TWI593063B - Biometrics sensor and method of manufacturing the same - Google Patents

Biometrics sensor and method of manufacturing the same Download PDF

Info

Publication number
TWI593063B
TWI593063B TW105134921A TW105134921A TWI593063B TW I593063 B TWI593063 B TW I593063B TW 105134921 A TW105134921 A TW 105134921A TW 105134921 A TW105134921 A TW 105134921A TW I593063 B TWI593063 B TW I593063B
Authority
TW
Taiwan
Prior art keywords
layer
working
electrode
substrate
cavities
Prior art date
Application number
TW105134921A
Other languages
Chinese (zh)
Other versions
TW201816949A (en
Inventor
吳憲明
Original Assignee
李美燕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李美燕 filed Critical 李美燕
Priority to TW105134921A priority Critical patent/TWI593063B/en
Application granted granted Critical
Publication of TWI593063B publication Critical patent/TWI593063B/en
Publication of TW201816949A publication Critical patent/TW201816949A/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1329Protecting the fingerprint sensor against damage caused by the finger
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing

Description

生物特徵感測器及其製造方法 Biometric sensor and method of manufacturing same

本發明是有關於一種生物特徵感測器及其製造方法,且特別是有關於一種利用先期犧牲層移除製程所製造出的生物特徵感測器及其製造方法。 The present invention relates to a biometric sensor and a method of fabricating the same, and more particularly to a biometric sensor fabricated using a prior sacrificial layer removal process and a method of fabricating the same.

傳統的微機電感測裝置,為了在其中形成許多空腔,可以使用晶圓接合的空腔接合(bonding on cavity)的方式,也可以使用犧牲層蝕刻出犧牲空腔(sacrificial eavity)的技術。舉例而言,傳統使用犧牲層技術製作感測器微結構時,通常都是在接近最後製作步驟即將完成時,利用一個或少量的貫通孔貫通整個感測器結構(包含了多層的材料)而到達犧牲層,再將犧牲層移除掉。為了避免破壞感測器的結構,貫通孔的數量不能太多,甚至貫穿孔位置也必須要設置於結構體側邊,以致於移除犧牲層的距離拉長而延長了蝕刻的時間,這樣產生了兩個非常大的缺點,第一為貫穿孔的蝕刻與位置選擇,因為整體結構的設計變得複雜,如果結構係為多層材料,則貫穿孔製程可能需要針對不同材料選擇不同的蝕刻方式(例如乾濕式蝕刻及配方)而無法一次貫穿,產生了許多額外的成本。第二為延長的犧牲層蝕刻時間會增加成本,且有可能犧牲層蝕刻液會破壞感測器結構的不同結構材料,這使得犧牲層蝕刻液的選擇相當的受限,也同時限制了結構層材料的選擇,這些限制反映到實際 的商業行為就是降低良率,增加成本。另外當犧牲層蝕刻完成後,為了結構層的完整性及穩定性,後續還需要選擇適當材料將該貫穿孔密封,該密封動作在這傳統的製造流程是需要額外的材料及光刻(將部分去除,例如裸露出焊墊(bonding pad),更進一步增加了成本及製程複雜性(降低良率)。 In the conventional microcomputer inductance measuring device, in order to form a plurality of cavities therein, a wafer-bonded bonding on cavity may be used, or a sacrificial eavity technique may be used to etch a sacrificial eavity. For example, when a sensor layer microstructure is conventionally fabricated using a sacrificial layer technique, it is usually used to penetrate the entire sensor structure (including multiple layers of material) with one or a small number of through holes near the final fabrication step. Reach the sacrificial layer and remove the sacrificial layer. In order to avoid damage to the structure of the sensor, the number of through holes cannot be too large, and even the position of the through holes must be disposed on the side of the structure body, so that the distance for removing the sacrificial layer is elongated and the etching time is prolonged, thus generating Two very large drawbacks, the first is the etching and position selection of the through holes, because the design of the overall structure becomes complicated. If the structure is a multi-layer material, the through-hole process may require different etching methods for different materials ( For example, dry and wet etching and formulation) cannot be penetrated at one time, resulting in many additional costs. Second, the extended sacrificial layer etching time increases the cost, and it is possible that the sacrificial layer etchant will damage the different structural materials of the sensor structure, which makes the selection of the sacrificial layer etchant relatively limited, and at the same time limits the structural layer. Material selection, these limitations are reflected in the actual The business behavior is to reduce the yield and increase the cost. In addition, after the sacrificial layer is etched, in order to complete the integrity and stability of the structural layer, it is necessary to select a suitable material to seal the through hole. This sealing action requires additional materials and lithography in this conventional manufacturing process (will be part of Removal, such as bare bonding pads, adds further cost and process complexity (reducing yield).

本發明的目的就是為了解決上述問題,並將本發明的創新應用於一種生物特徵感測,使其相較於傳統結構及製造,可以達到良率更高、成本更低。另外,本發明另一目的係提供一單石化製造技術,將感測器結構設置於積體工作電路(IC)上方,可以適合任何標準的半導體製程及材料(特別是犧牲層材料及蝕刻)。 The object of the present invention is to solve the above problems, and to apply the innovation of the present invention to a biometric sensing, which can achieve higher yield and lower cost than conventional structures and manufacturing. In addition, another object of the present invention is to provide a single petrochemical manufacturing technique in which the sensor structure is disposed above an integrated working circuit (IC) and can be adapted to any standard semiconductor process and material (especially sacrificial layer material and etching).

因此,本發明的實施例之一個目的是提供一種利用先期犧牲層移除製程所製造出的生物特徵感測器及其製造方法,在不增加太多光罩及成本的情況下,可以與半導體製程整合,製造出一種低成本及高穩定度的生物特徵感測器。 Accordingly, it is an object of embodiments of the present invention to provide a biometric sensor fabricated using an advanced sacrificial layer removal process and a method of fabricating the same that can be used with a semiconductor without adding too much mask and cost Process integration creates a low cost and high stability biometric sensor.

為達上述目的,本發明的實施例提供一種生物特徵感測器,至少包含:一基板;一基礎結構層,形成於基板上,並具有排列成二維陣列的多個空腔,以及分別與此等空腔連通的多個微通道組,其中各微通道組包含多個微通道;以及一工作結構層,形成於基礎結構層上,並具有局部填入此等微通道組的多個密封部。各密封部包含多個密封塞及一密封蓋,密封蓋將此等密封塞連接在一起,密封塞係填入微通道之中,且密封蓋位於基礎結構層之平坦表面上,使得密封部有部分的材料位於基礎結構層之中。各空腔由基板、基礎結構層及工作結構層所包圍而成,工作結構層感測一生物體的生物特徵。 To achieve the above objective, an embodiment of the present invention provides a biometric sensor including at least: a substrate; a base structure layer formed on the substrate and having a plurality of cavities arranged in a two-dimensional array, and respectively a plurality of microchannel groups in which the cavities are connected, wherein each microchannel group comprises a plurality of microchannels; and a working structural layer formed on the base structural layer and having a plurality of seals partially filling the microchannel groups unit. Each sealing portion comprises a plurality of sealing plugs and a sealing cover, the sealing cover connects the sealing plugs together, the sealing plug is filled into the microchannels, and the sealing cover is located on the flat surface of the base structural layer, so that the sealing portion has Part of the material is located in the infrastructure layer. Each cavity is surrounded by a substrate, a base structure layer and a working structure layer, and the working structure layer senses the biological characteristics of an organism.

本發明的實施例更提供一種生物特徵感測器的製造方法,至少包含以下步驟:提供一基板;於基板上形成一基礎結構母層;於基礎結構母層上形成多個微通道組,其中各微通道組包含多個微通道;透過此等微通道組移除基礎結構母層之多個犧牲層或一個犧牲母層之多個部分,以形成一基礎結構層,以及位於基礎結構層中之此等微通道組及多個排列成二維陣列的多個空腔,使此等微通道組分別與此等空腔連通;以及於基礎結構層上形成一工作結構層,並使工作結構層局部填入此等微通道組而形成多個密封部。各密封部包含多個密封塞及一密封蓋,密封蓋將此等密封塞連接在一起,密封塞係填入微通道之中,且密封蓋位於基礎結構層之平坦表面上,使得密封部有部分的材料位於基礎結構層之中。各空腔由基板、基礎結構層及工作結構層所包圍而成,工作結構層感測一生物體的生物特徵。 The embodiment of the present invention further provides a method for manufacturing a biometric sensor, comprising at least the steps of: providing a substrate; forming a base structure mother layer on the substrate; forming a plurality of microchannel groups on the base structure mother layer, wherein Each microchannel group includes a plurality of microchannels; a plurality of sacrificial layers of the base mother layer or a plurality of portions of a sacrificial parent layer are removed through the microchannel groups to form a base structural layer and located in the infrastructure layer The microchannel groups and the plurality of cavities arranged in a two-dimensional array, such microchannel groups are respectively connected to the cavities; and a working structural layer is formed on the infrastructure layer, and the working structure is The layers are partially filled into the microchannel groups to form a plurality of sealing portions. Each sealing portion comprises a plurality of sealing plugs and a sealing cover, the sealing cover connects the sealing plugs together, the sealing plug is filled into the microchannels, and the sealing cover is located on the flat surface of the base structural layer, so that the sealing portion has Part of the material is located in the infrastructure layer. Each cavity is surrounded by a substrate, a base structure layer and a working structure layer, and the working structure layer senses the biological characteristics of an organism.

藉由本發明的上述實施例,可以製造出一種結構簡單,且能輕易與半導體製程整合的生物特徵感測器,不但可以大量生產,也不會大幅增加製造成本,故有助於降低生物特徵感測器的成本。 With the above embodiments of the present invention, it is possible to manufacture a biometric sensor that is simple in structure and can be easily integrated with a semiconductor process, and can not only be mass-produced, but also does not greatly increase the manufacturing cost, thereby contributing to a reduction in biometrics. The cost of the detector.

為讓本發明之上述內容能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。 In order to make the above description of the present invention more comprehensible, the preferred embodiments of the present invention are described in detail below with reference to the accompanying drawings.

F‧‧‧生物體 F‧‧‧ organisms

W1‧‧‧第一振動波 W1‧‧‧First vibration wave

W2‧‧‧第二振動波 W2‧‧‧second vibration wave

1‧‧‧生物特徵感測器 1‧‧‧Biometric Sensor

10‧‧‧基板 10‧‧‧Substrate

12‧‧‧積體工作電路 12‧‧‧Integrated working circuit

13‧‧‧第一電極 13‧‧‧First electrode

14‧‧‧犧牲層 14‧‧‧ Sacrifice layer

14'‧‧‧犧牲母層 14'‧‧‧sacrificial mother layer

18‧‧‧蝕刻抑止層 18‧‧‧etching inhibition layer

19‧‧‧周邊電路 19‧‧‧ peripheral circuits

20、20'‧‧‧基礎結構層 20, 20'‧‧‧ infrastructure layer

21‧‧‧空腔 21‧‧‧ cavity

22‧‧‧微通道 22‧‧‧Microchannel

23‧‧‧覆蓋層 23‧‧‧ Coverage

30‧‧‧工作結構層 30‧‧‧Working structure

31‧‧‧密封部 31‧‧‧ Sealing Department

31a‧‧‧密封塞 31a‧‧‧ Sealing plug

31b‧‧‧密封蓋 31b‧‧‧ Sealing cover

35‧‧‧壓電振動波工作元 35‧‧‧ Piezoelectric vibration wave working element

35'‧‧‧壓電振動波工作元 35'‧‧‧ Piezoelectric vibration wave working element

39‧‧‧保護層 39‧‧‧Protective layer

50‧‧‧連接墊 50‧‧‧Connecting mat

60‧‧‧基礎結構母層 60‧‧‧Basic structure mother layer

90‧‧‧覆蓋面板 90‧‧‧ Cover panel

351‧‧‧絕緣層 351‧‧‧Insulation

352、352'‧‧‧底電極 352, 352'‧‧‧ bottom electrode

353、353'‧‧‧壓電層 353, 353'‧‧‧ piezoelectric layer

354、354'‧‧‧頂電極 354, 354'‧‧‧ top electrode

圖1顯示依據本發明第一實施例的生物特徵感測器的局部剖面示意圖。 1 shows a partial cross-sectional view of a biometric sensor in accordance with a first embodiment of the present invention.

圖2顯示依據本發明第一實施例的生物特徵感測器的俯視示意圖。 2 shows a top plan view of a biometric sensor in accordance with a first embodiment of the present invention.

圖3顯示依據本發明第二實施例的生物特徵感測器的局部剖面示意圖。 3 is a partial cross-sectional view showing a biometric sensor in accordance with a second embodiment of the present invention.

圖4顯示依據本發明第三實施例的生物特徵感測器的局部剖面示意圖。 4 is a partial cross-sectional view showing a biometric sensor in accordance with a third embodiment of the present invention.

圖5顯示依據本發明第四實施例的生物特徵感測器的局部剖面示意圖。 Figure 5 is a partial cross-sectional view showing a biometric sensor in accordance with a fourth embodiment of the present invention.

圖6A至圖6F顯示依據本發明第一實施例的生物特徵感測器的製造方法的各步驟的局部剖面示意圖。 6A to 6F are partial cross-sectional views showing respective steps of a method of fabricating a biometric sensor according to a first embodiment of the present invention.

圖7A至圖7F顯示依據本發明第五實施例的生物特徵感測器的製造方法的各步驟的局部剖面示意圖。 7A through 7F are partial cross-sectional views showing respective steps of a method of fabricating a biometric sensor in accordance with a fifth embodiment of the present invention.

圖1與圖2分別顯示依據本發明第一實施例的生物特徵感測器1的局部剖面示意圖及俯視示意圖。如圖1與圖2所示,本實施例的生物特徵感測器1至少包含一基板10、一基礎結構層20以及一工作結構層30。 1 and 2 respectively show a partial cross-sectional view and a top plan view of a biometric sensor 1 according to a first embodiment of the present invention. As shown in FIG. 1 and FIG. 2, the biometric sensor 1 of the present embodiment includes at least a substrate 10, a base structure layer 20, and a working structure layer 30.

基板10可以更進一步具有多個積體工作電路12(此非必要條件,另一種實施例概念,也可以利用外接的積體工作電路或形成於基板10周邊的周邊電路19來進行控制與處理,或者周邊電路19可以取代此等多個積體工作電路12)。於一例中,基板10為半導體基板,譬如是矽基板,而積體工作電路12可以利用CMOS半導體製程來完成。基板10在另一實施例中可以是CMOS晶圓,本發明的製造方法都是可以利用晶圓級製造技術來進行大量生產,但本發明當然不限定於此,任何半導體製程都適用於本發明。 The substrate 10 may further have a plurality of integrated working circuits 12 (this non-essential condition, another embodiment concept, may also be controlled and processed by an external integrated working circuit or a peripheral circuit 19 formed around the substrate 10, Alternatively, the peripheral circuit 19 can replace the plurality of integrated working circuits 12). In one example, the substrate 10 is a semiconductor substrate, such as a germanium substrate, and the integrated working circuit 12 can be completed using a CMOS semiconductor process. The substrate 10 may be a CMOS wafer in another embodiment, and the manufacturing method of the present invention may be mass-produced by using wafer level manufacturing technology, but the present invention is of course not limited thereto, and any semiconductor process is applicable to the present invention. .

基礎結構層20形成於基板10上,並具有排列成二維陣列的多個空腔21,以及分別與此等空腔21連通的多個微通道組,其中各微通道組包含多個微通道22。基礎結構層20主要是提供用來形成空 腔21使用,其材料不特別受限,但在本實施例中係為例如CMOS製程的頂層保護層(passivation),可以為氧化矽,或氮化矽,或兩者結合,或其他絕緣材料如氧化鋁、碳化矽,類碳鑽膜等等。同時也可用化學機械拋光(CMP)將該結構頂層平坦化以利後續更好的光刻製程。 The base layer 20 is formed on the substrate 10 and has a plurality of cavities 21 arranged in a two-dimensional array, and a plurality of microchannel groups respectively communicating with the cavities 21, wherein each microchannel group comprises a plurality of microchannels twenty two. The infrastructure layer 20 is primarily provided to form an empty The cavity 21 is used, and the material thereof is not particularly limited, but in the present embodiment, it is a top layer of a CMOS process, which may be ruthenium oxide, or tantalum nitride, or a combination of both, or other insulating materials such as Alumina, tantalum carbide, carbon-like diamond film, etc. The top layer of the structure can also be planarized by chemical mechanical polishing (CMP) for subsequent better lithography processes.

工作結構層30形成於基礎結構層20上,並具有局部填入此等微通道組的此等微通道22的多個密封部31。各空腔21由基板10、基礎結構層20及工作結構層30所包圍而成,該微通道22及該密封部31的設計係為本發明的核心,為了使一犧牲層(如圖6A的標號14所示)以最佳效率的被去除,該微通道22密度為小間距的二維陣列且平均分布於該犧牲層14上方,其一重要設計理念為該小間距G約為該犧牲層的厚度T(也就是空腔21的高度)的兩倍,藉此,當進行該犧牲層蝕刻時,設計蝕刻為等向性(isotropic)蝕刻,則往下蝕刻的深度約略等於側向蝕刻的長度,因此可以最有效率地完成該犧牲層的完全去除。當然也可以配合結構設計的穩定性而微調該G/T比值,至多不超過五倍,以利減少蝕刻時間。同時該微通道的尺寸不可以太大,否則後續的密封部31將不易完成,在本發明的另一重要特徵係為該密封部31不僅可以封口該微通道22,同時封口後的密封部可以提供一接近平面的表層,以利後續材料的製作,在此該微通道22的尺寸在較佳實例中係小於或等於2微米(μm),並且大於或等於0.2微米,於其他實施例中的下限是大於或等於0.3、0.4、0.5、0.6、0.7、0.8、0.9或1.0微米。工作結構層30係電連接至此等積體工作電路12,並感測一生物體F的生物特徵,而積體工作電路12從工作結構層30的感測結果產生多個感測信號給周邊電路19處理。 The working structural layer 30 is formed on the base structural layer 20 and has a plurality of sealing portions 31 that are partially filled into the microchannels 22 of the microchannel groups. Each cavity 21 is surrounded by a substrate 10, a base structure layer 20 and a working structure layer 30. The design of the microchannel 22 and the sealing portion 31 is the core of the invention, in order to make a sacrificial layer (as shown in FIG. 6A). The reference numeral 14 is removed with optimum efficiency. The microchannel 22 has a two-dimensional array of small pitches and is evenly distributed over the sacrificial layer 14. An important design concept is that the small pitch G is about the sacrificial layer. The thickness T (that is, the height of the cavity 21) is twice, whereby when the sacrificial layer etching is performed, the etching is designed to be isotropic etching, and the depth of the etching down is approximately equal to the lateral etching. Length, so complete removal of the sacrificial layer can be done most efficiently. Of course, the G/T ratio can be fine-tuned to the stability of the structural design, up to five times, to reduce the etching time. At the same time, the size of the microchannel may not be too large, otherwise the subsequent sealing portion 31 will not be easily completed. Another important feature of the present invention is that the sealing portion 31 can not only seal the microchannel 22, but also the sealing portion after sealing can be provided. A near planar surface layer to facilitate fabrication of subsequent materials, wherein the size of the microchannel 22 is less than or equal to 2 micrometers (μm) in the preferred embodiment, and greater than or equal to 0.2 micrometers, the lower limit in other embodiments. Is greater than or equal to 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1.0 microns. The working structure layer 30 is electrically connected to the integrated working circuit 12 and senses the biological characteristics of a living body F, and the integrated working circuit 12 generates a plurality of sensing signals from the sensing result of the working structural layer 30 to the peripheral circuit 19 deal with.

於本實施例中,所提供的是一種電容/靜電驅動式生物感 測器,譬如是指紋感測器或血管圖樣感測器,基礎結構層20與各密封部31係由不同材料所組成。譬如,基礎結構層20的材料是絕緣材料(譬如是單一材料),而密封部31的材料是導電材料,譬如是金屬材料,譬如是鋁,也可以是半導體或絕緣材料。因此,基礎結構層20是一平坦化的絕緣層,上面填入鋁來當作密封部31,密封部31與生物體F形成感測電容,利用空腔21的空氣間隙來降低寄生電容的影響。亦即,工作結構層30之各密封部31當作一感測電極使用,此等感測電極分別對應至此等空腔21地排列,且電連接至此等積體工作電路12。於本實施例中,各密封部31包含多個密封塞31a及一密封蓋31b,密封蓋31b將此等密封塞31a連接在一起。密封塞31a係填入微通道22之中。密封蓋31b位於基礎結構層20的平坦表面上。因此,本實施例提供的密封部31中,有部分的材料(密封塞31a)是位於基礎結構層20之中,此一結構是從未被提及的。工作結構層30更可以包含一保護層39,覆蓋此等感測電極。生物體F與此等感測電極形成多個感測電容,藉由感測此等感測電容而獲得此等感測信號。實際應用時,可以將保護層39透過黏膠(未顯示)黏合至一覆蓋面板90,可以譬如是手機的玻璃蓋板(under glass or under cover),或者直接設置於手機的螢幕下方(under display)。值得注意的是,保護層39非為必要元件,亦可將密封部31透過黏膠黏合至該覆蓋面板。圖2的連接墊50形成於空腔21的兩側或周圍,並且電連接至積體工作電路12及各工作結構層30,作信號輸入輸出使用。 In this embodiment, a capacitive/electrostatically driven biological sensation is provided. The detector, such as a fingerprint sensor or a blood vessel pattern sensor, is composed of a different material from the base layer 20 and each sealing portion 31. For example, the material of the base layer 20 is an insulating material (such as a single material), and the material of the sealing portion 31 is a conductive material, such as a metal material, such as aluminum, or a semiconductor or an insulating material. Therefore, the base layer 20 is a flattened insulating layer filled with aluminum as the sealing portion 31, and the sealing portion 31 forms a sensing capacitance with the living body F, and the air gap of the cavity 21 is utilized to reduce the influence of the parasitic capacitance. . That is, the sealing portions 31 of the working structure layer 30 are used as a sensing electrode, and the sensing electrodes are respectively arranged corresponding to the cavities 21 and electrically connected to the integrated working circuits 12. In the present embodiment, each sealing portion 31 includes a plurality of sealing plugs 31a and a sealing cover 31b, and the sealing cover 31b connects the sealing plugs 31a together. The sealing plug 31a is filled into the microchannel 22. The sealing cover 31b is located on the flat surface of the base structural layer 20. Therefore, in the sealing portion 31 provided in the present embodiment, a part of the material (the sealing plug 31a) is located in the base structure layer 20, and this structure has never been mentioned. The working structure layer 30 may further comprise a protective layer 39 covering the sensing electrodes. The biological body F and the sensing electrodes form a plurality of sensing capacitors, and the sensing signals are obtained by sensing the sensing capacitances. In practical applications, the protective layer 39 can be adhered to a cover panel 90 through an adhesive (not shown), such as an under glass or under cover, or directly under the screen of the mobile phone (under display) ). It should be noted that the protective layer 39 is not an essential component, and the sealing portion 31 may be adhered to the cover panel through an adhesive. The connection pads 50 of FIG. 2 are formed on or around the cavity 21, and are electrically connected to the integrated working circuit 12 and the respective working structure layers 30 for signal input and output.

值得注意的是,生物特徵是指生物體的細微圖案,做為生物識別(Biometrics)使用,而非生物體的有無接觸的感測,故與習知的觸控面板/螢幕感測手指完全不同。此外,工作結構層並沒有被犧牲層蝕刻通道穿過(如習知技術),故不會破壞感測結構(此為習知技術的問 題之一)。 It is worth noting that biometrics refer to the subtle patterns of living organisms, used as biometrics, rather than the contactless sensing of living organisms, so they are completely different from the conventional touch panel/screen sensing fingers. . In addition, the working structure layer is not etched through the sacrificial layer etching channel (as in the prior art), so the sensing structure is not damaged (this is a matter of the prior art). One of the questions).

圖3顯示依據本發明第二實施例的生物特徵感測器的局部剖面示意圖。如圖3所示,本實施例提供的是一種靜電驅動式感測器,類似於第一實施例之處不再說明。因此,基板10更具有多個第一電極13,位於此等積體工作電路12上方,且電連接至此等積體工作電路12,並分別對應至此等空腔21。工作結構層30之各密封部31當作一第二電極使用,此等第二電極分別對應至此等空腔21地排列,且電連接至此等積體工作電路12。另外,工作結構層30更包含一保護層39,覆蓋此等第二電極及基礎結構層20。實際運作時,積體工作電路12輸出一驅動訊號至第一電極13或第二電極,以使第二電極產生多個第一振動波W1,此等第一振動波W1受生物體F干擾而轉變成多個與第一振動波W1行進方向相反的第二振動波W2,此等第一電極13與此等第二電極感測與此等第二振動波W2相關的性質(譬如是反射波或干涉波)而產生此等感測信號,此性質例如是兩個電極間的電容值改變。 3 is a partial cross-sectional view showing a biometric sensor in accordance with a second embodiment of the present invention. As shown in FIG. 3, this embodiment provides an electrostatically driven sensor, which is not described similarly to the first embodiment. Therefore, the substrate 10 further has a plurality of first electrodes 13 disposed above the integrated working circuits 12 and electrically connected to the integrated working circuits 12 and corresponding to the cavities 21, respectively. Each of the sealing portions 31 of the working structure layer 30 is used as a second electrode, and the second electrodes are respectively arranged corresponding to the cavities 21 and electrically connected to the integrated working circuits 12. In addition, the working structure layer 30 further includes a protective layer 39 covering the second electrode and the base structure layer 20. In actual operation, the integrated working circuit 12 outputs a driving signal to the first electrode 13 or the second electrode, so that the second electrode generates a plurality of first vibration waves W1, and the first vibration waves W1 are interfered by the biological body F. Turning into a plurality of second vibration waves W2 opposite to the traveling direction of the first vibration wave W1, the first electrodes 13 and the second electrodes sense properties related to the second vibration waves W2 (for example, reflected waves) Or the interference wave produces such a sensing signal, such as a change in the capacitance value between the two electrodes.

圖4顯示依據本發明第三實施例的生物特徵感測器的局部剖面示意圖。如圖4所示,本實施例提供的是一種壓電電容式感測器,類似於第二實施例之處不再說明。於本實施例中,基板10更具有多個第一電極13,位於此等積體工作電路12上方,且電連接至此等積體工作電路12,並分別對應至此等空腔21。此外,工作結構層30之各密封部31當作一第二電極使用,此等第二電極分別對應至此等空腔21地排列,且電連接至此等積體工作電路12。為達成感測的功能,工作結構層30更包含多個壓電振動波工作元35,位於此等第二電極的上方。於一非限制例中,壓電振動波工作元35可以電連接至周邊電路19。此等壓電振動波工作元35發出多個第一振動波W1至生物體F而產生多個 與第一振動波W1行進方向相反的第二振動波W2。此等第一電極13與此等第二電極感測與此等第二振動波W2相關的性質(例如兩個電極間的電容值改變)而產生此等感測信號。保護層39覆蓋此等壓電振動波工作元35。於本實施例中,各壓電振動波工作元35包含一絕緣層351、一底電極352、一壓電層353以及一頂電極354。絕緣層351位於此等第二電極及基礎結構層20上。底電極352位於第二電極上方及絕緣層351上。壓電層353位於底電極352上。頂電極354位於壓電層353上。頂電極354及底電極352連接至一驅動信號而使壓電層353振動,進而使第二電極產生此等第一振動波W1。值得注意的是,壓電層353的材料可以是任何的壓電材料,譬如是氮化鋁、鋯鈦酸鉛(PZT)、氧化鋅等。上述是屬於利用壓電原理來達成驅動功能,利用電容原理達成感測功能的應用。 4 is a partial cross-sectional view showing a biometric sensor in accordance with a third embodiment of the present invention. As shown in FIG. 4, this embodiment provides a piezoelectric capacitive sensor, which is not described similarly to the second embodiment. In this embodiment, the substrate 10 further has a plurality of first electrodes 13 disposed above the integrated working circuits 12 and electrically connected to the integrated working circuits 12 and corresponding to the cavities 21, respectively. In addition, each sealing portion 31 of the working structure layer 30 is used as a second electrode, and the second electrodes are respectively arranged corresponding to the cavities 21 and electrically connected to the integrated working circuits 12. To achieve the sensed function, the working structure layer 30 further includes a plurality of piezoelectric vibration wave working elements 35 located above the second electrodes. In a non-limiting example, the piezoelectric vibration wave operating element 35 can be electrically coupled to the peripheral circuitry 19. The piezoelectric vibration wave working elements 35 emit a plurality of first vibration waves W1 to the living body F to generate a plurality of The second vibration wave W2 is opposite to the traveling direction of the first vibration wave W1. The first electrodes 13 and the second electrodes sense the properties associated with the second vibrational waves W2 (eg, the capacitance values between the two electrodes change) to produce the sensing signals. The protective layer 39 covers these piezoelectric vibration wave working elements 35. In the present embodiment, each piezoelectric vibration wave working element 35 includes an insulating layer 351, a bottom electrode 352, a piezoelectric layer 353, and a top electrode 354. The insulating layer 351 is located on the second electrode and the base structure layer 20. The bottom electrode 352 is located above the second electrode and on the insulating layer 351. The piezoelectric layer 353 is located on the bottom electrode 352. The top electrode 354 is located on the piezoelectric layer 353. The top electrode 354 and the bottom electrode 352 are connected to a driving signal to vibrate the piezoelectric layer 353, thereby causing the second electrode to generate the first vibration wave W1. It should be noted that the material of the piezoelectric layer 353 may be any piezoelectric material such as aluminum nitride, lead zirconate titanate (PZT), zinc oxide or the like. The above is an application that uses a piezoelectric principle to achieve a driving function and a capacitive function to achieve a sensing function.

值得注意的是,圖4的結構也可以被改變成利用靜電原理來達成驅動功能,利用壓電原理來達成感測功能的應用。於變化實施例子中,積體工作電路12輸出驅動訊號至第一電極13或第二電極,以使第二電極產生多個第一振動波W1,此等第一振動波W1受生物體F干擾而轉變成多個與第一振動波W1行進方向相反的第二振動波W2,此等壓電振動波工作元35感測與此等第二振動波W2相關的性質而產生此等感測信號。亦即,壓電層353感測此等第二振動波W2相關的性質而產生此等感測信號。 It should be noted that the structure of FIG. 4 can also be changed to use the electrostatic principle to achieve the driving function, and the piezoelectric principle is used to achieve the application of the sensing function. In a variant implementation example, the integrated working circuit 12 outputs a driving signal to the first electrode 13 or the second electrode such that the second electrode generates a plurality of first vibration waves W1, and the first vibration waves W1 are interfered by the biological body F. And converting into a plurality of second vibration waves W2 opposite to the traveling direction of the first vibration wave W1, and the piezoelectric vibration wave working elements 35 sense the properties related to the second vibration waves W2 to generate the sensing signals. . That is, the piezoelectric layer 353 senses the properties associated with the second vibrational waves W2 to generate such sensing signals.

圖5顯示依據本發明第四實施例的生物特徵感測器的局部剖面示意圖。如圖5所示,本實施例提供的是一種壓電式感測器,類似於第三實施例之處不再說明。於本實施例中,基礎結構層20與密封部31係由同一材料(譬如是二氧化矽、氮化矽等絕緣材料)所組成。 值得注意的是,於其他實施例中,基礎結構層20的材料是絕緣材料,而密封部31的密封塞31a及密封蓋31b的材料可以為該壓電材料,例如氮化鋁(AlN)、鋯鈦酸鉛(PZT)、氧化鋅等,但本發明當然不限定於此。工作結構層30更包含多個壓電振動波工作元35',位於此等密封部31的上方,且電連接至此等積體工作電路12。此等壓電振動波工作元35'發出多個第一振動波W1至生物體F而產生多個與第一振動波W1行進方向相反的第二振動波W2,此等壓電振動波工作元35'更感測此等第二振動波W2相關的性質而產生此等感測信號。可以利用分時發射及感測的技術來達成。另外,保護層39覆蓋此等壓電振動波工作元35'。各壓電振動波工作元35'包含一底電極352'、一壓電層353'以及一頂電極354'。底電極352'位於密封部31上。壓電層353'位於底電極352'上。頂電極354'位於壓電層353'上,頂電極354'及底電極352'連接至一驅動信號而使壓電層353'振動,進而產生此等第一振動波W1,壓電層353'感測此等第二振動波W2相關的性質而產生此等感測信號,其透過頂電極354'及底電極352'輸出。 Figure 5 is a partial cross-sectional view showing a biometric sensor in accordance with a fourth embodiment of the present invention. As shown in FIG. 5, this embodiment provides a piezoelectric sensor, which is not described similarly to the third embodiment. In the present embodiment, the base structure layer 20 and the sealing portion 31 are composed of the same material (for example, an insulating material such as cerium oxide or tantalum nitride). It should be noted that in other embodiments, the material of the base layer 20 is an insulating material, and the sealing plug 31a of the sealing portion 31 and the material of the sealing cover 31b may be the piezoelectric material, such as aluminum nitride (AlN), Lead zirconate titanate (PZT), zinc oxide, etc., but the present invention is of course not limited thereto. The working structure layer 30 further includes a plurality of piezoelectric vibration wave working elements 35' located above the sealing portions 31 and electrically connected to the integrated working circuits 12. The piezoelectric vibration wave working elements 35' emit a plurality of first vibration waves W1 to the living body F to generate a plurality of second vibration waves W2 opposite to the traveling direction of the first vibration wave W1, and the piezoelectric vibration wave working elements 35' senses the properties associated with the second vibrational waves W2 to produce such sensed signals. This can be achieved using techniques for time-divisional emission and sensing. In addition, the protective layer 39 covers these piezoelectric vibration wave working elements 35'. Each piezoelectric vibration wave working element 35' includes a bottom electrode 352', a piezoelectric layer 353', and a top electrode 354'. The bottom electrode 352' is located on the sealing portion 31. The piezoelectric layer 353' is located on the bottom electrode 352'. The top electrode 354' is located on the piezoelectric layer 353', and the top electrode 354' and the bottom electrode 352' are connected to a driving signal to vibrate the piezoelectric layer 353', thereby generating the first vibration wave W1, and the piezoelectric layer 353' Sensing the properties associated with the second vibrational waves W2 produces the sensing signals that are output through the top electrode 354' and the bottom electrode 352'.

圖6A至圖6F顯示依據本發明第一實施例的生物特徵感測器的製造方法的各步驟的局部剖面示意圖。生物特徵感測器1的製造方法,至少包含以下步驟。首先,提供一基板10,於另一實施例中更可以具有多個積體工作電路12,然後,於基板10上形成多個犧牲層14,如圖6A所示。於本實施例中,是以鋁當作犧牲層的材料,於一CMOS製程中,該鋁可以是最頂層的金屬層,其厚度約為1μm,當然也可以為調整製程改變厚度以達到實際需要。於其他實施例中,也可以使用其他材料當犧牲層,譬如是矽、聚合物(polymer)、二氧化矽或其他金屬材料等。接著,於此等犧牲層14及基板10上形成一基礎結構層20,如 圖6B所示,例如是CMOS製程的頂層保護層(passivation),可以為氧化矽,或氮化矽,或兩者結合,或其他絕緣材料,如氧化鋁、碳化矽,類碳鑽膜等等。同時也可用CMP將該結構頂層平坦化以利後續更好的光刻製程。在本實施例可以為氧化矽,厚度約為0.5~0.8μm。然後,於基礎結構層20上形成多個微通道組的多個微通道22,以露出各犧牲層14,如圖6C所示,該微通道22密度為小間距的二維陣列且平均分布於該犧牲層14上方,其一重要設計理念為該小間距G約為該犧牲層14厚度T的兩倍,至多不超過五倍,以利減少蝕刻時間,同時該微通道的尺寸不可以太大,否則後續的密封部31將不易完成,在本發明的另一重要特徵係為該密封部31不僅可以封口該微通道22,同時封口後的密封部可以提供一接近平面的表層,以利後續材料的製作,在此該微通道尺寸在較佳實例中係小於2μm。本發明一較佳的實施例在此是利用鋁(Al)的乾蝕刻技術來作為犧牲層的蝕刻,並且調整配方使其為等向性蝕刻(isotropic etching),亦即可以有側向的蝕刻效應,藉此可以透過複數的貫穿孔(此等微通道組的此等微通道),垂直且側向的移除Al犧牲層,這種完全相容於半導體製程及設備的犧牲層蝕刻方式,也是本發明的特色,從未被提及。亦即,譬如利用蝕刻的方式,透過此等微通道組的此等微通道22移除各犧牲層14,以形成多個排列成二維陣列的多個空腔21,使此等微通道組的此等微通道22分別與此等空腔21連通,如圖6D所示。在移除犧牲層14時,可以利用光阻來保護圖2的連接墊50。最後,於基礎結構層20上形成一工作結構層30(包含圖6E的密封部31以及圖6F的保護層39),並使工作結構層30局部填入此等微通道組的此等微通道22而形成多個密封部31,如上所述。當該貫穿孔尺寸例如為0.5μm,則密封部31材料厚度約0.3~0.5μm就可以有效封口,在本 發明另一實施例,也可以製作更厚的密封部31,然後回蝕密封部31的部分材料,以提供一平坦平面供後續製程用,該回蝕方式可以是蝕刻或者CMP等方法。 6A to 6F are partial cross-sectional views showing respective steps of a method of fabricating a biometric sensor according to a first embodiment of the present invention. The method of manufacturing the biometric sensor 1 includes at least the following steps. First, a substrate 10 is provided. In another embodiment, a plurality of integrated working circuits 12 may be further provided. Then, a plurality of sacrificial layers 14 are formed on the substrate 10, as shown in FIG. 6A. In this embodiment, aluminum is used as the material of the sacrificial layer. In a CMOS process, the aluminum may be the topmost metal layer, and the thickness thereof is about 1 μm. Of course, it is also possible to adjust the thickness to adjust the thickness to meet actual needs. . In other embodiments, other materials may also be used as the sacrificial layer, such as germanium, polymer, cerium oxide or other metallic materials. Then, a base structure layer 20 is formed on the sacrificial layer 14 and the substrate 10, such as 6B, for example, a top-layer passivation of a CMOS process, which may be tantalum oxide, or tantalum nitride, or a combination of the two, or other insulating materials such as aluminum oxide, tantalum carbide, carbon-like diamond film, etc. . At the same time, the top layer of the structure can be planarized by CMP to facilitate a subsequent better lithography process. In this embodiment, it may be yttrium oxide and has a thickness of about 0.5 to 0.8 μm. Then, a plurality of microchannels 22 of a plurality of microchannel groups are formed on the base layer 20 to expose the sacrificial layers 14, as shown in FIG. 6C, the microchannels 22 have a two-dimensional array of small pitches and are evenly distributed. Above the sacrificial layer 14, an important design concept is that the small pitch G is about twice the thickness T of the sacrificial layer 14, up to five times, to reduce the etching time, and the size of the microchannel is not too large. Otherwise, the subsequent sealing portion 31 will not be easily completed. Another important feature of the present invention is that the sealing portion 31 can not only seal the microchannel 22, but also the sealed sealing portion can provide a near-surface layer for subsequent materials. The fabrication, where the microchannel size is less than 2 [mu]m in the preferred embodiment. A preferred embodiment of the present invention utilizes aluminum (Al) dry etching techniques for etching as a sacrificial layer, and adjusts the formulation to be isotropic etching, that is, lateral etching is possible. Effect, whereby the Al sacrificial layer can be removed vertically and laterally through a plurality of through vias (the microchannels of such microchannel groups), which is completely compatible with the sacrificial layer etching of semiconductor processes and devices, It is also a feature of the present invention and has never been mentioned. That is, the sacrificial layers 14 are removed through the microchannels 22 of the microchannel groups by etching, for example, to form a plurality of cavities 21 arranged in a two-dimensional array, such microchannel groups. These microchannels 22 are in communication with the cavities 21, respectively, as shown in Figure 6D. When the sacrificial layer 14 is removed, the photoresist 50 of FIG. 2 can be protected by photoresist. Finally, a working structure layer 30 (including the sealing portion 31 of FIG. 6E and the protective layer 39 of FIG. 6F) is formed on the base layer 20, and the working structure layer 30 is partially filled into the microchannels of the microchannel groups. 22, a plurality of sealing portions 31 are formed as described above. When the size of the through hole is, for example, 0.5 μm, the sealing portion 31 has a material thickness of about 0.3 to 0.5 μm, which can be effectively sealed. In another embodiment of the invention, a thicker sealing portion 31 can also be fabricated, and then a portion of the material of the sealing portion 31 can be etched back to provide a flat surface for subsequent processing, such as etching or CMP.

值得注意的是,圖6A與6B的步驟可以被視為是於基板10上形成一基礎結構母層60。圖6C的步驟可以被視為是於基礎結構母層60上形成多個微通道組,各微通道組包含多個微通道22。圖6D的步驟可以被視為是透過此等微通道組的此等微通道22移除基礎結構母層60之多個犧牲層14,以形成該基礎結構層20,以及位於該基礎結構層20中之此等微通道組的此等微通道22及多個排列成二維陣列的多個空腔21。 It should be noted that the steps of FIGS. 6A and 6B can be considered as forming a base structure mother layer 60 on the substrate 10. The step of FIG. 6C can be viewed as forming a plurality of microchannel groups on the base structure mother layer 60, each microchannel group comprising a plurality of microchannels 22. The steps of FIG. 6D can be viewed as removing the plurality of sacrificial layers 14 of the base mother layer 60 through the microchannels 22 of the microchannel groups to form the base layer 20, and located at the base layer 20 The microchannels 22 of the microchannel groups and the plurality of cavities 21 arranged in a two-dimensional array.

因此,本實施例可以整合ASIC製程,特別是CMOS製程,在CMOS製程形成犧牲層14後,只需要利用三道遮罩即可完成一電容或靜電聲波生物特徵感測器,其中第一道遮罩是用來形成在犧牲層14周圍的金屬插塞(達成積體工作電路12與工作結構層30的電連接,譬如是鎢(W)插塞(via)),第二道遮罩是用來形成微通道22且利用光阻來保護連接墊50、第三道遮罩是用來定義該密封部31材料。因為整個CMOS製程大概需要二十道遮罩,所以所加入的額外三道遮罩並不會增加太多成本,也不會增加太多困難度,而且製造材料及設備也都是相容於CMOS製程,不需要額外投資。 Therefore, this embodiment can integrate an ASIC process, especially a CMOS process. After the sacrificial layer 14 is formed in the CMOS process, only one mask can be used to complete a capacitive or electrostatic acoustic biometric sensor, wherein the first mask The cover is used to form a metal plug around the sacrificial layer 14 (to achieve an electrical connection between the integrated working circuit 12 and the working structure layer 30, such as a tungsten (W) plug), the second mask is used The microchannel 22 is formed and the photoresist 50 is protected by a photoresist, and the third mask is used to define the material of the sealing portion 31. Because the entire CMOS process requires about 20 masks, the extra three masks added will not add too much cost, nor will it add too much difficulty, and the materials and equipment are also compatible with CMOS. Process, no additional investment required.

第一實施例的製造方法可以應用於第二實施例中,不同之處在於基板10先形成有第一電極13,其可以利用一金屬層,或多個通道插塞配合一連接線達成。 The manufacturing method of the first embodiment can be applied to the second embodiment, except that the substrate 10 is first formed with the first electrode 13, which can be achieved by using a metal layer or a plurality of channel plugs in conjunction with a connecting line.

第一實施例的製造方法可以應用於第三實施例中,不同之處在於形成密封部31以後,先依序形成壓電振動波工作元35的絕緣 層351、底電極352、壓電層353以及頂電極354,然後在頂電極354上覆蓋保護層39。 The manufacturing method of the first embodiment can be applied to the third embodiment, except that after the sealing portion 31 is formed, the insulation of the piezoelectric vibration wave working unit 35 is sequentially formed. The layer 351, the bottom electrode 352, the piezoelectric layer 353, and the top electrode 354 are then covered with a protective layer 39 on the top electrode 354.

第三實施例的製造方法可以應用於第四實施例中,不同之處在於基礎結構層20與密封部31是由同一材料(譬如是絕緣材料)所組成,但是在不同階段形成。因此,不需再次形成絕緣層351。 The manufacturing method of the third embodiment can be applied to the fourth embodiment, except that the base structural layer 20 and the sealing portion 31 are composed of the same material (for example, an insulating material), but are formed at different stages. Therefore, it is not necessary to form the insulating layer 351 again.

圖7A至圖7F顯示依據本發明第五實施例的生物特徵感測器的製造方法的各步驟的局部剖面示意圖。如圖7A至圖7F所示,第五實施例係類似於第一實施例。圖7A與7B的步驟可以被視為是於基板10上形成一基礎結構母層60。如圖7A所示,於基板10上形成犧牲母層14'。如圖7B所示,於犧牲母層14'上形成一覆蓋層23,其中該基板10具有一蝕刻抑止層18,與該等空腔21及該犧牲母層14'直接接觸。圖7C的步驟可以被視為是於基礎結構母層60上形成多個微通道22。圖7D的步驟可以被視為是透過此等微通道22移除基礎結構母層60之一個犧牲母層14'之多個部分,以形成該基礎結構層20,以及位於該基礎結構層20中之此等微通道22及多個排列成二維陣列的多個空腔21,在本實施例中該犧牲母層14'可以是例如氧化矽,當然不限定於此,而該覆蓋層23是例如是氮化矽、矽、矽化鍺等等,當然不限定於此,這樣的設計可以更進一步簡化製程步驟,更進一步降低成本,不需要特別定義犧牲層步驟,而是利用微通道22及等向性蝕刻方式(例如蒸汽氫氟酸(Vapor HF)),可以完成相同結構。圖7E與圖7F的步驟與第一實施例類似,故不再詳述。 7A through 7F are partial cross-sectional views showing respective steps of a method of fabricating a biometric sensor in accordance with a fifth embodiment of the present invention. As shown in Figs. 7A to 7F, the fifth embodiment is similar to the first embodiment. The steps of FIGS. 7A and 7B can be considered to form a base structure mother layer 60 on the substrate 10. As shown in FIG. 7A, a sacrificial mother layer 14' is formed on the substrate 10. As shown in FIG. 7B, a cap layer 23 is formed on the sacrificial mother layer 14', wherein the substrate 10 has an etch stop layer 18 in direct contact with the cavities 21 and the sacrificial parent layer 14'. The step of FIG. 7C can be viewed as forming a plurality of microchannels 22 on the base structure mother layer 60. The steps of FIG. 7D can be considered to remove portions of a sacrificial parent layer 14' of the base structure mother layer 60 through the microchannels 22 to form the base structure layer 20, and in the base structure layer 20. The microchannels 22 and the plurality of cavities 21 arranged in a two-dimensional array, in this embodiment, the sacrificial parent layer 14' may be, for example, yttrium oxide, of course not limited thereto, and the cover layer 23 is For example, tantalum nitride, tantalum, niobium telluride, etc., of course, is not limited thereto, such a design can further simplify the process steps, further reduce the cost, does not need to specifically define the sacrificial layer step, but utilizes the microchannel 22 and the like The same structure can be accomplished by a directional etching method such as steam hydrofluoric acid (Vapor HF). The steps of Figures 7E and 7F are similar to the first embodiment and will not be described in detail.

因此,圖7F的生物特徵感測器的基礎結構層20'包含犧牲母層14',位於基板10上,並形成有該等空腔21;以及覆蓋層23,位於該犧牲母層14'上,並形成有該等微通道組的該等微通道22。於一 例子中,犧牲母層14'的材料為氧化物,覆蓋層23的材料為氮化物,而密封部31的材料是導電材料。於另一例子中,覆蓋層23的材料為導電材料,例如矽或矽化鍺等。第五實施例的生物特徵感測器,亦可以達到類似於第一實施例的效果。 Thus, the base structure layer 20' of the biometric sensor of FIG. 7F includes a sacrificial parent layer 14' on the substrate 10 and is formed with the cavities 21; and a cover layer 23 on the sacrificial parent layer 14' And forming the microchannels 22 of the microchannel groups. Yu Yi In the example, the material of the sacrificial mother layer 14' is an oxide, the material of the cap layer 23 is a nitride, and the material of the sealing portion 31 is a conductive material. In another example, the material of the cover layer 23 is a conductive material such as tantalum or tantalum or the like. The biometric sensor of the fifth embodiment can also achieve effects similar to those of the first embodiment.

藉由本發明的上述實施例,可以製造出一種結構簡單,且能輕易與半導體製程整合的生物特徵感測器,不但可以大量生產,也不會大幅增加製造成本,故有助於降低生物特徵感測器的成本。 With the above embodiments of the present invention, it is possible to manufacture a biometric sensor that is simple in structure and can be easily integrated with a semiconductor process, and can not only be mass-produced, but also does not greatly increase the manufacturing cost, thereby contributing to a reduction in biometrics. The cost of the detector.

在較佳實施例之詳細說明中所提出之具體實施例僅用以方便說明本發明之技術內容,而非將本發明狹義地限制於上述實施例,在不超出本發明之精神及以下申請專利範圍之情況,所做之種種變化實施,皆屬於本發明之範圍。 The specific embodiments of the present invention are intended to be illustrative only and not to limit the invention to the above embodiments, without departing from the spirit of the invention and the following claims. The scope of the invention and the various changes made are within the scope of the invention.

F‧‧‧生物體 F‧‧‧ organisms

G‧‧‧小間距 G‧‧‧Small spacing

T‧‧‧厚度 T‧‧‧ thickness

1‧‧‧生物特徵感測器 1‧‧‧Biometric Sensor

10‧‧‧基板 10‧‧‧Substrate

12‧‧‧積體工作電路 12‧‧‧Integrated working circuit

19‧‧‧周邊電路 19‧‧‧ peripheral circuits

20‧‧‧基礎結構層 20‧‧‧Basic structural layer

21‧‧‧空腔 21‧‧‧ cavity

22‧‧‧微通道 22‧‧‧Microchannel

30‧‧‧工作結構層 30‧‧‧Working structure

31‧‧‧密封部 31‧‧‧ Sealing Department

31a‧‧‧密封塞 31a‧‧‧ Sealing plug

31b‧‧‧密封蓋 31b‧‧‧ Sealing cover

39‧‧‧保護層 39‧‧‧Protective layer

90‧‧‧覆蓋面板 90‧‧‧ Cover panel

Claims (20)

一種生物特徵感測器,至少包含:一基板;一基礎結構層,形成於該基板上,並具有排列成二維陣列的多個空腔,以及分別與該等空腔連通的多個微通道組,其中各該微通道組包含多個微通道;以及一工作結構層,形成於該基礎結構層上,並具有局部填入該等微通道組的多個密封部,各該密封部包含多個密封塞及一密封蓋,該密封蓋將該等密封塞連接在一起,該密封塞係填入該微通道之中,且該密封蓋位於該基礎結構層之平坦表面上,使得該密封部有部分的材料位於該基礎結構層之中,其中各該空腔由該基板、該基礎結構層及該工作結構層所包圍而成,該工作結構層感測一生物體的生物特徵。 A biometric sensor comprising: at least one substrate; a base structure layer formed on the substrate and having a plurality of cavities arranged in a two-dimensional array, and a plurality of microchannels respectively communicating with the cavities a group, wherein each of the microchannel groups comprises a plurality of microchannels; and a working structural layer formed on the base structural layer and having a plurality of sealing portions partially filled in the microchannel groups, each of the sealing portions comprising a plurality of a sealing plug and a sealing cover, the sealing cover connecting the sealing plugs together, the sealing plug is filled into the microchannel, and the sealing cover is located on a flat surface of the base structural layer, so that the sealing portion A portion of the material is located in the base layer, wherein each of the cavities is surrounded by the substrate, the base layer, and the working structure layer, the working structure layer sensing a biological characteristic of an organism. 如申請專利範圍第1項所述的生物特徵感測器,其中各該微通道組的該等微通道的一間距與各該空腔的高度之比值介於2與5之間。 The biometric sensor of claim 1, wherein a ratio of a pitch of the microchannels of each of the microchannel groups to a height of each of the cavities is between 2 and 5. 如申請專利範圍第1項所述的生物特徵感測器,其中該基板具有多個積體工作電路,電連接至該工作結構層來產生多個感測信號。 The biometric sensor of claim 1, wherein the substrate has a plurality of integrated working circuits electrically connected to the working structural layer to generate a plurality of sensing signals. 如申請專利範圍第3項所述的生物特徵感測器,其中該工作結構層之各該密封部當作一感測電極使用,該等感測電極分別對應至該等空腔地排列,且電連接至該等積體工作 電路;以及該工作結構層更包含一保護層,覆蓋該等感測電極,其中該生物體與該等感測電極形成多個感測電容,藉由感測該等感測電容而獲得該等感測信號。 The biometric sensor of claim 3, wherein each of the sealing portions of the working structural layer is used as a sensing electrode, and the sensing electrodes are respectively arranged corresponding to the cavities, and Electrically connected to these integrated work And the working structure layer further includes a protective layer covering the sensing electrodes, wherein the living body and the sensing electrodes form a plurality of sensing capacitors, and the sensing capacitances are obtained by sensing the sensing capacitors Sensing signal. 如申請專利範圍第3項所述的生物特徵感測器,其中:該基板更具有多個第一電極,位於該等積體工作電路上方,且電連接至該等積體工作電路,並分別對應至該等空腔;以及該工作結構層之各該密封部當作一第二電極使用,該等第二電極分別對應至該等空腔地排列,且電連接至該等積體工作電路,且該工作結構層更包含:一保護層,覆蓋該等第二電極及該基礎結構層,其中該積體工作電路輸出一驅動訊號至該第一電極或該第二電極,以使該第二電極產生多個第一振動波,該等第一振動波受該生物體干擾而轉變成多個與第一振動波行進方向相反的第二振動波,該等第一電極與該等第二電極感測與該等第二振動波相關的性質而產生該等感測信號。 The biometric sensor of claim 3, wherein the substrate further has a plurality of first electrodes located above the integrated working circuits and electrically connected to the integrated working circuits, and respectively Corresponding to the cavities; and each of the sealing portions of the working structure layer is used as a second electrode, and the second electrodes are respectively arranged corresponding to the cavities and electrically connected to the integrated working circuits And the working structure layer further includes: a protective layer covering the second electrodes and the base structure layer, wherein the integrated working circuit outputs a driving signal to the first electrode or the second electrode, so that the first The two electrodes generate a plurality of first vibration waves, and the first vibration waves are converted into a plurality of second vibration waves opposite to the traveling direction of the first vibration wave by the biological interference, and the first electrodes and the second electrodes The electrodes sense the properties associated with the second vibrational waves to produce the sensing signals. 如申請專利範圍第3項所述的生物特徵感測器,其中:該基板更具有多個第一電極,位於該等積體工作電路上方,且電連接至該等積體工作電路,並分別對應至該等空腔;以及該工作結構層之各該密封部當作一第二電極使用,該等第二電極分別對應至該等空腔地排列,且電連接至該等積體工作電路,且該工作結構層更包含: 多個壓電振動波工作元,位於該等第二電極的上方,該等壓電振動波工作元發出多個第一振動波至該生物體而產生多個與第一振動波行進方向相反的第二振動波,該等第一電極與該等第二電極感測與該等第二振動波相關的性質而產生該等感測信號;以及一保護層,覆蓋該等壓電振動波工作元。 The biometric sensor of claim 3, wherein the substrate further has a plurality of first electrodes located above the integrated working circuits and electrically connected to the integrated working circuits, and respectively Corresponding to the cavities; and each of the sealing portions of the working structure layer is used as a second electrode, and the second electrodes are respectively arranged corresponding to the cavities and electrically connected to the integrated working circuits And the working structure layer further includes: a plurality of piezoelectric vibration wave working elements located above the second electrodes, the piezoelectric vibration wave working elements emitting a plurality of first vibration waves to the living body to generate a plurality of opposite directions of the first vibration wave traveling a second vibration wave, the first electrodes and the second electrodes sense the properties associated with the second vibration waves to generate the sensing signals; and a protective layer covering the piezoelectric vibration wave working elements . 如申請專利範圍第6項所述的生物特徵感測器,其中各該壓電振動波工作元包含:一絕緣層,位於該等第二電極及該基礎結構層上;一底電極,位於該第二電極上方及該絕緣層上;一壓電層,位於該底電極上;以及一頂電極,位於該壓電層上,該頂電極及該底電極連接至一驅動信號而使該壓電層振動,進而使該第二電極產生該等第一振動波。 The biometric sensor of claim 6, wherein each of the piezoelectric vibration wave working elements comprises: an insulating layer on the second electrode and the base structure layer; and a bottom electrode located at the bottom a second electrode above the insulating layer; a piezoelectric layer on the bottom electrode; and a top electrode on the piezoelectric layer, the top electrode and the bottom electrode being connected to a driving signal to make the piezoelectric The layer vibrates, thereby causing the second electrode to generate the first vibrational waves. 如申請專利範圍第3項所述的生物特徵感測器,其中:該基板更具有多個第一電極,位於該等積體工作電路上方,且電連接至該等積體工作電路,並分別對應至該等空腔;以及該工作結構層之各該密封部當作一第二電極使用,該等第二電極分別對應至該等空腔地排列,且電連接至該等積體工作電路,且該工作結構層更包含:多個壓電振動波工作元,位於該等第二電極的上方,其中該積體工作電路輸出一驅動訊號至該第一電極或該第二電極,以使該第二電極產生多個第一振動 波,該等第一振動波受該生物體干擾而轉變成多個與第一振動波行進方向相反的第二振動波,該等壓電振動波工作元感測與該等第二振動波相關的性質而產生該等感測信號;以及一保護層,覆蓋該等壓電振動波工作元。 The biometric sensor of claim 3, wherein the substrate further has a plurality of first electrodes located above the integrated working circuits and electrically connected to the integrated working circuits, and respectively Corresponding to the cavities; and each of the sealing portions of the working structure layer is used as a second electrode, and the second electrodes are respectively arranged corresponding to the cavities and electrically connected to the integrated working circuits And the working structure layer further comprises: a plurality of piezoelectric vibration wave working elements located above the second electrodes, wherein the integrated working circuit outputs a driving signal to the first electrode or the second electrode, so that The second electrode generates a plurality of first vibrations Waves, the first vibration waves are transformed by the living body into a plurality of second vibration waves opposite to a direction in which the first vibration wave travels, and the piezoelectric vibration wave working element sensing is related to the second vibration waves The sensing signals are generated by the nature; and a protective layer covering the piezoelectric vibration wave working elements. 如申請專利範圍第8項所述的生物特徵感測器,其中各該壓電振動波工作元包含:一絕緣層,位於該等第二電極及該基礎結構層上;一底電極,位於該第二電極上方及該絕緣層上;一壓電層,位於該底電極上;以及一頂電極,位於該壓電層上,該壓電層感測該等第二振動波相關的性質而產生該等感測信號。 The biometric sensor of claim 8, wherein each of the piezoelectric vibration wave working elements comprises: an insulating layer on the second electrode and the base structure layer; and a bottom electrode located at the bottom Above the second electrode and on the insulating layer; a piezoelectric layer on the bottom electrode; and a top electrode on the piezoelectric layer, the piezoelectric layer sensing the properties related to the second vibration wave The sensing signals. 如申請專利範圍第3項所述的生物特徵感測器,其中該工作結構層更包含:多個壓電振動波工作元,位於該等密封部的上方,該等壓電振動波工作元發出多個第一振動波至該生物體而產生多個與第一振動波行進方向相反的第二振動波,該等壓電振動波工作元更感測該等第二振動波相關的性質而產生該等感測信號;以及一保護層,覆蓋該等壓電振動波工作元。 The biometric sensor of claim 3, wherein the working structural layer further comprises: a plurality of piezoelectric vibration wave working elements located above the sealing portions, the piezoelectric vibration wave working elements are emitted a plurality of first vibration waves to the living body to generate a plurality of second vibration waves opposite to a direction in which the first vibration wave travels, and the piezoelectric vibration wave working elements further sense the properties related to the second vibration waves The sensing signals; and a protective layer covering the piezoelectric vibration wave working elements. 如申請專利範圍第10項所述的生物特徵感測器,其中各該壓電振動波工作元包含:一底電極,位於該密封部上;一壓電層,位於該底電極上;以及 一頂電極,位於該壓電層上,該頂電極及該底電極連接至一驅動信號而使該壓電層振動,進而產生該等第一振動波,該壓電層感測該等第二振動波相關的性質而產生該等感測信號。 The biometric sensor of claim 10, wherein each of the piezoelectric vibration wave working elements comprises: a bottom electrode on the sealing portion; a piezoelectric layer on the bottom electrode; a top electrode is disposed on the piezoelectric layer, the top electrode and the bottom electrode are connected to a driving signal to vibrate the piezoelectric layer to generate the first vibration wave, and the piezoelectric layer senses the second The sensing signals are generated by vibration wave related properties. 如申請專利範圍第1項所述的生物特徵感測器,其中該基礎結構層包含:一犧牲母層,位於該基板上,並形成有該等空腔;以及一覆蓋層,位於該犧牲母層上,並形成有該等微通道組,其中該基板具有一蝕刻抑止層,與該等空腔及該犧牲母層直接接觸。 The biometric sensor of claim 1, wherein the infrastructure layer comprises: a sacrificial mother layer on the substrate and formed with the cavities; and a cover layer located at the sacrificial mother The microchannel groups are formed on the layer, wherein the substrate has an etch stop layer in direct contact with the cavities and the sacrificial mother layer. 如申請專利範圍第1項所述的生物特徵感測器,其中各該微通道的尺寸小於或等於2微米,並且大於或等於0.2微米。 The biometric sensor of claim 1, wherein each of the microchannels has a size of less than or equal to 2 microns and greater than or equal to 0.2 microns. 一種生物特徵感測器的製造方法,至少包含以下步驟:提供一基板;於該基板上形成一基礎結構母層;於該基礎結構母層上形成多個微通道組,其中各該微通道組包含多個微通道;透過該等微通道組移除該基礎結構母層之多個犧牲層或一個犧牲母層之多個部分,以形成一基礎結構層,以及位於該基礎結構層中之該等微通道組及多個排列成二維陣列的多個空腔,使該等微通道組分別與該等空腔連通;以及 於該基礎結構層上形成一工作結構層,並使該工作結構層局部填入該等微通道組而形成多個密封部,各該密封部包含多個密封塞及一密封蓋,該密封蓋將該等密封塞連接在一起,該密封塞係填入該微通道之中,且該密封蓋位於該基礎結構層上之平坦表面上,使得該密封部有部分的材料位於該基礎結構層之中,其中各該空腔由該基板、該基礎結構層及該工作結構層所包圍而成,該工作結構層感測一生物體的生物特徵。 A method for manufacturing a biometric sensor includes at least the steps of: providing a substrate; forming a base structure mother layer on the substrate; forming a plurality of microchannel groups on the base structure mother layer, wherein each of the microchannel groups Having a plurality of microchannels; removing a plurality of sacrificial layers of the base mother layer or portions of a sacrificial parent layer through the microchannel groups to form a base structural layer, and the layer located in the infrastructure layer a plurality of microchannel groups and a plurality of cavities arranged in a two-dimensional array, such that the microchannel groups are respectively in communication with the cavities; Forming a working structure layer on the base structure layer, and partially filling the working structure layer into the micro channel groups to form a plurality of sealing portions, each of the sealing portions comprising a plurality of sealing plugs and a sealing cover, the sealing cover The sealing plugs are joined together, the sealing plug is filled into the microchannel, and the sealing cover is located on a flat surface on the base structural layer such that a part of the material of the sealing portion is located in the structural layer Wherein each of the cavities is surrounded by the substrate, the base structural layer and the working structural layer, the working structural layer sensing a biological characteristic of an organism. 如申請專利範圍第14項所述的製造方法,其中各該微通道組的該等微通道的一間距與各該空腔的高度之比值介於2與5之間。 The manufacturing method of claim 14, wherein a ratio of a pitch of the microchannels of each of the microchannel groups to a height of each of the cavities is between 2 and 5. 如申請專利範圍第14項所述的製造方法,其中該基板具有多個積體工作電路,電連接至該工作結構層來產生多個感測信號。 The manufacturing method of claim 14, wherein the substrate has a plurality of integrated working circuits electrically connected to the working structural layer to generate a plurality of sensing signals. 如申請專利範圍第14項所述的製造方法,其中該犧牲層的材料為鋁,且於透過該等微通道組移除各該犧牲層的該步驟中,是利用鋁的等向性蝕刻技術來作為該犧牲層的蝕刻,藉以透過該等微通道組以垂直且側向的移除該犧牲層。 The manufacturing method according to claim 14, wherein the material of the sacrificial layer is aluminum, and in the step of removing each of the sacrificial layers through the microchannel groups, an isotropic etching technique using aluminum is used. The etching of the sacrificial layer is performed to remove the sacrificial layer vertically and laterally through the microchannel groups. 如申請專利範圍第14項所述的製造方法,其中於該基板上形成該基礎結構母層的步驟包含:於該基板上形成該等犧牲層;以及於該等犧牲層及該基板上形成該基礎結構層。 The manufacturing method of claim 14, wherein the forming the base mother layer on the substrate comprises: forming the sacrificial layer on the substrate; and forming the sacrificial layer and the substrate Infrastructure layer. 如申請專利範圍第14項所述的製造方法,其中於該基板上形成該基礎結構母層的步驟包含:於該基板上形成該犧牲母層;以及於該犧牲母層上形成一覆蓋層,其中該基板具有一蝕刻抑止層,與該等空腔及該犧牲母層直接接觸。 The manufacturing method of claim 14, wherein the step of forming the base mother layer on the substrate comprises: forming the sacrificial mother layer on the substrate; and forming a cap layer on the sacrificial mother layer, The substrate has an etch stop layer in direct contact with the cavities and the sacrificial mother layer. 如申請專利範圍第14項所述的製造方法,其中各該微通道的尺寸小於或等於2微米,並且大於或等於0.2微米。 The manufacturing method of claim 14, wherein each of the microchannels has a size of less than or equal to 2 micrometers and greater than or equal to 0.2 micrometers.
TW105134921A 2016-10-28 2016-10-28 Biometrics sensor and method of manufacturing the same TWI593063B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105134921A TWI593063B (en) 2016-10-28 2016-10-28 Biometrics sensor and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105134921A TWI593063B (en) 2016-10-28 2016-10-28 Biometrics sensor and method of manufacturing the same

Publications (2)

Publication Number Publication Date
TWI593063B true TWI593063B (en) 2017-07-21
TW201816949A TW201816949A (en) 2018-05-01

Family

ID=60048670

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105134921A TWI593063B (en) 2016-10-28 2016-10-28 Biometrics sensor and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TWI593063B (en)

Also Published As

Publication number Publication date
TW201816949A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
TWI813633B (en) Piezoelectric micromachined ultrasound transducer device
TWI689461B (en) Monolithic integration of pmut on cmos
US9718098B2 (en) CMOS ultrasonic transducers and related apparatus and methods
TWI254343B (en) Electronic component, electronic component module and method of manufacturing the electronic component
JP5956644B2 (en) Capacitive microelectromechanical sensor with single crystal silicon electrode
CN106586943B (en) Interlayer polysilicon connector and die-size for capacitor parasitics improve
EP2403659B1 (en) Monolithic integrated cmuts fabricated by low-temperature wafer bonding
US20200147644A1 (en) Dual electrode piezoelectric micromachined ultrasound transducer device
JP6069798B2 (en) Ultrasonic transducer device and method of manufacturing the same
CN106241727A (en) Semiconductor structure and manufacture method thereof
US8252695B2 (en) Method for manufacturing a micro-electromechanical structure
TWI667815B (en) Micro-electro-mechanical system piezoelectric transducer and method for manufacturing the same
JP2009291514A (en) Method for manufacturing capacitive transducer, and capacitive transducer
TWI712190B (en) Wafer scale ultrasonic sensing device and manufacation method thereof
US11460341B2 (en) Wafer scale ultrasonic sensor assembly and method for manufacturing the same
CN108147360A (en) MEMS structure, MEMS component and its manufacturing method
CN110149582A (en) A kind of preparation method of MEMS structure
KR102184453B1 (en) Ultrasonic transducer and method of manufacturing ultrasonic transducer
TWI593063B (en) Biometrics sensor and method of manufacturing the same
JP2017112187A (en) Device including element provided on board with through wiring and method of manufacturing the same
CN208429862U (en) MEMS structure, MEMS component
TWI732688B (en) Piezoelectric micromachined ultrasonic transducer and method of fabricating the same
CN106395730B (en) Semiconductor structure and its manufacturing method
CN117645271A (en) Resonant pressure sensor based on through silicon via technology and preparation method thereof
KR20220042681A (en) Flip-chip type ultrasonic sensor die capable of packaging