TWI732688B - Piezoelectric micromachined ultrasonic transducer and method of fabricating the same - Google Patents

Piezoelectric micromachined ultrasonic transducer and method of fabricating the same Download PDF

Info

Publication number
TWI732688B
TWI732688B TW109133005A TW109133005A TWI732688B TW I732688 B TWI732688 B TW I732688B TW 109133005 A TW109133005 A TW 109133005A TW 109133005 A TW109133005 A TW 109133005A TW I732688 B TWI732688 B TW I732688B
Authority
TW
Taiwan
Prior art keywords
substrate
cavity
ultrasonic transducer
dielectric layer
piezoelectric
Prior art date
Application number
TW109133005A
Other languages
Chinese (zh)
Other versions
TW202213824A (en
Inventor
錢優
瓊約瑟夫 吉納德阿羅
拉奇許 庫瑪
夏佳杰
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109133005A priority Critical patent/TWI732688B/en
Application granted granted Critical
Publication of TWI732688B publication Critical patent/TWI732688B/en
Publication of TW202213824A publication Critical patent/TW202213824A/en

Links

Images

Abstract

A PMUT includes a substrate, a stopper, and a multi-layered structure, where the substrate includes a corner, and a cavity is disposed in the substrate. The stopper is in contact with the corner of the substrate and the cavity. The multi-layered structure is disposed over the cavity and attached to the stopper and the multi-layered structure includes at least one through hole in contact with the cavity.

Description

壓電微機械超聲波換能器及其製作方法Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof

本揭露涉及微機電系統(Micro Electro Mechanical System, MEMS)的技術領域,特別是涉及一種壓電微機械超聲波換能器(piezoelectric micromachined ultrasonic transducer, PMUT)及其製作方法。The present disclosure relates to the technical field of Micro Electro Mechanical System (MEMS), in particular to a piezoelectric micromachined ultrasonic transducer (PMUT) and a manufacturing method thereof.

在過去的幾十年裡,微機械超聲波換能器(Micro Machined Transducer, MUTs)受到了廣泛的研究,並成為各種消費電子產品的重要組成,例如是指紋感測器、鄰近(proximity)感測器和手勢感測器中的組成部件。一般來說,MUTs可以被分為兩大類,例如是電容式微機械超聲波換能器(CMUTs)和壓電微機械超聲波換能器(PMUTs)。對於典型的壓電微機械超聲波換能器而言,壓電微機械超聲波換能器包括由彈性材料、電極和壓電材料所構成的膜層,此膜層會被設置於作為聲波諧振器的空腔上,以提升壓電微機械超聲波換能器的聲學性能。在壓電微機械超聲波換能器運作的過程中,經由膜層的振動而產生的超聲波會從壓電微機械超聲波換能器而被傳遞至目標物,然後壓電微機械超聲波換能器可以偵測超聲波撞擊目標物後而產生的反射聲波。In the past few decades, Micro Machined Transducers (MUTs) have been extensively studied and have become an important component of various consumer electronics products, such as fingerprint sensors and proximity (proximity) sensing. Component in the device and gesture sensor. Generally speaking, MUTs can be divided into two categories, such as capacitive micromachined ultrasonic transducers (CMUTs) and piezoelectric micromachined ultrasonic transducers (PMUTs). For a typical piezoelectric micromachined ultrasonic transducer, the piezoelectric micromachined ultrasonic transducer includes a film layer composed of elastic materials, electrodes, and piezoelectric materials. This film layer is set on the acoustic wave resonator. The cavity is used to improve the acoustic performance of the piezoelectric micromachined ultrasonic transducer. During the operation of the piezoelectric micromachined ultrasonic transducer, the ultrasonic waves generated by the vibration of the film will be transmitted from the piezoelectric micromachined ultrasonic transducer to the target, and then the piezoelectric micromachined ultrasonic transducer can Detects the reflected sound waves generated by ultrasonic waves hitting the target.

通常,壓電微機械超聲波換能器會在膜層的彎曲共振頻率下運作,此彎曲共振頻率可透過選擇正確的材料、膜層的尺寸和厚度來決定。因此,個別壓電微機械超聲波換能器的共振頻率的良好匹配是正常運作的必要條件。對於習知的壓電微機械超聲波換能器而言,位於膜層下方的空腔可以透過蝕刻基底的背面而形成。此空腔可以穿透基底,使得鄰近於膜層的空腔開口可以被用來定義膜層的尺寸(或稱為直徑)。然而,由於設置於膜層下方的空腔是透過蝕刻基底的背面而形成,鄰近於基底的空腔開口尺寸在同一晶圓內的不同區域或是不同晶圓之間可能會產生相當大的變異,因而不可避免地導致了各壓電微機械超聲波換能器的共振頻率的變異。此外,上述藉由蝕刻基底的背面而形成空腔的方式亦相當耗時,此亦不利於壓電微機械超聲波換能器的量產。Generally, the piezoelectric micromachined ultrasonic transducer will operate at the bending resonance frequency of the film, which can be determined by selecting the correct material, the size and thickness of the film. Therefore, good matching of the resonance frequency of individual piezoelectric micromachined ultrasonic transducers is a necessary condition for normal operation. For the conventional piezoelectric micromachined ultrasonic transducer, the cavity under the film layer can be formed by etching the back surface of the substrate. This cavity can penetrate the substrate so that the cavity opening adjacent to the membrane layer can be used to define the size (or diameter) of the membrane layer. However, since the cavity provided under the film layer is formed by etching the backside of the substrate, the opening size of the cavity adjacent to the substrate may vary greatly in different regions within the same wafer or between different wafers. Therefore, it inevitably leads to the variation of the resonance frequency of each piezoelectric micromachined ultrasonic transducer. In addition, the above-mentioned method of forming a cavity by etching the back surface of the substrate is also quite time-consuming, which is not conducive to the mass production of piezoelectric micromachined ultrasonic transducers.

因此,需要提供一種改良的壓電微機械超聲波換能器及其製作方法,使得壓電微機械超聲波換能器中的空腔尺寸及空腔上方的膜層尺寸可以被精確控制。Therefore, there is a need to provide an improved piezoelectric micromechanical ultrasonic transducer and a manufacturing method thereof, so that the size of the cavity in the piezoelectric micromechanical ultrasonic transducer and the size of the film layer above the cavity can be accurately controlled.

有鑒於此,為了提升壓電微機械超聲波換能器的空腔尺寸的均勻性,有必要提出一種改良的壓電微機械超聲波換能器及其製作方法。In view of this, in order to improve the uniformity of the cavity size of the piezoelectric micromachined ultrasonic transducer, it is necessary to propose an improved piezoelectric micromachined ultrasonic transducer and a manufacturing method thereof.

根據本揭露的一實施例,揭露了一種壓電微機械超聲波換能器,包括基底、阻擋結構、及多層結構。基底包括角部,且空腔會被設置於基底中。阻擋結構會接觸基底的角部及空腔。多層結構會被設置於空腔上方,並接著至阻擋結構。多層結構包括接觸空腔的至少一通孔。According to an embodiment of the present disclosure, a piezoelectric micromachined ultrasonic transducer is disclosed, including a substrate, a barrier structure, and a multilayer structure. The base includes corners, and the cavity is provided in the base. The blocking structure contacts the corners and cavities of the substrate. The multilayer structure will be disposed above the cavity and then to the barrier structure. The multilayer structure includes at least one through hole contacting the cavity.

根據本揭露的另一實施例,揭露了一種壓電微機械超聲波換能器的製作方法,包括以下步驟。首先,提供基底,並且形成接觸基底的阻擋結構。然後,在基底和阻擋結構上形成多層結構。之後,形成穿透多層結構的至少一通孔。然後,經由通孔向基底提供蝕刻劑,以蝕刻部分的基底而形成空腔,其中阻擋結構直接接觸空腔。According to another embodiment of the present disclosure, a manufacturing method of a piezoelectric micromechanical ultrasonic transducer is disclosed, which includes the following steps. First, a substrate is provided, and a barrier structure contacting the substrate is formed. Then, a multilayer structure is formed on the substrate and the barrier structure. Afterwards, at least one through hole penetrating the multilayer structure is formed. Then, an etchant is provided to the substrate through the through hole to etch part of the substrate to form a cavity, wherein the barrier structure directly contacts the cavity.

根據本揭露的實施例,設置於基底正面的膜層會包括至少一通孔,此通孔允許蝕刻劑流經其中,且蝕刻劑會蝕刻膜層下方的基底。因此,可以藉由蝕刻基底的正面以形成空腔。此外,可以藉由設置於膜層下方的阻擋結構,以定義出在壓電微機械超聲波換能器操作期間可發生振動的膜層的尺寸。因此,可減少壓電微機械超聲波換能器的製造成本,並且有效地改善壓電微機械超聲波換能器的可靠度和電性。According to the embodiment of the present disclosure, the film layer disposed on the front surface of the substrate includes at least one through hole, and the through hole allows the etchant to flow therethrough, and the etchant will etch the substrate under the film layer. Therefore, the cavity can be formed by etching the front surface of the substrate. In addition, the barrier structure disposed under the film layer can be used to define the size of the film layer that can vibrate during the operation of the piezoelectric micromachined ultrasonic transducer. Therefore, the manufacturing cost of the piezoelectric micromechanical ultrasonic transducer can be reduced, and the reliability and electrical properties of the piezoelectric micromechanical ultrasonic transducer can be effectively improved.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與設置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。The present disclosure provides several different embodiments, which can be used to implement different features of the present disclosure. To simplify the description, this disclosure also describes examples of specific components and settings. The purpose of providing these examples is only for illustration, and not for any limitation. For example, the following description of "the first feature is formed on or above the second feature" can mean "the first feature is in direct contact with the second feature", or it can mean "the first feature is in direct contact with the second feature". There are other features among the features", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and notes are used to make the description more concise and clear, rather than to indicate the relevance between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及運作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。In addition, regarding the space-related narrative vocabulary mentioned in this disclosure, for example: "below", "low", "below", "above", "above", "below", "top" ", "bottom" and similar words, for ease of description, their usage is to describe the relative relationship between one element or feature and another (or more) elements or features in the drawing. In addition to the swing outward shown in the diagram, these spatially related words are also used to describe the possible swing directions of the semiconductor device in use and operation. As the swing direction of the semiconductor device is different (rotated by 90 degrees or other orientations), the space-related narratives used to describe its swing direction should also be interpreted in a similar way.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應瞭解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製作方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。Although this disclosure uses terms such as first, second, and third to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, And/or blocks should not be restricted by these terms. These terms are only used to distinguish an element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and they do not mean or represent the element. Any previous ordinal number does not represent the order of arrangement of a component and another component, or the order of manufacturing methods. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or block discussed below can also be referred to as the second element, component, region, layer, or block It.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。The term "about" or "substantially" mentioned in this disclosure usually means within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is an approximate quantity, that is, the meaning of "approximate" or "substantial" can still be implied when there is no specific description of "approximate" or "substantial".

於下文製程/流程圖中所揭露的流程圖塊的特定順序或層次可以理解為示例性的說明。可以理解的是,根據不同設計偏好,此製程/流程圖中所揭露的流程圖塊的特定順序或層次可以被重新安排。此外,部分流程圖塊可以被合併或省略。隨附的方法請求項以示例的順序表示各流程圖塊中的要件,但此不代表此方法請求項被限定為此特定順序或層次。The specific sequence or level of the flowchart blocks disclosed in the following process/flow chart can be understood as an exemplary description. It is understandable that, according to different design preferences, the specific sequence or level of the flowchart blocks disclosed in the process/flow chart can be rearranged. In addition, part of the flowchart blocks can be combined or omitted. The attached method request items show the elements in each flowchart block in the order of examples, but this does not mean that the method request items are limited to this specific order or level.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本揭露之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中包括通常知識者的知識範圍。Although specific embodiments are used below to describe the invention of the present disclosure, the principles of the invention of the present disclosure can also be applied to other embodiments. In addition, in order not to obscure the spirit of the present disclosure, specific details will be omitted, and the omitted details belong to the scope of knowledge of ordinary knowledgeable persons in the technical field.

為了使本技術領域中具有通常知識者能夠實現本揭露,下文將描述製作壓電微機械超聲波換能器的方法。由於壓電微機械超聲波換能器可以透過標準的CMOS製程製作,因此在壓電微機械超聲波換能器的同一基底上也可以透過相同的CMOS製程製作相關的電子元件,如場效電晶體、放大器和積體電路。In order to enable those skilled in the art to realize the present disclosure, the method of manufacturing a piezoelectric micromachined ultrasonic transducer will be described below. Since piezoelectric micro-machined ultrasonic transducers can be manufactured through standard CMOS manufacturing process, related electronic components, such as field-effect transistors, can also be manufactured through the same CMOS process on the same substrate of piezoelectric micro-machined ultrasonic transducers. Amplifier and integrated circuit.

第1圖為本揭露一實施例在基底中形成溝槽之後的結構的剖面示意圖。參照第1圖,提供基底102,基底102具有兩相對表面,例如第一表面104A及第二表面104B。基底102可以是半導體基底,例如結晶矽或AlN基底,且基底102的厚度可以為30~600μm。可以透過非等向性蝕刻,例如反應式離子蝕刻(reactive ion etching, RIE),以在基底102中形成溝槽106。各溝槽106可以是深溝槽,其深度102D為10~40μm(例如10μm、15μm、20μm、25μm、30μm、35μm或40μm),並且兩相鄰溝槽106之間的距離106L為500μm至3mm。因為各溝槽106的位置可以藉由光微影製程而被精確定義,所以可以在不偏離預定值的情況下,精確地控制各溝槽106之間的距離106L。FIG. 1 is a schematic cross-sectional view of a structure after forming a trench in a substrate according to an embodiment of the disclosure. Referring to FIG. 1, a substrate 102 is provided. The substrate 102 has two opposite surfaces, such as a first surface 104A and a second surface 104B. The substrate 102 may be a semiconductor substrate, such as a crystalline silicon or AlN substrate, and the thickness of the substrate 102 may be 30-600 μm. Anisotropic etching, such as reactive ion etching (RIE), can be used to form the trench 106 in the substrate 102. Each trench 106 may be a deep trench, the depth 102D of which is 10-40 μm (for example, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, or 40 μm), and the distance 106L between two adjacent trenches 106 is 500 μm to 3 mm. Because the position of each groove 106 can be precisely defined by the photolithography process, the distance 106L between the grooves 106 can be accurately controlled without deviating from a predetermined value.

第2圖為本揭露一實施例在溝槽中沉積第一介電層之後的結構的剖面示意圖。可以將第一介電層108,組成例如是氧化矽(SiOx)、氮化矽(SiNx)、氮化鋁(AIN)、氧化鋁(A1 20 3)、其他合適的介電材料、或上述的組合,沉積在基底102上並填滿溝槽106。根據本揭露的一實施例,第一介電層108的組成不同於基底102的組成。 FIG. 2 is a schematic cross-sectional view of a structure after depositing a first dielectric layer in a trench according to an embodiment of the disclosure. The first dielectric layer 108 may be composed of, for example, silicon oxide (SiOx), silicon nitride (SiNx), aluminum nitride (AIN), aluminum oxide (Al 2 0 3 ), other suitable dielectric materials, or the above The combination of, is deposited on the substrate 102 and fills the trench 106. According to an embodiment of the disclosure, the composition of the first dielectric layer 108 is different from the composition of the substrate 102.

第3圖為本揭露一實施例在形成凹槽以暴露溝槽中的介電層之後的結構的剖面示意圖。參照第3圖,可以施行光微影和蝕刻製程,以去除部分的第一介電層108的和部分的基底102。當完成光微影和蝕刻製程時,凹槽110可以被形於溝槽106的外側,使得原本位於溝槽106內的第一介電層108可以被暴露出。此外,基底102的突出部112可以被形成在兩相對的凹槽110之間。暴露出於各凹槽110的基底102的頂面110A可低於基底102的突出部112的頂面112A。FIG. 3 is a schematic cross-sectional view of the structure after forming a groove to expose the dielectric layer in the groove according to an embodiment of the disclosure. Referring to FIG. 3, a photolithography and etching process may be performed to remove part of the first dielectric layer 108 and part of the substrate 102. When the photolithography and etching processes are completed, the groove 110 may be formed on the outer side of the trench 106 so that the first dielectric layer 108 originally located in the trench 106 may be exposed. In addition, the protrusion 112 of the base 102 may be formed between two opposite grooves 110. The top surface 110A of the base 102 exposed from the grooves 110 may be lower than the top surface 112A of the protrusion 112 of the base 102.

第4圖為本揭露一實施例在第一介電層上沉積第二介電層之後的結構的剖面示意圖。在第3圖所示的製程之後,第二介電層114可以沉積在第一介電層108上且填入凹槽110中。其中,第二介電層114的組成可以是氧化矽(SiO x)、氮化矽(SiN x)、氮化鋁(AIN)、氧化鋁(A1 20 3)、其他合適的介電材料、或上述的組合。根據本揭露的一實施例,第二介電層114的組成可以和第一介電層108的組成相同。此外,位於溝槽106外側的第二介電層114的頂面114A可切齊或高於突出部112的頂面112A。 FIG. 4 is a schematic cross-sectional view of a structure after depositing a second dielectric layer on the first dielectric layer according to an embodiment of the disclosure. After the process shown in FIG. 3, the second dielectric layer 114 may be deposited on the first dielectric layer 108 and filled into the groove 110. The composition of the second dielectric layer 114 may be silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum nitride (AIN), aluminum oxide (Al 2 0 3 ), other suitable dielectric materials, Or a combination of the above. According to an embodiment of the present disclosure, the composition of the second dielectric layer 114 may be the same as the composition of the first dielectric layer 108. In addition, the top surface 114A of the second dielectric layer 114 located outside the trench 106 may be aligned with or higher than the top surface 112A of the protrusion 112.

第5圖為本揭露一實施例在平坦化設置於基底上的第一介電層和第二介電層之後的結構的剖面示意圖。參照第5圖,可以施行平坦化製程,例如化學機械研磨(CMP)製程,以平坦化突出部112、第一介電層108、及第二介電層114的頂面。當完成平坦化製程時,第一介電層108的高度108H可高於第二介電層114的高度114H。此外,第一介電層108可作為阻擋結構116,用以定義在後續製程中形成的空腔的位置。FIG. 5 is a schematic cross-sectional view of a structure after planarizing the first dielectric layer and the second dielectric layer disposed on the substrate according to an embodiment of the disclosure. Referring to FIG. 5, a planarization process, such as a chemical mechanical polishing (CMP) process, can be performed to planarize the top surfaces of the protrusion 112, the first dielectric layer 108, and the second dielectric layer 114. When the planarization process is completed, the height 108H of the first dielectric layer 108 may be higher than the height 114H of the second dielectric layer 114. In addition, the first dielectric layer 108 can be used as a barrier structure 116 to define the position of the cavity formed in the subsequent process.

第6圖為本揭露一實施例在基底上形成多層結構之後的剖面示意圖。參照第6圖,可以在基底102和第一介電層108上沉積可選的晶種層127、底部電極122、壓電層124、壓電層128、頂部電極126、及鈍化層129,以構成設置於基底102上的多層結構120。壓電層128可以由壓電材料所組成,例如氮化鋁(AlN)、摻雜鈧的氮化鋁(AlScN)、鋯鈦酸鉛(lead zirconate titanate, PZT),氧化鋅(ZnO)、聚偏二氟乙烯(polyvinylidene fluoride, PVDF)、或鈮鎂酸鉛-鈦酸鉛(lead mangnesium niobate-lead titanate, PMN-PT),但不限於此。根據本揭露的一實施例,當壓電層128和壓電層124以相同的沉積製程形成時,壓電層128和壓電層124可以具有相同的組成,但不限於此。可選的晶種層127,例如SiO 2、SiON、AlN、或AlScN可以設置於底部電極122和基底102之間。晶種層127的表面紋理可以影響沉積在其上的各層的結晶性。底部電極122和頂部電極126可以是由鉬(Mo),鈦(Ti),鋁(Al)、或鉑(Pt)所組成的相同或相異的材料。壓電層124可以是由壓電材料所組成,例如AlN、AlScN、PZT、ZnO、PVDF、PMN-PT所組成,但不限於此。鈍化層129可以用於鈍化和/或保護下方的壓電層124、128及頂部電極126,並且可以由絕緣材料或壓電材料所組成。根據本揭露的一些實施例,鈍化層129可以由SiO 2、SiON、AlN、AlScN、PZT、ZnO、PVDF、PMN-PT所組成,但不限於此。 FIG. 6 is a schematic cross-sectional view after forming a multilayer structure on a substrate according to an embodiment of the disclosure. Referring to Figure 6, an optional seed layer 127, bottom electrode 122, piezoelectric layer 124, piezoelectric layer 128, top electrode 126, and passivation layer 129 can be deposited on the substrate 102 and the first dielectric layer 108 to The multilayer structure 120 disposed on the substrate 102 is formed. The piezoelectric layer 128 may be composed of piezoelectric materials, such as aluminum nitride (AlN), scandium-doped aluminum nitride (AlScN), lead zirconate titanate (PZT), zinc oxide (ZnO), poly Polyvinylidene fluoride (PVDF), or lead mangnesium niobate-lead titanate (PMN-PT), but not limited to this. According to an embodiment of the present disclosure, when the piezoelectric layer 128 and the piezoelectric layer 124 are formed by the same deposition process, the piezoelectric layer 128 and the piezoelectric layer 124 may have the same composition, but are not limited thereto. An optional seed layer 127, such as SiO 2 , SiON, AlN, or AlScN, may be disposed between the bottom electrode 122 and the substrate 102. The surface texture of the seed layer 127 can affect the crystallinity of the layers deposited thereon. The bottom electrode 122 and the top electrode 126 may be the same or different materials composed of molybdenum (Mo), titanium (Ti), aluminum (Al), or platinum (Pt). The piezoelectric layer 124 may be composed of piezoelectric materials, such as AlN, AlScN, PZT, ZnO, PVDF, PMN-PT, but is not limited thereto. The passivation layer 129 may be used to passivate and/or protect the piezoelectric layers 124 and 128 and the top electrode 126 underneath, and may be composed of an insulating material or a piezoelectric material. According to some embodiments of the present disclosure, the passivation layer 129 may be composed of SiO 2 , SiON, AlN, AlScN, PZT, ZnO, PVDF, PMN-PT, but is not limited thereto.

此外,至少一導電墊132會被形成於壓電層128中,並電連接至底部導電層122和頂部導電層126。在形成多層結構120之後,具有高度130H的至少一通孔130,例如通孔130a和通孔130b,可以被形成於多層結構120中,以從通孔130的底部暴露出突出部112的頂面112A。根據本揭露的實施例,阻擋結構116的高度會大於通孔130的平均高度的1/2,例如是通孔130的平均高度的兩倍以上。In addition, at least one conductive pad 132 is formed in the piezoelectric layer 128 and is electrically connected to the bottom conductive layer 122 and the top conductive layer 126. After the multilayer structure 120 is formed, at least one through hole 130 having a height of 130H, such as through hole 130a and through hole 130b, may be formed in the multilayer structure 120 to expose the top surface 112A of the protrusion 112 from the bottom of the through hole 130 . According to the embodiment of the present disclosure, the height of the blocking structure 116 may be greater than 1/2 of the average height of the through holes 130, for example, more than twice the average height of the through holes 130.

根據第6圖所示的結構,雖然各通孔130似乎為彼此分離,然而一些通孔130之間可以彼此連接,從而在俯視觀察之下,通孔130可構成連續的圖案,例如環形槽、多邊形槽、或弧形槽。第7圖是在多層結構中具有多個通孔的結構的俯視示意圖,其中,第6圖是沿著第5圖中的切線A-A’所繪示的示意圖。參照第7圖,通孔130包括設置於中央的圓形通孔130a和圍繞圓形通孔130a的環形通孔130b。此外,第6圖所示的阻擋結構116可以是沿著環形通孔130b的圓周而設置的連續結構。According to the structure shown in Figure 6, although the through holes 130 seem to be separated from each other, some of the through holes 130 can be connected to each other, so that in a plan view, the through holes 130 can form a continuous pattern, such as an annular groove, Polygonal slot, or arc-shaped slot. FIG. 7 is a schematic top view of a structure having a plurality of through holes in a multilayer structure, wherein FIG. 6 is a schematic diagram along the tangent line A-A' in FIG. 5. Referring to FIG. 7, the through hole 130 includes a circular through hole 130a provided in the center and an annular through hole 130b surrounding the circular through hole 130a. In addition, the blocking structure 116 shown in FIG. 6 may be a continuous structure provided along the circumference of the annular through hole 130b.

各通孔130的形狀不限於第7圖所示的通孔形狀。舉例而言,如第8圖(a)所示,通孔130包括設置於中央的圓形通孔130a和圍繞圓形通孔130a而設置的多個分離的弧形通孔130b。此外,參照第8圖(b),所有通孔130均為圓形通孔130a、130b,隨機或有序分佈於多層結構120中。The shape of each through hole 130 is not limited to the through hole shape shown in FIG. 7. For example, as shown in Fig. 8(a), the through hole 130 includes a circular through hole 130a arranged in the center and a plurality of separated arc-shaped through holes 130b arranged around the circular through hole 130a. In addition, referring to FIG. 8(b), all the through holes 130 are circular through holes 130a, 130b, which are randomly or orderly distributed in the multilayer structure 120.

第9圖為本揭露一實施例在基底中形成空腔之後的結構的剖面示意圖。參照第9圖,可以透過蝕刻基底102的正面以形成具有預定直徑150L的空腔150。蝕刻製程可以包括以下步驟:經由通孔130向基底102提供蝕刻劑,直到空腔的底面150A被蝕刻達到深度為5~35μm的特定深度150H,例如5μm、10μm、15μm、20μm、25μm、30μm、或35μm,但不限於此。根據本揭露的一實施例,當阻擋結構116為氧化矽且基底102為矽時,蝕刻劑可以是六氟化硫(SF 6)。在蝕刻過程中,由於基底102對於阻擋結構116和多層結構120中的晶種層127的蝕刻選擇比大於10,因此只有直接接觸蝕刻劑且不受阻擋結構116保護的基底102會被蝕刻。換句話說,在於基底102中形成空腔150的步驟期間,蝕刻劑可以被限制在由阻擋結構116所定義出的區域中。根據本揭露的一實施例,阻擋結構116的內側壁會與空腔150的側壁重合。此外,空腔150的底面150A會高於阻擋結構116的底面,使得阻擋結構116的下部可以保持埋設於基底102中。又,在形成空腔150之後,基底102的至少一角部104C會鄰近多層結構120的底面,且基底102的角部104C可以直接接觸阻擋結構116。根據本揭露的一實施例,阻擋結構116的頂面會高於基底102的角部104C的最高點。 FIG. 9 is a schematic cross-sectional view of a structure after a cavity is formed in a substrate according to an embodiment of the disclosure. Referring to FIG. 9, the front surface of the substrate 102 can be etched to form a cavity 150 having a predetermined diameter 150L. The etching process may include the following steps: providing an etchant to the substrate 102 through the through hole 130 until the bottom surface 150A of the cavity is etched to a specific depth 150H of 5 to 35 μm, such as 5 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, Or 35μm, but not limited to this. According to an embodiment of the present disclosure, when the blocking structure 116 is silicon oxide and the substrate 102 is silicon, the etchant may be sulfur hexafluoride (SF 6 ). During the etching process, since the etching selection ratio of the substrate 102 to the barrier structure 116 and the seed layer 127 in the multilayer structure 120 is greater than 10, only the substrate 102 that directly contacts the etchant and is not protected by the barrier structure 116 will be etched. In other words, during the step of forming the cavity 150 in the substrate 102, the etchant may be confined in the area defined by the barrier structure 116. According to an embodiment of the disclosure, the inner sidewall of the blocking structure 116 coincides with the sidewall of the cavity 150. In addition, the bottom surface 150A of the cavity 150 is higher than the bottom surface of the barrier structure 116, so that the lower portion of the barrier structure 116 can remain buried in the substrate 102. Furthermore, after the cavity 150 is formed, at least one corner 104C of the substrate 102 will be adjacent to the bottom surface of the multilayer structure 120, and the corner 104C of the substrate 102 can directly contact the blocking structure 116. According to an embodiment of the present disclosure, the top surface of the blocking structure 116 is higher than the highest point of the corner 104C of the substrate 102.

第10圖為本揭露一實施例在將介電層填充至通孔中之後的結構的剖面示意圖。參照第10圖,可以在多層結構上形成具有所需彈性的介電層136(或稱為彈性層)且填充至通孔130中,以便機械性地支撐多層結構並調整相應PMUT的諧振頻率。因此,可獲得至少包含底部電極122、壓電層124、頂部電極126、及介電層136的膜層138。由於各通孔130的直徑或尺寸足夠小(例如10~300nm),所以在沉積形成介電層136的過程中,各通孔130的上部可以很容易地就被介電層136阻擋或密封。因此,介電層136不會被沉積在空腔150中。此外,介電層136可以作為覆蓋部分導電墊132的保護層。可以進一步在介電層136中形成接觸洞140,以暴露出部分的導電墊132。額外的導電跡線(未繪示)可以電連接至導電墊132,以便將電訊號傳輸到膜層138中或從膜層138傳輸出去。應注意的是,根據本揭露的一實施例,由於設置於介電層136下方的堆疊層的厚度或彈性遠小於介電層136的厚度或彈性,因此膜層138的機械行為主要由膜層138中的介電層136所主導。FIG. 10 is a schematic cross-sectional view of the structure after the dielectric layer is filled into the through hole according to an embodiment of the disclosure. Referring to FIG. 10, a dielectric layer 136 (or called an elastic layer) with required elasticity can be formed on the multilayer structure and filled into the through holes 130 to mechanically support the multilayer structure and adjust the resonance frequency of the corresponding PMUT. Therefore, a film layer 138 including at least the bottom electrode 122, the piezoelectric layer 124, the top electrode 126, and the dielectric layer 136 can be obtained. Since the diameter or size of each through hole 130 is sufficiently small (for example, 10 to 300 nm), the upper portion of each through hole 130 can be easily blocked or sealed by the dielectric layer 136 during the process of depositing and forming the dielectric layer 136. Therefore, the dielectric layer 136 is not deposited in the cavity 150. In addition, the dielectric layer 136 may serve as a protective layer covering a portion of the conductive pad 132. A contact hole 140 may be further formed in the dielectric layer 136 to expose part of the conductive pad 132. Additional conductive traces (not shown) may be electrically connected to the conductive pad 132 in order to transmit electrical signals to or from the film layer 138. It should be noted that, according to an embodiment of the present disclosure, since the thickness or elasticity of the stacked layer disposed under the dielectric layer 136 is much smaller than the thickness or elasticity of the dielectric layer 136, the mechanical behavior of the film layer 138 is mainly determined by the film layer. 138 is dominated by the dielectric layer 136.

在PMUT的操作期間,當聲波在膜層138上施加聲壓時或當外部電訊號施加到膜層138上時,懸掛在空腔150上的膜層138可以發生振動。藉由設置阻擋結構116,可以精確地定義懸掛在空腔150上的膜層138的尺寸和位置,並且可以經由蝕刻基底102的正面以形成空腔150。因此,可以提昇各PUMT的諧振頻率的均勻性,並且可降低形成空腔所需耗費的時間。During the operation of the PMUT, when sound waves apply sound pressure on the film layer 138 or when an external electrical signal is applied to the film layer 138, the film layer 138 suspended on the cavity 150 may vibrate. By providing the barrier structure 116, the size and position of the film layer 138 suspended on the cavity 150 can be precisely defined, and the cavity 150 can be formed by etching the front surface of the substrate 102. Therefore, the uniformity of the resonance frequency of each PUMT can be improved, and the time required to form the cavity can be reduced.

根據本揭露的一些實施例,其他電子部件,例如導電墊或矽穿孔(through silicon via, TSV),也可以被形成於基底102上或基底102中。第11圖為本揭露一實施例矽穿孔位於基底中的結構的剖面示意圖。參照第11圖,可以形成穿透基底102的矽穿孔160,使得矽穿孔160的兩端可以分別從基底102的第一表面104a和第二表面104b被暴露出。此外,在基底102上設置有兩個導電墊132。導電墊132中的一者可以電連接至PMUT的電極,而導電墊132中的另一者可以部分形成在第二介電層中並且電連接至矽穿孔160。According to some embodiments of the present disclosure, other electronic components, such as conductive pads or through silicon vias (TSV), may also be formed on or in the substrate 102. FIG. 11 is a schematic cross-sectional view of a structure in which through silicon vias are located in a substrate according to an embodiment of the disclosure. Referring to FIG. 11, a silicon via 160 penetrating the substrate 102 can be formed, so that both ends of the silicon via 160 can be exposed from the first surface 104a and the second surface 104b of the substrate 102, respectively. In addition, two conductive pads 132 are provided on the substrate 102. One of the conductive pads 132 may be electrically connected to the electrode of the PMUT, and the other of the conductive pads 132 may be partially formed in the second dielectric layer and electrically connected to the silicon via 160.

根據本揭露的另一實施例,可以在第10圖所示的基底102的背面上施行額外的光微影和蝕刻製程,以在空腔150下方形成另一個空腔。第12圖為本揭露一實施例的矽穿孔位於基底中的結構的剖面示意圖。參照第12圖,可以藉由蝕刻基底102的背面,以進一步在空腔150下方形成另一個空腔152。可以根據空腔150的形狀以設計空腔152的形狀。然而,空腔152的直徑152L可以略小於空腔150的直徑150L。舉例而言,從俯視的角度觀察時,空腔150可以是直徑為1mm的圓形,而空腔152也可以是圓形,但直徑相對較小,例如0.8mm。According to another embodiment of the present disclosure, additional photolithography and etching processes may be performed on the back surface of the substrate 102 shown in FIG. 10 to form another cavity under the cavity 150. FIG. 12 is a schematic cross-sectional view of a structure in which through silicon vias are located in a substrate according to an embodiment of the disclosure. Referring to FIG. 12, another cavity 152 can be further formed under the cavity 150 by etching the back surface of the substrate 102. The shape of the cavity 152 may be designed according to the shape of the cavity 150. However, the diameter 152L of the cavity 152 may be slightly smaller than the diameter 150L of the cavity 150. For example, when viewed from a top view, the cavity 150 may be a circle with a diameter of 1 mm, and the cavity 152 may also be a circle, but the diameter is relatively small, such as 0.8 mm.

阻擋結構的製作方法不限於上述實施例。根據本揭露的一些實施例,也可以透過施行第13圖及第14圖所示的製程以製作阻擋結構。The manufacturing method of the barrier structure is not limited to the above-mentioned embodiment. According to some embodiments of the present disclosure, the barrier structure can also be fabricated by performing the processes shown in FIG. 13 and FIG. 14.

第13圖為本揭露一實施例的介電層具有至少一通孔的結構的剖面示意圖。參照第13圖,可以透過第1圖至第6圖所示的製程以製作第13圖所示的結構。然而,在第13圖所示的實施例中,第一介電層108不僅會被填充至溝槽106中,其亦會被設置於多層結構120和基底102之間。因此,可以藉由設置第一介電層108使得多層結構120的整體分離於基底102。此外,至少一通孔130可以延伸至第一介電層108中,以暴露出基底102的部分表面。FIG. 13 is a schematic cross-sectional view of a structure in which the dielectric layer has at least one through hole according to an embodiment of the disclosure. Referring to Fig. 13, the structure shown in Fig. 13 can be manufactured through the process shown in Figs. 1 to 6. However, in the embodiment shown in FIG. 13, the first dielectric layer 108 is not only filled into the trench 106, but also disposed between the multilayer structure 120 and the substrate 102. Therefore, the entire multilayer structure 120 can be separated from the substrate 102 by providing the first dielectric layer 108. In addition, at least one through hole 130 may extend into the first dielectric layer 108 to expose a part of the surface of the substrate 102.

第14圖為本揭露一實施例在基底中形成空腔之後的結構的剖面示意圖。參照第14圖,可採用類似於第9圖的實施例的製程,施行蝕刻製程,以在基底102中形成空腔150。然而,根據第14圖所示的實施例,蝕刻劑不僅可蝕刻基底102,其亦可蝕刻設置於多層結構120下方的第一介電層108。因此,當完成蝕刻製程時,可以完全去除空腔150上方的第一介電層108,從而暴露出位於空腔150上方的多層結構150的底面。此外,當完成蝕刻製程時,阻擋結構116的上部側壁108A可以未對準(misalign)於阻擋結構116的下部側壁108B,但不限於此。FIG. 14 is a schematic cross-sectional view of a structure after a cavity is formed in the substrate according to an embodiment of the disclosure. Referring to FIG. 14, a process similar to the embodiment of FIG. 9 can be used to perform an etching process to form a cavity 150 in the substrate 102. However, according to the embodiment shown in FIG. 14, the etchant can not only etch the substrate 102, but also etch the first dielectric layer 108 disposed under the multilayer structure 120. Therefore, when the etching process is completed, the first dielectric layer 108 above the cavity 150 can be completely removed, thereby exposing the bottom surface of the multilayer structure 150 above the cavity 150. In addition, when the etching process is completed, the upper sidewall 108A of the barrier structure 116 may be misaligned with the lower sidewall 108B of the barrier structure 116, but it is not limited thereto.

第15圖至第17圖繪示了本揭露一實施例的包括PMUT的元件的製作方法。參照第15圖,可以提供具有突出部112的基底102。基底102可以是半導體基底,例如結晶矽或AlN基底,且基底102的厚度可為30~600μm。可以在基底102上沉積介電層208,例如是氧化矽(SiO x)、氮化矽(SiN x)、氮化鋁(AIN)、氧化鋁(A1 20 3)、其他合適的介電材料、或上述組合,以圍繞突出部112。可以藉由使用CMP製程,以使介電層208的頂面齊平於突出部112的頂面,但不限於此。介電層208的厚度(或高度208H)會被設定於3~15μm的範圍內,例如3μm、5μm、9μm、11μm、13μm、或15μm,但不限於此。 Figures 15 to 17 illustrate a method of fabricating a component including PMUT according to an embodiment of the disclosure. Referring to Fig. 15, a base 102 having a protrusion 112 may be provided. The substrate 102 may be a semiconductor substrate, such as a crystalline silicon or AlN substrate, and the thickness of the substrate 102 may be 30-600 μm. A dielectric layer 208 can be deposited on the substrate 102, such as silicon oxide (SiO x ), silicon nitride (SiN x ), aluminum nitride (AIN), aluminum oxide (Al 2 0 3 ), and other suitable dielectric materials , Or a combination of the above, to surround the protrusion 112. A CMP process can be used to make the top surface of the dielectric layer 208 flush with the top surface of the protrusion 112, but it is not limited thereto. The thickness (or height 208H) of the dielectric layer 208 may be set in the range of 3-15 μm, such as 3 μm, 5 μm, 9 μm, 11 μm, 13 μm, or 15 μm, but is not limited thereto.

參照第16圖,可透過類似於第6圖所示的製程來製造第16圖所示的結構。然而,在第16圖中,沒有溝槽會被形成在基底102中。在後續的蝕刻製程中,設置於基底102上的介電層208可以做為抵擋蝕刻的阻擋結構216。此外,阻擋結構216的高度208H會大於通孔130的平均高度130H的一半。Referring to Fig. 16, the structure shown in Fig. 16 can be manufactured through a process similar to that shown in Fig. 6. However, in Figure 16, no trenches will be formed in the substrate 102. In the subsequent etching process, the dielectric layer 208 disposed on the substrate 102 can be used as a barrier structure 216 to resist etching. In addition, the height 208H of the blocking structure 216 may be greater than half of the average height 130H of the through hole 130.

參照第17圖,可以透過類似如第9圖所示的製程以製作第17圖中所示的結構。根據第17圖所示的實施例,蝕刻劑不僅可蝕刻阻擋結構216之間的基底102,亦可蝕刻阻擋結構216下方的基底102。此外,可以在基底102中形成具有不同直徑的兩個空腔(下部空腔250及上部空腔252)。舉例而言,下部空腔250的最大直徑250L可大於上部空腔252的最大直徑252L。此外,阻擋結構216的側壁可以和上部空腔252的側壁重合。而且,當從俯視的角度觀察時,下部空腔250的形狀可以對應於上部空腔252的形狀而被形成。舉例而言,當上部空腔252的俯視輪廓為直徑為1mm的圓形的情況時,下部空腔250的俯視輪廓亦可以呈現圓形,但是具有相對較大的直徑,例如1.2mm。因為阻擋結構216的厚度(或高度208H)會被設定於3~15μm的範圍內,所以即使部分的阻擋結構216未被基底102支撐,阻擋結構216仍可保有足夠的剛性。因此,在PMUT的操作期間,阻擋結構216不會變形或振動,並且可用於精確地定義設置於下部空腔250及上部空腔252上方的膜層的尺寸。Referring to Fig. 17, the structure shown in Fig. 17 can be made through a process similar to that shown in Fig. 9. According to the embodiment shown in FIG. 17, the etchant can not only etch the substrate 102 between the barrier structures 216 but also the substrate 102 under the barrier structures 216. In addition, two cavities (the lower cavity 250 and the upper cavity 252) having different diameters may be formed in the substrate 102. For example, the maximum diameter 250L of the lower cavity 250 may be greater than the maximum diameter 252L of the upper cavity 252. In addition, the side wall of the blocking structure 216 may coincide with the side wall of the upper cavity 252. Also, when viewed from a plan view, the shape of the lower cavity 250 may be formed corresponding to the shape of the upper cavity 252. For example, when the top-view profile of the upper cavity 252 is a circle with a diameter of 1 mm, the top-view profile of the lower cavity 250 may also be a circle, but has a relatively large diameter, such as 1.2 mm. Because the thickness (or height 208H) of the barrier structure 216 is set in the range of 3-15 μm, even if part of the barrier structure 216 is not supported by the substrate 102, the barrier structure 216 can still maintain sufficient rigidity. Therefore, during the operation of the PMUT, the blocking structure 216 will not deform or vibrate, and can be used to accurately define the size of the film layer disposed above the lower cavity 250 and the upper cavity 252.

根據本揭露的實施例,設置於基底的正面的多層結構包括至少一通孔,此通孔允許蝕刻劑流經其中,並蝕刻膜層下方的基底。因此,可以經由蝕刻基底的正面以形成空腔。此外,設置於多層結構下方的阻擋結構可用於定義在PMUT操作期間可發生振動的膜層的尺寸。因此,可降低PMUT的製造成本,並且有效地提昇PMUT的可靠度和電性。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 According to an embodiment of the present disclosure, the multilayer structure disposed on the front surface of the substrate includes at least one through hole, and the through hole allows the etchant to flow therethrough and etch the substrate under the film layer. Therefore, a cavity can be formed by etching the front surface of the substrate. In addition, the barrier structure disposed under the multilayer structure can be used to define the size of the film layer that can vibrate during PMUT operation. Therefore, the manufacturing cost of the PMUT can be reduced, and the reliability and electrical properties of the PMUT can be effectively improved. The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

102:基底 102D:深度 104A:第一表面 104B:第二表面 104C:角部 106:溝槽 106L:距離 108:第一介電層 108A:上部側壁 108B:下部側壁 108H:高度 110:凹槽 110A:頂面 112:突出部 112A:頂面 114:第二介電層 114H:高度 116:阻擋結構 120:多層結構 122:底部電極 124:壓電層 126:頂部電極 127:晶種層 128:壓電層 129:鈍化層 130:通孔 130a:通孔 130b:通孔 130H:高度 132:導電墊 136:介電層 138:膜層 140:接觸洞 150:空腔 150A:底面 150H:深度 150L:直徑 152:空腔 152L:直徑 160:矽穿孔 208:介電層 208H:高度 216:阻擋結構 250:下部空腔 252:上部空腔102: Base 102D: Depth 104A: First surface 104B: second surface 104C: corner 106: groove 106L: distance 108: first dielectric layer 108A: Upper side wall 108B: Lower side wall 108H: height 110: Groove 110A: Top surface 112: protrusion 112A: Top surface 114: second dielectric layer 114H: height 116: blocking structure 120: Multi-layer structure 122: bottom electrode 124: Piezo Layer 126: Top electrode 127: Seed layer 128: Piezo layer 129: Passivation layer 130: Through hole 130a: Through hole 130b: Through hole 130H: height 132: Conductive pad 136: Dielectric layer 138: Membrane 140: contact hole 150: Cavity 150A: bottom surface 150H: Depth 150L: diameter 152: Cavity 152L: diameter 160: Silicon perforation 208: Dielectric layer 208H: height 216: Barrier Structure 250: Lower cavity 252: Upper cavity

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 第1圖為本揭露一實施例在基底中形成溝槽後的結構的剖面示意圖。 第2圖為本揭露一實施例在溝槽中沉積第一介電層後的結構的剖面示意圖。 第3圖為本揭露一實施例在形成凹槽以暴露出溝槽中的第一介電層後的結構的剖面示意圖。 第4圖為本揭露一實施例在第一介電層上沉積第二介電層後的結構的剖面示意圖。 第5圖為本揭露一實施例在平坦化設置於基底上的第一介電層及第二介電層後的結構的剖面示意圖。 第6圖為本揭露一實施例在基底上形成多層結構後的結構的剖面示意圖。 第7圖為本揭露一實施例的多個通孔位於多層結構中的結構的俯視示意圖。 第8圖為本揭露一實施例的多個通孔位於多層結構中的結構的俯視示意圖。 第9圖為本揭露一實施例在基底中形成空腔後的結構的剖面示意圖。 第10圖為本揭露一實施例將介電層填充至通孔後的結構的剖面示意圖。 第11圖為本揭露一實施例的矽穿孔位於基底中的結構的剖面示意圖。 第12圖為本揭露一實施例的具有穿透基底的空腔的結構的剖面示意圖。 第13圖為本揭露一實施例的介電層包括至少一通孔的結構的剖面示意圖。 第14圖為本揭露一實施例在基底中形成空腔後的結構的剖面示意圖。 第15圖至第17圖為本揭露一實施例的包括PMUT的元件的製作方法。 In order to make the following easier to understand, the drawings and detailed text descriptions can be referred to when reading this disclosure. Through the specific embodiments in this text and with reference to the corresponding drawings, the specific embodiments of the present disclosure are explained in detail, and the principle of the specific embodiments of the present disclosure is explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced. FIG. 1 is a schematic cross-sectional view of a structure after forming a trench in a substrate according to an embodiment of the disclosure. FIG. 2 is a schematic cross-sectional view of a structure after depositing a first dielectric layer in a trench according to an embodiment of the disclosure. FIG. 3 is a schematic cross-sectional view of a structure after forming a groove to expose the first dielectric layer in the groove according to an embodiment of the disclosure. FIG. 4 is a schematic cross-sectional view of a structure after depositing a second dielectric layer on the first dielectric layer according to an embodiment of the disclosure. FIG. 5 is a schematic cross-sectional view of the structure after planarizing the first dielectric layer and the second dielectric layer disposed on the substrate according to an embodiment of the disclosure. FIG. 6 is a schematic cross-sectional view of a structure after forming a multilayer structure on a substrate according to an embodiment of the disclosure. FIG. 7 is a schematic top view of a structure in which a plurality of through holes are located in a multilayer structure according to an embodiment of the disclosure. FIG. 8 is a schematic top view of a structure in which a plurality of through holes are located in a multilayer structure according to an embodiment of the disclosure. FIG. 9 is a schematic cross-sectional view of a structure after a cavity is formed in the substrate according to an embodiment of the disclosure. FIG. 10 is a schematic cross-sectional view of the structure after the dielectric layer is filled into the through hole according to an embodiment of the disclosure. FIG. 11 is a schematic cross-sectional view of a structure in which silicon vias are located in a substrate according to an embodiment of the disclosure. FIG. 12 is a schematic cross-sectional view of a structure having a cavity penetrating the substrate according to an embodiment of the disclosure. FIG. 13 is a schematic cross-sectional view of a structure in which the dielectric layer includes at least one through hole according to an embodiment of the disclosure. FIG. 14 is a schematic cross-sectional view of a structure after a cavity is formed in the substrate according to an embodiment of the disclosure. FIG. 15 to FIG. 17 show a method of manufacturing a device including PMUT according to an embodiment of the disclosure.

102:基底 102: Base

104C:角部 104C: corner

108:第一介電層 108: first dielectric layer

108H:高度 108H: height

110:凹槽 110: Groove

114:第二介電層 114: second dielectric layer

116:阻擋結構 116: blocking structure

122:底部電極 122: bottom electrode

124:壓電層 124: Piezo Layer

126:頂部電極 126: Top electrode

127:晶種層 127: Seed layer

128:壓電層 128: Piezo layer

129:鈍化層 129: Passivation layer

130:通孔 130: Through hole

130a:通孔 130a: Through hole

130b:通孔 130b: Through hole

130H:高度 130H: height

132:導電墊 132: Conductive pad

136:介電層 136: Dielectric layer

138:膜層 138: Membrane

140:接觸洞 140: contact hole

150:空腔 150: Cavity

150A:底面 150A: bottom surface

150H:深度 150H: Depth

150L:直徑 150L: diameter

Claims (19)

一種壓電微機械超聲波換能器(PMUT),包括: 一基底,包括一角部; 一空腔,設置於該基底內; 一阻擋結構,接觸該基底的該角部及該空腔;以及 一多層結構,設置於該空腔上方並附著該阻擋結構,其中,該多層結構包括接觸該空腔的至少一通孔。 A piezoelectric micromechanical ultrasonic transducer (PMUT), including: A base, including a corner; A cavity arranged in the substrate; A blocking structure contacting the corner of the substrate and the cavity; and A multi-layer structure is arranged above the cavity and attached to the barrier structure, wherein the multi-layer structure includes at least one through hole contacting the cavity. 如請求項1所述的壓電微機械超聲波換能器,其中,該阻擋結構的高度大於該至少一通孔的1/2高度。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the height of the blocking structure is greater than 1/2 of the height of the at least one through hole. 如請求項1所述的壓電微機械超聲波換能器,其中,該多層結構包括至少二電極和一壓電層,該壓電層設置於該些電極之間。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the multilayer structure includes at least two electrodes and a piezoelectric layer, and the piezoelectric layer is disposed between the electrodes. 如請求項1所述的壓電微機械超聲波換能器,另包括一介電層,設置於該多層結構上且填充至該至少一通孔的一上部。The piezoelectric micromachined ultrasonic transducer according to claim 1, further comprising a dielectric layer disposed on the multilayer structure and filling an upper portion of the at least one through hole. 如請求項1所述的壓電微機械超聲波換能器,其中,該基底的材質相異於該阻擋結構的材質,並且當使用氣態氫氟酸作為蝕刻劑時,該蝕刻劑對於該基底和該阻擋結構的蝕刻選擇比大於10。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the material of the substrate is different from the material of the blocking structure, and when gaseous hydrofluoric acid is used as an etchant, the etchant is effective against the substrate and The etching selection ratio of the barrier structure is greater than 10. 如請求項5所述的壓電微機械超聲波換能器,其中,該基底為結晶矽所組成,且該阻擋結構為氧化矽所組成。The piezoelectric micromachined ultrasonic transducer according to claim 5, wherein the substrate is composed of crystalline silicon, and the blocking structure is composed of silicon oxide. 如請求項1所述的壓電微機械超聲波換能器,其中,該阻擋結構的一下部埋設於該基底中。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the lower part of the blocking structure is embedded in the substrate. 如請求項1所述的壓電微機械超聲波換能器,其中,該空腔的一底面高於該阻擋結構的一底面。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein a bottom surface of the cavity is higher than a bottom surface of the blocking structure. 如請求項1所述的壓電微機械超聲波換能器,其中,該阻擋結構的一側壁重合於該空腔的一側壁。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein a side wall of the blocking structure coincides with a side wall of the cavity. 如請求項1所述的壓電微機械超聲波換能器,另包括一介電層,設置於該基底和該多層結構之間的,其中該介電層及該阻擋結構具有相同的組成。The piezoelectric micromechanical ultrasonic transducer according to claim 1, further comprising a dielectric layer disposed between the substrate and the multilayer structure, wherein the dielectric layer and the barrier structure have the same composition. 如請求項1所述的壓電微機械超聲波換能器,另包括另一空腔,設置於該空腔下方並直接接觸該空腔,其中該另一個空腔的直徑小於該空腔的直徑。The piezoelectric micromachined ultrasonic transducer according to claim 1, further comprising another cavity arranged below the cavity and directly contacting the cavity, wherein the diameter of the other cavity is smaller than the diameter of the cavity. 如請求項1所述的壓電微機械超聲波換能器,其中,該阻擋結構的一上部側壁未切齊於該阻擋結構的一下部側壁。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein an upper side wall of the blocking structure is not aligned with a lower side wall of the blocking structure. 如請求項1所述的壓電微機械超聲波換能器,其中,該阻擋結構係被延伸以覆蓋該基底的一頂面。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the blocking structure is extended to cover a top surface of the substrate. 如請求項1所述的壓電微機械超聲波換能器,其中,該空腔的一部分位於該阻擋結構之下。The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein a part of the cavity is located under the blocking structure. 如請求項1所述的壓電微機械超聲波換能器,另包括另一空腔,設置於該空腔的上方,其中,該阻擋結構的一側壁重合於該另一空腔的一側壁。The piezoelectric micromachined ultrasonic transducer according to claim 1, further comprising another cavity disposed above the cavity, wherein a side wall of the blocking structure coincides with a side wall of the other cavity. 一種壓電微機械超聲波換能器的製作方法,包括: 提供一基底; 形成一阻擋結構,該阻擋結構接觸該基底; 形成一多層結構,該多層結構設置於該基底和該阻擋結構上; 形成至少一通孔,該至少一通孔穿透該多層結構;以及 經由該至少一通孔對該基底提供一蝕刻劑,以蝕刻該基底的一部分而形成一空腔,其中該阻擋結構直接接觸該空腔。 A method for manufacturing a piezoelectric micromechanical ultrasonic transducer, including: Provide a base; Forming a barrier structure that contacts the substrate; Forming a multilayer structure, the multilayer structure being disposed on the substrate and the barrier structure; Forming at least one through hole, the at least one through hole penetrating the multilayer structure; and An etchant is provided to the substrate through the at least one through hole to etch a part of the substrate to form a cavity, wherein the barrier structure directly contacts the cavity. 如請求項16所述的壓電微機械超聲波換能器的製作方法,其中形成接觸該基底的該阻擋結構的步驟包括: 形成二溝槽於該基底中; 將一第一介電層填滿該些溝槽; 蝕刻該基底,以暴露出各該溝槽中的該第一介電層; 形成一第二介電層,該第二介電層位於該第一介電層及該基底上;以及 平坦化該第一介電層及該第二介電層,直至該第一介電層及該第二介電層的頂面切齊該基底的一頂面。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 16, wherein the step of forming the blocking structure contacting the substrate includes: Forming two grooves in the substrate; Filling the trenches with a first dielectric layer; Etching the substrate to expose the first dielectric layer in each trench; Forming a second dielectric layer on the first dielectric layer and the substrate; and The first dielectric layer and the second dielectric layer are planarized until the top surfaces of the first dielectric layer and the second dielectric layer are aligned with a top surface of the substrate. 如請求項16所述的壓電微機械超聲波換能器的製作方法,另包括: 形成一介電層於該基底上,以填滿複數個溝槽; 形成一多層結構,該多層結構設置於該基底和該介電層上; 形成至少一通孔,該至少一通孔穿透設置於該基底上的該多層結構及該介電層;以及 在蝕刻該基底的該部分而形成該空腔的步驟中,移除該空腔上方的該介電層。 The manufacturing method of the piezoelectric micromachined ultrasonic transducer as described in claim 16 further includes: Forming a dielectric layer on the substrate to fill a plurality of trenches; Forming a multilayer structure, the multilayer structure being disposed on the substrate and the dielectric layer; Forming at least one through hole, the at least one through hole penetrating the multilayer structure and the dielectric layer disposed on the substrate; and In the step of etching the portion of the substrate to form the cavity, the dielectric layer above the cavity is removed. 如請求項16所述的壓電微機械超聲波換能器的製作方法,其中,在蝕刻該基底的該部分而形成該空腔的步驟中,該阻擋結構的一底面會從該空腔被暴露出。The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 16, wherein, in the step of etching the part of the substrate to form the cavity, a bottom surface of the blocking structure is exposed from the cavity Out.
TW109133005A 2020-09-24 2020-09-24 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same TWI732688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109133005A TWI732688B (en) 2020-09-24 2020-09-24 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109133005A TWI732688B (en) 2020-09-24 2020-09-24 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI732688B true TWI732688B (en) 2021-07-01
TW202213824A TW202213824A (en) 2022-04-01

Family

ID=77911507

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109133005A TWI732688B (en) 2020-09-24 2020-09-24 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI732688B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050179100A1 (en) * 2002-05-15 2005-08-18 Infineon Technologies Ag Micromechanical capacitive transducer and method for producing the same
US20060238067A1 (en) * 2005-03-02 2006-10-26 Mcnc Research And Development Institute Piezoelectric micromachined ultrasonic transducer with air-backed cavities
US20150165479A1 (en) * 2013-12-12 2015-06-18 Qualcomm Incorporated Piezoelectric ultrasonic transducer and process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050179100A1 (en) * 2002-05-15 2005-08-18 Infineon Technologies Ag Micromechanical capacitive transducer and method for producing the same
US20060238067A1 (en) * 2005-03-02 2006-10-26 Mcnc Research And Development Institute Piezoelectric micromachined ultrasonic transducer with air-backed cavities
US20150165479A1 (en) * 2013-12-12 2015-06-18 Qualcomm Incorporated Piezoelectric ultrasonic transducer and process

Also Published As

Publication number Publication date
TW202213824A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
US7053456B2 (en) Electronic component having micro-electrical mechanical system
JP4471856B2 (en) Ultrasonic transducer and manufacturing method thereof
US7770279B2 (en) Electrostatic membranes for sensors, ultrasonic transducers incorporating such membranes, and manufacturing methods therefor
JP5876500B2 (en) Ultrasonic vibrator forming method and related apparatus
JP4800170B2 (en) Ultrasonic transducer and manufacturing method thereof
JP4425245B2 (en) Capacitive ultrasonic transducer and manufacturing method thereof
JP2007074263A (en) Ultrasonic transducer and manufacturing method therefor
CN110798788B (en) MEMS structure and forming method thereof
US11767217B2 (en) MEMS devices and methods of forming thereof
JP6606034B2 (en) Capacitive detection type ultrasonic transducer and ultrasonic imaging apparatus including the same
TWI732688B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
TW202142481A (en) Mems device built using the beol metal layers of a solid state semiconductor process
US20220219973A1 (en) Conductive bond structure to increase membrane sensitivty in mems device
JP2005051690A (en) Ultrasonic array sensor and method of manufacturing the same
CN114335320A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
US11890643B2 (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
US11498097B2 (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
TWI747362B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
JP7141934B2 (en) Ultrasonic transducer, manufacturing method thereof and ultrasonic imaging device
TWI726800B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
CN113896165A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
CN114105082A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
US20230002213A1 (en) Micro-machined ultrasound transducers with insulation layer and methods of manufacture
US20220280971A1 (en) Ultrasound transducer manufacturing method
TWI593063B (en) Biometrics sensor and method of manufacturing the same