子元件之陣列的光學波導及耦合器 |
CN109945776B (zh) * | 2019-02-01 | 2021-05-25 | 天津大学 | 一种电化学中基于荧光颗粒标记与主动光学测量的位移/应变测量方法 |
US11406977B2 (en) * | 2019-06-28 | 2022-08-09 | Illumina Cambridge Limited | Flowcells with linear waveguides |
JP2022539633A (ja) * | 2019-07-08 | 2022-09-13 | イルミナ インコーポレイテッド | 光検出デバイス上の光結合構造による導波路統合 |
MX2022004346A (es) | 2019-10-11 | 2022-07-19 | Quantum Si Inc | Modificación de la superficie en la fase de vapor. |
CN115335687A (zh) * | 2020-01-14 | 2022-11-11 | 宽腾矽公司 | 波导激发均匀性 |
US11592618B2 (en) * | 2020-06-10 | 2023-02-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Photonic semiconductor device and method of manufacture |
US11442230B2 (en) * | 2020-11-13 | 2022-09-13 | Taiwan Semiconductor Manufacturing Company Limited | Silicon photonics coupling structure using an etch stop layer and methods of forming the same |
US20240183785A1 (en) * | 2021-03-31 | 2024-06-06 | Carnegie Mellon University | Laser-Based Fast Micromanufacturing of Test Device for Rapid Detection of Pathogens |
CN113740300A (zh) * | 2021-08-27 | 2021-12-03 | 电子科技大学 | 一种片上光学丙酮气体传感器及其制备工艺和应用 |
TWI848815B (zh) * | 2023-09-12 | 2024-07-11 | 漢磊科技股份有限公司 | 生物晶片及其製造方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150141267A1 (en) * | 2013-11-17 | 2015-05-21 | Quantum-Si Incorporated | Integrated device with external light source for probing detecting and analyzing molecules |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5814565A (en) | 1995-02-23 | 1998-09-29 | University Of Utah Research Foundation | Integrated optic waveguide immunosensor |
US5625617A (en) * | 1995-09-06 | 1997-04-29 | Lucent Technologies Inc. | Near-field optical apparatus with a laser having a non-uniform emission face |
US6825921B1 (en) * | 1999-11-10 | 2004-11-30 | Molecular Devices Corporation | Multi-mode light detection system |
US6787308B2 (en) | 1998-07-30 | 2004-09-07 | Solexa Ltd. | Arrayed biomolecules and their use in sequencing |
JP2003532123A (ja) | 2000-04-28 | 2003-10-28 | エッジライト バイオサイエンシズ インコーポレイテッド | マイクロアレーエバネッセント波蛍光検出装置 |
US6917726B2 (en) | 2001-09-27 | 2005-07-12 | Cornell Research Foundation, Inc. | Zero-mode clad waveguides for performing spectroscopy with confined effective observation volumes |
US20020059449A1 (en) | 2000-06-27 | 2002-05-16 | Matthias Wandel | System and method for implementing local base stations |
FR2813121A1 (fr) | 2000-08-21 | 2002-02-22 | Claude Weisbuch | Dispositif perfectionne de support d'elements chromophores |
US20040146917A1 (en) * | 2001-08-03 | 2004-07-29 | Nanosphere, Inc. | Nanoparticle imaging system and method |
US6782166B1 (en) * | 2001-12-21 | 2004-08-24 | United States Of America As Represented By The Secretary Of The Air Force | Optically transparent electrically conductive charge sheet poling electrodes to maximize performance of electro-optic devices |
FR2846745B1 (fr) * | 2002-10-30 | 2004-12-24 | Genewave | Dispositif de support d'elements chromophores. |
TW200421497A (en) * | 2002-11-20 | 2004-10-16 | Reveo Inc | Method and system for increasing yield of vertically integrated devices |
WO2005073407A1 (en) * | 2003-10-07 | 2005-08-11 | Ut-Battelle, Llc | Advanced integrated circuit biochip |
US7738086B2 (en) | 2005-05-09 | 2010-06-15 | The Trustees Of Columbia University In The City Of New York | Active CMOS biosensor chip for fluorescent-based detection |
US7426322B2 (en) | 2005-07-20 | 2008-09-16 | Searete Llc. | Plasmon photocatalysis |
FR2892196B1 (fr) * | 2005-10-18 | 2008-06-20 | Genewave Soc Par Actions Simpl | Procede de fabrication d'un biocapteur a detection integree |
US9528939B2 (en) * | 2006-03-10 | 2016-12-27 | Indx Lifecare, Inc. | Waveguide-based optical scanning systems |
US8975216B2 (en) | 2006-03-30 | 2015-03-10 | Pacific Biosciences Of California | Articles having localized molecules disposed thereon and methods of producing same |
US8637436B2 (en) * | 2006-08-24 | 2014-01-28 | California Institute Of Technology | Integrated semiconductor bioarray |
WO2008030666A2 (en) * | 2006-07-25 | 2008-03-13 | The Board Of Trustees Of The University Of Illinois | Multispectral plasmonic crystal sensors |
US8207509B2 (en) | 2006-09-01 | 2012-06-26 | Pacific Biosciences Of California, Inc. | Substrates, systems and methods for analyzing materials |
US8471230B2 (en) | 2006-09-01 | 2013-06-25 | Pacific Biosciences Of California, Inc. | Waveguide substrates and optical systems and methods of use thereof |
EP3936857B1 (en) | 2006-09-01 | 2023-06-21 | Pacific Biosciences Of California, Inc. | Substrates, systems and methods for analyzing materials |
AU2007319975B2 (en) | 2006-11-09 | 2011-03-03 | Sru Biosystems, Inc. | Photonic crystal sensors with integrated fluid containment structure |
FR2908888B1 (fr) | 2006-11-21 | 2012-08-03 | Centre Nat Rech Scient | Dispositif pour la detection exaltee de l'emission d'une particule cible |
CA2677833C (en) * | 2007-01-22 | 2016-05-03 | Wafergen, Inc. | Apparatus for high throughput chemical reactions |
US9475051B2 (en) * | 2007-02-27 | 2016-10-25 | Sony Corporation | Nucleic acid amplifier |
US7880882B2 (en) * | 2007-06-07 | 2011-02-01 | Praevium Research, Inc. | Multi-wavelength light source for spectroscopy |
US7767441B2 (en) * | 2007-10-25 | 2010-08-03 | Industrial Technology Research Institute | Bioassay system including optical detection apparatuses, and method for detecting biomolecules |
WO2009082706A1 (en) | 2007-12-21 | 2009-07-02 | The Trustees Of Columbia University In The City Of New York | Active cmos sensor array for electrochemical biomolecular detection |
CN101960293B (zh) | 2008-02-25 | 2012-09-26 | 皇家飞利浦电子股份有限公司 | 用于测量来自分析物的发射光的光学传感器 |
EP2110694B1 (en) * | 2008-04-18 | 2013-08-14 | Sony DADC Austria AG | Method for manufacturing an optical waveguide, optical waveguide, and sensor arrangement |
ES2368043B1 (es) * | 2008-04-29 | 2012-10-15 | Consejo Superior De Investigaciones Científicas | Acoplador de red de difracción y sistema y procedimiento para la caracterización de un especimen mediante su acoplamiento lumínico a éste. |
US8278728B2 (en) | 2009-10-17 | 2012-10-02 | Florida Institute Of Technology | Array of concentric CMOS photodiodes for detection and de-multiplexing of spatially modulated optical channels |
JP6017107B2 (ja) * | 2009-12-28 | 2016-10-26 | ソニー株式会社 | イメージセンサ及びその製造方法、並びにセンサデバイス |
WO2011103507A1 (en) | 2010-02-19 | 2011-08-25 | Pacific Biosciences Of California, Inc. | Optics collection and detection system and method |
US8865078B2 (en) | 2010-06-11 | 2014-10-21 | Industrial Technology Research Institute | Apparatus for single-molecule detection |
CN103502798A (zh) * | 2011-04-05 | 2014-01-08 | 集成等离子光子学公司 | 集成等离子激元感测装置和设备 |
AU2012328662B2 (en) | 2011-10-28 | 2015-12-17 | Illumina, Inc. | Microarray fabrication system and method |
US9606060B2 (en) | 2012-01-13 | 2017-03-28 | California Institute Of Technology | Filterless time-domain detection of one or more fluorophores |
US9372308B1 (en) | 2012-06-17 | 2016-06-21 | Pacific Biosciences Of California, Inc. | Arrays of integrated analytical devices and methods for production |
EP2677307B1 (en) * | 2012-06-21 | 2016-05-11 | Nxp B.V. | Integrated circuit with sensors and manufacturing method |
AU2013306373B2 (en) | 2012-08-20 | 2017-09-07 | Illumina, Inc. | Method and system for fluorescence lifetime based sequencing |
EP2904378B1 (en) | 2012-10-08 | 2018-03-28 | Agency For Science, Technology And Research | Refractive index sensor for analyzing an analyte, and method of fabrication thereof |
CN103001120A (zh) * | 2012-12-14 | 2013-03-27 | 武汉光迅科技股份有限公司 | 阵列波导光栅芯片与半导体光放大器芯片倒装集成的方法 |
EP2936222B1 (en) | 2012-12-18 | 2019-07-03 | Pacific Biosciences Of California, Inc. | An optical analytical device |
EP2959283B1 (en) * | 2013-02-22 | 2022-08-17 | Pacific Biosciences of California, Inc. | Integrated illumination of optical analytical devices |
JP2016517632A (ja) * | 2013-03-13 | 2016-06-16 | シーゲイト テクノロジー エルエルシーSeagate Technology LLC | トレンチ領域に配置されたカソード金属層を備える半導体レーザ |
US9568677B2 (en) | 2013-05-30 | 2017-02-14 | Taiwan Semiconductor Manufacturing Co., Ltd. | Waveguide structure and method for fabricating the same |
US9765395B2 (en) | 2014-04-28 | 2017-09-19 | Nanomedical Diagnostics, Inc. | System and method for DNA sequencing and blood chemistry analysis |
US9453969B2 (en) * | 2014-04-29 | 2016-09-27 | Corning Optical Communications LLC | Grating-coupler assembly with small mode-field diameter for photonic-integrated-circuit systems |
CN106941779A (zh) * | 2014-06-09 | 2017-07-11 | Stc.Unm 公司 | 集成束缚模式频谱/角度传感器 |
CA2957546A1 (en) * | 2014-08-08 | 2016-02-11 | Quantum-Si Incorporated | Integrated device with external light source for probing, detecting, and analyzing molecules |
JP6812341B2 (ja) * | 2014-08-08 | 2021-01-13 | クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated | 分子の探索、検出及び解析のための光学システム及びアッセイチップ |
KR101569515B1 (ko) * | 2014-08-13 | 2015-11-27 | (주)옵토레인 | 측광형 발광소자가 내장된 바이오칩 및 그 제조방법 |
US9606068B2 (en) * | 2014-08-27 | 2017-03-28 | Pacific Biosciences Of California, Inc. | Arrays of integrated analytical devices |
EP3206956B1 (en) * | 2014-10-17 | 2020-01-01 | Amcor Rigid Plastics USA, LLC | Container with base multi-function |
US9488615B2 (en) * | 2014-12-17 | 2016-11-08 | Taiwan Semiconductor Manufacturing Co., Ltd. | Biosensor with a sensing surface on an interlayer dielectric |
US9666748B2 (en) | 2015-01-14 | 2017-05-30 | International Business Machines Corporation | Integrated on chip detector and zero waveguide module structure for use in DNA sequencing |
JP2016133510A (ja) * | 2015-01-16 | 2016-07-25 | パーソナル ジェノミクス タイワン インコーポレイテッドPersonal Genomics Taiwan,Inc. | 導光機能を有する光学センサー及びその製造方法 |
US10487356B2 (en) | 2015-03-16 | 2019-11-26 | Pacific Biosciences Of California, Inc. | Integrated devices and systems for free-space optical coupling |
US10246742B2 (en) * | 2015-05-20 | 2019-04-02 | Quantum-Si Incorporated | Pulsed laser and bioanalytic system |
US10488639B2 (en) * | 2015-10-08 | 2019-11-26 | Visera Technologies Company Limited | Detection device for specimens |
US11333626B2 (en) * | 2016-02-22 | 2022-05-17 | Hitachi, Ltd. | Biological sample analysis chip, biological sample analyzer and biological sample analysis method |
EP3465503B1 (en) * | 2016-06-01 | 2021-09-29 | Quantum-Si Incorporated | Pulse caller and base caller |
CN109219743B (zh) * | 2016-06-01 | 2022-04-26 | 宽腾矽公司 | 用于检测及分析分子的集成装置 |
AU2017378337A1 (en) * | 2016-12-16 | 2019-06-20 | Quantum-Si Incorporated | Compact beam shaping and steering assembly |
JP7189874B2 (ja) * | 2016-12-16 | 2022-12-14 | クアンタム-エスアイ インコーポレイテッド | 光カプラおよび導波路システム |
-
2017
- 2017-06-01 CN CN201780034485.8A patent/CN109219743B/zh active Active
- 2017-06-01 US US15/611,583 patent/US11226290B2/en active Active
- 2017-06-01 EP EP22190053.3A patent/EP4113104A3/en active Pending
- 2017-06-01 MX MX2018014841A patent/MX2018014841A/es unknown
- 2017-06-01 WO PCT/US2017/035412 patent/WO2018013243A1/en unknown
- 2017-06-01 KR KR1020187037906A patent/KR102414666B1/ko active IP Right Grant
- 2017-06-01 CA CA3025431A patent/CA3025431A1/en active Pending
- 2017-06-01 JP JP2018562925A patent/JP7309364B2/ja active Active
- 2017-06-01 TW TW110124557A patent/TWI844783B/zh active
- 2017-06-01 CN CN202210358164.6A patent/CN114674788A/zh active Pending
- 2017-06-01 AU AU2017297185A patent/AU2017297185B2/en active Active
- 2017-06-01 KR KR1020227021736A patent/KR102627237B1/ko active IP Right Grant
- 2017-06-01 EP EP17730311.2A patent/EP3465159B1/en active Active
- 2017-06-01 TW TW106118154A patent/TWI735587B/zh active
-
2021
- 2021-01-28 US US17/161,425 patent/US11422092B2/en active Active
-
2022
- 2022-07-11 US US17/862,297 patent/US20220349823A1/en active Pending
-
2023
- 2023-07-05 JP JP2023110842A patent/JP2023157910A/ja active Pending
- 2023-07-20 US US18/356,150 patent/US20230375475A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150141267A1 (en) * | 2013-11-17 | 2015-05-21 | Quantum-Si Incorporated | Integrated device with external light source for probing detecting and analyzing molecules |
Also Published As
Publication number | Publication date |
---|---|
JP2019518994A (ja) | 2019-07-04 |
TW201802454A (zh) | 2018-01-16 |
JP2023157910A (ja) | 2023-10-26 |
US11226290B2 (en) | 2022-01-18 |
CN109219743A (zh) | 2019-01-15 |
CN109219743B (zh) | 2022-04-26 |
KR102627237B1 (ko) | 2024-01-23 |
TW202219491A (zh) | 2022-05-16 |
TWI844783B (zh) | 2024-06-11 |
US20210148821A1 (en) | 2021-05-20 |
EP3465159B1 (en) | 2023-04-05 |
EP4113104A2 (en) | 2023-01-04 |
CA3025431A1 (en) | 2018-01-18 |
CN114674788A (zh) | 2022-06-28 |
MX2018014841A (es) | 2019-03-14 |
WO2018013243A1 (en) | 2018-01-18 |
BR112018074589A2 (pt) | 2019-03-12 |
JP7309364B2 (ja) | 2023-07-18 |
US20170350818A1 (en) | 2017-12-07 |
AU2017297185B2 (en) | 2022-05-26 |
US20220349823A1 (en) | 2022-11-03 |
EP4113104A3 (en) | 2023-02-22 |
KR102414666B1 (ko) | 2022-06-29 |
EP3465159A1 (en) | 2019-04-10 |
US11422092B2 (en) | 2022-08-23 |
AU2017297185A1 (en) | 2018-12-06 |
US20230375475A1 (en) | 2023-11-23 |
KR20220098257A (ko) | 2022-07-11 |
KR20190013965A (ko) | 2019-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI735587B (zh) | 用於偵測及分析分子之光子結構及積體裝置 | |
KR102240166B1 (ko) | 분자들을 프로빙 검출 및 분석하기 위한 외부 광원을 구비한 통합 디바이스 | |
JP7542048B2 (ja) | 光カプラおよび導波路システム | |
US20080240543A1 (en) | Calibration and normalization method for biosensors | |
JP2022544476A (ja) | 集積光学デバイスにおける放射収集効率の向上 | |
BR112018074589B1 (pt) | Dispositivo integrado para detectar e analisar moléculas e seu método de formação |