TWI726800B - Piezoelectric micromachined ultrasonic transducer and method of fabricating the same - Google Patents
Piezoelectric micromachined ultrasonic transducer and method of fabricating the same Download PDFInfo
- Publication number
- TWI726800B TWI726800B TW109128951A TW109128951A TWI726800B TW I726800 B TWI726800 B TW I726800B TW 109128951 A TW109128951 A TW 109128951A TW 109128951 A TW109128951 A TW 109128951A TW I726800 B TWI726800 B TW I726800B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- piezoelectric
- substrate
- ultrasonic transducer
- cavity
- Prior art date
Links
Images
Landscapes
- Transducers For Ultrasonic Waves (AREA)
Abstract
Description
本揭露係關於一種微機電系統(Micro Electro Mechanical System,MEMS)的技術領域,特別是關於一種壓電微機械超聲波換能器(PMUT)及其製作方法。 This disclosure relates to the technical field of a Micro Electro Mechanical System (MEMS), and particularly relates to a piezoelectric micro-mechanical ultrasonic transducer (PMUT) and a manufacturing method thereof.
在過去的幾十年裡,微機械超聲波換能器(Micro Machined Transducer,MUTs)受到了廣泛的研究,並成為各種消費電子產品的重要組成,例如是指紋感測器、鄰近(proximity)感測器和手勢感測器中的組成部件。一般來說,MUTs可以被分為兩大類,例如是電容式微機械超聲波換能器(CMUTs)和壓電式微機械超聲波換能器(PMUTs)。對於典型的壓電式微機械超聲波換能器而言,壓電式微機械超聲波換能器包括由彈性材料、電極和壓電材料所構成的膜層,此膜層會被設置在作為聲波諧振器的空腔上,以提升壓電式微機械超聲波換能器的聲學性能。在壓電式微機械超聲波換能器運作的過程中,經由膜層的振動而產生的超聲波會從壓電式微機械超聲波換能器而被傳遞至目標物,然後壓電式微機械超聲波換能器可以偵測超聲波撞擊目標物後而產生的反射聲波。 In the past few decades, Micro Machined Transducers (MUTs) have been extensively studied and have become an important component of various consumer electronics products, such as fingerprint sensors and proximity (proximity) sensing. Component parts of the device and gesture sensor. Generally speaking, MUTs can be divided into two categories, such as capacitive micromachined ultrasonic transducers (CMUTs) and piezoelectric micromachined ultrasonic transducers (PMUTs). For a typical piezoelectric micromechanical ultrasonic transducer, the piezoelectric micromechanical ultrasonic transducer includes a film layer composed of elastic materials, electrodes, and piezoelectric materials. This film layer is set on the acoustic wave resonator. On the cavity to improve the acoustic performance of the piezoelectric micromachined ultrasonic transducer. During the operation of the piezoelectric micro-machined ultrasonic transducer, the ultrasonic waves generated by the vibration of the film will be transmitted from the piezoelectric micro-machined ultrasonic transducer to the target, and then the piezoelectric micro-machined ultrasonic transducer can Detect the reflected sound waves generated by ultrasonic waves hitting the target.
通常,壓電式微機械超聲波換能器會在膜層的彎曲共振頻率下運作,此彎曲共振頻率可透過選擇正確的材料、膜的尺寸和厚度來決定。因此, 單個壓電式微機械超聲波換能器的共振頻率的良好匹配是正常運作的必要條件。對於習知的PMUT,為了調控膜層的彎曲共振頻率,設置在空腔上的膜層通常會包括具有所需彈性的彈性層,且此彈性層會被設置於膜層的底部,而膜層的電極和壓電層則通常會被設置在彈性層上。然而,由於膜層中的壓電層的品質好壞對於其下方層(例如彈性層)的表面紋理非常敏感,因此在彈性層的材料以及其製程存在著諸多的限制。因此,即便可以將膜層製作為包括彈性層的結構,但仍難以自由地調控PMUT的共振頻率。 Generally, the piezoelectric micromachined ultrasonic transducer will operate at the bending resonance frequency of the film. The bending resonance frequency can be determined by selecting the correct material, the size and thickness of the film. therefore, A good match of the resonance frequency of a single piezoelectric micromachined ultrasonic transducer is a necessary condition for normal operation. For the conventional PMUT, in order to control the bending resonance frequency of the film layer, the film layer disposed on the cavity usually includes an elastic layer with required elasticity, and the elastic layer is disposed at the bottom of the film layer, and the film layer The electrodes and piezoelectric layer are usually placed on the elastic layer. However, since the quality of the piezoelectric layer in the film layer is very sensitive to the surface texture of the underlying layer (such as the elastic layer), there are many restrictions on the material of the elastic layer and its manufacturing process. Therefore, even if the film layer can be made into a structure including an elastic layer, it is still difficult to freely control the resonance frequency of the PMUT.
因此,需要提供一種改進的PMUT及其製作方法,以解決習知PMUT中所面臨的問題。 Therefore, it is necessary to provide an improved PMUT and a manufacturing method thereof to solve the problems faced in the conventional PMUT.
有鑑於此,有必要提供一種改良的PMUT及其製作方法,其能夠任意地調控PMUT的膜層的彈性。 In view of this, it is necessary to provide an improved PMUT and a manufacturing method thereof, which can arbitrarily regulate the elasticity of the film layer of the PMUT.
根據本揭露的一實施例,一種PMUT包括基板、膜層和犧牲層。基板具有穿透基板的空腔。膜層設置在空腔上方並且包括第一壓電層、底部電極、頂部電極及第二壓電層。第一壓電層設置在空腔上方並且包括錨定部,其中第一壓電層的錨定部與基板直接接觸。底部電極設置在第一壓電層上方。頂部電極設置在底部電極上方。第二壓電層設置在底部電極和頂部電極之間。犧牲層設置在基板和第一壓電層之間,其中犧牲層的垂直投影不重疊於設置在空腔正上方的膜層的部分垂直投影。 According to an embodiment of the present disclosure, a PMUT includes a substrate, a film layer, and a sacrificial layer. The substrate has a cavity penetrating the substrate. The film layer is disposed above the cavity and includes a first piezoelectric layer, a bottom electrode, a top electrode, and a second piezoelectric layer. The first piezoelectric layer is disposed above the cavity and includes an anchor portion, wherein the anchor portion of the first piezoelectric layer is in direct contact with the substrate. The bottom electrode is arranged above the first piezoelectric layer. The top electrode is arranged above the bottom electrode. The second piezoelectric layer is provided between the bottom electrode and the top electrode. The sacrificial layer is arranged between the substrate and the first piezoelectric layer, wherein the vertical projection of the sacrificial layer does not overlap with the vertical projection of the film layer directly above the cavity.
根據本揭露的另一實施例,揭露了一種製作PMUT的方法,包括以下步驟。首先,提供基板,並且在基板上形成犧牲層,其中犧牲層包括暴露基板的至少一孔洞。然後,在至少一孔洞中和犧牲層上形成壓電層。之後,形成穿透基板的空腔,以暴露出犧牲層的部分。之後,使用壓電層作為蝕刻停止結構, 以去除犧牲層從空腔暴露出的部分。 According to another embodiment of the present disclosure, a method of manufacturing PMUT is disclosed, including the following steps. First, a substrate is provided, and a sacrificial layer is formed on the substrate, wherein the sacrificial layer includes at least one hole exposing the substrate. Then, a piezoelectric layer is formed in the at least one hole and on the sacrificial layer. After that, a cavity penetrating the substrate is formed to expose a portion of the sacrificial layer. After that, the piezoelectric layer is used as an etching stop structure, To remove the exposed part of the sacrificial layer from the cavity.
根據本揭露的實施例,彈性層不會被設置在基板和膜層之間,而是會被設置在膜層的上部。因此,膜層中的壓電層的結晶度不再會受到彈性層的影響,因而得以自由地調控PMUT中膜層的彈性。 According to the embodiment of the present disclosure, the elastic layer will not be arranged between the substrate and the film layer, but will be arranged on the upper part of the film layer. Therefore, the crystallinity of the piezoelectric layer in the film layer will no longer be affected by the elastic layer, and thus the elasticity of the film layer in the PMUT can be freely controlled.
100:壓電微機械超聲波換能器(PMUT) 100: Piezoelectric micromachined ultrasonic transducer (PMUT)
102:基板 102: substrate
102A:頂面 102A: Top surface
102B:底面 102B: bottom surface
106:膜層 106: Membrane
114:第一接觸墊 114: first contact pad
116:第二接觸墊 116: second contact pad
120:空腔 120: Cavity
120e:邊緣 120e: Edge
124:犧牲層 124: Sacrifice Layer
126:孔洞 126: Hole
126S:側壁 126S: side wall
132:第一壓電層 132: The first piezoelectric layer
134:底部電極 134: bottom electrode
136:第二壓電層 136: second piezoelectric layer
138:頂部電極 138: Top electrode
140:鈍化層 140: passivation layer
140A:頂面 140A: Top surface
140S:側壁 140S: side wall
142:彈性層 142: Elastic layer
200:方法 200: method
202:步驟 202: Step
204:步驟 204: Step
206:步驟 206: Step
208:步驟 208: Step
210:步驟 210: Step
D:距離 D: distance
O:開口 O: opening
θ 1:角度 θ 1: Angle
θ 2:角度 θ 2: Angle
為了使下文更容易被理解,在閱讀本揭露時可同時參考圖式及其詳細文字說明。透過本文中之具體實施例並參考相對應的圖式,俾以詳細解說本揭露之具體實施例,並用以闡述本揭露之具體實施例之作用原理。此外,為了清楚起見,圖式中的各特徵可能未按照實際的比例繪製,因此某些圖式中的部分特徵的尺寸可能被刻意放大或縮小。 In order to make the following easier to understand, the drawings and detailed text descriptions can be referred to when reading this disclosure. Through the specific embodiments in this text and with reference to the corresponding drawings, the specific embodiments of the present disclosure are explained in detail, and the principle of the specific embodiments of the present disclosure is explained. In addition, for the sake of clarity, the features in the drawings may not be drawn according to the actual scale, so the size of some features in some drawings may be deliberately enlarged or reduced.
第1圖是根據本揭露的一實施例所繪示的壓電微機械超聲波換能器(PMUT)的俯視示意圖。 FIG. 1 is a schematic top view of a piezoelectric micromachined ultrasonic transducer (PMUT) according to an embodiment of the disclosure.
第2圖是根據本揭露的一實施例沿著第1圖的切線A-A’所繪示的剖面示意圖。 Fig. 2 is a schematic cross-sectional view along the tangent line A-A' of Fig. 1 according to an embodiment of the present disclosure.
第3圖是根據本揭露的一實施例所繪示的在基板上形成犧牲層後的剖面示意圖。 FIG. 3 is a schematic cross-sectional view after a sacrificial layer is formed on the substrate according to an embodiment of the disclosure.
第4圖是在基板上形成膜層之後的剖面示意圖。 Figure 4 is a schematic cross-sectional view after a film layer is formed on the substrate.
第5圖是在膜層上形成彈性層之後的剖面示意圖。 Figure 5 is a schematic cross-sectional view after the elastic layer is formed on the film layer.
第6圖是根據本揭露的一實施例所繪示的在形成穿透基板的空腔之後的剖面示意圖。 FIG. 6 is a schematic cross-sectional view after a cavity penetrating the substrate is formed according to an embodiment of the disclosure.
第7圖是根據本揭露的一實施例所繪示的製作PMUT的方法的流程圖。 FIG. 7 is a flowchart of a method of making PMUT according to an embodiment of the disclosure.
本揭露提供了數個不同的實施例,可用於實現本揭露的不同特徵。為簡化說明起見,本揭露也同時描述了特定構件與設置的範例。提供這些實施例的目的僅在於示意,而非予以任何限制。舉例而言,下文中針對「第一特徵形成在第二特徵上或上方」的敘述,其可以是指「第一特徵與第二特徵直接接觸」,也可以是指「第一特徵與第二特徵間另存在有其他特徵」,致使第一特徵與第二特徵並不直接接觸。此外,本揭露中的各種實施例可能使用重複的參考符號和/或文字註記。使用這些重複的參考符號與註記是為了使敘述更簡潔和明確,而非用以指示不同的實施例及/或配置之間的關聯性。 The present disclosure provides several different embodiments, which can be used to implement different features of the present disclosure. To simplify the description, this disclosure also describes examples of specific components and settings. The purpose of providing these examples is only for illustration, and not for any limitation. For example, the following description of "the first feature is formed on or above the second feature" can mean "the first feature is in direct contact with the second feature", or it can mean "the first feature is in direct contact with the second feature". There are other features among the features", so that the first feature and the second feature are not in direct contact. In addition, various embodiments in the present disclosure may use repeated reference symbols and/or text annotations. These repeated reference symbols and notes are used to make the description more concise and clear, rather than to indicate the relevance between different embodiments and/or configurations.
另外,針對本揭露中所提及的空間相關的敘述詞彙,例如:「在...之下」,「低」,「下」,「上方」,「之上」,「下」,「頂」,「底」和類似詞彙時,為便於敘述,其用法均在於描述圖式中一個元件或特徵與另一個(或多個)元件或特徵的相對關係。除了圖式中所顯示的擺向外,這些空間相關詞彙也用來描述半導體裝置在使用中以及操作時的可能擺向。隨著半導體裝置的擺向的不同(旋轉90度或其它方位),用以描述其擺向的空間相關敘述亦應透過類似的方式予以解釋。 In addition, regarding the space-related narrative vocabulary mentioned in this disclosure, for example: "below", "low", "below", "above", "above", "below", "top" "," "bottom" and similar words, for ease of description, their usage is to describe the relative relationship between one element or feature and another (or more) elements or features in the drawing. In addition to the swing outward shown in the diagram, these spatially related words are also used to describe the possible swing directions of the semiconductor device during use and operation. As the swing direction of the semiconductor device is different (rotated by 90 degrees or other orientations), the space-related narrative used to describe its swing direction should also be interpreted in a similar way.
雖然本揭露使用第一、第二、第三等等用詞,以敘述種種元件、部件、區域、層、及/或區塊(section),但應了解此等元件、部件、區域、層、及/或區塊不應被此等用詞所限制。此等用詞僅是用以區分某一元件、部件、區域、層、及/或區塊與另一個元件、部件、區域、層、及/或區塊,其本身並不意含及代表該元件有任何之前的序數,也不代表某一元件與另一元件的排列順序、或是製造方法上的順序。因此,在不背離本揭露之具體實施例之範疇下,下列所討論之第一元件、部件、區域、層、或區塊亦可以第二元件、部件、區域、層、或區塊之詞稱之。 Although this disclosure uses terms such as first, second, and third to describe various elements, components, regions, layers, and/or sections, it should be understood that these elements, components, regions, layers, And/or blocks should not be restricted by these terms. These terms are only used to distinguish an element, component, region, layer, and/or block from another element, component, region, layer, and/or block, and they do not mean or represent the element. Any previous ordinal number does not represent the arrangement order of a component and another component, or the order in the manufacturing method. Therefore, without departing from the scope of the specific embodiments of the present disclosure, the first element, component, region, layer, or block discussed below can also be referred to as the second element, component, region, layer, or block It.
本揭露中所提及的「約」或「實質上」之用語通常表示在一給定值或範圍的20%之內,較佳是10%之內,且更佳是5%之內,或3%之內,或2%之內,或1%之內,或0.5%之內。應注意的是,說明書中所提供的數值範圍、數量、數值及百分比係為大約的數量,亦即在沒有特定說明「約」或「實質上」的情況下,仍可隱含「約」或「實質上」之含義。 The term "about" or "substantially" mentioned in this disclosure usually means within 20% of a given value or range, preferably within 10%, and more preferably within 5%, or Within 3%, or within 2%, or within 1%, or within 0.5%. It should be noted that the numerical ranges, quantities, values, and percentages provided in the description are approximate quantities, that is, without a specific description of "about" or "substantially", the "about" or "about" can still be implied. The meaning of "substantially".
下文中所描述之步驟/流程中的特定步驟或是方塊層次係為例示。根據設計上的偏好,下文中所描述之步驟/流程中的特定步驟或是方塊層次可以被重新排列。進一步而言,部分方塊可以被整併或是刪除。又,下文的方法請求項係以簡單順序列出上述不同方塊的對應元件,且此方法請求項不應被限定為必須按照上述的特定步驟或是方塊層次。 The specific steps or block levels in the steps/processes described below are examples. According to design preferences, specific steps or block levels in the steps/processes described below can be rearranged. Furthermore, some blocks can be merged or deleted. In addition, the following method request items list the corresponding elements of the above different blocks in a simple order, and this method request item should not be limited to the specific steps or block levels described above.
雖然下文係藉由具體實施例以描述本揭露的發明,然而本揭露的發明原理係由本案的深申請專利範圍所界定,因此亦可被應用至未被具體描述於說明書中的實施例。此外,為了不致使本發明之精神晦澀難懂,特定的細節不會被記載於說明書中,該些未被記載的細節係屬於所屬技術領域中具有通常知識者的知識範圍。 Although specific embodiments are used to describe the invention of the present disclosure below, the principles of the invention of the present disclosure are defined by the deep application patent scope of this case, and therefore can also be applied to embodiments that are not specifically described in the specification. In addition, in order not to obscure the spirit of the present invention, specific details will not be described in the specification, and the undescribed details belong to the knowledge range of those with ordinary knowledge in the technical field.
第1圖是根據本揭露的一實施例所繪示的壓電微機械超聲波換能器(PMUT)的俯視示意圖。參照第1圖,壓電微機械超聲波換能器(PMUT)100至少包括基板102、穿過基板102而形成的空腔120、沿空腔120的開口設置的蝕刻停止結構(未繪示出)、被設置在空腔120上的膜層(未繪示出)(例如多層結構)、被設置在膜層上並和空腔120分離的彈性層142。根據本揭露的一實施例,沿著空腔120的開口所設置的蝕刻停止結構可以是從膜層的底表面突出的環形結構,使得膜層可以被附著至基板102。蝕刻停止結構的形狀不限於此,蝕刻停止結構亦可以是沿著空腔120的開口而設置的多邊形或弧形。設置在相對側的第一接觸墊114和第二接觸墊116可以分別電耦合至膜層的電極。此外,為了避免第一接觸墊114
和第二接觸墊116之間產生不必要的寄生電容,第一接觸墊114和第二接觸墊116的尺寸可盡可能的縮小,但不限於此。根據本揭露的一實施例,第一接觸墊114和第二接觸墊116可以被設置在膜層106的同一側或任何位置,只要第一接觸墊114和第二接觸墊116可以電耦合至膜層的電極。額外的導電跡線(未示出)可以被設置在基板102上,並且電耦合至第一接觸墊114和第二接觸墊116,以便將電訊號傳輸到膜層中或從膜層中傳輸出來。在PMUT 100的操作過程中,當聲波對於膜層施加聲壓或者電訊號被施加到膜層時,膜層可以產生振動。藉由使用蝕刻停止結構,可以精確地限定空腔120上方的膜層的尺寸和位置,而不論膜層下方的空腔120的尺寸和位置。因此,可以有效地增加各PUMT 100的共振頻率的均勻性。
FIG. 1 is a schematic top view of a piezoelectric micromachined ultrasonic transducer (PMUT) according to an embodiment of the disclosure. Referring to Figure 1, a piezoelectric micromachined ultrasonic transducer (PMUT) 100 includes at least a
第2圖是根據揭露一實施例沿著第1圖的切線A-A’所繪示的的剖面示意圖。參考第2圖,蝕刻停止結構可以是錨定到基板102並與空腔120直接接觸的第一壓電層132的一部分,其可以被稱作第一壓電層132的「錨定部」。在基板102的頂面102A上的空腔120的開口O可以視為被第一壓電層132所密封。基板102可以是半導體基板,例如塊矽基板,但不限於此。基板102可以是單晶矽、多晶矽、非晶矽、玻璃、陶瓷材料或其他合適的材料。根據本揭露的一實施例,基板102可以是SOI基板。犧牲層124可以設置在基板102和第一壓電層132之間,並且犧牲層124的成分可以不同於基板102和第一壓電層132的成分。根據本揭露的一實施例,在基板102之組成係包括半導體材料,例如矽,的情況下,犧牲層124可以例如是氧化矽(SiOx)或二氧化矽(SiO2)的介電層。此外,根據本揭露的另一實施例,可以省略大部分的犧牲層124,以增加第一壓電層132和基板102之間的接觸區域。膜層106,例如是包括底部電極134、第二壓電層136和頂部電極138的多層結構,可以被設置在第一壓電層132上。膜層106的部分可以被設置在空腔120的上方,且空腔120包括靠近膜層106的邊緣120e。根據本揭露的一實施例,犧牲
層124的垂直投影可以不重疊於設置在空腔120正上方的膜層106的垂直投影。PMUT 100的底部電極134和頂部電極138可以分別電耦合至第一接觸墊114和第二接觸墊116。選擇性的鈍化層140可以進一步被設置在膜層106上,且其組成可以是介電層。具有所需彈性(elasticity)的彈性層可以被設置在選擇性的鈍化層140上,使得當聲波或電訊號施加到PMUT 100時,膜層106可以在特定頻率振動。應當注意,由於彈性層142的彈性高於彈性層142下其他層別的彈性,因此膜層106的機械行為主要由彈性層142主導。
FIG. 2 is a schematic cross-sectional view taken along the tangent line AA′ of FIG. 1 according to an embodiment of the disclosure. Referring to FIG. 2, the etch stop structure may be a part of the first
為了使本技術領域中具有通常知識者能夠據以實現本揭露的發明,下文進一步描述製作壓電微機械超聲波換能器的方法。此外,由於壓電微機械超聲波換能器可以透過標準的CMOS製程製作,因此在壓電微機械超聲波換能器的同一基底上也可以透過相同的CMOS製程製作相關的電子元件,如場效電晶體、放大器和積體電路。 In order to enable those with ordinary knowledge in the technical field to implement the disclosed invention, the method of manufacturing a piezoelectric micromechanical ultrasonic transducer is further described below. In addition, because piezoelectric micromachined ultrasonic transducers can be manufactured through standard CMOS processes, related electronic components, such as field-effect devices, can also be manufactured through the same CMOS process on the same substrate of piezoelectric micromachined ultrasonic transducers. Crystals, amplifiers and integrated circuits.
第3圖是根據本揭露一實施例在基板上形成犧牲層後的剖面示意圖。第7圖是根據本揭露一實施例所繪示的製作壓電微機械超聲波換能器的方法流程圖。參考第3圖,在方法200的步驟202中,提供基板102,根據不同的需求,基板102可以選擇自半導體基板或絕緣基板。根據本揭露的一實施例,基板102可以是單晶矽基板。然後,在步驟204中,在基板102的頂面102A上沉積犧牲層124。犧牲層124中可以有至少兩個孔洞126,使得基板102的部分可以從孔洞126的底部暴露出。因為可透過光微影製程而精確定義孔洞126的位置,所以可以精確地控制兩個孔洞126之間的距離。應當注意的是,在後續製程中,一些層會被沉積在犧牲層124上,而為了增加這些層的電性表現或結晶度,犧牲層124的側壁126S和基板102的頂面102A之間的角度θ 1應當被設定在10°-40°的範圍內,例如10°、20°、30°或40°,但不限於此。
FIG. 3 is a schematic cross-sectional view after forming a sacrificial layer on a substrate according to an embodiment of the disclosure. FIG. 7 is a flowchart of a method for manufacturing a piezoelectric micromachined ultrasonic transducer according to an embodiment of the disclosure. Referring to FIG. 3, in
第4圖是在基板上形成膜層後的剖面示意圖。在步驟206中,第一壓
電層132可以被沉積在基板102上,並填充至犧牲層124的孔洞126中。第一壓電層132可以由絕緣材料製成,例如氮化鋁(AlN)、摻鈧氮化鋁(ScAlN)、鋯鈦酸鉛(PZT)、氧化鋅(ZnO)、聚偏二氟乙烯(polyvinylidene fluoride,PVDF)、鈮酸錳鉛-鈦酸鉛(lead mangnesium niobate-lead titanate,PMN-PT),但不限於此。根據本揭露的一實施例,第一壓電層132也可以用作後續沉積在第一壓電層132上的某一層的晶種層。此外,第一壓電層132的表面紋理可能會影響沉積在其上的一些層的結晶度。之後,底部電極134、第二壓電層136、頂部電極138和鈍化層140可以依序沉積在第一壓電層132上。底部電極134和頂部電極138可以是由鉬(Mo)、鈦(Ti)、鋁(Al)或鉑(Pt)所組成的相同或不同的材料,但不限於此。第二壓電層136可以由氮化鋁(AlN)、摻雜鈧的氮化鋁(ScAlN)、鋯鈦酸鉛(PZT)、氧化鋅(ZnO)、聚偏二氟乙烯(PVDF)、鈮酸鉛-鈦酸鉛(PMN-PT)組成,但不限於此。鈍化層140可以是由絕緣材料製成的選擇性層,例如SiO2、SiON或AlN,但不限於此。此外,第二壓電層136的材料可以和第一壓電層132的材料相同。此外,多個凹槽可以被形成在鈍化層140的表面上,並且各凹槽可以在鈍化層140的側壁140S和鈍化層140的頂面140A之間具有5°-35°的角度θ 2。可以在膜層106中形成孔洞,以分別暴露出底部電極134和頂部電極138,然後可以將接觸墊,即第一接觸墊114和第二接觸墊116填充到各孔洞中。如此,第一接觸墊114可以電耦合至底部電極134,而第二接觸墊116可以電耦合至頂部電極138。
Figure 4 is a schematic cross-sectional view after a film layer is formed on the substrate. In
第5圖是在膜層上形成彈性層後的剖面示意圖。參考第5圖,具有所需彈性的層可以被沉積在膜層106上,然後被圖案化,以形成與第一接觸墊114和第二接觸墊116分離的彈性層142。彈性層142可以由具有合適彈性的材料組成,例如結晶矽(c-Si)、非晶矽(a-Si)、富矽氮化物(SiNx)、碳化矽(SiC)、鉬(Mo)、鈦(Ti)、鋁(Al)或鉑(Pt),但不限於此。由於彈性層142不會被設置在第二壓電層136下方,因此第二壓電層136的結晶度不再會受到彈性層142的表面紋理的影響。
Figure 5 is a schematic cross-sectional view after the elastic layer is formed on the film layer. Referring to FIG. 5, a layer with desired elasticity may be deposited on the
第6圖是根據本揭露的一實施例形成穿透基板的空腔後的剖面示意圖。參考第6圖,在步驟208中,透過蝕刻基板102的背面,以形成穿透基板102的空腔120。因此,犧牲層124的部分底面可以自空腔120被暴露出。空腔120在基板102的前側可具有開口O,此開口O係由鄰近於膜層106的空腔120的邊緣120e所定義出,並且開口O所定義出的長度可小於由第一壓電層132的錨定部所定義出的距離D。由於用於定義PMUT中的膜層的位置的距離D主要係由第一壓電層132的錨定部來決定,所以即使開口O的位置或尺寸有些許的偏移,PMUT的膜層的位置和尺寸也不會改變。
FIG. 6 is a schematic cross-sectional view after a cavity penetrating the substrate is formed according to an embodiment of the disclosure. Referring to FIG. 6, in
之後,在步驟210中,藉由利用第一壓電層132作為蝕刻停止結構,施行蝕刻製程,以去除從空腔120暴露出的犧牲層124。當犧牲層124的組成為氧化矽時,蝕刻劑可以是氣態氫氟酸(Vapor HF,VHF)。在去除從空腔120暴露出的犧牲層124的過程中,由於犧牲層124對於第一壓電層132的蝕刻選擇比大於10,所以可以僅去除與蝕刻劑直接接觸的犧牲層124。此外,由於第一壓電層132的錨定部可阻止蝕刻劑到達犧牲層124的剩餘部分,因此可以避免犧牲層的剩餘部分在蝕刻過程中被去除。結果,可以獲得如第2圖所示的結構。
Then, in
根據本揭露的實施例,彈性層不會被設置在基板和膜層之間,而是被設置在膜層的頂面上。因此,膜層中的壓電層的結晶度不再會被彈性層的表面紋理影響,因而得以自由調控PMUT的膜層的整體彈性。 According to the embodiment of the present disclosure, the elastic layer is not disposed between the substrate and the film layer, but is disposed on the top surface of the film layer. Therefore, the crystallinity of the piezoelectric layer in the film layer will no longer be affected by the surface texture of the elastic layer, so that the overall elasticity of the PMUT film layer can be freely controlled.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The foregoing descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the scope of the patent application of the present invention should fall within the scope of the present invention.
100:壓電微機械超聲波換能器(PMUT) 100: Piezoelectric micromachined ultrasonic transducer (PMUT)
102:基板 102: substrate
102A:頂面 102A: Top surface
102B:底面 102B: bottom surface
106:膜層 106: Membrane
114:第一接觸墊 114: first contact pad
116:第二接觸墊 116: second contact pad
120:空腔 120: Cavity
120e:邊緣 120e: Edge
124:犧牲層 124: Sacrifice Layer
126:孔洞 126: Hole
126S:側壁 126S: side wall
132:第一壓電層 132: The first piezoelectric layer
134:底部電極 134: bottom electrode
136:第二壓電層 136: second piezoelectric layer
138:頂部電極 138: Top electrode
140:鈍化層 140: passivation layer
142:彈性層 142: Elastic layer
D:距離 D: distance
O:開口 O: opening
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109128951A TWI726800B (en) | 2020-08-25 | 2020-08-25 | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW109128951A TWI726800B (en) | 2020-08-25 | 2020-08-25 | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI726800B true TWI726800B (en) | 2021-05-01 |
TW202209718A TW202209718A (en) | 2022-03-01 |
Family
ID=77036568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW109128951A TWI726800B (en) | 2020-08-25 | 2020-08-25 | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI726800B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050184627A1 (en) * | 2004-01-28 | 2005-08-25 | Kabushiki Kaisha Toshiba | Piezoelectric thin film device and method for manufacturing the same |
-
2020
- 2020-08-25 TW TW109128951A patent/TWI726800B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050184627A1 (en) * | 2004-01-28 | 2005-08-25 | Kabushiki Kaisha Toshiba | Piezoelectric thin film device and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
TW202209718A (en) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9938133B2 (en) | System and method for a comb-drive MEMS device | |
JP4744849B2 (en) | Semiconductor device | |
US11844282B2 (en) | Piezoelectric micromachined ultrasonic transducer with a patterned membrane structure | |
JP4471856B2 (en) | Ultrasonic transducer and manufacturing method thereof | |
JP2007074263A (en) | Ultrasonic transducer and manufacturing method therefor | |
CN110149574B (en) | MEMS structure | |
JP2010074143A (en) | Method of fabricating electromechanical device at least including one active element | |
US11759823B2 (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
WO2018037730A1 (en) | Capacitive micromachined ultrasonic transducer and ultrasonic imaging apparatus comprising same | |
US11631800B2 (en) | Piezoelectric MEMS devices and methods of forming thereof | |
US11904356B2 (en) | Ultrasonic transducer, manufacturing method thereof, and ultrasonic imaging device | |
JP2005051689A (en) | Ultrasonic array sensor, and method of manufacturing the same and ultrasonic sensor | |
TWI726800B (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
US20200222940A1 (en) | Ultrasonic Transducer, Manufacturing Method Thereof, and Ultrasonic Imaging Apparatus | |
US11498097B2 (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
TWI732688B (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
TWI747362B (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
JP2005051690A (en) | Ultrasonic array sensor and method of manufacturing the same | |
CN114014259B (en) | Method for manufacturing semiconductor structure | |
WO2018128072A1 (en) | Ultrasonic transducer and ultrasonic imaging device | |
CN114105082A (en) | Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof | |
JP2005039720A (en) | Piezoelectric ultrasonic sensor element | |
US11890643B2 (en) | Piezoelectric micromachined ultrasonic transducer and method of fabricating the same | |
CN113896165A (en) | Piezoelectric micromechanical ultrasonic transducer and manufacturing method thereof | |
JP2021027538A (en) | Semiconductor chip |