TWI747362B - Piezoelectric micromachined ultrasonic transducer and method of fabricating the same - Google Patents

Piezoelectric micromachined ultrasonic transducer and method of fabricating the same Download PDF

Info

Publication number
TWI747362B
TWI747362B TW109122700A TW109122700A TWI747362B TW I747362 B TWI747362 B TW I747362B TW 109122700 A TW109122700 A TW 109122700A TW 109122700 A TW109122700 A TW 109122700A TW I747362 B TWI747362 B TW I747362B
Authority
TW
Taiwan
Prior art keywords
layer
ultrasonic transducer
substrate
micromachined ultrasonic
piezoelectric
Prior art date
Application number
TW109122700A
Other languages
Chinese (zh)
Other versions
TW202203480A (en
Inventor
拉奇許 庫瑪
夏佳杰
錢優
Original Assignee
世界先進積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 世界先進積體電路股份有限公司 filed Critical 世界先進積體電路股份有限公司
Priority to TW109122700A priority Critical patent/TWI747362B/en
Application granted granted Critical
Publication of TWI747362B publication Critical patent/TWI747362B/en
Publication of TW202203480A publication Critical patent/TW202203480A/en

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

A piezoelectric micromachined ultrasonic transducer (PMUT) includes a substrate, a stopper, and a membrane, where the substrate and the stopper are composed of same material. The substrate has a cavity penetrating the substrate, and the stopper protrudes from a top surface of the substrate and surrounds the edge of the cavity. The membrane is disposed over the cavity and attached to the stopper.

Description

壓電微機械超聲波換能器及其製作方法 Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof

本揭露涉及微機電系統(Micro Electro Mechanical System,MEMS)的技術領域,特別是涉及一種壓電微機械超聲波換能器(PMUT)及其製作方法。 The present disclosure relates to the technical field of Micro Electro Mechanical System (MEMS), and particularly relates to a piezoelectric micro mechanical ultrasonic transducer (PMUT) and a manufacturing method thereof.

在過去的幾十年裡,微機械超聲波換能器(Micro Machined Transducer,MUTs)受到了廣泛的研究,並成為各種消費電子產品的重要組成,例如是指紋感測器、鄰近(proximity)感測器和手勢感測器中的組成部件。一般來說,MUTs可以被分為兩大類,例如是電容式微機械超聲波換能器(CMUTs)和壓電式微機械超聲波換能器(PMUTs)。對於典型的壓電式微機械超聲波換能器而言,壓電式微機械超聲波換能器包括由彈性材料、電極和壓電材料所構成的膜層,此膜層會被設置在作為聲波諧振器的空腔上,以提升壓電式微機械超聲波換能器的聲學性能。在壓電式微機械超聲波換能器運作的過程中,經由膜層的振動而產生的超聲波會從壓電式微機械超聲波換能器而被傳遞至目標物,然後壓電式微機械超聲波換能器可以偵測超聲波撞擊目標物後而產生的反射聲波。 In the past few decades, Micro Machined Transducers (MUTs) have been extensively studied and have become an important component of various consumer electronics products, such as fingerprint sensors and proximity (proximity) sensing. Component parts of the device and gesture sensor. Generally speaking, MUTs can be divided into two categories, such as capacitive micromachined ultrasonic transducers (CMUTs) and piezoelectric micromachined ultrasonic transducers (PMUTs). For a typical piezoelectric micromechanical ultrasonic transducer, the piezoelectric micromechanical ultrasonic transducer includes a film layer composed of elastic materials, electrodes, and piezoelectric materials. This film layer is set on the acoustic resonator. On the cavity, to improve the acoustic performance of the piezoelectric micromachined ultrasonic transducer. During the operation of the piezoelectric micro-machined ultrasonic transducer, the ultrasonic waves generated by the vibration of the film will be transmitted from the piezoelectric micro-machined ultrasonic transducer to the target, and then the piezoelectric micro-machined ultrasonic transducer can Detect the reflected sound waves produced by ultrasonic waves hitting the target.

通常,壓電式微機械超聲波換能器會在膜層的彎曲共振頻率下運作,此彎曲共振頻率可透過選擇正確的材料、膜的尺寸和厚度來決定。因此,單個壓電式微機械超聲波換能器的共振頻率的良好匹配是正常運作的必要條 件。然而,由於位於膜層下方的空腔通常是透過蝕刻基底的背面而形成,因而於基底正面形成空腔開口,以用於定義膜層的大小。此空腔開口尺寸在同一晶圓內的不同區域或是不同晶圓之間可能會產生相當大的變異,因而不可避免地導致了各壓電式微機械超聲波換能器的共振頻率的變異。 Generally, the piezoelectric micromachined ultrasonic transducer will operate at the bending resonance frequency of the film. The bending resonance frequency can be determined by selecting the correct material, the size and thickness of the film. Therefore, a good match of the resonance frequency of a single piezoelectric micromachined ultrasonic transducer is a necessary condition for normal operation. Pieces. However, since the cavity under the film layer is usually formed by etching the back surface of the substrate, a cavity opening is formed on the front surface of the substrate to define the size of the film layer. The size of the cavity opening may vary greatly in different regions within the same wafer or between different wafers, which inevitably leads to the variation of the resonance frequency of various piezoelectric micromachined ultrasonic transducers.

因此,需要提供一種改良的壓電式微機械超聲波換能器及其製作方法,使得壓電式微機械超聲波換能器中的膜層尺寸可以被精確控制。 Therefore, there is a need to provide an improved piezoelectric micromechanical ultrasonic transducer and a manufacturing method thereof, so that the film layer size in the piezoelectric micromechanical ultrasonic transducer can be accurately controlled.

有鑒於此,為了提升壓電式微機械超聲波換能器的共振頻率的均勻性,有必要提出一種改良的壓電式微機械超聲波換能器及其製作方法。 In view of this, in order to improve the uniformity of the resonance frequency of the piezoelectric micromachined ultrasonic transducer, it is necessary to propose an improved piezoelectric micromachined ultrasonic transducer and a manufacturing method thereof.

根據本揭露的一實施例,壓電式微機械超聲波換能器包括基底、阻擋結構和膜層,其中基底和阻擋結構由相同的材料組成。基底包括穿透基底的空腔,阻擋結構從基底的頂面突出並圍繞空腔的邊緣。膜層設置在空腔上並附著於阻擋結構。 According to an embodiment of the present disclosure, the piezoelectric micromachined ultrasonic transducer includes a substrate, a barrier structure and a film layer, wherein the substrate and the barrier structure are composed of the same material. The base includes a cavity penetrating the base, and the blocking structure protrudes from the top surface of the base and surrounds the edge of the cavity. The film layer is arranged on the cavity and attached to the barrier structure.

根據本揭露的另一實施例,公開了一種製作壓電式微機械超聲波換能器的方法,包括以下步驟。首先蝕刻基底,形成從基底突出的阻擋結構,然後在基底上形成犧牲層,其中阻擋結構會暴露出於犧牲層。然後,在阻擋結構和犧牲層上形成膜層。然後形成穿透基底的空腔,以暴露出犧牲層的一部分。隨後,藉由使用阻擋結構作為蝕刻停止結構,以去除暴露於空腔的犧牲層的一部分。 According to another embodiment of the present disclosure, a method for manufacturing a piezoelectric micromechanical ultrasonic transducer is disclosed, which includes the following steps. The substrate is first etched to form a barrier structure protruding from the substrate, and then a sacrificial layer is formed on the substrate, wherein the barrier structure is exposed from the sacrificial layer. Then, a film layer is formed on the barrier structure and the sacrificial layer. Then, a cavity penetrating the substrate is formed to expose a part of the sacrificial layer. Subsequently, a part of the sacrificial layer exposed to the cavity is removed by using the barrier structure as an etch stop structure.

根據本揭露的上述實施例,阻擋結構是一種突出於基底頂面的結構,透過控制阻擋結構的位置,可以調整膜層的尺寸。由於阻擋結構是透過蝕刻基底而形成的,因此阻擋結構除了可以緊密地附著於基底,而不會自基底剝離,亦可具有垂直的側壁。藉由上述,可有效提升壓電式微機械超聲波換能器 的可靠度和電氣性能。 According to the above-mentioned embodiment of the present disclosure, the barrier structure is a structure protruding from the top surface of the substrate, and the size of the film layer can be adjusted by controlling the position of the barrier structure. Since the barrier structure is formed by etching the substrate, the barrier structure can not only be tightly attached to the substrate without peeling off from the substrate, but can also have vertical sidewalls. Through the above, the piezoelectric micro-machined ultrasonic transducer can be effectively improved Reliability and electrical performance.

100:壓電微機械超聲波換能器 100: Piezoelectric micromachined ultrasonic transducer

102:基底 102: Base

102s:頂面 102s: top surface

10)4:阻擋結構 10) 4: Blocking structure

104s:頂面 104s: top surface

106:膜層 106: Membrane

108:主體部分 108: The main part

110:基部 110: base

112:截斷部 112: Truncated part

114:第一接觸墊 114: first contact pad

116:第二接觸墊 116: second contact pad

120:空腔 120: Cavity

120e:邊緣 120e: Edge

122:第一部分 122: Part One

122s:頂面 122s: top surface

124:第二部分 124: Part Two

124s:頂面 124s: top surface

126:犧牲層 126: Sacrifice Layer

130:基層 130: grassroots

132:介電層 132: Dielectric layer

134:底導電層 134: bottom conductive layer

136:壓電層 136: Piezo Layer

138:頂導電層 138: Top conductive layer

140:鈍化層 140: passivation layer

152:截斷部 152: truncated part

200:方法 200: method

202:步驟 202: step

204:步驟 204: Step

206:步驟 206: Step

208:步驟 208: Step

210:步驟 210: Step

212:步驟 212: Step

D:距離 D: distance

O:開口 O: opening

為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, the drawings and detailed text descriptions can be referred to when reading this disclosure. Through the specific embodiments in this text and with reference to the corresponding drawings, the specific embodiments of the present disclosure are explained in detail, and the principles of the specific embodiments of the present disclosure are explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced.

第1圖是根據本揭露的一實施例所繪示的壓電微機械超聲波換能器(PMUT)的俯視示意圖。 FIG. 1 is a schematic top view of a piezoelectric micromachined ultrasonic transducer (PMUT) according to an embodiment of the disclosure.

第2圖是根據本揭露的一實施例沿著第1圖A-A'切線所繪示的剖面示意圖。 FIG. 2 is a schematic cross-sectional view taken along the line AA′ in FIG. 1 according to an embodiment of the present disclosure.

第3圖是根據本揭露的一實施例所繪示的在基底上形成阻擋結構後的示意圖。 FIG. 3 is a schematic diagram after a barrier structure is formed on a substrate according to an embodiment of the disclosure.

第4圖是根據本揭露的一實施例所繪示的在基底上形成犧牲層後的剖面示意圖。 FIG. 4 is a schematic cross-sectional view after a sacrificial layer is formed on a substrate according to an embodiment of the disclosure.

第5圖是根據本揭露的一實施例所繪示的在阻擋結構和犧牲層上形成基層後的剖面示意圖。 FIG. 5 is a schematic cross-sectional view after forming a base layer on the barrier structure and the sacrificial layer according to an embodiment of the disclosure.

第6圖是根據本揭露的一實施例所繪示的在基層上形成堆疊層從而形成膜層後的剖面示意圖。 FIG. 6 is a schematic cross-sectional view after forming a stacked layer on a base layer to form a film layer according to an embodiment of the disclosure.

第7圖是根據本揭露的一實施例所繪示的形成接觸墊後的剖面示意圖。 FIG. 7 is a schematic cross-sectional view after forming a contact pad according to an embodiment of the disclosure.

第8圖是根據本揭露的一實施例所繪示的在膜層中形成截斷部後的剖面示意圖。 FIG. 8 is a schematic cross-sectional view after a cut-off portion is formed in the film according to an embodiment of the disclosure.

第9圖是根據本揭露的一實施例所繪示的形成穿透基底的空腔後的剖面示 意圖。 Figure 9 is a cross-sectional view after a cavity penetrating the substrate is formed according to an embodiment of the disclosure intention.

第10圖是根據本揭露的一實施例所繪示的製作壓電微機械超聲波換能器的方法流程圖。 FIG. 10 is a flowchart of a method for manufacturing a piezoelectric micromachined ultrasonic transducer according to an embodiment of the disclosure.

本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與設置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments, which can be used to implement different features of the present disclosure. To simplify the description, this disclosure also describes examples of specific components and settings. The purpose of providing these embodiments is only for illustration, and not for any limitation. For example, the following description of "the first feature is formed on or above the second feature" can mean "the first feature is in direct contact with the second feature", or it can mean "the first feature is in direct contact with the second feature". There are other features among the features", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and notes are used to make the description more concise and clear, rather than to indicate the relevance between different embodiments and/or configurations.

另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及運作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, regarding the space-related narrative vocabulary mentioned in this disclosure, such as: "below", "low", "below", "above", "above", "below", "top" ", "base" and similar words, for ease of description, their usage is to describe the relative relationship between one element or feature and another (or more) elements or features in the drawing. In addition to the swing outward shown in the diagram, these spatially related words are also used to describe the possible swing directions of the semiconductor device during use and operation. As the swing direction of the semiconductor device is different (rotated by 90 degrees or other orientations), the space-related narrative used to describe its swing direction should also be explained in a similar way.

雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應瞭解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及 代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製作方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although the present disclosure uses terms such as first, second, and third to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, And/or blocks should not be restricted by these terms. These terms are only used to distinguish a certain element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and do not mean and It means that the component has any previous ordinal number, and does not represent the order of arrangement of a certain component and another component, or the order of the manufacturing method. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or block discussed below can also be referred to as the second element, component, region, layer, or block Of.

本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數量為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The term "about" or "substantially" mentioned in this disclosure usually means within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the quantity provided in the manual is approximate, that is, the meaning of "approximate" or "substantial" can still be implied when there is no specific description of "approximate" or "substantial".

於下文製程/流程圖中所揭露的流程圖塊的特定順序或層次可以理解為示例性的說明。可以理解的是,根據不同設計偏好,此製程/流程圖中所揭露的流程圖塊的特定順序或層次可以被重新安排。此外,部分流程圖塊可以被合併或省略。隨附的方法請求項以示例的順序表示各流程圖塊中的要件,但此不代表此方法請求項被限定為此特定順序或層次。 The specific sequence or level of the flowchart blocks disclosed in the process/flow chart below can be understood as an exemplary description. It is understandable that, according to different design preferences, the specific order or hierarchy of the flowchart blocks disclosed in this process/flow chart can be rearranged. In addition, part of the flowchart blocks can be combined or omitted. The attached method request items show the elements in each flowchart block in the order of examples, but this does not mean that the method request items are limited to this specific order or level.

雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理亦可應用至其他的實施例。此外,為了不致使本揭露之精神晦澀難懂,特定的細節會被予以省略,該些被省略的細節係屬於所屬技術領域中包括通常知識者的知識範圍。 Although specific embodiments are used below to describe the invention of the present disclosure, the principles of the invention of the present disclosure can also be applied to other embodiments. In addition, in order not to make the spirit of this disclosure obscure, specific details will be omitted, and the omitted details belong to the scope of knowledge of ordinary knowledgeable persons in the technical field.

第1圖是根據本揭露的一實施例所繪示的壓電微機械超聲波換能器(PMUT)的俯視示意圖。參考第1圖,壓電微機械超聲波換能器100至少包括基底102、阻擋結構104、膜層106、截斷部112、第一接觸墊114和第二接觸墊116。根據本揭露的一實施例,阻擋結構104可以是從基底102的頂面突出的環形結構,使得膜層106的一部分可以附著至阻擋結構104。阻擋結構104的形狀不限於此,阻擋結構104可以是沿著膜層106的邊緣而設置的多邊形或弧形。膜層106可以包 括設置在空腔(未示出)上方的主體部分108和設置在主體部分108周邊的基部110。主體部分108的形狀可以由截斷部112的形狀加以定義,並且可以是任何形狀,例如圓形、扇形或多邊形。阻擋結構104可以沿著截斷部112的周邊以及主體部分108的周邊設置。膜層106的主體部分108可以是包括電極和壓電材料的多層結構。基部110附著到阻擋結構104,並且可以被視為從膜層106的主體部分108延伸出的部分。第一接觸墊114和第二接觸墊116可以設置在膜層106的相對側,其可以分別電耦合到膜層106的電極。此外,為了避免第一接觸墊114和第二接觸墊116之間產生不預期的寄生電容,第一接觸墊114和第二接觸墊116的尺寸可以盡可能的縮小,但不限於此。根據本揭露的一實施例,第一接觸墊114和第二接觸墊116可以設置在膜層106的同一側或者任何位置,只要第一接觸墊114和第二接觸墊116可以電耦合到膜層106的電極即可。電耦合到第一接觸墊114和第二接觸墊116的導電跡線(未示出)可以額外被設置在基底102上,以便將電訊號傳輸到膜層106中或從膜層106中傳輸出去。在壓電微機械超聲波換能器100的運作過程中,當聲波對於膜層106施加聲壓或者電訊號被施加至膜層106時,膜層106,尤其是膜層106的主體部分108,可以振動。透過使用阻擋結構104,膜層106的尺寸和位置可以被精確獨立定義,而不論膜層106下方的空腔尺寸和位置。因此,可以有效提升各壓電微機械超聲波換能器100的共振頻率均勻性。 FIG. 1 is a schematic top view of a piezoelectric micromachined ultrasonic transducer (PMUT) according to an embodiment of the disclosure. Referring to FIG. 1, the piezoelectric micromachined ultrasonic transducer 100 at least includes a substrate 102, a blocking structure 104, a film layer 106, a cut-off portion 112, a first contact pad 114 and a second contact pad 116. According to an embodiment of the present disclosure, the barrier structure 104 may be a ring-shaped structure protruding from the top surface of the substrate 102 so that a part of the film layer 106 may be attached to the barrier structure 104. The shape of the barrier structure 104 is not limited to this, and the barrier structure 104 may be a polygonal or arc shape arranged along the edge of the film layer 106. The film 106 can be wrapped It includes a main body portion 108 disposed above the cavity (not shown) and a base portion 110 disposed on the periphery of the main body portion 108. The shape of the main body portion 108 may be defined by the shape of the cut-off portion 112, and may be any shape, such as a circle, a fan shape, or a polygon. The blocking structure 104 may be provided along the periphery of the cut-off portion 112 and the periphery of the main body portion 108. The main body portion 108 of the film layer 106 may be a multilayer structure including electrodes and piezoelectric materials. The base 110 is attached to the barrier structure 104 and can be regarded as a portion extending from the main body portion 108 of the film layer 106. The first contact pad 114 and the second contact pad 116 may be disposed on opposite sides of the film layer 106, which may be electrically coupled to electrodes of the film layer 106, respectively. In addition, in order to avoid unexpected parasitic capacitance between the first contact pad 114 and the second contact pad 116, the size of the first contact pad 114 and the second contact pad 116 can be reduced as much as possible, but is not limited thereto. According to an embodiment of the present disclosure, the first contact pad 114 and the second contact pad 116 can be arranged on the same side of the film layer 106 or at any position, as long as the first contact pad 114 and the second contact pad 116 can be electrically coupled to the film layer 106. 106 electrodes are sufficient. Conductive traces (not shown) electrically coupled to the first contact pad 114 and the second contact pad 116 may be additionally provided on the substrate 102 in order to transmit electrical signals to or from the film layer 106 . During the operation of the piezoelectric micromachined ultrasonic transducer 100, when sound waves apply sound pressure to the film layer 106 or an electrical signal is applied to the film layer 106, the film layer 106, especially the main part 108 of the film layer 106, can vibration. By using the barrier structure 104, the size and position of the film layer 106 can be precisely and independently defined, regardless of the size and position of the cavity under the film layer 106. Therefore, the uniformity of the resonance frequency of each piezoelectric micromachined ultrasonic transducer 100 can be effectively improved.

第2圖是根據本揭露的一實施例沿第1圖的A-A'切線所繪示的剖面示意圖。參照第2圖,該阻擋結構104可以從基底102的頂面102s突出。基底102可以是半導體基底,例如塊矽基底,但不限於此。基底102和阻擋結構104可以由相同的材料所組成,如單晶矽、多晶矽、非晶矽、玻璃、陶瓷材料或其他合適的材料。根據本揭露的一實施例,基底102可以是SOI基底。犧牲層126的組成係不同於基底102的組成,阻擋結構104會被設置於基底102上,犧牲層126會環繞阻擋結構104。根據本揭露的一實施例,在基底102和/或阻擋結構104係由半導體材 料(如Si)所組成的情況下,犧牲層126可能是介電層,如氧化矽(SiOx)或二氧化矽(SiO2)。此外,犧牲層126的頂面可以和阻擋結構104的頂面實質上切齊,使得設置在犧牲層126和阻擋結構104上的層可具有平坦的底面。參考第2圖,雖然阻擋結構104的寬度遠小於犧牲層126的寬度,但是根據本揭露的另一實施例,阻擋結構104的寬度可以被設計為大於犧牲層126的寬度。此外,根據本揭露的另一實施例,當阻擋結構104的寬度足夠大時,可將犧牲層126的大部分會被取代為阻擋結構104。堆疊層可包括依序設置於基底102上的基層130、介電層132、底導電層134、壓電層136、頂導電層138和鈍化層140。部分的堆疊層可被設置於空腔120上。空腔120的邊緣120e會鄰近堆疊層,且阻擋結構104可環繞空腔120的邊緣120e。因此,設置在空腔120上的堆疊層可構成膜層106。此外,膜層106可被截斷部112穿透,從而釋放堆疊層中的應力。具體而言,膜層106的基層130可具備所需的彈性(elasticity),因此當聲波或電訊號作用於膜層106時,膜層106可以一定的頻率振動。膜層106的底導電層134和頂導電層138可分別電耦合第一接觸墊114和第二接觸墊116。需注意的是,膜層106的機械行為主要由膜層106的基層130決定,此歸因於設置在基層130上的堆疊層的厚度遠小於基層130的厚度。舉例而言,由介電層132、底部導電層134、壓電層136、頂部導電層138和鈍化層140所組成的堆疊層的整體厚度可能僅為設置於其下的基層130的厚度的1/3到1/10。 FIG. 2 is a schematic cross-sectional view taken along the line AA′ of FIG. 1 according to an embodiment of the present disclosure. Referring to FIG. 2, the blocking structure 104 may protrude from the top surface 102 s of the substrate 102. The substrate 102 may be a semiconductor substrate, such as a bulk silicon substrate, but is not limited thereto. The substrate 102 and the barrier structure 104 may be composed of the same material, such as monocrystalline silicon, polycrystalline silicon, amorphous silicon, glass, ceramic materials, or other suitable materials. According to an embodiment of the present disclosure, the substrate 102 may be an SOI substrate. The composition of the sacrificial layer 126 is different from the composition of the substrate 102, the barrier structure 104 is disposed on the substrate 102, and the sacrificial layer 126 surrounds the barrier structure 104. According to an embodiment of the present disclosure, when the substrate 102 and/or the barrier structure 104 are composed of a semiconductor material (such as Si), the sacrificial layer 126 may be a dielectric layer, such as silicon oxide (SiO x ) or dioxide Silicon (SiO 2 ). In addition, the top surface of the sacrificial layer 126 may be substantially flush with the top surface of the barrier structure 104, so that the layers disposed on the sacrificial layer 126 and the barrier structure 104 may have a flat bottom surface. Referring to FIG. 2, although the width of the barrier structure 104 is much smaller than the width of the sacrificial layer 126, according to another embodiment of the present disclosure, the width of the barrier structure 104 may be designed to be greater than the width of the sacrificial layer 126. In addition, according to another embodiment of the present disclosure, when the width of the barrier structure 104 is sufficiently large, most of the sacrificial layer 126 can be replaced with the barrier structure 104. The stacked layer may include a base layer 130, a dielectric layer 132, a bottom conductive layer 134, a piezoelectric layer 136, a top conductive layer 138, and a passivation layer 140 sequentially disposed on the substrate 102. Part of the stacked layer may be disposed on the cavity 120. The edge 120e of the cavity 120 is adjacent to the stacked layer, and the blocking structure 104 may surround the edge 120e of the cavity 120. Therefore, the stacked layer disposed on the cavity 120 may constitute the film layer 106. In addition, the film layer 106 can be penetrated by the cut-off portion 112, thereby releasing the stress in the stacked layer. Specifically, the base layer 130 of the film layer 106 can have the required elasticity, so when sound waves or electrical signals act on the film layer 106, the film layer 106 can vibrate at a certain frequency. The bottom conductive layer 134 and the top conductive layer 138 of the film layer 106 may be electrically coupled to the first contact pad 114 and the second contact pad 116, respectively. It should be noted that the mechanical behavior of the film layer 106 is mainly determined by the base layer 130 of the film layer 106, which is due to the thickness of the stacked layer disposed on the base layer 130 being much smaller than the thickness of the base layer 130. For example, the overall thickness of the stacked layer composed of the dielectric layer 132, the bottom conductive layer 134, the piezoelectric layer 136, the top conductive layer 138, and the passivation layer 140 may be only 1% of the thickness of the base layer 130 disposed thereunder. /3 to 1/10.

為了使本技術領域中具有通常知識者能夠實現本揭露,下文將進一步描述製作壓電微機械超聲波換能器的方法。此外,由於壓電微機械超聲波換能器可以透過標準的CMOS製程製作,因此在壓電微機械超聲波換能器的同一基底上也可以透過相同的CMOS製程製作相關的電子元件,如場效電晶體、放大器和積體電路。 In order to enable those skilled in the art to realize the present disclosure, the method of manufacturing a piezoelectric micromachined ultrasonic transducer will be further described below. In addition, because piezoelectric micro-machined ultrasonic transducers can be manufactured through standard CMOS processes, related electronic components, such as field-effect devices, can also be manufactured through the same CMOS process on the same substrate of piezoelectric micro-machined ultrasonic transducers. Crystals, amplifiers and integrated circuits.

第3圖是根據本揭露的一實施例所繪示的在基底上形成阻擋結構後 的剖面示意圖。第10圖是示出根據本揭露的一實施例製作壓電微機械超聲波換能器的方法流程圖。參照第3圖,在方法200的步驟202中,提供了基底102,根據不同的要求,可以從半導體基底或絕緣基底中選擇基底102。根據本揭露的一實施例,基底102可以是單晶矽基底。然後,在步驟204中,可從基底102的正面蝕刻,而形成自基底102的頂面102s突出的阻擋結構104。具體而言,在製作阻擋結構104的製程中,可進行光微影和蝕刻製程。由於阻擋結構104的尺寸可以透過微影技術而被精確定義,因此阻擋結構104的兩個相對點之間的距離D亦可以被精確控制。而距離D可用於精確控制阻擋結構104的尺寸和膜層106的尺寸。 FIG. 3 is a diagram illustrating after a barrier structure is formed on a substrate according to an embodiment of the disclosure Schematic diagram of the cross-section. FIG. 10 is a flowchart showing a method of fabricating a piezoelectric micromachined ultrasonic transducer according to an embodiment of the present disclosure. Referring to FIG. 3, in step 202 of the method 200, a substrate 102 is provided. According to different requirements, the substrate 102 can be selected from a semiconductor substrate or an insulating substrate. According to an embodiment of the present disclosure, the substrate 102 may be a single crystal silicon substrate. Then, in step 204, etching can be performed from the front surface of the substrate 102 to form a barrier structure 104 protruding from the top surface 102s of the substrate 102. Specifically, in the process of fabricating the barrier structure 104, photolithography and etching processes can be performed. Since the size of the blocking structure 104 can be accurately defined through the lithography technology, the distance D between two opposite points of the blocking structure 104 can also be accurately controlled. The distance D can be used to precisely control the size of the barrier structure 104 and the size of the film layer 106.

第4圖是根據本揭露的一實施例所繪示的在基底上形成犧牲層後的示意圖。參照第4圖,在步驟206中,可以在基底102上形成包括第一部分122和第二部分124的犧牲層,其中阻擋結構104的頂面暴露出於犧牲層。犧牲層的第一部分122可以被阻擋結構104所圍繞,犧牲層的第二部分124可藉由阻擋結構104而與第一部分122分隔。根據本揭露的一實施例,形成犧牲層的製程可包括以下步驟:(1)全面沉積犧牲材料於基底102上(如化學氣相沉積或電漿增強化學氣相沉積),使得犧牲材料覆蓋住阻擋結構104的頂面104s;以及(2)平坦化犧牲材料,直至暴露出阻擋結構104的頂面104s。此外,根據本揭露的另一實施例,形成犧牲層的製程可包括以下步驟:(1)施行旋轉塗布製程,以在基底102上塗布一層犧牲材料;以及(2)蝕刻犧牲材料,直至阻擋結構104的頂面104s被暴露出。因此,透過上述任一形成犧牲層的製程,犧牲層的各分離部分的頂面122s和124s均可切齊阻擋結構104的頂面104s。 FIG. 4 is a schematic diagram after a sacrificial layer is formed on the substrate according to an embodiment of the disclosure. Referring to FIG. 4, in step 206, a sacrificial layer including a first portion 122 and a second portion 124 may be formed on the substrate 102, wherein the top surface of the barrier structure 104 is exposed from the sacrificial layer. The first portion 122 of the sacrificial layer may be surrounded by the barrier structure 104, and the second portion 124 of the sacrificial layer may be separated from the first portion 122 by the barrier structure 104. According to an embodiment of the present disclosure, the process of forming the sacrificial layer may include the following steps: (1) Sacrificial material is deposited on the substrate 102 (such as chemical vapor deposition or plasma enhanced chemical vapor deposition) so that the sacrificial material covers The top surface 104s of the blocking structure 104; and (2) planarizing the sacrificial material until the top surface 104s of the blocking structure 104 is exposed. In addition, according to another embodiment of the present disclosure, the process of forming the sacrificial layer may include the following steps: (1) performing a spin coating process to coat a layer of sacrificial material on the substrate 102; and (2) etching the sacrificial material until the barrier structure The top surface 104s of 104 is exposed. Therefore, through any of the above-mentioned processes for forming the sacrificial layer, the top surfaces 122s and 124s of the separated portions of the sacrificial layer can be aligned with the top surface 104s of the barrier structure 104.

繼以進行步驟208,在基底102上形成膜層。根據本揭露的一實施例,步驟208可分別包括如第5圖和第6圖所示的子步驟。 Following step 208, a film layer is formed on the substrate 102. According to an embodiment of the present disclosure, step 208 may include sub-steps as shown in FIG. 5 and FIG. 6 respectively.

第5圖是根據本揭露的一實施例所繪示的在阻擋結構和犧牲層上形成基層後的剖面示意圖。參照第5圖,可以沉積基層130在阻擋結構104上、在犧 牲層的第一部分122上、以及在犧牲層的第二部分124上。基層130可包括具有適當彈性的材料,如結晶矽(c-Si)、非晶矽(a-Si)、富矽氮化物(SiNx)、碳化矽(SiC)等,但不限於此。由於基層130下方的阻擋結構104和犧牲層122、124包括平坦頂面,因此基層130的底面也可以是平坦的底面。此外,為獲得基層130的平坦頂面,可選擇性地進行平坦化製程,以對基層130的頂面進行平坦化。 FIG. 5 is a schematic cross-sectional view after forming a base layer on the barrier structure and the sacrificial layer according to an embodiment of the disclosure. Referring to FIG. 5, a base layer 130 may be deposited on the barrier structure 104, on the first portion 122 of the sacrificial layer, and on the second portion 124 of the sacrificial layer. The base layer 130 may include materials with appropriate elasticity, such as crystalline silicon (c-Si), amorphous silicon (a-Si), silicon-rich nitride (SiN x ), silicon carbide (SiC), etc., but is not limited thereto. Since the barrier structure 104 and the sacrificial layers 122 and 124 under the base layer 130 include a flat top surface, the bottom surface of the base layer 130 may also be a flat bottom surface. In addition, in order to obtain a flat top surface of the base layer 130, a flattening process may be selectively performed to flatten the top surface of the base layer 130.

第6圖是根據本揭露的一實施例所繪示的在基層上形成堆疊層從而形成膜層後的剖面示意圖。參照第6圖,在基底130上可依序沉積介電層132、底導電層134、壓電層136、頂導電層138、鈍化層140,而構成設置於基底102上的膜層150。介電層132可由絕緣材料組成,例如SiO2、SiON、AlN或摻雜鈧的氮化鋁(AlScN),用於將底導電層134和頂導電層138電絕緣於基層130。根據本揭露的一實施例,介電層132也可作為後續沉積在介電層132上的複數層的晶種層。此外,介電層132的表面結構可能會影響沉積在其上的複數層的結晶度。底導電層134和頂導電層138可以是由鉬(Mo)、鈦(Ti)、鋁(Al)或鉑(Pt)所組成的相同或不同的材料,但不限於此。壓電層136可以由氮化鋁(AlN)、摻雜鈧的氮化鋁(AlScN)、鋯鈦酸鉛(PZT)、氧化鋅(ZnO)、聚偏氟乙烯(PVDF)、或鈮酸鉛鈦酸鉛(PMN-PT)所組成,但不限於此。鈍化層140可以是由絕緣材料所構成的選擇性層,如SiO2、SiON或AlN,但不限於此。此外,壓電層136的材料與基層130不同。 FIG. 6 is a schematic cross-sectional view after forming a stacked layer on a base layer to form a film layer according to an embodiment of the disclosure. Referring to FIG. 6, a dielectric layer 132, a bottom conductive layer 134, a piezoelectric layer 136, a top conductive layer 138, and a passivation layer 140 can be sequentially deposited on the substrate 130 to form a film layer 150 disposed on the substrate 102. The dielectric layer 132 may be composed of an insulating material, such as SiO 2 , SiON, AlN, or scandium-doped aluminum nitride (AlScN), to electrically insulate the bottom conductive layer 134 and the top conductive layer 138 from the base layer 130. According to an embodiment of the disclosure, the dielectric layer 132 can also be used as a seed layer for a plurality of layers subsequently deposited on the dielectric layer 132. In addition, the surface structure of the dielectric layer 132 may affect the crystallinity of the multiple layers deposited thereon. The bottom conductive layer 134 and the top conductive layer 138 may be the same or different materials composed of molybdenum (Mo), titanium (Ti), aluminum (Al), or platinum (Pt), but are not limited thereto. The piezoelectric layer 136 may be made of aluminum nitride (AlN), scandium-doped aluminum nitride (AlScN), lead zirconate titanate (PZT), zinc oxide (ZnO), polyvinylidene fluoride (PVDF), or lead niobate It is composed of lead titanate (PMN-PT), but it is not limited to this. The passivation layer 140 may be a selective layer made of an insulating material, such as SiO 2 , SiON or AlN, but is not limited thereto. In addition, the material of the piezoelectric layer 136 is different from the base layer 130.

第7圖是根據本揭露的一實施例所繪示的形成接觸墊後的剖面示意圖。參照第7圖,多個接觸洞可被形成於膜層150內,以分別暴露出底導電層134和頂導電層138。然後,接觸墊,即第一接觸墊114和第二接觸墊116,可填入至各接觸洞。藉此,第一接觸墊114可電耦合到底導電層134,而第二接觸墊116可電耦合到頂導電層138。 FIG. 7 is a schematic cross-sectional view after forming a contact pad according to an embodiment of the disclosure. Referring to FIG. 7, a plurality of contact holes may be formed in the film layer 150 to expose the bottom conductive layer 134 and the top conductive layer 138, respectively. Then, the contact pads, namely the first contact pad 114 and the second contact pad 116, can be filled into each contact hole. Thereby, the first contact pad 114 can be electrically coupled to the bottom conductive layer 134, and the second contact pad 116 can be electrically coupled to the top conductive layer 138.

第8圖是根據本揭露的一實施例所繪示的在膜層中形成截斷部後的剖面示意圖。參照第8圖,透過去除膜層150的一部分,可形成截斷部112和152。 因此,可以從截斷部112的底部暴露出犧牲層的第一部分122,並且可以從截斷部152的底部暴露出基層130的一部分。根據本揭露的一實施例,雖然第8圖所顯示的截斷部112和152似乎是分開設置的,但當以由上至下的視角觀察第8圖中所示的結構時,截斷部112和152亦可以是呈現連續分布的孔隙,例如環形孔隙。此外,截斷部112和152的俯視形狀不限於第1圖所示的形狀。舉例而言,截斷部112和152可以是部分環繞住膜層106的多邊形孔隙。 FIG. 8 is a schematic cross-sectional view after a cut-off portion is formed in the film according to an embodiment of the disclosure. Referring to FIG. 8, by removing part of the film layer 150, the cut-off portions 112 and 152 can be formed. Therefore, the first portion 122 of the sacrificial layer may be exposed from the bottom of the cut-off portion 112, and a part of the base layer 130 may be exposed from the bottom of the cut-off portion 152. According to an embodiment of the present disclosure, although the cut-off portions 112 and 152 shown in FIG. 8 seem to be provided separately, when the structure shown in FIG. 8 is viewed from a top-down perspective, the cut-off portions 112 and 152 152 may also be a continuous distribution of pores, such as an annular pore. In addition, the planar shape of the cut-off portions 112 and 152 is not limited to the shape shown in FIG. 1. For example, the cut-off portions 112 and 152 may be polygonal pores partially surrounding the film layer 106.

第9圖是根據本揭露的一實施例所繪示的形成穿透基底的空腔後的剖面示意圖。參照第9圖,在步驟210中,透過蝕刻基底102的背面,可形成穿透基底102的空腔120。因此,犧牲層的第一部分122的底面可以從空腔120暴露出來。空腔120可包括一開口O。空腔120的邊緣120e會鄰近於設置在基底102正面的膜層,且空腔120的邊緣120e可以被用來定義開口O。 FIG. 9 is a schematic cross-sectional view after a cavity penetrating the substrate is formed according to an embodiment of the disclosure. Referring to FIG. 9, in step 210, by etching the back surface of the substrate 102, a cavity 120 penetrating the substrate 102 can be formed. Therefore, the bottom surface of the first portion 122 of the sacrificial layer may be exposed from the cavity 120. The cavity 120 may include an opening O. The edge 120e of the cavity 120 will be adjacent to the film layer disposed on the front surface of the substrate 102, and the edge 120e of the cavity 120 may be used to define the opening O.

由開口O所定義的孔徑長度可短於由阻擋結構104的相對點所定義的距離D。由於距離D可用於定義壓電微機械超聲波換能器中的膜層的位置,且距離D主要由阻擋結構104定義,所以即使開口O的位置或尺寸有些許的偏移,也不會導致壓電微機械超聲波換能器的膜層的位置和尺寸有所改變。 The length of the aperture defined by the opening O may be shorter than the distance D defined by the opposing points of the blocking structure 104. Since the distance D can be used to define the position of the film layer in the piezoelectric micromachined ultrasonic transducer, and the distance D is mainly defined by the blocking structure 104, even if the position or size of the opening O is slightly offset, it will not cause compression. The position and size of the film layer of the electro-micromechanical ultrasonic transducer have been changed.

之後,在步驟212中,可以進行蝕刻過程,以去除暴露出於空腔120的犧牲層的第一部分122。當犧牲層由氧化矽組成時,蝕刻劑可以是氣態氫氟酸(Vapor FH,VHF)。在去除暴露出於空腔120的犧牲層時,由於犧牲層相較於阻擋結構104和基層130的蝕刻選擇比大於10,因此蝕刻劑只能去除犧牲層的第一部分122。另外,由於阻擋結構104會阻止蝕刻劑到達犧牲層的第二部分124,因此在蝕刻過程中,犧牲層的第二部分124不會被蝕除。因此,可以得到如第2圖所示的結構,此結構包括釋放膜層(released membrane)。 Thereafter, in step 212, an etching process may be performed to remove the first portion 122 of the sacrificial layer exposed from the cavity 120. When the sacrificial layer is composed of silicon oxide, the etchant may be vaporous hydrofluoric acid (Vapor FH, VHF). When removing the sacrificial layer exposed from the cavity 120, since the etching selection ratio of the sacrificial layer compared with the barrier structure 104 and the base layer 130 is greater than 10, the etchant can only remove the first portion 122 of the sacrificial layer. In addition, since the barrier structure 104 prevents the etchant from reaching the second part 124 of the sacrificial layer, the second part 124 of the sacrificial layer will not be etched away during the etching process. Therefore, a structure as shown in Figure 2 can be obtained, and this structure includes a released membrane.

根據本揭露的上述實施例,由於阻擋結構104是透過蝕刻基底102的正面而形成,因此阻擋結構104可以緊密地附著於基底102,而不會從基底102剝 離,並且可具有垂直側壁。另外,膜層106的尺寸和位置可以被精準定義,而不受到膜層106下方空腔120的尺寸和位置的影響,從而有效地提升了各壓電微機械超聲波換能器100之間的共振頻率均勻性,進而提升了各壓電微機械超聲波換能器的可靠度和電氣性能。 According to the above-mentioned embodiment of the present disclosure, since the barrier structure 104 is formed by etching the front surface of the substrate 102, the barrier structure 104 can be closely attached to the substrate 102 without peeling off the substrate 102. And can have vertical sidewalls. In addition, the size and position of the film layer 106 can be precisely defined without being affected by the size and position of the cavity 120 under the film layer 106, thereby effectively improving the resonance between the piezoelectric micromachined ultrasonic transducers 100 The frequency uniformity further improves the reliability and electrical performance of each piezoelectric micromechanical ultrasonic transducer.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention shall fall within the scope of the present invention.

100:壓電微機械超聲波換能器 100: Piezoelectric micromachined ultrasonic transducer

102:基底 102: Base

102s:頂面 102s: top surface

104:阻擋結構 104: blocking structure

106:膜層 106: Membrane

108:主體部分 108: The main part

110:基部 110: base

112:截斷部 112: Truncated part

114:第一接觸墊 114: first contact pad

116:第二接觸墊 116: second contact pad

120:空腔 120: Cavity

120e:邊緣 120e: Edge

126:犧牲層 126: Sacrifice Layer

130:基層 130: grassroots

132:介電層 132: Dielectric layer

134:底導電層 134: bottom conductive layer

136:壓電層 136: Piezo Layer

138:頂導電層 138: Top conductive layer

140:鈍化層 140: passivation layer

Claims (20)

一種壓電微機械超聲波換能器(PMUT),包括:一基底,包括穿透該基底的一空腔;一阻擋結構,係由蝕刻該基底而突出於該基底的一頂面且圍繞該空腔的一邊緣;以及一膜層,設置於該空腔上且附著於該阻擋結構,其中該基底和該阻擋結構包括相同的材料,該材料包括單晶矽、多晶矽、非晶矽、玻璃、或陶瓷材料。 A piezoelectric micromachined ultrasonic transducer (PMUT) includes: a substrate, including a cavity penetrating the substrate; a blocking structure, which protrudes from a top surface of the substrate by etching the substrate and surrounds the cavity And a film layer disposed on the cavity and attached to the barrier structure, wherein the substrate and the barrier structure include the same material, the material includes single crystal silicon, polycrystalline silicon, amorphous silicon, glass, or Ceramic material. 如請求項1所述的壓電微機械超聲波換能器,其中該空腔的該邊緣鄰近於該膜層。 The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the edge of the cavity is adjacent to the film layer. 如請求項1所述的壓電微機械超聲波換能器,其中該阻擋結構是沿著該膜層的一邊緣而設置的一環形、多邊形或弧形結構。 The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the blocking structure is a ring-shaped, polygonal or arc-shaped structure arranged along an edge of the film layer. 如請求項1所述的壓電微機械超聲波換能器,其中該膜層為一多層結構。 The piezoelectric micromachined ultrasonic transducer according to claim 1, wherein the film layer is a multilayer structure. 如請求項4所述的壓電微機械超聲波換能器,其中該多層結構包括:一基層;一介電層,設置於該基層上;二導電層,堆疊於該基層上;以及一壓電層,設置於該些導電層之間。 The piezoelectric micromechanical ultrasonic transducer according to claim 4, wherein the multilayer structure includes: a base layer; a dielectric layer disposed on the base layer; two conductive layers stacked on the base layer; and a piezoelectric The layer is arranged between the conductive layers. 如請求項5所述的壓電微機械超聲波換能器,其中該基層的組成不同於該壓電層的組成。 The piezoelectric micromachined ultrasonic transducer according to claim 5, wherein the composition of the base layer is different from the composition of the piezoelectric layer. 如請求項1所述的壓電微機械超聲波換能器,進一步包括穿透該膜層的一截斷部。 The piezoelectric micromachined ultrasonic transducer according to claim 1, further comprising a cut-off part penetrating the film layer. 如請求項7所述的壓電微機械超聲波換能器,其中該阻擋結構沿著該截斷部的周邊設置。 The piezoelectric micromachined ultrasonic transducer according to claim 7, wherein the blocking structure is arranged along the periphery of the cut-off part. 如請求項1所述的壓電微機械超聲波換能器,進一步包括一犧牲層,該犧牲層設置在該基底的該頂面上且圍繞該阻擋結構。 The piezoelectric micromachined ultrasonic transducer according to claim 1, further comprising a sacrificial layer disposed on the top surface of the substrate and surrounding the blocking structure. 如請求項7所述的壓電微機械超聲波換能器,其中該截斷部為一環型,且環繞部分該膜層。 The piezoelectric micromachined ultrasonic transducer according to claim 7, wherein the cut-off part is a ring shape and surrounds a part of the film layer. 一種製作壓電微機械超聲波換能器的方法,包括:提供一基底;蝕刻該基底,以形成從該基底突出的一阻擋結構;形成一犧牲層於該基底上,其中該阻擋結構暴露出於該犧牲層;形成一膜層於該阻擋結構和該犧牲層上;形成穿透該基底的一空腔,以暴露出該犧牲層的一部分;以及利用該阻擋結構作為蝕刻停止結構,以移除暴露出於該空腔的該犧牲層的該部分。 A method for manufacturing a piezoelectric micromachined ultrasonic transducer includes: providing a substrate; etching the substrate to form a barrier structure protruding from the substrate; forming a sacrificial layer on the substrate, wherein the barrier structure is exposed The sacrificial layer; forming a film layer on the barrier structure and the sacrificial layer; forming a cavity penetrating the substrate to expose a part of the sacrificial layer; and using the barrier structure as an etching stop structure to remove the exposure The portion of the sacrificial layer out of the cavity. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中該阻擋結構是沿著該膜層的一邊緣而設置的一環形、多邊形或弧形結構。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein the blocking structure is a ring, polygon, or arc structure arranged along an edge of the film layer. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中該基底和該阻擋結構包括相同的材料。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein the substrate and the blocking structure comprise the same material. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中在該基底上形成該犧牲層的步驟包括:沉積一犧牲材料於該基底和該阻擋結構上;以及平坦化該犧牲材料,以暴露出該阻擋結構。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein the step of forming the sacrificial layer on the substrate includes: depositing a sacrificial material on the substrate and the barrier structure; and planarizing the sacrificial layer Material to expose the barrier structure. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中該膜層為一多層結構,該膜層包括:一基層;一介電層,設置在該基層上;二導電層,堆疊在該基層上;以及一壓電層,設置在該些導電層之間。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein the film layer is a multilayer structure, and the film layer includes: a base layer; a dielectric layer disposed on the base layer; and two conductive layers A layer is stacked on the base layer; and a piezoelectric layer is arranged between the conductive layers. 如請求項11所述的製作壓電微機械超聲波換能器的方法,進一步包括形成穿透該膜層的一截斷部。 The method of manufacturing a piezoelectric micromachined ultrasonic transducer as described in claim 11, further comprising forming a cut-off portion penetrating the film layer. 如請求項16所述的製作壓電微機械超聲波換能器的方法,其中該阻擋結構沿著該截斷部的周邊設置。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 16, wherein the blocking structure is arranged along the periphery of the cut-off part. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中當在該基底上形成該犧牲層的步驟完成時,該犧牲層包括:一第一部分,被該阻擋結構圍繞;以及一第二部分,藉由該阻擋結構而與該第一部分分隔。 The method for manufacturing a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein when the step of forming the sacrificial layer on the substrate is completed, the sacrificial layer includes: a first part surrounded by the barrier structure; and A second part is separated from the first part by the blocking structure. 如請求項18所述的製作壓電微機械超聲波換能器的方法,其中,當移除暴露出於該空腔的該犧牲層的該部分的步驟完成時,該犧牲層的該第二部分係被保留於該基底上。 The method of manufacturing a piezoelectric micromechanical ultrasonic transducer according to claim 18, wherein, when the step of removing the portion of the sacrificial layer exposed from the cavity is completed, the second portion of the sacrificial layer The line is retained on the substrate. 如請求項11所述的製作壓電微機械超聲波換能器的方法,其中,在移除暴露出於該空腔的該犧牲層的該部分的步驟中,該犧牲層和該阻擋結構之間的蝕刻選擇比大於10。 The method for fabricating a piezoelectric micromachined ultrasonic transducer according to claim 11, wherein, in the step of removing the portion of the sacrificial layer exposed to the cavity, there is a gap between the sacrificial layer and the barrier structure The etching selection ratio is greater than 10.
TW109122700A 2020-07-06 2020-07-06 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same TWI747362B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109122700A TWI747362B (en) 2020-07-06 2020-07-06 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109122700A TWI747362B (en) 2020-07-06 2020-07-06 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Publications (2)

Publication Number Publication Date
TWI747362B true TWI747362B (en) 2021-11-21
TW202203480A TW202203480A (en) 2022-01-16

Family

ID=79907756

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109122700A TWI747362B (en) 2020-07-06 2020-07-06 Piezoelectric micromachined ultrasonic transducer and method of fabricating the same

Country Status (1)

Country Link
TW (1) TWI747362B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140214209A1 (en) * 2011-11-01 2014-07-31 Denso Corporation Complex device and robot hand drive control apparatus
US20200194658A1 (en) * 2017-11-16 2020-06-18 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140214209A1 (en) * 2011-11-01 2014-07-31 Denso Corporation Complex device and robot hand drive control apparatus
US20200194658A1 (en) * 2017-11-16 2020-06-18 Chirp Microsystems, Inc. Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure

Also Published As

Publication number Publication date
TW202203480A (en) 2022-01-16

Similar Documents

Publication Publication Date Title
EP3233311B1 (en) Piezoelectric micromachined ultrasonic transducers with low stress sensitivity and methods of fabrication
US7667374B2 (en) Ultrasonic transducer, ultrasonic probe and method for fabricating the same
US11844282B2 (en) Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure
US8357981B2 (en) Transducer devices having different frequencies based on layer thicknesses and method of fabricating the same
US9437802B2 (en) Multi-layered thin film piezoelectric devices and methods of making the same
US7770279B2 (en) Electrostatic membranes for sensors, ultrasonic transducers incorporating such membranes, and manufacturing methods therefor
US8526642B2 (en) Piezoelectric micro speaker including weight attached to vibrating membrane and method of manufacturing the same
US8546894B2 (en) Capacitive micromachined ultrasonic transducer comprising electrode on flexible membrane
CN110099344B (en) MEMS structure
TW201921646A (en) Ultrasonic transducers in complementary metal oxide semiconductor (CMOS) wafers and related apparatus and methods
JP2010074143A (en) Method of fabricating electromechanical device at least including one active element
US11631800B2 (en) Piezoelectric MEMS devices and methods of forming thereof
WO2018037730A1 (en) Capacitive micromachined ultrasonic transducer and ultrasonic imaging apparatus comprising same
Sadeghpour et al. Bendable piezoelectric micromachined ultrasound transducer (PMUT) arrays based on silicon-on-insulator (SOI) technology
TWI747362B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
US11498097B2 (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
TWI732688B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
US11759823B2 (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
TWI726800B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
US11904356B2 (en) Ultrasonic transducer, manufacturing method thereof, and ultrasonic imaging device
CN113896165A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
US11890643B2 (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
CN114105082A (en) Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof
JP2020151796A (en) Method of manufacturing oscillator substrate and oscillator substrate
US20240235512A9 (en) Micro-electro-mechanical system device and piezoelectric composite stack thereof